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1. Introduction

Introduction

I Model-based methods
I difficult for complex systems

I Model-free methods
I require carefully designed, low-dimensional parameterizations

I Goal
I learn dynamics of the system and locally valid optimal control at

the same time
I train a policy that is globally valid using learned local policies
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1. Introduction

Overview

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-13.pdf
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2. Preliminaries

Preliminaries

Time-varying Gaussian Policy

I p(ut|xt) = N(Ktxt + kt,Ct)

I Could be efficiently optimized when the initial state distribution
is narrow and approximately Gaussian

iteratively linear-Gaussian regulator (iLQG)

I Iteratively construct locally optimal linear feedback controllers

I Computed by dynamic programming under linearization of
dynamics and quadratic expansion of cost

I linear-Gaussian controller

p(ut|xt) = N(ût + kt + Kt(xt − x̂t), Q
−1
u,ut)
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3. Trajectory Optimization under Unknown Dynamics

Trajectory Optimization under Unknown Dynamics

Dynamics N(fxtxt + futut,Ft) unknown

I Estimated from the samples generated from the real system
under previous linear-Gaussian controllers

I Having estimated linear-Gaussian dynamics at each time step,
run the preceeding dynamic programming algorithm

Issue:

I Fitted dynamics is only valid in local region around the sample

I New controller could be very different from the old one

I Addressed by imposing KL-Divergence constraints between the
old and new trajectory distribution
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3. Trajectory Optimization under Unknown Dynamics

3.1 KL-Divergence Constraints

KL-Divergence Constraints
I Modified cost function

min
p(τ)∈N(τ)

Ep[l(τ)] s.t. DKL(p(τ)||p̂(τ)) ≤ ε

I Lagrangian of this problem (η dual variable)

Ltraj(p(τ), η) = Ep[l(τ)] + η[DKL(p(τ)||p̂(τ))− ε]
I Assuming p(xt+1|xt,ut) = p̂(xt+1|xt,ut) = N (fxtxt + futut,Ft)

Ltraj(p(τ), η) =

[∑
t

Ep(xt,ut)[l(xt,ut)− η log p̂(ut|xt)]

]
−ηH(p(τ))−ηε

I Augmented cost function

l̃(xt,ut) =
1

η
l(xt,ut)− log p̂(ut|xt)

I Solved by dual gradient descent
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3. Trajectory Optimization under Unknown Dynamics

3.1 KL-Divergence Constraints

Dual Gradient Descent

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-13.pdf
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3. Trajectory Optimization under Unknown Dynamics

3.2 Background Dynamics Distribution

Background Dynamics Distribution

I Use priors to greatly reduce the number of samples required

I Gaussian Mixture Model (GMM) is a good choice for physical
systems such as robots

I dynamics reasonably approximated with piecewise linear functions
I not necessarily good forward model but obtain prior for dynamics

I Refit the GMM at each iteration

I Infer the cluster weights for the samples

I Use the weighted mean and covariance of these clusters as the
prior parameters to estimate a time-varying linear dynamics
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4. General Parameterized Policies

3.2 Background Dynamics Distribution

General Parameterized Policies
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4. General Parameterized Policies

3.2 Background Dynamics Distribution

General Parameterized Policies

I Objective

min
θ,p(τ)

Ep(τ)[l(τ)] s.t. DKL(p(xt)πθ(ut|xt)||p(xt,ut)) = 0,∀t

I Lagrangian of the problem

LGPS(θ, p, λ) = Ep(τ)[l(τ)] +

T∑
t=1

λtDKL(p(xt)πθ(ut|xt)||p(xt,ut))

I Parameterized policy trained in a supervised fashion

I Trajectory optimization exploits structure of linear-Gaussian
controllers, trained with fewer samples
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5. Experimental Evaluation

Experiments Conducted

I 2D, 3D peg insertion (discontinuous dynamics)

I Octopus arm control (high-dimensional state and action space)

I Planar swimming (three-link snake)

I Walking (seven-link biped to maintain a target velocity)
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5. Experimental Evaluation

Trajectory Optimization

Trajectory Optimization
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5. Experimental Evaluation

Trajectory Optimization

Trajectory Optimization
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5. Experimental Evaluation

Neural Network Policy Learning with Guided Policy Search

Neural Network Policy Learning with GPS
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6. Conclusion and Discussion

Conclusion and Discussion

I Optimize linear-Gaussian controllers under unknown dynamics
I hybrid model-based and model-free approach
I rely on a stronger assumption that time-varying linear-Gaussians

are reasonable local approximation for the dynamics

I Train arbitrary parameterized policies (e.g. Neural Networks)
within GPS framework

I experiments show intelligent performance in partially observed
environments, even for tasks that cannot be solved with direct
model-free policy search

I Future directions
I incorporate sensory information that is difficult to simulate but

useful in partially observed domains
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