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○ The generative model can no longer be trained by simply backpropagating the 

gradient from the loss function defined over the discriminator

○ Has to resort to high-variance gradient estimations
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● If we have a model-based version of adversarial imitation learning

○ The system can be easily trained end-to-end using regular backpropagation

○ The policy gradient can be derived directly from the gradient of the discriminator

○ Policies can be more robust and training requires fewer interactions with the 

environment
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and only tries to optimize the behavior.

Instead, we treat s as a function of the policy: 

So that, by using the law of total derivative we can get:
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By using differentiation rule we can easily get:

Recall what we need:
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Assuming the policy is given by

We can rewrite it to 

So that we can get a Monte-Carlo estimator of the derivative
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Model-free block diagram                         Model-based block diagram
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To maximize the reward function, we can view reward as                                       , 

and then maximizing the total reward is equivalent to minimizing the total 

discriminator beliefs along a trajectory.
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To maximize the reward function, we can view reward as                                       , 

and then maximizing the total reward is equivalent to minimizing the total 

discriminator beliefs along a trajectory.

So that we can define: 

And write down the derivatives: (this follows SVG paper [Heess et al. 2015]) 
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Experiments



Conclusion

● A model-based method for adversarial imitation learning

● Pros:

○ Requires fewer interactions with the environment

○ Enable using the partial derivatives of the discriminator when calculating the 

policy gradient

● Cons:

○ Requires learning a forward model, which could be difficult for some problems 

since forward model is also affected by distribution changing of the policy’s 

data

○ Inaccurate forward model will lead to noisy gradients and will impede 

convergence

○ Experiment part in this paper is not very solid



Other take-home messages

● Discriminator network should be large (~ 2x) in comparison to the policy network

● Discriminator network should be trained with a large lr that slowly decays (to adapt 

to the changing distribution of the policy data)

● Adding noise to the expert data helps convergence (otherwise it is easy for 

discriminator to distinguish the expert)

● The discriminator holds valuable information and can be used such as a 

confidence measure for the policy’s performance at inference time


