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e 7l affects the data distribution but do not appear in the objective itself

e We use these two equations to get gradient estimation for 779

VoE-[log D(s,a)] 2 E., [V log mo(als)Q(s, a)]

Q(5,a) =E,, [log D(s,a)| sy = §,a9 = aj



Motivation

e A model-free approach like GAIL has its limitations
o The generative model can no longer be trained by simply backpropagating the
gradient from the loss function defined over the discriminator
o Has to resort to high-variance gradient estimations
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The generative model can no longer be trained by simply backpropagating the
gradient from the loss function defined over the discriminator
Has to resort to high-variance gradient estimations

e If we have a model-based version of adversarial imitation learning
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The system can be easily trained end-to-end using regular backpropagation
The policy gradient can be derived directly from the gradient of the discriminator
Policies can be more robust and training requires fewer interactions with the
environment
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The model-free approach treats the state s as fixed S :
and only tries to optimize the behavior. )

Instead, we treat s as a function of the policy:
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So that, by using the law of total derivative we can get:
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Re-writing it as following:
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Algorithm - preparation

Re-writing it as following:

1 1 1
D(s,a) = =
’ p(s,a|m)+p(s,a|TE) p(s.alnp) p(als,mE) p(s|TE)
p(salm) Lt SGam 11 Dasm 56

p(a|s,mg) (s|mr)

Letc,o(s a) plals,m) & dlb( ) = p(SIW) , We can get:

1
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D(s,a) =
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Here (,0(8, a) — p}g?clf;ﬂﬂ‘%) stands for policy likelihood ratio
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Algorithm - re-parameterization of distribution

Assuming the policy is given by

mo(als) = N(alpe(s),o5(s))
We can rewrite it to

mo(als) = po(s) + &og(s), where £ ~ N(0, 1)

So that we can get a Monte-Carlo estimator of the derivative

VoEr(as)D(s,a) = E,e)VeD(a,s)Vemg(als)
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and then maximizing the total reward is equivalent to minimizing the total
discriminator beliefs along a trajectory.
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To maximize the reward function, we can view reward as r(s,a) = —D(s,a),
and then maximizing the total reward is equivalent to minimizing the total
discriminator beliefs along a trajectory.

So that we can define;

J(0) =E| $0_g 7 Dls1,a0)]|6]
And write down the derivatives: (this follows SVG paper [Heess et al. 2015])

Js = Bp(a)s) Ep(s)s,a) Eop(e)s,a,57)

Ds+ Doms +vJ0 (fs + faﬂs)]

Jo = Ep(a|3)Ep(3’|s,a)]Ep(§|s,a,s’) [Daﬂ-Q + V(J:;’faﬂ-ﬂ + Jé)




Algorithm

Algorithm 1 Model-based Adversarial Imitation Learning

1: Given empty experience buffer 3

2: for trajectory = 0 to oo do

33 fort=0to7 do
Act on environment: a = 7(s,&; )
Push (s, a,s’) into B

end for

train forward model f using B

train discriminator model D using B

9: st gL =0,4, =0

10: for t =7 down to 0 do

e

g jo = [Dame + ’Y(j;/faﬂ'e +](l))]|§
12¢ = [Ds + D7 + 'Yj;/(fs T fam‘))]‘g
13: end for

14: Apply gradient update using jg
15: end for




Experiments

Task Dataset size  Behavioral cloning GAIL Ours

Hopper 4 50.57 +0.95 3614.22 + 7.17 3669.53 + 6.09
11 1025.84 £ 266.86 3615.00 £ 4.32 3649.98 +12.36
18 1949.09 + 500.61 3600.70 4+ 4.24 3661.78 +11.52
25 3383.96 = 657.61 3560.85 £ 3.09 3673.41 +7.73

Walker 4 32.18 = 1.25 4877.98 + 2848.37 6916.34 4= 115.20
11 5946.81 +1733.73  6850.27 4+ 91.48 7197.63 £ 38.34
18 1263.82 +1347.74  6964.68 +46.30  7128.87 £ 141.98

25 1599.36 + 1456.59  6832.01 +254.64  7070.45 4 30.68




Conclusion

e A model-based method for adversarial imitation learning
e Pros:

o Requires fewer interactions with the environment

o Enable using the partial derivatives of the discriminator when calculating the
policy gradient

e Cons:

o Requires learning a forward model, which could be difficult for some problems
since forward model is also affected by distribution changing of the policy’s
data

o Inaccurate forward model will lead to noisy gradients and will impede
convergence

o Experiment part in this paper is not very solid



Other take-home messages

Discriminator network should be large (~ 2x) in comparison to the policy network
Discriminator network should be trained with a large Ir that slowly decays (to adapt
to the changing distribution of the policy data)

Adding noise to the expert data helps convergence (otherwise it is easy for

discriminator to distinguish the expert)
e The discriminator holds valuable information and can be used such as a

confidence measure for the policy’s performance at inference time



