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Abstract: The mean shift (MS) algorithm is an iterative method introduced for locating modes of a probability density function.
Although the MS algorithm has been widely used in many applications, the convergence of the algorithm has not yet been
proven. In this study, the authors modify the MS algorithm in order to guarantee its convergence. The authors prove that the
generated sequence using the proposed modified algorithm is a convergent sequence and the density estimate values along
the generated sequence are monotonically increasing and convergent. In contrast to the MS algorithm, the proposed modified
version does not require setting a stopping criterion a priori; instead, it guarantees the convergence after a finite number of
iterations. The proposed modified version defines an upper bound for the number of iterations which is missing in the MS
algorithm. The authors also present the matrix form of the proposed algorithm and show that, in contrast to the MS algorithm,
the weight matrix is required to be computed once in the first iteration. The performance of the proposed modified version is
compared with the MS algorithm and it was shown through the simulations that the proposed version can be used successfully
to estimate cluster centres.

1 Introduction
It has been shown that the modes of a probability density function
(pdf) can be used in many machine learning applications, including
clustering [1], image and video segmentation [2, 3], signal
denoising [4], and object tracking [5, 6]. The mean shift (MS)
algorithm is an iterative, non-parametric technique that was
introduced by Fukunaga and Hostetler [7] to estimate modes of a
pdf. The MS algorithm was generalised by Cheng [8] and became
popular in the machine learning community when its potential for
feature space analysis was studied [9]. The MS algorithm starts
from one of the data points, as the initial mode, and assigns a
weighted average of the data set in each iteration. It can be shown
that the MS vector always points toward the direction of the
maximum increase in the density function. In fact, the MS
algorithm is an instance of the gradient ascent algorithm with an
adaptive step size [10]. The iterations continue until the norm of
the difference between two consecutive mode estimates becomes
less than some predefined threshold. The number of the estimated
modes in this procedure is taken as the number of clusters and the
estimated modes represent the cluster centres. Furthermore, all data
points associated with the same mode (called the ‘basin of
attraction’ of that mode [9]) are considered members of the same
cluster.

The MS algorithm has been successfully used in many
applications, but a rigorous proof for its convergence is still
missing in the literature. Comaniciu and Meer [9] claimed that the
sequence generated by the MS algorithm is a convergent sequence,
but a crucial step in the convergence proof was not correct.
Specifically, based on an incorrect use of the triangle inequality, the
authors in [9] showed that the sequence generated by the MS
algorithm is a Cauchy sequence (and as a result a convergent
sequence), which is not true in general. Later, Carreria-Perpinán
[11] showed that the MS algorithm with the Gaussian kernel is an
instance of the expectation maximisation (EM) algorithm and
hence the generated sequence is a convergent sequence. However,
without additional conditions, the sequence of parameter estimates
generated by the EM algorithm may not converge (see [12, 13]).
Positively, the authors in [14, 15] showed that if an estimated pdf
has a finite number of modes (or equivalently isolated modes), then

the sequence of the estimated cluster centres generated by the MS
algorithm is a convergent sequence. Unfortunately, the authors in
[14, 15] could not provide sufficient conditions for widely used
kernels (e.g. Gaussian) to have a finite number of (or isolated)
modes. In a recent study, the authors investigated the connection of
the MS algorithm to the kernel regression technique and suggested
that exploiting the theoretical properties of the asymptotic bias of
the kernel regression technique might be helpful to show the
convergence of the MS algorithm [16].

Surprisingly, the authors in [17] made the same mistake as those
in [9] by applying the triangle inequality to the squared Euclidean
distance in order to prove the convergence of the flow line of a
function f of class C3 (Theorem 1 in [17]). Later, the authors in [17]
fixed the mistake by adding an additional assumption that the end
point of the flow line is an isolated mode [18].

The convergence of the MS algorithm in a one-dimensional
space with an analytic kernel (e.g. Gaussian) was shown in [19].
Later, Aliyari [20] proved that a sequence generated by the MS
algorithm with a certain class of kernels is a monotonic and
convergent sequence in a one-dimensional space. The special one-
dimensional case has limited use in practice, and the authors in [19,
20] could not generalise the convergence result to dimensions
greater than one. Recently, Aliyari [21] presented a sufficient
condition for the MS algorithm with the Gaussian kernel to have
isolated stationary points. The sufficient condition is given as a
lower bound for the bandwidth of the kernel function.
Unfortunately, this condition is not practically useful. The
bandwidth, as a function of the sample size, must converge to zero
as the sample size goes to infinity to guarantee the asymptotic
consistency of the pdf estimate [22]. Although choosing the
bandwidth based on the condition in [21] guarantees isolated
stationary points, it generates poor estimation of the pdf that results
in an inaccurate mode estimate.

In this paper, we present a modified version of the MS
algorithm to guarantee the convergence of the generated sequence.
In particular, we add one step to the regular MS algorithm and
assign the computed MS vector to the closest data point in the data
set in each iteration. We prove that the generated sequence using
the proposed modified version is a convergent sequence. We also
show that, similar to the original MS algorithm, the pdf estimate
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along the generated sequence is a monotonically increasing and
convergent sequence. Although the additional step increases the
computation cost, there is no need to update the weight matrix in
each iteration. For the proposed modified version, in contrast to the
original MS algorithm, the weight matrix is computed once in the
first iteration. Since the convergence is guaranteed in the proposed
version, there is no need to set a predefined threshold as the
stopping criterion for the algorithm. It is clear that setting a
threshold in general cannot be used as a reliable measure of
closeness to the convergence point (if there is a convergence
point). It is possible that the difference between two consecutive
mode estimates becomes less than the predefined threshold and the
algorithm terminates the iterations, but both points are far from the
possible convergence point. Furthermore, the number of iterations
is highly dependent on the stopping criterion in the original MS
algorithm, i.e. a small threshold increases the number of iterations,
and in general may not be an upper bound for the number of
iterations. But for the proposed modified MS algorithm, we show
that the number of iterations is always bounded above by the
number of samples. In the next section, we briefly review the MS
algorithm. The proposed modified MS algorithm is presented in
Section 3. Simulation results to show the effectiveness of the
proposed algorithm for clustering are given in Section 4. Section 5
is devoted to the concluding remarks.

2 MS algorithm
Let xi ∈ ℝD, i = 1, …, n be a sequence of n independent and
identically distributed random variables generated from an
unknown density function f. A D-variate kernel K :ℝ → ℝ is a non-
negative, real-valued, and even function that integrates to one [23].
The kernel density estimate f

^
 at an arbitrary point x, using a kernel

K(x) is given by [23]

f
^
h(x) = 1

nhD ∑
i = 1

n
K

x − xi
h , (1)

where h is called the bandwidth. A special class of kernels, called
radially symmetric kernels, has been widely used for pdf
estimation. Radially symmetric kernels are defined by
K(x) = ck, Dk( ∥ x ∥2 ), where ck, D is a normalisation factor that
causes K(x) to integrate to one and k: [0, ∞) → [0, ∞) is called the
profile of the kernel. The profile of a kernel is assumed to be a non-
increasing, non-negative, and piecewise continuous function that
satisfies ∫0

∞k(x) dx < ∞. Using the profile k and the bandwidth h,
the kernel density f

^(x) in (1) changes to the following form [23]:

f
^
h, k(x) = ck, D

nhD ∑
i = 1

n
k ∥ x − xi

h ∥
2

. (2)

Assuming that the profile k is differentiable with derivative k′, by
taking the gradient of (2), we obtain

∇ f
^
h, k(x) = 2ck, D

nhD + 2 ∑
i = 1

n
g ∥ x − xi

h ∥
2

×
∑i = 1

n xig ∥ (x − xi)/h ∥2

∑i = 1
n g ∥ (x − xi)/h ∥2 − x ,

(3)

where g(x) = − k′(x). The second term in the above representation
is called the MS vector, mh, g(x), and (3) can be rewritten in the
following compact form:

∇ f
^
h, k(x) = 2ck, D

h2cg, D
f
^
h, g(x)mh, g(x), (4)

where f
^
h, g(x) is the kernel density estimate at x using the kernel

function G(x) = cg, Dg( ∥ x ∥2 ). The modes of the estimated pdf are

points x such that the gradient function is zero at those points, i.e.
∇ f

^(x) = 0. From (3), it can be observed that the modes of the
estimated pdf are the fixed points of the following function

mh, g(x) + x =
∑i = 1

n xig ∥ (x − xi)/h ∥2

∑i = 1
n g( ∥ (x − xi)/h ∥2 )

. (5)

To solve (5), the MS algorithm initialises the cluster centre
estimate sequence to be one of the observed data points and the
cluster centre estimate yj in the jth iteration is updated by

yj + 1 = yj + m(yj) =
∑i = 1

n xig( ∥ (yj − xi)/h ∥2 )
∑i = 1

n g( ∥ (yj − xi)/h ∥2 )
. (6)

The MS algorithm repeatedly updates the cluster centre estimate yj
using (6) until the norm of the difference between two consecutive
estimates becomes less than some predefined threshold, i.e.
∥ yj + 1 − yj ∥ < ϵ for some j ∈ ℕ. The set of all points converging
to the same cluster centre define the basin of attraction for that
cluster. Points in a same basin of attraction belong to the same
cluster. Choosing the appropriate bandwidth h plays a crucial role
in the MS algorithm. On the one hand, a small bandwidth may
slowdown moving of the MS sequence towards a mode, but on the
other hand a large bandwidth may lead merging two modes. The
problem of selecting the bandwidth h for the MS algorithm is
discussed in detail in [9, 24]. According to [24], ‘The best of the
currently available data-driven methods for bandwidth selection
seems to be the plug-in rule, which was proven to be superior to
least squares cross validation and biased cross-validation’.

2.1 Gaussian blurring mean shift

Gaussian blurring mean shift (GBMS) is a variation of the MS
algorithm that uses the Gaussian kernel and updates all data in each
iteration. Let xi

0 ∈ ℝD, i = 1, …, n denote the initial data set. The
data set at the kth iteration, xi

k, i = 1, 2…, n, is updated by [25]

xi
k = ∑ j = 1

n xj
k − 1g( ∥ (xi

k − 1 − xj
k − 1)/h ∥2 )

∑ j = 1
n g( ∥ (xi

k − 1 − xj
k − 1)/h ∥2 )

, i = 1, 2, …, n . (7)

Let X0 = {x1
0, …, xn

0} denote the initial D × n data matrix. Then by
applying the GBMS algorithm, each point of the initial data set
moves to a new point and we obtain a sequence of data matrices
X1, X2, …, where each data matrix is a blurred version of the
previous version. Cheng [8] showed that for any initial data set and
the bandwidth, the GBMS algorithm generates a sequence of data
matrices that converges to a data matrix X with all points
coincident. Carreira-Perpiñán [25] showed that if the GBMS
algorithm stops before clusters start to move toward each other,
then it can be used as a clustering tool. The typical behaviour of the
GBMS algorithm has two phases. First, points merge into compact
clusters which take a few iterations. In the second phase, which
may take several hundred iterations, those clusters move towards
each other and they finally merge into a single point [25]. It is
desirable to stop the GBMS algorithm right after the first phase in
which points merge into clusters. Carreira-Perpiñán [25] proposed
the following stopping criterion to terminate the iterative process
before data points start merging

1
n ∑

i = 1

n
ei

k < ϵ, ei
k = ∥ xi

k − xi
k − 1 ∥ , (8)

where ϵ is a small tolerance that needs to be set a priori.

3 Modified MS algorithm
Comaniciu and Meer claimed that the sequence {yj} j = 1, 2, … is a
Cauchy sequence [9], which is not true in general. Specifically, the
error in the convergence proof of the MS algorithm in [9] is due to
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the incorrect use of the triangle inequality [21]. Through further
manipulation of the proof in [9], one can show

lim
j → ∞

∥ yj + 1 − yj ∥ = 0. (9)

According to the definition of the MS vectors in (6), the generated
sequence {yj} is always inside the convex hull of the data set.
Therefore, {yj} is a bounded sequence satisfying (9). Note that the
last two properties are not enough to imply the convergence of
{yj} j = 1, 2, …. As a counterexample, consider a sequence
{zj} j = 1, 2, … ∈ ℝ2 as follows:

zj = sin 2π ∑
i = 1

j 1
i , cos 2π ∑

i = 1

j 1
i , i = 1, 2, … . (10)

The sequence {zj} is a bounded sequence that satisfies the
following inequality:

∥ zj + 1 − zj ∥ ≤ 1
j + 1 . (11)

The right side of (11) is the geodesic distance along the unit circle
between two consecutive members of the sequence, and the left
side is the length of the chord connecting two members. It can be
observed that the right side (11) goes to zero as j → ∞, i.e. it
satisfies the limit property in (9), but {zj} is not a convergent
sequence and rotates on the unit circle.

As mentioned, the authors in [14, 15] showed that if the set of
the stationary points of an estimated pdf are finite (or equivalently
isolated), then the sequence generated by the MS algorithm
converges. Unfortunately, a general and useful condition, that leads
to a set of finite (or isolated) stationary points of the estimated pdf
for commonly used kernels (such as the Gaussian kernel), still
seems to be missing (although the author in [11] makes the
plausible claim, without proof, that the set of stationary points is
always finite for the Gaussian kernel).

We slightly modify the MS algorithm to guarantee the
convergence of the generated sequence. The proposed modified
version starts from one of the data points, computes the MS vector
using (5), and updates the cluster centre estimate by assigning the
computed MS vector to the closest data point. In other words, the

updated cluster centre estimate is one of the data points and is
computed by

y~ j + 1 = yj + m(yj) (12)

yj + 1 = argmin
x ∈ {x1, …, xn}

∥ y~ j + 1 − x ∥ , (13)

where m(yj) is the MS vector in (5), and {x1…, xn} is the set of
input data. The proposed modified MS algorithm is summarised in
Algorithm 1 (see Fig. 1). Note that although we use for in
Algorithm 1 (Fig. 1), the algorithm can run in parallel on the data
set, each time initialised to one of the n data points. The MS
algorithm may get stuck in low-density regions, i.e. regions with
few number of data points. In this situation, if the number of input
points that converge to the same mode (i.e. basin of attraction of
that mode) are less than a predefined threshold M, the cluster will
be eliminated. Otherwise, it will be a considered as a cluster
centred at that mode. The hidden parameter M exists in the original
MS algorithm too and needs to be set a priori depending on a
specific application. 

Similar to the MS algorithm, the sequence { f
^(y) j} j = 1, 2, …

generated by the modified MS algorithm is an increasing and
convergent sequence. Furthermore, the cluster centre estimate
sequence, {yj} j = 1, 2, …, is also a convergent sequence, and we have:
 

Theorem 1: Assume a kernel pdf estimate f
^
 with bandwidth h,

and a radially symmetric kernel K having profile k which is
positive, strictly decreasing, convex, and continuously
differentiable on ℝ (as is defined in (2)). Then the following holds:

(i) The density estimate values along the sequence of output values
of the modified MS algorithm is a monotonically increasing and
convergent sequence, i.e. { f

^
h, k(yj)} j = 1, 2, … is monotonically

increasing and convergent.
(ii) The L2-norm of the gradient estimate along the sequence of the
output values of the modified MS algorithm is bounded above by

∥ ∇ f
^
h, k(yj) ∥ ≤ 2ck, Dg(0)dmax/hD + 2, j = 1, 2, …,

where dmax = maxxi, xj ∈ {x1, …, xn} ∥ xi − xj ∥.
(iii) The cluster centre estimate sequence, {yj} j = 1, 2, …, , generated by
the modified MS algorithm is also a convergent sequence.

The upper bound for the L2-norm of the gradient vector in part
(ii) of Theorem 1 is much simpler and computationally less
demanding than the upper bound given in Theorem 2 in [26]. For
the special case of the Gaussian kernel, we have
K(x) = (2π)−D/2exp( − ∥ x ∥2 /2). As a result, the upper bound for
the L2-norm of the gradient vector simplifies to

∥ ∇ f
^
h, k(yj) ∥ ≤ 2

(2π)D/2hD + 2 dmax . (14)

Note that, similar to the MS algorithm after running the proposed
modified version, we have to merge the estimated cluster centres
that are closer than the bandwidth h. We may also need to eliminate
the estimated cluster centres that attract too few points. Theorem 1
guarantees the convergence of the generated sequence {yj} and, in
contrast to the original MS algorithm, there is no need to set a
threshold ϵ as the stopping criterion. Furthermore, there is no
known explicit upper bound for the number of iterations for the
original MS algorithm and it is highly dependent on the stopping
criterion, but the proof of Theorem 1 shows that the proposed
modified version converges in at most n − 1 iterations, where n is
the number of data points.

Let X = [x1, x2, …, xn] denote a D × n data matrix, W = [wi j]
denote a n × n weight matrix whose ijth element is
wi j = g( ∥ (xj − xi)/h ∥2 ), and D denote a diagonal matrix whose
jjth element is ∑i = 1

n g( ∥ (xj − xi)/h ∥2 ). For the original MS

Fig. 1  Algorithm 1: Modified MS algorithm for clustering
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algorithm, the first iteration can be written in the following matrix
form

Y1 = XWD−1, (15)

where Y1 is a D × n matrix whose ith column represents the mode
estimate starting xi in the first iteration. In the original MS
algorithm, columns of Y1 are used to update the weight matrix, and
in general we have

Yk + 1 = XWkDk
−1, k = 2, 3, …, (16)

where ijth element of Wk, wi j
k , is given by g( ∥ (yj

k − xi)/h ∥2 ), Dk
is a n × n diagonal matrix whose jjth element is given by
∑i = 1

n g( ∥ (yj
k − xi)/h ∥2 ), and yj

k is the jth column of Yk. Therefore,
the weight matrices Wk and Dk are required to be updated for each
iteration in the original MS algorithm, that increases the
computational cost. For the GBMS algorithm, the matrix form of
the computations has the following simple form [25]:

Xnew = XoldWD−1, (17)

where W and D are defined as before, and Xold and Xnew represent
the old and updated data matrices. Since the GBMS algorithm
updates the whole data set in each iteration, it does not require
updating the weight matrices in each iteration, so they can be
computed once, but as mentioned before, the main problem with
the GBMS algorithm is the possibility of merging all data points
into a single data point. Setting the appropriate stopping threshold
in (8) to terminate the iterations before merging the clusters is a
challenging task and highly dependent on the specific data set.

Although searching for the closest data point to
y~ j, j = 1, 2, …, n in each iteration increases the overall
computational cost, the proposed modified MS algorithm does not
require computing the weight matrix in each iteration. The weight
matrices W

~
 and D

~
 are initialised to W and D, respectively. Then, in

each iteration based on the nearest neighbour data point their
columns are updated by replacing by an appropriate column from
W and D, i.e. the column associated to the nearest data point. The
only computational cost in subsequent iterations is searching for
the nearest neighbours to y~ j in the data set. The matrix form of the
proposed modified MS algorithm is given in Algorithm 2 (see
Fig. 2). It can be observed from Algorithm 2 (Fig. 2) that the
weight matrices W and D are computed just once in the
initialisation step using the data samples and their columns are
used to update W

~
 and D

~
. Each iteration consists of two steps: (i)

the matrix product Y
~ = XW

~
D
~−1

, where columns of Y
~
 are in fact y~

in (13). Note that the computational cost of matrix multiplication
can be asymptotically accelerated to N2.376 [27]. (ii) the search for
the nearest neighbour, where columns of Y

~
 are compared with the

data set and each column is replaced with its nearest neighbour in
the data set, and the columns of W

~
 and D

~
 are updated using W and

D. 
The medoid shift algorithm is also another modification of the

MS algorithm that constrains the generated mode estimates to pass
through the input data points [28]. The medoid shift algorithm runs
the MS algorithm once for each data points and then updates the
mode estimate sequence in each iteration through solving a
constrained optimisation problem [28]. The proposed modified
version in this paper runs the MS algorithm in each iteration and
updates the mode estimate sequence by finding the nearest data
point to the updated MS vector. The authors in [29] showed that the
medoid shift algorithm may fail to properly identify the modes of
an unknown density function. By providing an example, the
authors in [29] showed that the medoid shift may not correctly
identify all the modes of a density function and even applying the
algorithm on the modes iteratively does not lead to satisfactory
results. The authors in [29] presented quick shift algorithm as a
new mode-seeking procedure to address the shortcomings of the
medoid shift algorithm. The authors in [29] showed that the quick
shift technique is simpler and faster than the MS algorithm [29].
However, unlike the MS algorithm (and the proposed modified
version in this paper), the quick shift requires an additional
parameter η to be set a priori. The quick shift algorithm connects
all the points into a single tree and then the modes of a density
function are recovered by breaking the branches of the tree that are
longer than the threshold η. The optimal amount of parameter η can
be find through running the algorithm for all the possible values of
η, which can be an exhaustive task. The quick shift algorithm does
not involve any calculation of the MS vector (given in (6) and (7)),
and in fact it is related to a classic technique introduced in [30].
The main difference between the quick shift and the technique in
[30] is that maximising the gradient approximation must be done in
a neighbourhood of each point defined a priori by the parameter η
[29]. Recently, Jiang investigated some statistical properties of the
quick shift algorithm and showed the statistical consistency
guarantee of quick shift on mode and cluster recovery under mild
distributional assumptions [31]. Statistical properties of the MS
algorithm, including consistency, is discussed in [16] through
connecting the MS algorithm to kernel regression technique. The
results in [16] can be adopted and extended to the proposed
modified version, but this is out of scope of the paper and subject
of our future work.

4 Simulation results
In this section, we demonstrate the effectiveness of the proposed
modified MS algorithm for clustering using the S1 [32] and R15
[33] data sets. The S1 data set contains 5000 two-dimensional
vectors artificially generated with varying complexity in terms of
spatial data distributions with 15 predefined clusters [32]. For both
the MS algorithm and the proposed modified MS algorithm, we
used the Gaussian kernel with the bandwidth h = 50, 000. The
stopping criterion for the MS algorithm is set to 0.01, i.e. ϵ = 0.01
and only estimated cluster centres which attract more than five data
points are considered. Fig. 3 shows the distribution of samples
from data set S1 and estimated cluster centres using the MS
algorithm and the proposed modified version. The data points are

Fig. 2  Algorithm 2: Modified MS algorithm, matrix form
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shown with red circles, the cluster centre estimates using the MS
algorithm are shown using green triangles, and the estimated
cluster centres using the proposed modified MS algorithm are
shown with the black squares. It can be observed from Fig. 3 that
the proposed modified MS algorithm successfully estimates the
cluster centres and the estimated cluster centres almost coincide
with the estimated cluster centres using the MS algorithm. 

The data set R15 consists of 600 samples of 15 similar two-
dimensional Gaussian clusters that are positioned in rings [33]. We
set the bandwidth h to be 0.4 for both the MS algorithm and the
modified version. The stopping threshold for the MS algorithm is
ϵ = 0.01 and we only consider the cluster centre estimates that
attract more than 10 samples. Fig. 4 shows the distribution of the
data points and the estimated cluster centres resulting from the MS
algorithm and the proposed modified version. The estimated cluster
centres resulting from the MS algorithm are shown with green

triangles and the estimated cluster centres using the proposed
modified MS algorithm are shown with black squares. It can be
observed from Fig. 4 that the proposed modified version
successfully finds that the cluster centres and the estimated centres
are close to the output of the MS algorithm. 

5 Conclusion
The MS algorithm has been widely used in many applications, but
the convergence of the generated mode estimate sequence has not
been proved and one needs to set a threshold as the stopping
criterion to terminate the iterative process. In this paper, we modify
the MS algorithm and prove that the generated sequence using the
proposed modified MS algorithm is a convergent sequence.
Therefore, there is no need to set a stopping criterion for the
proposed modified version and the generated sequence converges
after a finite number of iterations (when the number of samples n is
finite). We also show that the estimated pdf along the generated
sequence is a monotonically increasing and convergent sequence.
Furthermore, the proposed modified MS algorithm provides an
upper bound (i.e. n − 1) for the required number of iterations for
each data point. Such an upper bound does not exist for the original
MS algorithm (or the GBMS algorithm), and the number of
iterations is dependent on the stopping criterion (a small stopping
criterion increases the number of iterations and vice versa). We
also present the matrix form of the proposed modified MS
algorithm and show that, in contrast to the MS algorithm, the
weight matrices only need to be computed once. Finally, through
simulations, we show that the proposed modified MS algorithm
can be successfully used to estimate the cluster centres. This paper
focuses mainly on the theoretical properties of the proposed
modified MS algorithm. Using the proposed modified MS
algorithm for applications such as image segmentation and object
tracking are the subject of our future work.
 

Proof of Theorem 1:

(i) Let X = {x1, …, xn} denote the data set. Let yj + 1 ≠ yj, we show
f
^
h, k(yj + 1) > f

^(yj). From (2), we have

f
^
h, k(yj + 1) − f

^
h, k(yj) = ck, D

nhD ∑
i = 1

n
k ∥ yj + 1 − xi

h ∥
2

− k ∥ yj − xi
h ∥

2

≥ ck, D

nhD + 2 ∑
i = 1

n
k′ ∥ yj − xi

h ∥
2

× ∥ yj + 1 − xi ∥2 − ∥ yj − xi ∥2 ,
(18)

where the last inequality comes from the convexity of the profile
function k, i.e. k(x2) − k(x1) ≥ k′(x1)(x2 − x1). By the triangle
inequality, we have

∥ yj + 1 − y~ j + 1 ∥ ≤ ∥ yj + 1 − xi ∥ + ∥ y~ j + 1 − xi ∥ , i = 1, 2, …,
n,

(19)

where y~ j + 1 is given in (12). Using (18) and (19), we obtain (see
(20)) . From (13), we have ∥ yj + 1 − y~ j + 1 ∥2 − ∥ y~ j + 1 − xi ∥2 ≤ 0
for xi ∈ {x1, …, xn}, and as a result we have

Fig. 3  Data points from the data set S1 are shown using filled red circles.
The estimated cluster centres using the MS algorithm are shown using
empty green triangles, and the estimated cluster centres using the proposed
modified MS algorithm are shown using the filled black squares

 

Fig. 4  Data points from the data set R15 are shown using filled red
circles. The estimated cluster centres using the MS algorithm are shown
using empty green triangles, and the estimated cluster centres using the
proposed modified MS algorithm are shown using the filled black squares

 

f
^
h, k(yj + 1) − f

^
h, k(yj) ≥ ck, D

nhD + 2 ∑
i = 1

n
k′ ∥ yj − xi

h ∥
2

× ∥ yj + 1 − y~ j + 1 ∥2 − ∥ y~ j + 1 − xi ∥2

−2 ∥ yj + 1 − y~ j + 1 ∥ y~ j + 1 − xi ∥ − ∥ yj − xi ∥2 .

(20)
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∑
i = 1

n
k′ ∥ yj − xi

h ∥
2

∥ yj + 1 − y~ j + 1 ∥2 − ∥ y~ j + 1 − xi ∥2 > 0,
(21)

where the above inequality is true since the profile k is a strictly
decreasing function and k′(x) < 0. Furthermore, we have

∑
i = 1

n
k′ ∥ yj − xi

h ∥
2

−2 ∥ yj + 1 − y~ j + 1 ∥ y~ j + 1 − xi ∥ − ∥ yj − xi ∥2 > 0.
(22)

Combining (20)–(22), we obtain

f
^
h, k(yj + 1) − f

^
h, k(yj) > 0, (23)

which implies that { f
^
h, k(yj)} j = 1, 2, … is an increasing sequence.

From (13), it is obvious that yj ∈ {x1, …, xn}, j = 1, 2, …, and
since n is finite then f

^
h, k(yj), given in (2), is bounded. Thus, as

long as yj + 1 ≠ yj, the sequence { f
^
h, k(yj)} j = 1, 2, … is a bounded and

strictly increasing sequence, which two previous conditions imply
the convergence of { f

^
h, k(yj)}.

(ii) From (3), we have

∥ ∇ f
^
h, k(yj) ∥ = 2ck, D

nhD + 2 ∑
i = 1

n
g ∥ yj − xi

h ∥
2

∥ mh, g(yj) ∥ , j

= 1, 2, …, n,
(24)

Since the profile k(x) is a convex function, then g(x) is a
monotonically non-increasing function and we have

∑
i = 1

n
g ∥ yj − xi

h ∥
2

≤ ng(0) . (25)

From definition of the modified MS algorithm in (12) and (13),
yj ∈ X, i.e. yj = xi for some 1 ≤ i ≤ n. Therefore, for some
1 ≤ k, l ≤ n, we have

∥ mh, g(yj) ∥ = ∥ y~ j + 1 − yj ∥ = ∥ xk − xl ∥ ≤ dmax, (26)

where dmax = maxxi, xj ∈ {x1, …, xn} ∥ xi − xj ∥. Combining (24)–(26),
we obtain

∥ ∇ f
^
h, k(yj) ∥ ≤ 2ck, D

hD + 2 g(0)dmax . (27)

(iii) The proposed modified MS algorithm starts from one of the
data points, and in each iteration, the cluster centre estimate is
assigned to be one of the data points. The algorithm stops when
two consecutive estimates become equal, i.e. yj + 1 = yj for some
j ≥ 1. From part (i), in each iteration each data point can be
assigned to the cluster centre estimate at most one time, otherwise
f
^
h, k,(yj + k) = f

^
h, k(yj) for some k ≥ 1 which contradicts part (i).

Since the number of data samples n is finite, after a finite number
of iterations, the convergence for the sequence {yj} occurs. □
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