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Motivation |

* Dextrous multi-fingered hands are extremely
versatile

® Control is challenging due to high dimensionality,
complex contact patterns

* Previous methods require reward shaping

* DRL limited to simpler manipulators and simple
tasks

Object relocation task

* Lack of physical systems due to sample inefficiency




Contributions |

* Manipulation with 24-DOF hand
* Model Free DRL
* Used in complex tasks with variety of tools

* Small number of human demonstrations
reduces sample complexity

ot

Tool use task

* Reduces learning time

* Robust and natural movements




Manipulation Task 1 |

Object Relocation
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* Move Blue ball to green position

* Task complete when ball is epsilon ball away from target
* Positions of ball and target are randomized

* Main challenge is exploration (reach object, grab and

move to target location)




Manipulation Task 2 |

In-hand Manipulation

* Reposition blue pen to match orientation of green target
* Task complete when orientation is achieved

* Base of hand is fixed

* Large number of contacts with complex solutions

* Used a well shaped reward for training an expert




Manipulation Task 3 |

Door Opening

®* Undo latch and swing door open

* Task complete when door touches door stopper
* No information of latch explicitly provided

* A lot of hidden sub-tasks

* Position of door is randomized




Manipulation Task 4 |

Tool Use
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* Pickup and hammer nail
* Task complete when entire nail is inside the board
* Use tool instead of just relocation

* Multiple steps in task




Experimental Setup |

ADROIT hand HTC headset HAPTIX Simulator

24-DOF hand

First, middle, ring — 4 DOF each

Little finger, thumb — 5 DOF each

Wrist — 2 DOF

* Actuated with position control and has joint angle
sensor

* MuloCo physics simulation with friction

* 25 demonstrations for each task

CyberGlove 3




Methodology (Preliminaries) |

MDP definition:

Value function:

Q function:

Advantage function:
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Methodology (NPG) |

* Directly optimize parameters of policy to maximize objective
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* Fisher information matrix measures the curvature (sensitivity) of policy
relative to model parameters

 Fisher information matrix is related to the Hessian matrix




Methodology (NPG) |

Limit policy change based on parameter change

Fisher information matrix maps between parameter space and policy space

Generally use learning rate in optimization

* Poor step size leads to poor initialization

Use Fisher information matrix to perform update
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Methodology (Problems with RL) |

* Challenges with using NPG

* RL requires careful reward shaping

* |Impractical number of samples to learn (approx. 100 hours)
®* Unnatural movement

* Not as robust to environmental variations

* Solution

®* Combine RL with demonstrations

* Guide exploration and decrease sample complexity
®* Robust and natural looking behaviour

* Demonstration Augmented Policy Gradient (DAPG)




Methodology (Pretraining with BC) |

* Exploration in PG achieved with stochastic action distribution
* Poor initialization leads to slow exploration

* Behavioral Cloning (BC) guides exploration

®* Reduces sample complexity

maxiﬂmize Z Inmg(als)
(s,a)€Epp

* Mimic actions taken in demonstrations
* Does not guarantee effectiveness of policy due to distributional shift




Methodology (Fine-tuning with augmented loss) |

* BC does not make optimal use of demonstrations

* Cannot learn subtasks (reaching, grasping, hammering)
* BC policy (only grasping)

* Capturing all data

Jaug = Y Velnmg(als)A™(s,a)+ Y Velnme(als)w(s,a)
(s,0)Epx (s,a)€pp

w(s,a) = AAF (S!I]{fll%;e{p A" (s',ad") V(s,a) € pp




Results 1 |

Reinforcement learning from scratch

®* (Can RL cope with high dimensional manipulation tasks ?
* s it robust to variations in environment ?
* Are movements safe and can they be used on real hardware ?

* Compare NPG vs DDPG (Deep Deterministic Policy Gradient)

* DDPG is a policy gradient actor-critic algorithm that is off-policy

* Stochastic policy for exploration, estimates deterministic policy

* Score based on percentage of successful trajectories (100 samples)
* Sparse Reward vs Reward shaping




Results 1 |

Reinforcement learning from scratch

Object Relocation In-hand Manipulation (Pen) Door Opening Tool Use (Hammer)
100 DDPG
i ~#- DDPG (shaped)
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* NPG learns with reward shaping, DDPG fails to learn

 DDPG is sample efficient but sensitive to hyper-parameters

* Resulting policies have unnatural behaviors

* Poor sample efficiency, cant use on hardware

e Cannot generalize to unseen environment (weight and ball size change)
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Results 2 |

Reinforcement learning with demonstrations

* Does incorporating demonstrations reduce learning time?
®* Comparison of DAPG vs DDPGfD (.. from Demonstrations)?
* Does it result in human like behaviour ?

* DDPGTfD better version of DDPG (demonstrations in replay buffer,
prioritized experience replay, n-step returns, regularization)
®* Only use sparse rewards




Results 2 |

Reinforcement learning with demonstrations

Object Relocation In-hand Manlpuldtwn (Pen)
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DAPG outperforms DDPGfD

DAPG requires few robot hours

Can be used on real hardware
Robust and human behavior
Generalizes to unseen environment

Door Opening
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Method DAPG/ (sp) RL (sh) | RL (sp)
Task N Hours | N Hours N Hours
Relocation 52 5.77 880 08 o0 o0
Hammer 55 6.1 448 50 o0 o0
Door 42 4.67 146 16.2 00 o0
Pen 30 3.33 864 96 2000 322
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Future Work |

* Tests on real hardware
* Reduce sample complexity using novelty based exploration methods

* Learn policies from raw visual inputs and tactile sensing
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Questions
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