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a b s t r a c t

We present a new adaptive algorithm to accelerate optimal feature extraction from a sequence of multi-class

Gaussian data in order to classify them based on the Bayes decision rule. The optimal Gaussian feature ex-

traction, in the Bayes sense, involves estimation of the square root of the inverse of the covariance matrix,

�−1/2. We use an appropriate cost function to find the optimal step size in each iteration, in order to ac-

celerate the convergence rate of the previously proposed algorithm for adaptive estimation of �−1/2. The

performance of the proposed accelerated algorithm is compared with other adaptive �−1/2 algorithms. The

proposed algorithm is tested for Gaussian feature extraction from three classes of three-dimensional Gaus-

sian data. Simulation results confirm the effectiveness of the proposed algorithm for adaptive optimal feature

extraction from a sequence of Gaussian data.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Bayes’ decision rule is a simple statistical approach to the problem

f pattern classification. It assumes that the decision problem is given

n probabilistic terms, and all of the required probabilities are known

n advance [9]. The Bayes decision rule compares the posterior proba-

ilities and assigns the observed sample to the class with the highest

ne. Based on the Bayes decision rule, when the prior probabilities

nd the conditional distribution of data given the class label (i.e., the

ikelihood) are known, an explicit discriminant function can be com-

uted for the classification task [11].

The Gaussian (or normal) distribution is probably the most widely

sed distribution in the real world applications. It has been used to

odel the frequency distribution of measurement error [12]. The er-

ors are assumed to be independent of each other and normally dis-

ributed with mean zero and variance σ 2. Later, it was found that

any real worlds observation are normally distributed, or very close

o it. For example, the distribution of human heights, weights, or

ntelligent quotients can often be approximated by normal distri-
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16 597 3031.

E-mail address: aliyari@cs.toronto.edu, aliyari@mast.queensu.ca,

ouness.aliyari@gmail.com (Y. Aliyari Ghassabeh).

v

i

o

i

t

p

ttp://dx.doi.org/10.1016/j.patrec.2015.11.021

167-8655/© 2015 Elsevier B.V. All rights reserved.
utions [6]. Furthermore, when a measurement is like the sum of

ndependent and identically distributed random variables with equal

nfluence on the result, then the central limit theorem justifies the

se of a the Gaussian distribution to model the distribution of the

esult [10].

The typical estimation of the discriminant functions, when the ob-

erved data are generated by different Gaussian sources, requires that

ll samples are available in advance. However, there are situations

here the entire data set is not available and the input data are ob-

erved as a stream. In this case, it is desirable for discriminant func-

ions to have the ability to update themselves by observing the new

amples without running the algorithm on the whole data set. To ad-

ress this issue, Chatterjee and Roychowdhury proposed an adaptive

lgorithm and associated network for optimal feature extraction from

sequence of Gaussian observations [8]. Later, Aliyari and Moghad-

am presented an appropriate cost function and showed that opti-

izing the cost function using the gradient descent method will lead

o the optimal Gaussian features [1,2]. The proposed methods in [2,8]

uffers from a low convergence rate. In this paper, we present a fast

ersion of the algorithm in [2] by finding the optimal step size in each

teration. The optimal step size is computed by taking the derivative

f an appropriate cost function with respect to the step size in each

teration. In the next section, a brief review on optimal feature extrac-

ion from Gaussian data is given. The new fast adaptive algorithm is

resented in Section 3. Simulation results to confirm the effectiveness
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1 Note that setting β = 1 for the stationary data will give the following well-

known adaptive estimation of the covariance matrix �k+1 = 1
k+1

(xk+1 − mk+1)(xk+1 −
mk+1)

T + k
k+1

�k = 1
k+1

∑k+1
i=1 (xi − mk+1)(xi − mk+1)T , where the mean value mk+1 is

estimated using (6). For the non-stationary data, we select β between zero and one,
of the proposed method are given in Section 4. Section 5 is devoted

to the concluding remarks.

2. Optimal feature extraction from Gaussian data

Let x ∈ R
D be a random vector which belongs to one of K differ-

ent classes, ω1, . . . , ωK with a prior probability of P(ωi), i = 1, . . . , K.

According to the Bayes classification rule and using a posteriori prob-

abilities, P(ωi|x), i = 1, . . . , K, a random vector x is assigned to class

ωi if and only if [11]

P(ωi|x) > P(ω j|x), j = 1, . . . , Kand j �= i. (1)

That means the above K a posteriori probabilities are sufficient statis-

tics in the Bayes sense to determine the class of a random vector x.

Using the Bayes theorem for conditional probabilities and taking the

logarithm of both sides we obtain

ln P(ωi|x) = ln p(x|ωi) + ln P(ωi) − ln p(x), i = 1, . . . , K. (2)

Assuming that all the prior probabilities, P(ωi), i = 1, . . . , K, are equal

and since p(x) is the common term in all K identities in (2), then val-

ues of ln p(x|ωi), i = 1, . . . , K can be used for classification of x. As-

suming that p(x|ωi) is a unimodal Gaussian distribution, we get

ln p(x|ωi) = −(x − mi)
T �−1

i
(x − mi)/2 − ln

(
(2π)D/2|�i|1/2

)
,

i = 1, . . . , K, (3)

where mi and �i denote the mean vector and the covariance matrix of

class ωi, i = 1, . . . , K, respectively. The sufficient information for the

classification of the Gaussian data with the minimum Bayes error can

be given by discriminant functions gi(x), i = 1, . . . , K as follows [16]

gi(x) = −‖�−1/2
i

(x − mi)‖2 − ln(|�i|), i = 1, . . . , K. (4)

In other words, the input vector x is assigned to class ωi if and only if

gi(x) > gj(x) for j = 1, . . . , K, j �= i. From the above discussion, it can be

observed that the discriminant functions gi(x), i = 1, . . . , K are suf-

ficient information for the classification of Gaussian data with the

minimum Bayes error. That means the new observed vector x will

be assigned to the class with the greatest gi(x). For an online appli-

cation, the parameters of the Gaussian data, �i and mi, i = 1, . . . , K,

are unknown in advance and computed during the process using in-

coming sequence of data samples. Therefore, adaptive estimation of

�−1/2
i

, �i, and mi are highly necessary to compute the discriminant

functions, gi(x), for online Gaussian data classification.

3. New fast adaptive algorithm for optimal feature extraction

from Gaussian data

The following algorithms for adaptive estimation of the mean vec-

tor, m, and the covariance matrix, � for a sequence {xk}k=1,2,... are

given

• Mean vector m [13]

mk+1 = mk + αk(xk+1 − mk), (5)

where mk+1 is the current estimate of the mean vector (after ob-

serving k + 1 samples) and αk is the step size that satisfies certain

conditions [8]. Note that for a stationary sequence, we can sim-

ply set αk = 1/(k + 1), which yields to the following well-known

equation [14]

mk+1 = k

k + 1
mk + 1

k + 1
xk+1. (6)

• Covariance matrix � [7]

�k+1 =
(

1 − β
k

k + 1

)
(xk+1 − mk+1)(xk+1 − mk+1)

T + β
k

k + 1
�k,

(7)
 w
here �k+1 is the current estimate of the covariance matrix (after

bserving k + 1 samples), mk+1 is the mean estimate after k + 1 ob-

ervation (computed using (6)), and β ∈ (0, 1] is called the forgetting

actor [14]. If the sequence {xk} is generated by a stationary process,

e set β = 1 1. For a non-stationary process, we set 0 < β < 1 to

mplement an effective window of size 1/(1 − β) [7]. This effective

indow ensures that the past data samples are down-weighted with

n exponentially fading window. The exact value of β depends on the

pecific application. In general for slow time-varying {xk}k=1,2,..., β is

hosen close to one to obtain a large effective window, but for fast

ime-varying sequences, β is selected near zero for a small effective

indow [5].

Chatterjee and Roychowdhury proposed the following algorithm

or adaptive estimation of �−1/2 [8]

k+1 = W k + ηk(I − W k(x − mk)(x − mk)
TW k), (8)

here W k+1 is the current estimate of �−1/2, I is the identity matrix,

0 ∈ R
D×D is a symmetric, and semi-definite matrix, and ηk is the

tep size. Using stochastic approximation, the authors in [8] proved

hat, under certain conditions, the sequence {W k}k=0,1,2,... converges

o �−1/2 with probability one, i.e., limk→∞ W k = �−1/2. Later Aliyari

nd Moghaddam [2] introduced a cost function J(W) with the global

inimum at �−1/2 and showed that applying the gradient descent

ethod on J(W) would give the following adaptive algorithms for

omputing �−1/2

k+1 = W k + ηk(I − W 2
k�), (9)

k+1 = W k + ηk(I − W k�W k), (10)

k+1 = W k + ηk(I − �W 2
k ), (11)

here W k+1 is the �−1/2 estimate after k + 1 iterations, and ηk is the

tep size. The proposed cost function J(W ) : C → R is given by [3]

(W ) = 1

3
Tr

[
(W�1/2 − I)2(W + 2�−1/2)

]
, (12)

here C ⊂ R
n×n is the set of all symmetric positive definite matrices

that commute with �1/2, i.e., W�1/2 = �1/2W , Tr[.] is the matrix

race function, and I denotes the identity matrix. By definition, the

ost function J(W) in (12) is one third of the trace of the product of a

ymmetric semi-positive definite matrix, (W�1/2 − I)2, with a sym-

etric positive definite matrix, W + 2�−1/2. Hence, the cost function

tself is a semi-positive definite matrix [4], i.e., J(W) ≥ 0 for all W ∈ C.

y taking the gradient of the cost function in (12) with respect to W

nd equating it to zero, we obtain

J(W ) = W�W − I = 0. (13)

q. (13) reveals that, in the domain C, the cost function J(W) has a

unique stationary point that occurs at �−1/2. Since J(�−1/2) = 0, then

he matrix �−1/2 is the unique global minimum of the cost function

(W) over the convex set C. Using the gradient descent algorithm to

minimize the cost function J(W) will lead to the algorithms in (9 − 11)

to estimate the global minimum, �−1/2. Since the covariance matrix

is not known in advance, the authors in [3,4] showed that the co-

ariance matrix can be replaced by its estimate at the kth iteration as

ollows

k+1 = W k + ηk(I − W 2
k�k), (14)

k+1 = W k + ηk(I − W k�kW k), (15)
here the proof of the convergence was given in [7].
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2 Eq. (5)is used for anon-stationary data sequence and Eq. (6) is used for a stationary
k+1 = W k + ηk(I − �kW 2
k ), (16)

here all parameters in the above equations are as before, and �k

s the estimate of the covariance matrix after k iterations (computed

sing (7)).

The algorithms presented in [8] and [2] use a fixed or decreasing

tep size causing a low convergence rate that is not desirable. In this

aper, we use the cost function in (12) to find the optimal step size

n each iteration in order to accelerate the convergence rate. The op-

imal step size ηk, opt at the k + 1th iteration is found by equating the

rst derivative of the cost function J(W) with respect to ηk to zero. By

aking the derivative of (12) with respect to the step size ηk, equating

o zero, and a few additional operations (see the appendix for details)

e get

∂ J(W k+1)

∂ηk

= aη2
k + bηk + c = 0, (17)

here a = Tr(G3
k�), b = 2Tr(W kG2

k�), c = Tr(W 2
kGk�) − Tr(Gk),

nd Gk = I − W k�W k. Eq. (17) is a quadratic equation and the roots

the optimal step sizes) are given by

k,opt = −b ± √
b2 − 4ac

2a
. (18)

ince the step size ηk cannot be a negative number, only the root with

he positive sign can be considered as an optimal step size and since

he covariance matrix � is not available, it must be replaced by its es-

imate �k+1 in (7) (as the number of the observed samples increases

e get a better estimate of the �). Therefore the optimal step size in

Algorithm 1: Accelerated �−1/2 algorithm.

Input : x1, x2 . . . , xN , the data sequence of length N, αk, β , and

η0

/* The sequence members xi, i = 1, . . . , N are given to the
�−1/2 algorithm one by one */

/* Note that the sequence of the step size {αk}k=0,1,...

is usually considered as a decreasing or fixed
sequence */

Output: �−1/2
e , estimate of �−1/2 after observing N random

vectors sequentially.

begin

Initialization:: W 0 = I ;

Initialization:: Initialize the estimated covariance matrix �0;

Initialization:: Initialize the estimated mean vector m0;

for i = 1 to N do

mi = mi−1 + αk(xi − mi−1) ;

/* Update the mean vector */

�i =(1 − β
i − 1

i
)(xi − mi)(xi − mi)

T

+ β
i − 1

i
�i−1,

/* Update the estimated covariance matrix
using */

Compute the optimal step size using (19), if the result is

a real and positive number update the step size ηi−1,opt

using (19), otherwise keep the step size unchanged;

W i = W i−1 + ηi−1,opt (I − W i−1�iW i−1);

/* Note that we can use any of equations in
(20)-(22) */

end

�−1/2
e = W N

end
d

ach iteration is given by

k,opt = −bk+1 +
√

b2
k+1

− 4ak+1ck+1

2ak+1

, (19)

here ak+1 = Tr(G3
k�k+1), bk = 2Tr(W kG2

k�k+1), and ck+1 =
r(W 2

kGk�k+1) − Tr(Gk). Therefore, the accelerated adaptive �−1/2

lgorithm has the following equivalent forms

k+1 = W k + ηk,opt (I − W 2
k�k+1), (20)

k+1 = W k + ηk,opt (I − W k�k+1W k), (21)

k+1 = W k + ηk,opt (I − �k+1W 2
k ), (22)

here the covariance estimate �k+1 is given in (7) and ηk, opt in

ach iteration is computed using (19). The proposed accelerated algo-

ithm for adaptive estimation of �−1/2 is summarized in Algorithm 1.

ote that we use (19) to update the step size in kth iteration if
2
k+1

− 4ak+1ck+1 ≥ 0 and ηk, opt > 0, otherwise the step size ηk re-

ains unchanged, i.e., it is equal to ηk−1.

Therefore, the proposed accelerated adaptive computing of the

iscriminant function, g(x), in (4) for a Gaussian sequence involves

hree steps: (i) estimating the mean vector m using either (5) or

6)2, (ii) estimating the covariance matrix using (7), and (iii) estimat-

ng �−1/2 using (19) and (20–22). The proposed accelerated adap-

ive feature extraction from Gaussian observations is summarized in

lgorithm 2. Note that to classify an arbitrary point x, we just need to

un Algorithm 2 and evaluate K discrimination functions (where K is

he number of classes) at x and assign x to the class with the highest

alue of the discriminant function.

Algorithm 2: Computing the discriminant functions gi(x), i =
1, 2, . . . , K at an arbitrary point x.

Input : xi
1
, xi

2
, . . . the Gaussian data from ith class,

i = 1, 2, . . . , K

/* Here we have K classes and the input training data
{x j} j=1,2,... is observed as a sequence with unknown
mean and covariance */

Output: The discriminant function gi(x), i = 1, 2, . . . , K

begin

for i = 1 to K do

Initialization:: W 0 = I, �0, and m0 ;

/* for simplicity we assigned I to W 0 */
while There is input data from ith class do

Update the mean vector mk using either (5) or (6);

Update the covariance matrix �k using (7) ;

Update W k+1 using (19) and (20);

Find the optimal step size, ηopt , using (19) ;

Update W k+1 using (20–22);

/* W k+1 is an estimate of �−1/2 for ith class
after observing k + 1 samples */

end

The discriminant function for ith class,

gi(x), i = 1, 2, . . . , K, at an arbitrary point x is given by

gi(x) = −‖W Ni
(x − mNi

)‖2 − ln(|�Ni
|), (23)

/* where Ni is the number of the observed
samples from class i */

end

end
ata sequence.
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Fig. 1. Comparison between convergence rate of the proposed accelerated �−1/2 algorithm and algorithms in [8] (green curve) and [2] (red curve) (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.).
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Since the proposed accelerated algorithm finds the optimal step

size in each iteration, it requires more computations than the al-

gorithms in [8] and [2], which simply use a constant or decreasing

step size. The computational complexity of the proposed algorithm

is O(n3), while the computational complexity of the aforementioned

algorithms is O(n2). It should be noted that although the proposed al-

gorithm requires more computations, it converges fast and provides a

more accurate estimate of �−1/2 in much fewer iterations comparing

with the algorithms in [8] and [2].

4. Simulation results

We first show the effectiveness of the proposed algorithm for ac-

celerated estimation of �−1/2, and then we use it for optimal feature

extraction from multidimensional Gaussian data. For all simulations,

it is assumed that the whole data set is not available in advance and

the input data are fed to the proposed algorithm sequentially.

4.1. Accelerate adaptive computing of �−1/2

For simulation in this section, we use the first covariance matrix

in [15] which is a 10 × 10 covariance matrix. The input sequence {xk ∈
R

10}k=1,2,... is generated from a zero mean 10-dimensional Gaussian

distribution with the covariance matrix in (24).⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.091

0.038 0.373

−0.053 0.018 1.43

−0.005 −0.028 0.017 0.084

0.010 −0.011 0.055 −0.005 0.071

−0.136 −0.367 −0.450 0.016 0.088 5.72

0.155 0.154 −0.038 0.042 0.058 −0.544

0.030 −0.057 −0.298 −0.022 −0.069 −0.248

0.002 −0.031 −0.041 0.001 −0.008 0.005

0.032 −0.065 −0.030 0.005 0.003 0.095
43 1.45

11 0.078 0.067

20 0.028 0.015 0.341

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

The ten eigenvalues of this matrix in descending order are 5.90,

.782, 1.709, 1.029, 0.394, 0.293, 0.087, 0.071, 0.061, and 0.05. We

enerated 1000 samples of 10-dimensional, zero-mean Gaussian data

ith the covariance matrix in (24). The performance of the proposed

lgorithm to estimate �−1/2 is compared with the algorithms in [8]

nd [2]. The proposed �−1/2 algorithm, the algorithms in [8], and [2]

re initialized to be the identity matrix, i.e. W 0 = I. The initial step

ize, η0, for all three algorithm is set to 0.01. For the algorithms in

8] and [2] we use a decreasing step size, but the proposed algorithm

tarts with η0 = 0.01 and finds the optimal step size in each iteration

sing (19). The error at the kth iteration between the estimated and

he actual �−1/2 matrices is computed by

k =

√√√√ 10∑
i=1

10∑
j=1

(
W k(i, j) − �−1/2(i, j)

)2
,

here Wk(i, j) and �−1/2(i, j) represent the ijth element of the

stimated square root of the inverse covariance matrix at the kth

teration and the ijth element of the actual square root of the inverse

ovariance matrix, respectively. Fig. 1 compares the normalized

rror for estimating �1/2 resulting from the proposed accelerated

lgorithm and the algorithms in [8] and [2]. It can be observed from

ig. 1 that the proposed algorithm approaches a very low estimation
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rror in far fewer iterations compared to the algorithms in [8] and [2].

n order to demonstrate the tracking ability of the proposed acceler-

ted �−1/2 algorithm for non-stationary data, we generate 500 sam-

les of zero-mean Gaussian data with the covariance matrix in (24).

hen we drastically change the nature of the data sequence by gener-

ting another 500 zero mean 10-dimensional Gaussian data with the

econd covariance matrix in [15]. Finally, we alter the covariance ma-

rix to the third covariance matrix in [15] and generate another 500

ero-mean Gaussian samples. Fig. 2 demonstrates the normalized er-

ors for estimating �−1/2 resulting from the proposed accelerated al-

orithm and the algorithms in [8] and [2]. As it is expected when the

ature of the observed data changes (e.g., after the 500th sample and

he 1000th sample), there are sudden increases in the normalized es-

imation error. But by observing new incoming samples with the new

ovariance matrix, the proposed algorithm adapts itself to the new

ondition and gradually the estimation error decreases. Fig. 2 shows

hat the proposed accelerated �−1/2 algorithm achieves a lower esti-

ation error under different conditions than the algorithms in [2,8].

We also repeated the above simulation ten times and recorded the

umber of times that (19) does not generate a positive real valued

tep size. The mean value and the standard deviation for the number

f times that (19) does not produce a positive real valued number

ere 4.5, and 8.24, respectively. The observation shows that out of

500 iterations, Eq. (19) may generate very small number of step sizes

hat are not positive or real valued, where in this situations the step

ize remains unchanged from the previous iteration.

.2. Optimal feature extraction from three-dimensional Gaussian data

As mentioned in Section 2, the discriminant function gi(x) in (4)

rovides enough information (in the Bayes sense) for Gaussian data

lassification. In other words, for an arbitrary sample x, we just need

o compute K3 discriminant functions gi(x) and assign x to the class
3 When the number of classes is K.
ith the highest gi(x). Since the discriminant functions for the Gaus-

ian data are negative, for simplicity we use the absolute value of the

iscriminant function as the Gaussian feature fi(x), i = 1, 2, 3, i.e.,

fi(x) = |gi(x)|, and assign x to the class with the smallest absolute

alue, i.e., x ∈ ωi if fi(x) < fj(x) 4 for all i �= j. The input sequence is

enerated from three Gaussian classes, ω1, ω2, and ω3, with the fol-

owing parameters

1 =

⎡
⎣−2

2

1

⎤
⎦, �1 =

⎡
⎣3 2 1

2 3 0

1 0 3

⎤
⎦, m2 =

⎡
⎣ 2

−2

−1

⎤
⎦,

2 =

⎡
⎣2 0 0

0 2 0

0 0 2

⎤
⎦, m3 =

⎡
⎣ 5

−5

5

⎤
⎦, �3 =

⎡
⎣1 0 1

0 3 2

1 3 5

⎤
⎦. (25)

he mean vectors mi, i = 1, 2, 3 and the covariance matrices �i, i =
, 2, 3 are trained using (6) and (7) (β is set to one). The square root

f the inverse of the covariance matrix �−1/2 is trained using the pro-

osed algorithms in (20) and the optimal learning rate in each iter-

tion is computed using (19). Finally, the absolute value of the dis-

riminant function, |gi(x)| = ‖�−1/2
i

(x − mi)‖ + ln(|�i|), i = 1, 2, 3,

s computed for each test sample and the observed sample is assigned

o the class with the smallest fi(x) = |gi(x)|. For a better visualization

f distribution of the Gaussian data in the feature space, we showed

he distribution in the feature spaces constructed by f1 − f2, f1 − f3,

nd f2 − f3 in Fig. 3. From Fig. 3, it can be observed that if an arbi-

rary sample x belongs to ωi, i = 1, 2, 3, then fi(x) < f j(x), j = 1, 2, 3

nd j �= i. Therefore, the estimated discriminant functions can be suc-

essfully used for the classification of Gaussian observation based on

ayes decision theory.
4 That is equivalent to |gi(x)| < |gj(x)|.
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Fig. 3. Distribution of Gaussian data on the feature space: (a) The feature space constructed by f1 and f2, (b) The feature space constructed by f2 and f3, (c) The feature space

constructed by f3 and f1.
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5. Conclusion

In many real world applications such as mobile robotics or on-

line face recognition the entire data set is not available in advance

and the input data are observed as a stream. In these situations, it

is desirable for a feature extraction algorithm to have the ability to

update the computed features by just observing the new samples

without running the algorithm on the whole data set. It is straight-

forward to show that the optimal features (discriminant functions)

for the classification of a sequence of Gaussian data involves adaptive

computation of �−1/2. The previously proposed adaptive algorithms

to estimate �−1/2 use a fixed or decreasing step size that lead to a

slow convergence rate. It this paper, we found the optimal step size

in each iteration in order to accelerate the convergence of �−1/2 algo-

rithm. The optimal step size in each iteration is computed by taking

the derivative of an appropriate cost function with respect to the step

size and equating it to zero. We presented two algorithms, the first al-

gorithm can be used for the fast estimation of �−1/2 when observing

a sequence of data. The second algorithm uses the estimated �−1/2

for the optimal feature extraction from a sequence of the Gaussian

data. Through the simulations, we showed the effectiveness of the

proposed accelerated technique to estimate �−1/2 for both stationary

and non-stationary data. We also used the proposed technique suc-

cessfully for optimal feature extraction from three classes of three-

dimensional Gaussian data.

Appendix

Taking the gradient of the cost function J(W) with respect to W

First note that if W and �1/2 commute then W and � also com-

mute and we have

� = �W . (26)

By expanding the cost function J(W) in (12) and using the commuta-

tive property between W and �, the cost function J(W) can be simpli-

fied as follows

J(W ) = 1

3
Tr(W 3�) − Tr(W ) + 2

3
Tr(�−1/2). (27)

By taking the gradient of J(W) in (27) with respect to W, we obtain

∇J(W ) = �W 2 + W�W + W 2�

3
− I

= W�W − I, (28)

where I is the identity matrix.
aking the derivative of the function J(W) with respect to the step size

By expanding the cost function J(W) at k + 1th iteration, we have

(W k+1) = 1

3
Tr(W 3

k+1�) − Tr(W k+1) + 2

3
Tr(�−1/2)

= 1

3
Tr

(
(W k + ηkGk)

3�
)

− Tr(W k + ηkGk)

+ 2

3
Tr(�−1/2), (29)

here Gk = I − W k�W k.

The cost function in (29) can be further simplified to

(W k+1) = Tr(W 3
k� + 3ηkW 2

kGk� + 3η2
k
W kG2

k� + η3
k
G3

k�)

3

− Tr(W k + ηkGk) + 2

3
Tr(�−1/2). (30)

y taking the derivative of (30) with respect to the step size ηk and

quating it to zero, we obtain

∂ J(W k+1)

∂ηk

= Tr(G3
k�)η2

k + 2Tr(W kG2
k�)ηk + Tr(W 2

kGk�)

− Tr(Gk) = akη
2
k + bkηk + ck = 0,

here ak = Tr(G3
k�k+1), bk = 2Tr(W kG2

k�k+1), and ck =
r(W 2

kGk�k+1) − Tr(Gk). The left side of the above equation is

quadratic function and the roots (the optimal step sizes) are given

y

k,opt = −b ± √
b2 − 4ac

2a
. (31)

ince the goal is to minimize the cost function (12), the optimal step

ize, ηk, opt, should be selected such that the second derivative of the

ost function J(W) be a positive number, i.e.,

∂2J(W k+1)

∂2ηk

= 2aηk + b ≥ 0, (32)

hat means the root with the negative sign in (30) is not acceptable,

nd we have

k,opt = −b + √
b2 − 4ac

. (33)
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