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ARTICLE

Development of a ternary hybrid fNIRS-EEG brain–computer interface based on
imagined speech
Alborz Rezazadeh Sereshkeh a,b, Rozhin Yousefi a,b, Andrew T Wong a,b, Frank Rudzicz c,d

and Tom Chau a,b

aInstitute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada; bBloorview Research Institute, Holland
Bloorview Kids Rehabilitation Hospital, Toronto, Canada; cDepartment of Computer Science, University of Toronto, Toronto, Canada; dVector
Institute, University of Toronto, Toronto, Canada

ABSTRACT
There is increasing interest in developing intuitive brain-computer interfaces (BCIs) to differentiate
intuitive mental tasks such as imagined speech. Both electroencephalography (EEG) and functional
near-infrared spectroscopy (fNIRS) have been used for this purpose. However, the classification
accuracy and number of commands in such BCIs have been limited. The use of multi-modal BCIs to
address these issues has been proposed for some common BCI tasks, but not for imagined speech.
Here, we propose a multi-class hybrid fNIRS-EEG BCI based on imagined speech. Eleven partici-
pants performed multiple iterations of three tasks: mentally repeating ‘yes’ or ‘no’ for 15 s or an
equivalent duration of unconstrained rest. We achieved an average ternary classification accuracy
of 70.45 ± 19.19% which is significantly better than that attained with each modality alone (p <
0.05). Our findings suggest that concurrent measurements of EEG and fNIRS can improve classifica-
tion accuracy of BCIs based on imagined speech.
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1. Introduction

The primary goal of most brain–computer interface
(BCI) research is to provide a communication pathway
for individuals with severe motor impairments who
have very limited or no voluntary movement [1].
A BCI can be a suitable means of communication for
these individuals, as they are only required to perform
a mental task or attend to a stimulus, without the need
for muscle activity. However, a majority of common
BCI activation tasks, such as mental arithmetic or
word generation, have little or no correlation with typi-
cal communication [2]. For example, a user may be
required to perform mental arithmetic to answer basic
yes or no questions, to move his/her wheelchair around,
or to control a switch [3,4]. This non-intuitiveness
makes the assistive device difficult to use, limiting its
potential to meaningfully improve quality of life [5].

Another common BCI activation task is motor ima-
gery, which involves the imagined movement of
a specific part of the body. This mental task can be
considered intuitive for certain applications, such as
navigation or robotic control. However, it can be diffi-
cult or impossible for individuals with congenital or
long-term motor impairments [6,7].

A mental task which has gained attention recently as
an intuitive BCI task is ‘imagined speech’. In this task,
the BCI user is instructed to covertly say or repeat
a phrase without moving the articulators [8]. Although
‘imagined speech’ overcomes the aforementioned short-
comings of other BCI mental tasks, it can be difficult to
detect and classify using only noninvasive brain record-
ing modalities, such as electroencephalography (EEG)
or functional near-infrared spectroscopy (fNIRS) [8].
An extensive review of previous BCIs based on ‘ima-
gined speech’ is provided by Schultz et al. [9].

EEG classification of imagined speech has been
investigated in various levels of language such as vowels
[5], syllables [10], and complete words [2]; as well as in
different languages, such as Chinese [11] and Spanish
[12]. In most of those studies, the classification accuracy
between different imagined speech tasks exceeded the
chance level. However, the reported average accuracies
were considerably below 70% (the suggested minimum
threshold for practical BCI use [13], even in binary
classification problems [2]). Brain regions that provided
more discriminatory electrical information in imagined
speech tasks were also explored in those studies. In
imagined speech BCI based on ‘yes’ and ‘no’, task-
specific changes in EEG beta and gamma power in
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language-related brain areas (such as the Broca’s area
and the superior temporal gyrus) tended to provide
discriminatory information [2,5].

Due to the slow nature of the hemodynamic response,
early applications of fNIRS in imagined speech focused
on distinguishing different patterns of hemodynamic
responses during trials of full sentences (e.g., inner recita-
tion of hexameter versus prose [14]) as opposed to decod-
ing small units of language such as nouns [9]. Later,
several studies investigated fNIRS-BCIs for answering
yes or no questions by simply thinking ‘yes’ or ‘no’ and
reported binary classification accuracies in the range of
70% to 76% [15–17]. Recently, Sereshkeh et al. intro-
duced a ternary fNIRS-BCI for the classification of covert
rehearsal of the words ‘yes’ or ‘no’ and an equivalent
duration of unconstrained rest and reported a ternary
classification accuracy of 64% across 12 participants
[18]. They also showed that for most participants,
fNIRS channels in the left temporal and temporoparietal
cortex provided the most discriminative information.

As mentioned, most imagined speech BCI studies
based on noninvasive measurements reported low aver-
age accuracies, especially for more than two classes. To
realize a reliable ‘imagined speech’ BCI, classification
accuracy must be improved further. One solution for
improving the performance of a BCI without changing
the activation task is to combine two or more brain
recording modalities [19–22]. Specifically, previous
work has utilized EEG in conjunction with fNIRS for
BCI use. These modalities are mutually complementary:
EEG has a high temporal resolution but low spatial
resolution, while fNIRS has a low temporal resolution
but superior spatial resolution [21] and [22] provided
extensive reviews of multimodal BCIs.

In this paper, we present a hybrid fNIRS-EEG BCI for
ternary classification of imagined speech (mentally
rehearsing the phrases ‘yes’ and ‘no’ to answer yes versus
no questions and an idle state). To the best of our knowl-
edge, this is the first report of a combination of fNIRS and
EEG to classify imagined speech. Furthermore, a novel
technique is proposed for the fusion of the two classifiers
trained using the data from each modality alone.

2. Materials and methods

2.1. Participants

Eleven typically developed, right-handed participants
(six males) between the ages of 23 and 33 (mean age:
28.3 ± 3.0 years) participated in this study. Participants
were fluent in English, had a normal or corrected-to-
normal vision, and had no health issues that could
adversely affect the measurements or the ability to

follow the experimental protocol. These issues included
cardiovascular, psychiatric, respiratory, neurological,
degenerative, metabolic or alcohol-related conditions.
This study was approved by the research ethics boards
of the University of Toronto and Holland Bloorview
Kids Rehabilitation Hospital. Written consent was
obtained from all participants prior to participating in
the study.

2.2. Instrumentation

EEG measurements were taken from 32 locations span-
ning all cortical regions, with a higher density of elec-
trodes in the temporal speech-related regions. EEG
recording was done using dry EEG electrodes (an
Acticap Xpress Twist) connected to a BrainAmp DC
amplifier (Brain Products GmbH, Germany) with
a sampling rate of 1 kHz. Reference and ground
(GND) electrodes were placed on the left and right ear-
lobes, respectively (A1 and A2). Fp1 and Fp2 electrodes
were only used to detect and remove EOG artifacts. See
Figure 1 for the location of the electrodes.

fNIRS data were collected using a near-infrared spec-
trometer (ETG-4000 Optical Topography System,
Hitachi Medical Co., Japan) from the temporal, frontal,
and parietal cortices. Each emitter consisted of two laser
diodes that concurrently emitted light at wavelengths of
695 nm and 830 nm. The reflected light was captured
using the detectors with a sampling frequency of 10 Hz.
Two 3 × 5 rectangular grids were used to fit 16 emitters
and 14 photodetectors, spaced 3 cm apart. Optical sig-
nals were acquired only from source-detector pairs
separated by 3 cm (henceforth referred to as ‘channels’).
As a result, fNIRS signals were collected from a total of
44 locations distributed equally and symmetrically
between the two hemispheres (see Figure 1).

The EEG electrode holders, near-infrared (NIR)
emitters and NIR photodetectors were integrated into
a custom-made cap (EasyCap, Germany).

2.3. Experimental protocol

Each participant attended two sessions (~1 h each) on
two separate days. During each trial, participants were
asked to perform one of the three mental tasks: uncon-
strained rest, ‘yes’ trials, and ‘no’ trials. In the ‘yes’ and
‘no’ trials, participants answered ‘yes’ and ‘no’ questions
by thinking ‘yes’ or ‘no’ while mentally repeating the
phrase ‘yes’ or ‘no’ in response to stimuli. The first
session consisted of an offline block of 36 trials, followed
by two online blocks of 24 trials each. The second ses-
sion consisted of 4 online blocks of 24 trials each. Each
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block contained an equal number of each task presented
in pseudorandom order, with each trial lasting for 15 s.

During the third task, ‘unconstrained rest’, partici-
pants were only asked to refrain from performing the
other two imagined speech tasks. The primary motiva-
tion behind choosing ‘unconstrained rest’ as the third
class is to facilitate potential asynchronous implementa-
tion. Specifically, for users who can achieve a reliable
3-class accuracy in our suggested paradigm, imagined
speech might eventually be utilized in a 2-class asyn-
chronous BCI. Such an asynchronous BCI can be acti-
vated by mentally repeating the phrases ‘yes’ or ‘no’ and
potentially be used as a binary switch (i.e., with two
activation modes) for an assistive device [18].

In the online trials, real-time feedback was provided
after the completion of the mental task. The feedback
was calculated by a classifier trained on fNIRS data. The
online fNIRS classification results were previously reported
[18]. Note that EEG data were collected from only 11 of the
12 participants of that study and presented here.

In this paper, the performance of the hybrid system is
evaluated and compared to the performance of each
modality alone. The timing diagram of the experiment
is presented in Figure 2.

2.4. Training and test set

The entirety of the first session plus the first block of
the second session was used as the training dataset for
offline classification, resulting in 108 trials (36 per class).
This training set was used for the selection of the feature
extraction and classification methods, as well as their
required hyper-parameters. The method and/or
parameter(s) which yielded the highest cross-
validation (CV) accuracy (100 runs of 10-fold CV) on
the training set was selected.

The remaining 72 trials (24 per class) i.e., last 3 blocks
from session 2 were used as the test set. Prior to each test
block, the classifier was retrained with the accumulated

Figure 1. The placement of EEG electrodes and fNIRS sources and detectors. EEG positions are marked using the nomenclature of the
international 10–20 system along with the corresponding channel number.
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data from all previous blocks, following a pseudo-online
paradigm. For example, the second test block would
utilize a classifier trained on 132 trials, comprising the
training set (108 trials) plus data from the first test block
(24 trials).

There were two reasons for choosing the last three
blocks as the test dataset. First, we wanted to be
consistent with the presentation of results in an ear-
lier paper on the same study [18]. Secondly, since
each participant attended two sessions on separate
days, we designed the first session to be the training
session, and the first block of the second session to
be the same-day calibration block. As a result, the
rest of the blocks (i.e., last three blocks) were used as
the test dataset.

2.5. EEG data analysis

2.5.1. Signal preprocessing
EEG data were first filtered using a 0.5–40 Hz bandpass
FIR filter. The low-pass cutoff frequency of 40 Hz was
suggested by the hardware manufacturer (Brain
Products GmbH, Germany) as the maximum reliable
frequency of the dry electrodes.

In order to remove electrooculography (EOG) arti-
facts, the ADJUST algorithm [23] was deployed.
Independent components due to eye blinks, and hori-
zontal and vertical eye movements were removed. The
remaining components were used to reconstruct the
EEG data. The reconstructed artifact-free signals for
each of the 30 electrodes were subjected to further
analysis (Fp1 and Fp2 data were solely used for EOG
artifact detection and were not considered thereafter).
Note that for the ADJUST algorithm, the independent
components were calculated using only the training set
data.

2.5.2. Feature extraction
Discrete wavelet transform (DWT) coefficients were
extracted from each trial [24]. Other common types of
features for EEG classification, such as autoregressive
components, common spatial patterns, and spectral
power estimates were also tested on the training set,
but DWT features using the Symlet-10 (sym10) wavelet
yielded the highest 10-fold cross validation (CV) accu-
racy on the training set and hence was selected for the
test set. DWT features have previously proven discrimi-
natory for EEG signals accompanying imagined
speech [25].

DWT has been frequently deployed EEG analysis
given its ability to localize information in both fre-
quency and time domains [26–28]. Six levels of decom-
position yielded the lowest 10-fold CV classification
error in the training set. The root-mean-square (RMS)
of the outputs from each DTW decomposition level
were used as features for classification. These six levels
represent the following frequency ranges: 40–31.3 Hz,
31.3–15.6 Hz, 15.6–7.8 Hz, 7.8–3.9 Hz, 3.9–2.0 Hz, and
2.0–1.0 Hz. A total of 180 DWT features (30 channels ×
6 frequency ranges) were generated from each trial.

2.6. fNIRS data analysis

The signal processing, baseline removal and feature
extraction steps for the fNIRS data are the same as the
steps described by [18]. In short, the optical intensities
were converted to oxygenated hemoglobin concertation
changes, [HbO], using the modified Beer–Lambert Law
[29]. The [HbO] data were filtered using a Chebyshev
type II low-pass filter with a passband cutoff frequency
of 0.1 Hz and a stopband cutoff frequency of 0.5 Hz.
A trial-specific mean baseline was removed using a 1.5
s period just prior to stimulus presentation. The mean
value of [HbO] for each of the 44 channels, over the

Figure 2. The timing diagram of the experiment.
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entire length of a trial, constituted the input features.
Other common types of fNIRS features, such as var-
iance, slope, kurtosis and skewness of changes in deox-
ygenated and oxygenated hemoglobin concentrations
were examined, but the mean of [HbO] yielded the
lowest 10-fold CV classification error in the training set.

2.7. Classification

2.7.1. Regularized linear discriminant analysis
(RLDA)
Linear discriminant analysis has been extensively used
in BCI studies. While the curse of dimensionality and
overfitting are very common problems in BCI classifica-
tion [30], a large number of these studies did not reg-
ularize their LDA models [30–32]. Strother et al. [33]
compared three linear discriminant models (LDA, sup-
port vector machines and logistic regression) and con-
cluded that comprehensive optimization of the
regularization parameter(s) may be much more impor-
tant than the choice of the model. In this paper, we used
the regularized linear discriminant analysis (RLDA)
algorithm for classification [34]. The regularization
parameter was optimized separately for each partici-
pant, each modality and each test block.

2.7.2. Choosing the regularization parameter
The test set consisted of three blocks. For each block, the
classifier was re-trained with data from all previous
trials. In other words, for the first test set block, the
classifier was trained using only the training set data.
For the second test set block, the classifier was trained
using the training set data and the first test set block.
And finally, for the third test set block, the classifier was
trained using the training set data and the first two test
set blocks.

The regularization parameter was also optimized for
each of the aforementioned classifiers using 100 runs of
10-fold CV on the available training data (as explained in
the previous paragraph). In other words, the average CV

accuracy was calculated for γ ¼ 0:05; 0:1; 0:15; . . . ; 1 and
the γwhich provided the highest CV accuracy was used to
train the classifier. A separate classifier for EEG and
fNIRS was trained and the value of γ was optimized for
each of these two classifiers separately (see Figure 3).
Specifically,

γ�EEG ¼ argmax
γ

AEEGγ¼0:05; AEEGγ¼0:1; . . . ;AEEGγ¼1

� �

(1)

and,

γ�fNIRS¼ ¼ argmax
γ

AfNIRSγ¼0:05; AfNIRSγ¼0:1; . . . ;AfNIRSγ¼1

� �

(2)

In Equations (1) and (2), AEEG and AfNIRS are the average
classification accuracies over 100 runs of 10-fold CV on
all previous trials (the entire training set as well as
previous test blocks, if any) using EEG and fNIRS mea-
surements, respectively. In total, six classifiers were
trained (three test blocks over two modalities). In this
study, 10-fold CV was used over leave-one-out CV
(used by [18]) since it provides better generalizability
and less variance [35].

We note that the proposed method of optimizing the
regularization parameter can be computationally expen-
sive, which is not ideal for cases when the process needs
to be done multiple times during an online data collec-
tion session. Future work may include exploring auto-
matic optimization methods, such as the automatic
estimation of the optimal shrinkage parameter proposed
by [36].

2.7.3. Fusion of EEG and fNIRS classifiers
After optimizing the regularization parameters and
training two classifiers, one using EEG data and one
using fNIRS data, these two classifiers were combined
using a probabilistic model to make predictions on the
test set. The classifier predicted the class, C, of a single
trial according to:

Figure 3. Flowchart illustrating the pathway for building (a) the fNIRS classifier and (b) the EEG classifier (RLDA = regularized linear
discriminant analysis).
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C XEEG; XfNIRS
� � ¼ argmax

c¼00yes00;00no00;00rest00
PðC ¼ cjXEEG;XfNIRSÞ

(3)

where XEEG and XfNIRS are feature vectors of that parti-
cular trial in the test set. The probabilities that the trial
belonged to each of three classes were obtained using
the following three equations:

P C ¼ 00no00jXEEG;XfNIRS
� � ¼ maxðA�

EEG
� P C ¼ 00no00jXEEGð Þ

A�
fNIRS � P C ¼ 00no00jXfNIRS

� �Þ (4)

P C ¼ 00yes00jXEEG;XfNIRS
� � ¼ maxðA�

EEG
� P C ¼ 00yes00jXEEGð Þ

A�
fNIRS � P C ¼ 00yes00jXfNIRS

� �Þ (5)

P C ¼ 00rest00jXEEG;XfNIRS
� � ¼ maxðA�

EEG
� P C ¼ 00rest00jXEEGð Þ;

A�
fNIRS � P C ¼ 00rest00jXfNIRS

� �Þ (6)

where A�
EEG and A�

fNIRS are the average CV classification
accuracies obtained with the optimized regularization
parameters, γ�EEG and γ�fNIRS for each modality.

In other words, the class labels for a given test trial were
taken as that predicted either by the EEG classifier or the
fNIRS classifier, depending on the confidence of each
classifier’s prediction and the classifier’s prior probability.

3. Results

3.1. Ternary classification accuracies

Table 1 provides the ternary classification accuracy
across the three test blocks for all participants using

EEG only, fNIRS only, and the proposed hybrid system.
The statistical significance level of each accuracy is cal-
culated based on the permutation test approach [37],
with 10,000 permutations. Accuracies exceeding the
significance levels of 0.05, 0.01 and 0.001 are marked
with one, two and three asterisks, respectively.

By using EEG data only, an average classification
accuracy of 63.8� 20.9% (over the entire test set) was
reached across participants with six participants sur-
passing the chance level (p < 0.001, using the permuta-
tion test approach). With fNIRS data only, an average
classification accuracy of 63.6� 21.1% was obtained
across participants with seven participants exceeding
the same limit.

After the fusion of fNIRS and EEG classifiers using the
proposed method, the average classification accuracy
across participants improved to 70.5� 19.2% (>6.5%
improvement compared to EEG and fNIRS alone) with
nine participants surpassing the chance level (two and
three more participants compared to fNIRS and EEG,
respectively). Figure 4 illustrates the average classification
accuracy over the entire test set across participants using
each modality on its own and in combination.

In order to statistically compare the hybrid accuracies
with the single-modality ones, we did two comparisons:
hybrid versus EEG and hybrid versus fNIRS. For each of
these comparisons, we used a two factor, within-subject,
repeated measures ANOVA. The two factors were the
measurement device (EEG or hybrid for the first com-
parison, and EEG or fNIRS for the second comparison)
and the test block number (one, two or three). The
calculated p-values for the first factor (i.e., the measure-
ment device) were corrected using the Holm–
Bonferroni method to account for multiple (two) com-
parisons. As a result, the hybrid BCI provided
a significantly higher accuracy compared to both unim-
odal systems (p < 0.05).

Table 1. Ternary classification accuracies (%) of participants across three test blocks.
Test Block 1 Test Block 2 Test Block 3 All Test Blocks

EEG fNIRS Hybrid EEG fNIRS Hybrid EEG fNIRS Hybrid EEG fNIRS Hybrid

P1 100*** 83.3*** 100*** 95.8*** 83.3*** 100*** 95.8*** 95.8*** 95.8*** 97.2*** 87.5*** 98.6***
P2 33.3 79.2*** 62.5** 62.5** 79.2*** 79.2*** 58.3* 79.2*** 79.2*** 51.4** 79.2*** 73.6***
P3 79.2*** 66.7*** 79.2*** 91.7*** 70.8*** 91.7*** 83.3*** 83.3*** 83.3*** 84.7*** 73.6*** 84.7***
P4 41.7 29.2 33.3 50.0 50.0 54.2* 58.3* 12.5 54.2* 50.0** 30.6 47.2**
P5 75.0*** 95.8*** 95.8*** 87.5*** 100*** 100*** 95.8*** 100*** 100*** 86.1*** 98.6*** 98.6***
P6 25.0 37.5 41.7 54.2* 45.8 62.5** 50.0 66.7*** 66.7*** 43.1 50.0** 56.9***
P7 54.2* 58.3* 62.5** 41.7 50.0 41.7 41.7 83.3*** 66.7*** 45.8* 63.9*** 56.9***
P8 79.2*** 54.2* 70.8*** 41.7 50.0 45.8 91.7*** 70.8*** 100*** 70.8*** 58.3*** 72.2***
P9 66.7*** 70.8*** 66.7*** 91.7*** 62.5** 87.5*** 79.2*** 87.5*** 87.5*** 79.2*** 73.6*** 80.6***
P10 33.3 45.8 45.8 33.0 45.8 41.7 33.0 25.0 37.5 33.3 38.9 41.7
P11 37.5 29.2 45.8 66.7*** 54.2* 70.8*** 75*** 54.2* 75.0*** 59.7*** 45.8* 63.9***
AVG 56.82 59.09 64.02 65.2 62.88 70.45 69.32 68.94 76.89 63.76 63.64 70.45
SD 24.50 22.35 21.67 23.1 18.11 22.70 22.2 28.10 19.66 20.93 21.14 19.19

Accuracies with statistical significance levels of 0.05, 0.01 and 0.001 are marked with *, **, and ***, respectively. These significant levels were calculated using
the permutation test approach.
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If we consider the average accuracies across the three
test blocks separately, the hybrid BCI yielded a ternary
classification accuracy of 69.3%, 68.9%, and 76.9% in the
first, second and third test blocks, respectively. Recall that
the classifier used for each test block was trained on data
from all previous blocks. Figure 5 depicts the changes in

the classification accuracy across the three test blocks
using each single modality and the hybrid system.

Table 2 provides the confusion matrix for the hybrid
classifier on the entire test set. The classifier was most
successful in correctly detecting Rest and No trials. This
observation is in-line with the findings reported in [2]

0
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P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 Mean

EEG fNIRS Hybrid

Figure 4. The average classification accuracy (yes versus no versus rest) over the entire test set across participants using each modality
separately and together in the hybrid system.

Figure 5. The classification accuracy (yes versus no versus rest) across the three test blocks using each modality separately and
together in the hybrid system.
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and [25]. We also note that for imagined speech trials
(‘yes’ and ‘no’) detected incorrectly, the predicted labels
were distributed approximately equally between the other
two classes.

3.2. The contribution of each modality in the hybrid
system

Figure 6 illustrates the contribution of each mod-
ality (i.e., the percentage of trials for which the
decision was made by that modality). Four partici-
pants (P1, P3, P5, and P9) had almost all trials
classified using a single modality. For all other
participants, a mix of EEG and fNIRS data was
used, with the overall mean being 64.7% of trials
labeled by the EEG-BCI. The EEG modality may
have had a bigger contribution in this experimental
setup as the EEG electrodes covered more brain
regions (central, parietal, and occipital regions)
compared to fNIRS channels (see Figure 1)

3.3. The role of different EEG and fNIRS channels in
providing discriminative information

To highlight brain regions that exhibit task-specific EEG
patterns of activity, we used the average value of the
Fisher criterion across participants for each frequency
range and each electrode. As a reminder, RLDA ranks

each feature’s discriminative capability based on the
Fisher criterion, with the highest score being most dis-
criminant. Six wavelet features were extracted from each
channel, representing six pseudo-frequency levels. For
each of these frequency levels, only one feature per
channel was generated. Figure 7 depicts the topographic
maps of the Fisher criterion (averaged across all test
blocks and participants) for each frequency range. To
highlight the variation across participants, the standard
deviation of the Fisher criterion values across partici-
pants are shown in Figure 8 using the same topo-
graphic map.

Evidently, more EEG channels provided discriminative
information in higher frequency ranges (gamma and beta)
than in lower frequency ranges. This finding is consistent with
the previous classification of imagined speech using EEG [2].
However, the channels which provided the highest Fisher
criterion value also have a large variance across participants.
This inconsistency between participants could be attributed to
subject-specific performance of imagined speech tasks, as well
as inter-individual variations in the size and shape of different
brain regions. Determining precisely which Brodmann
regions provided the highest activation would require fMRI
and structural data for each individual [38].

Similar analysis for the fNIRS measurements in this
study are provided by [18], which showed that the
fNIRS channels in the left temporal and temporoparietal
regions provided the highest Fisher criterion value.

3.4. Reducing the duration of trials

During the experiment, participants were asked to per-
form 15 s of each task. To increase the information
transfer rate, BCI performance for shorter task durations

Table 2. The confusion matrix for the hybrid classifier on the
entire test set.

Detected as Rest Detected as Yes Detected as No

Rest 76.1% 12.9% 11.0%
Yes 18.2% 62.5% 19.3%
No 12.5% 14.8% 72.7%

Figure 6. The contribution of each modality (i.e. the percentage of trials for which the decision was made by each modality) for
different participants and in different blocks (B1, B2, B3 denote blocks 1, 2 and 3).

BRAIN-COMPUTER INTERFACES 135



were explored. Figure 9 illustrates the yes versus no versus
rest classification accuracies (averaged across the three
test blocks), had the duration of each trial been reduced.
These hypothetical accuracies were estimated for eight
different trial durations, from 8 s to 15 s (with 8

s suggested as the minimum fNIRS recording duration
for observing a change in the hemodynamic response in
a speech-related trial [39]). The average fNIRS accuracies
increased from 59.2% to 63.6% as the duration of trials
was increased from 8 to 15 s. For EEG, the average

          40 – 31.3 Hz                                           31.3 – 15.6 Hz                                              15.6 – 7.8 Hz        

             7.8 – 3.9 Hz                                            3.9 – 2.0 Hz                                                 2.0 – 1.0 Hz 

Figure 7. Topographic maps of the mean of the Fisher criterion (across all test blocks and participants) for each frequency range (yes
versus no versus rest).

          40 – 31.3 Hz                                         31.3 – 15.6 Hz                                         15.6 – 7.8 Hz        

             7.8 – 3.9 Hz                                            3.9 – 2.0 Hz                                            2.0 – 1.0 Hz 

Figure 8. Topographic maps of the standard deviation of the Fisher criterion across participants for each frequency range (yes versus
no versus rest).
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accuracy changed from 59.2% at 8 s to 63.8 at 15 s, with
some small fluctuations in between.

For the hybrid BCI, the mean accuracy across partici-
pants increased from 65.5%, at 8 s, to 70.5%, at 15 s. In
general, there was a trade-off between the duration of
each trial and the hybrid BCI accuracy. For most partici-
pants, the information transfer rate can be nearly doubled
without much loss in accuracy. However, two partici-
pants (P6 and P7) surpassed the chance level (p < 0.001)
only when the duration was longer than 13 s. This

suggests that there may be user-specific enhancements
to optimize ITR while maintaining comparable accuracy.

4. Discussion

4.1. Comparison with previous hybrid fNIRS-EEG
BCIs

We proposed a 3-class hybrid fNIRS-EEG BCI based on
imagined speech. An average ternary classification

Figure 9. The ternary classification accuracies (averaged across the three last blocks) for different trial durations.
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accuracy of 70.5� 19.2% was reached across all partici-
pants, with 9 out of 11 participants surpassing the upper
limits of 99.9% confidence limits of chance. When aver-
aged across participants, the hybrid BCI significantly
outperformed both EEG and fNIRS BCIs with more
than 6.5% enhancement in classification accuracy.

Most previous hybrid fNIRS-EEG BCIs based on
active tasks focused on binary classification, either
between twomental tasks [40–42] or a mental task versus
the idle state [43] and mostly reported accuracy improve-
ments of ~5% compared to each modality alone [19].
Shin et al. [44] developed one of the first hybrid 3-class
BCIs (motor imagery, mental arithmetic, and idle state)
and reported an average hybrid classification accuracy of
~82% with ~6% and ~18% improvements compared to
EEG and fNIRS (covering only the prefrontal cortex),
respectively. However, the main reason for this dramatic
improvement compared to fNIRS alone may be due to
the fact that motor imagery and mental math (i.e. work-
ing memory) are expected to elicit activation in different
regions (sensorimotor vs. prefrontal) while the fNIRS
channels were only covering the prefrontal cortex.

4.2. Comparison of the information transfer rate
(ITR) with previous BCIs with analogous activation
tasks

In this section, we compare the ITR of the proposed BCI
to that of four studies using analogous activation tasks
[2,16,17,25]. In all these studies, participants were asked
to answer ‘yes versus no’ questions, presented visually or
auditorily. However, the exact instruction they were
given was slightly different. Sereshkeh et al. instructed
participants to ‘mentally rehearse the phrases “yes” and
“no” without any muscle and tongue movements’ after
reading the question ([2,25]). Hwang et al. presented the
questions auditorily and asked participants to internally
answer ‘yes’ or ‘no’ [16]. And finally, Chaudhary et al.
presented the questions auditorily and instructed parti-
cipants to think ‘ja’ or ‘nein’ (German for ‘yes’ and ‘no’)
and to avoid imagining the answer aurally or visually
[17]. In our study, the questions were presented visually
and the exact instruction which was given to partici-
pants was ‘to think “yes” or “no” while repeating the
answer mentally without any muscle or tongue
movements’.

For calculating the ITR, the following equation by
[45] was used:

ITR ¼ 60
τ
: log2N þ P:log2P þ 1� Pð Þ:log2

1� P
N � 1

� �

(7)

where τ is the trial duration, N is the number of classes
and P is the classification accuracy.

The calculated ITRs of the binary ‘yes’ versus ‘no’
BCIs presented by [16,17], and [2] were 1:08� 1:36,
1:06� 0:25, 0:94� 0:12 bits/min, respectively. For the
ternary yes versus no versus idle state BCI presented by
[18], the ITR was 0:94� 0:83 bits/min. In this study, we
achieved the ITR of 2:03� 1:84 bits/min.

4.3. fNIRS-EEG fusion model

We proposed a novel technique to combine the data
from two recording modalities. Additionally, we applied
two previously suggested fNIRS-EEG fusion techniques
on our dataset for comparison: (I) normalizing and
merging the feature vectors from the two modalities
[46] and (II) training a classification model for each
classifier and use a metaclassifier for combining these
two classifiers [40]. However, we found that the pro-
posed technique provided the best performance.

The first technique is a straightforward solution, i.e.,
combining data from two different modalities and
leverages the discriminative information from both mod-
alities in decision-making. However, merging two feature
vectors increases the input dimensionality and risk of over-
fitting. Hence, the number of trials needs to be sufficiently
large for this technique to be optimal. Furthermore, the
normalization parameters for each modality needs to be
optimized for each participant, which increases thenumber
of hyperparameters.

The second solution, which uses a metaclassifier,
resembles our proposed technique. However, feeding
the output scores of two classifiers into a metaclassifier
does not necessarily take the reliability of each classifier
into account. For instance, if a classifier is overfitted on
the training data, the output scores (which serve as the
input to the metaclassifier) will be high, while in reality,
the classifier will fail to perform well on the test set.
Using the cross-validation accuracy as a prior probabil-
ity to adjust the output scores of each classifier can
address this problem. As seen in Figure 6, for most
participants, one recording modality tended to domi-
nate the decision-making, although the dominant mod-
ality varied across participants. In other words, the
proposed technique appears to be ideal when the pre-
ferred BCI modality is participant-specific or may
change from trial to trial.

4.4. Limitations and future directions

For future studies, this BCI can be developed with the
option of making the decision sooner than the entire trial
period, if the classifier’s confidence surpasses a certain
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threshold. Our findings showed that some participants
reached their highest performance in less than 10 s, while
others required a longer duration to surpass chance. The
option of selecting the class type earlier than the end of
a trial can improve the ITR for some participants.

Future research can also investigate the effect of
increasing the number of sessions, allowing for more
trials for training the classifier. In this study, the average
classification accuracy increased in each test block (see
Figure 5), which is possibly due to the increased volume
of training data. With more trials, the maximum achiev-
able classifier performance could be determined.

To progress toward a subject-independent hybrid
BCI, future work may investigate the merit of
a general model based on data from all participants,
and using transfer learning [47] to fine tune the model
using a small dataset from each new participant. This
may be more feasible due to the innate subject-
dependent nature of active BCIs.

Finally, prior to any clinical translation of these find-
ings, the results should be replicated on the main target
population of BCI research, i.e., individuals who present
as locked-in.

5. Conclusion

This study investigated a hybrid 3-class fNIRS-EEG-BCI
based on imagined speech. Eleven participants, across
two sessions, performed multiple iterations of three dif-
ferent mental tasks: thinking ‘yes’ or ‘no’ while mentally
repeating the word for 15 s, or an equivalent duration of
unconstrained rest. BCI classification was performed
using EEG data and fNIRS data alone, as well as
a hybrid fNIRS-EEG classification model. The hybrid
model provided an average ternary classification accuracy
of 70.5� 19.2% (>6.5% improvement compared to EEG
and fNIRS alone) across participants with nine out of
eleven participants surpassing chance (compared to
seven for EEG or fNIRS alone). Our findings suggest
that concurrent measurements of EEG and fNIRS can
improve both classification accuracy and the information
transfer rate of BCIs based on imagined speech. We also
calculated and provided the performance of the BCI for
shorter durations of mental tasks and showed that for
most participants, the ITR of the hybrid system can be
almost doubled with a negligible drop in the accuracy. To
the best of our knowledge, this is the first report of
a multimodal and multiclass BCI based on imagined
speech and moves toward a more reliable intuitive BCI.
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