
University of Toronto, Department of Computer Science
CSC 2501/485F—Computational Linguistics, Fall 2015

Assignment 4

Due date: 13h10, Monday 16 November 2015, on CDF.
This assignment is worth 18% of your final grade.

• Please type your answers in no less than 12pt font; diagrams and structures may be
drawn with software or neatly by hand.

• Any clarifications to the problems will be posted on the course website and the CDF
forums. You will be responsible for taking into account in your solutions any informa-
tion that is posted there, or discussed in class, so you should check the page regularly
between now and the due date.

• This assignment must be done individually; the work that you submit must be your
own. You may, and in fact should, discuss your work with others in general terms. But
you should avoid looking at one another’s work or talking about it in detail. If you
need assistance, contact the instructor or TA.

Copyright c© 2015 Frank Rudzicz, Graeme Hirst, Christopher Parisien, Ulrich Germann, and Varada Kol-
hatkar. All rights reserved.
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Discovering lexical relations

The goal of this assignment is to replicate and extend the system for discovering new lexical
relations by Marti Hearst that was described in lecture notes number 7.

Part 1: Finding hypernym relations [40 marks]
With NLTK and the resources described below, and using Hearst’s lexicosyntactic patterns,
build and evaluate a system for finding suggested hypernym / hyponym relations between
words in a corpus of text.

For each suggested relation that you find, maintain a simple measure of confidence in its
correctness as the count of the number of times you find the same suggestion. (Hearst did
not do this.) If the relation is found just once, it is low confidence; if it’s found twice, call it
medium confidence, and if it’s found at least three times, call it high confidence.

A Python module Asst4 is available on CDF to help you get started.

Corpus: A corpus of about 2.6 million sentences (60 million words) from the 2004 New
York Times,* tagged with parts of speech,† is available on CDF in /u/csc2501h/include/
a4/nltk/corpora/nyt.zip. The corpus is about 145 Mb in compressed form, and
three times that if uncompressed. But there is no need to uncompress it, as the compressed
file can be read directly by NLTK. You can use Asst4 to access the corpus via NLTK as
follows:

import sys
sys.path.append(’/u/csc2501h/include/a4’)
from Asst4 import nyt_big, nyt_mini

for s in nyt_big.tagged_sents():
# do something with s

The Python object nyt_mini is a small development corpus that contains 100,000 sen-
tences selected from nyt_big. We have biased the selection towards sentences that are
likely to match the patterns mentioned in this hand-out. You can use it for developing, tun-
ing, and debugging your code. For your final submission, you must use nyt_big.

Chunker: The NYT corpus has already been part-of-speech tagged but not partially parsed
or chunked. So you will need to use NLTK’s regular-expression chunk parser to get the data
into a form ready for pattern-matching. The code snippet below creates a regular-expression
chunk-parser, then uses it to parse sentences of the NYT corpus. A chunking rule for NPs,
DefaultNpPattern, is available in Asst4:

*The data is from the New York Times Annotated Corpus, distributed by the Linguistic Data Consortium
and licensed by the University of Toronto. The data is owned by The New York Times Company, who gener-
ously make it available for research and education, and is protected by copyright. You must not copy the data,
or use it for purposes other than this assignment.
†Thanks to Paul Cook for the tagging and Uli Germann for conversion to the format required by NLTK.
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DefaultNpPattern = ’’.join([r’(<DT|AT>?<RB>?)?’,
r’<JJ.*|CD.*>*’,
r’(<JJ.*|CD.*><,>)*’,
r’(<N.*>)+’])

However, you might wish to modify the rule, so to understand this code you should read
section 7.2 of Bird et al, and you should consult the API documentation to know what to do
with the Tree objects produced by the chunker. (The code below is available on CDF in
/u/csc2501h/include/a4/A4-sample-code.py.)

import sys # only necessary once
sys.path.append(’/u/csc2501h/include/a4’) # only necessary once
from Asst4 import nyt_big # only necessary once

from nltk.chunk.regexp import *
from Asst4 import DefaultNpPattern
from nltk import Tree

rule = ChunkRule(DefaultNpPattern, ’Chunk NPs’)
parser = RegexpChunkParser([rule],

chunk_node=’NP’, # (optional) name for matched substrings
top_node=’S’) # (optional) name for top tree node

taggedText = nyt_big.tagged_sents()
for t in taggedText:

chunked = parser.parse(t)
# do something with the chunked sentence

Programming hint: The full NYT corpus is so big that you will run into memory problems
if you try to generate a list of chunked sentences with code like this:

chunked_corpus = [parser.parse(x) for x in nyt_big.tagged_sents()]

Instead, process each sentence individually, as shown in the sample code above.

Lexicosyntactic patterns: You should use Hearst’s patterns,* which are shown in Table 1,
and add your own if you wish. Note that in the patterns, elements in braces are optional —
they may be present or not. But elements separated by a ‘|’ in braces require a choice of
exactly one — either and or or, but not both or neither. Adapt the patterns as necessary for
your code, and make sure that they are well-documented in your code.

A particular point to note about rule number 3: When you chunk your text, you’ll find
that other is grouped as part of the NP (as it should be). So strictly speaking, you are not
looking for other NP j, but for an NPj that begins with other; and then you’ll have to remove
the other when extracting the hypernym. The same may be true, in all rules, for determiners
such as the, several, and some (e.g., university officials, including some deans, several chairs,
and the provost).

*Hearst, Marti. “Automated discovery of WordNet relations.” In: Fellbaum, Christiane (editor), WordNet:
An electronic lexical database. The MIT Press, 1998, pages 131–151.
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Table 1. Hearst’s patterns for discovering hyponyms in text.

1. Pattern: NP0{,} such as NP1{,NP2, . . . ,{and |or}NPj}
Extracted hyponyms: For each NPi (1≤ i≤ j), HYPONYM(NPi,NP0)
Example: Agar is a substance prepared from a mixture of red algae, such as Gelidium,
for laboratory or industrial use.
HYPONYM(Gelidium, red algae)

2. Pattern: such NP0 as NP1{,NP2, . . . ,{and |or}NPj}
Extracted hyponyms: For each NPi (1≤ i≤ j), HYPONYM(NPi,NP0)
Example: . . . works by such authors as Herrick, Goldsmith, and Shakespeare.
HYPONYM(Herrick, author)
HYPONYM(Goldsmith, author)
HYPONYM(Shakespeare, author)

3. Pattern: NP0{,NP1, . . . ,} {and | or} other NPj
Extracted hyponyms: For each NPi (0≤ i≤ j−1), HYPONYM(NPi,NPj)
Example: Bruises, lacerations, or other injuries . . . .
HYPONYM(bruise, injury)
HYPONYM(lacerations, injury)
Example: . . . bistros, coffee shops, and other cheap eating places.
HYPONYM(bistro, eating place)
HYPONYM(coffee shop, eating place)

4. Pattern: NP0{,} including NP1{,NP2, . . . ,{and |or}NPj}
Extracted hyponyms: For each NPi (1≤ i≤ j), HYPONYM(NPi,NP0)
Example: All common law countries, including Canada and England . . . .
HYPONYM(Canada, common law country)
HYPONYM(England, common law country)

5. Pattern: NP0{,} especially NP1{,NP2, . . . ,{and |or}NPj}
Extracted hyponyms: For each NPi (1≤ i≤ j), HYPONYM(NPi,NP0)
Example: . . . most European countries, especially France, England, and Spain.
HYPONYM(France, European country)
HYPONYM(England, European country)
HYPONYM(Spain, European country)
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Hint: Along with simple words, WordNet also contains synsets for commonly used phrases,
called WordNet compounds. For examples in Table 1, they include red algae, coffee house,
and eating place, but not cheap eating place or common law country. It is up to you to handle
these as you see fit.

Evaluation and report: The evaluation of your system will necessarily be only semi-
automatic. For each suggested pair your system finds, count how often each of the following
holds (count separately for each confidence level):

1. Both words are already in WordNet, and the relation holds between one or more senses
of each.

2. Both words are already in WordNet, but the relation is contradicted by WordNet for at
least one sense of each word. For example, your program might suggest that an animal
is a dog when WordNet already says that a dog is an animal.

3. Both words are already in WordNet, but the relation is not present.

4. One or both of the words is missing from WordNet.

Cases 1 and 2 are confirming and disconfirming cases, respectively, and can be counted
automatically. Cases 3 and 4 need to be evaluated by a human judge. Choose (at least)
50 examples of each case from your data (or all that you obtain, if fewer than 50), trying
to include suggestions from all of your patterns. Score each of these suggestions as either
correct, incorrect, or uncertain, according to your best judgement. Try to include both high-
confidence and low-confidence examples in your set.

Write a short report on your results, discussing both the successes and shortcomings of
of your program and the patterns that you use.

Hint: It will take your program a fair amount of time to work through the entire New York
Times corpus. Develop and test your program on the small dataset nyt mini before turning
it loose on the complete corpus.

Hint: False positives (and false negatives) can provide interesting insights and help you
improve your algorithm. For example, instead of just tossing out false positives as wrong
during the evaluation, think (and write in your report!) about what went wrong. Is the in-
stance a hopeless case, or could a small (or even big) change in your set-up help get things
right? We do not expect you to implement such changes, especially if they are non-trivial.
But we do want you to think about them. For analyzing errors, it is often worthwhile to
look at things in context. For manual evaluation (and debugging), consider printing out the
entire sentence in addition to the candidates to be evaluated, so that you can look at them in
context. But for your submission, print out only the suggestions from your program without
context.
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Part 2: Finding causal relations [20 marks]
Extend your system to look for causal relations such as rain causes flooding and dehydration
causes headaches. This will require a new set of lexicosyntactic patterns (in fact, they won’t
just be lexicosyntactic any more) and some modifications to your code from part 1. While
causal relations can be found with patterns — for example, the pattern “NP causes NP” is
a pretty good one — many of the indicators are rather more vague or ambiguous than those
of hyponymy. One way to make the patterns more precise is to put restrictions on the verbs
and NPs in the patterns. In particular, we require that verbs indicate a causation relation and
if the head nouns in the NPs are already in WordNet, then they be hyponyms of a particular
root synset. Research by Roxana Gı̂rju* resulted in a set of causal verbs which are shown in
Table 2 (available on CDF as Causal-verbs.txt) and a set of patterns which are shown
in Table 3 in decreasing order of accuracy. Each pattern takes the form “NP1–VE–NP2”,
where V E is a verbal expression from Table 2 such as create, bring on, and give rise to. The
constraints are either word-matches for the verbal expressions (after morphological analysis)
or are WordNet hypernym synsets for the NPs; “!” means “not”, a comma means “and”, and
“∗” means “any synset” or “any verb from Table 2”. To be considered an indicator of a causal
relation, an NP1–VE–NP2 sequence must match one of the rules in the first part of the table,
and must not match one of the rules in the second part.

For example, the sentence An inadequate dietary intake leads to immunodeficiency in
children will match rule C7 because immunodeficiency matches !ENTITY, !GROUP (not an
entity and not a group), and so we record it as a causal relation. However, the sentence
Behind the church is a path that leads to the cemetery doesn’t match because cemetery is an
ENTITY, and the relation is recognized as not causal.

Important note: Gı̂rju’s patterns were developed for an early version of WordNet, and
they do not work on the present version because some of the higher-level synsets that they
rely on were re-arranged between versions. So for this part of the assignment you must
use WordNet version 1.7, which is available on CDF in /u/csc2501h/include/a4/
nltk/corpora/wordnet. NLTK will use these files instead of the newer version of
WordNet if the NLTK data search path is adjusted accordingly. We’ve done that in the
Python module Asst4, so make sure you import WordNet through the module Asst4:

import sys # necessary only once in your code
sys.path.append(’/u/csc2501h/include/a4’) # necessary only once
from Asst4 import wn17 as wn

Modify your program from part 1 so that it can take causal verbs, WordNet root synsets,
and negative patterns into account in the pattern matching, and use these rules to find sug-
gested causal relations in the New York Times Corpus. Evaluate your results by choosing 50
suggestions (or all that you obtain, if fewer than 50) and scoring them as correct, incorrect,
or uncertain, according to your best judgement. (Don’t expect your results to be as good
as for hyponymy!) Write a short report on your results, discussing both the successes and
shortcomings of your program and Gı̂rju’s patterns.

*Gı̂rju, Roxana (2003). Automatic detection of causal relations for question answering. Proceedings of
the ACL 2003 Workshop on Multilingual Summarization and Question Answering, Sapporo, Japan, 76–83.
Association for Computational Linguistics.
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Table 2. Gı̂rju’s list of verbal expressions.

activate effect originate
actuate effectuate originate in
arouse elicit produce
associate with entail provoke
begin evoke put forward
bring fire up relate to
bring about generate result from
bring forth give birth to set in motion
bring on give rise to set off
call down implicate in set up
call forth induce spark
cause kick up spark off
commence kindle start
conduce to launch stem from
contribute to lead off stimulate
create lead to stir up
derive from lead up trigger
develop link to trigger off
educe link up unleash

make

Table 3. Gı̂rju’s patterns indicating causal and non-causal relations. The WordNet 1.7 synsets
are STATE.n.04, EVENT.n.01, PHENOMENON.n.01, GROUP.n.01, ACT.n.02, ENTITY.n.01, ABSTRAC-
TION.n.06, and POSSESSION.n.02, which are root nodes of different noun hierarchies in WordNet 1.7.
A rule matches any NP whose head is a hyponym of the root synset specified in the rule.

NP1 V NP2

Rules indicating causal relations:

C1 ∗ cause ∗
C2 ∗ ∗ PHENOMENON

C3 !ENTITY associated with !ABSTRACTION, !GROUP, !POSSESSION

C4 !ENTITY related to !ABSTRACTION, !GROUP, !POSSESSION

C5 !ENTITY ∗ EVENT

C6 !ABSTRACTION ∗ EVENT or ACT

C7 ∗ lead to !ENTITY, !GROUP

Rules indicating non-causal relations:

N1 ∗ induce ENTITY or ABSTRACTION

N2 ∗ ∗ GROUP, !STATE, !EVENT, !ACT

N3 ENTITY ∗ !STATE, !EVENT, !PHENOMENON
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Hint: As noted in Part 1, along with simple words, WordNet also contains commonly used
phrases (e.g., chain reaction, human genome project). For better results, check the NPs for
such compounds before checking for the NP restrictions.

Hint: There are two key differences between this part and part 1. (1) In this part, all the
patterns take the form “NP1–VE–NP2”. (2) And in this part, the verbal expression may be
constrained lexically (must match a particular word or string of words), but the NPs may
have additional semantic constraints: the head noun must be (or must not be) a hyponym of
some specified WordNet synsets. (Strictly speaking, of course, when we say that a noun is
a hyponym of some synset, we mean that at least one of the noun’s synsets is a hyponym of
that synset.)
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What to submit
What to submit electronically Please submit electronically your code (for parts 1 and 2),
your raw output (all suggestions as out1.txt and out2.txt for parts 1 and 2, respec-
tively), and your reports (including evaluation of the suggestions as report1.(pdf|doc(x)|rtf)
and report2.(pdf|doc(x)|rtf) for parts 1 and 2, respectively). Submit the files us-
ing the submit command on CDF:

% submit -c <course> -a Asst4 <filename-1>...<filename-n>

where <course> is csc485h for undergraduates and csc2501h for graduate students,
and <filename-1> to <filename-n> are the n files you are submitting. Make sure
every file you turn in contains a comment at the top that gives your name, your login ID on
CDF, and your student ID number.

Grading scheme
Part 1

Programming, 20 marks:
Correctness 7; Patterns 4; Coverage 6; Structure 3.

Report, 20 marks:
Automatic evaluation 4; Manual evaluation 4; Discussion 12.

Part 2

Programming, 10 marks:
Correctness 4; Patterns 2; Coverage 2; Structure 2.

Report, 10 marks:
Evaluation 4; Discussion 6.


