
Model-based Adversarial Imitation Learning

Nir Baram, Oron Anschel, Shie Mannor

Presented by Yuwen Xiong, Mar 1st

● We use Adam to optimize the discriminator and use TRPO to optimize the policy

Recap: GAIL algorithm

● We use Adam to optimize the discriminator and use TRPO to optimize the policy

● The optimization of the discriminator can be done by using backpropagation, but

this is not the case for the optimization of the policy

Recap: GAIL algorithm

● We use Adam to optimize the discriminator and use TRPO to optimize the policy

● The optimization of the discriminator can be done by using backpropagation, but

this is not the case for the optimization of the policy

● affects the data distribution but do not appear in the objective itself

● We use these two equations to get gradient estimation for

Recap: GAIL algorithm

Motivation

● A model-free approach like GAIL has its limitations

○ The generative model can no longer be trained by simply backpropagating the

gradient from the loss function defined over the discriminator

○ Has to resort to high-variance gradient estimations

Motivation

● A model-free approach like GAIL has its limitations

○ The generative model can no longer be trained by simply backpropagating the

gradient from the loss function defined over the discriminator

○ Has to resort to high-variance gradient estimations

● If we have a model-based version of adversarial imitation learning

○ The system can be easily trained end-to-end using regular backpropagation

○ The policy gradient can be derived directly from the gradient of the discriminator

○ Policies can be more robust and training requires fewer interactions with the

environment

The model-free approach treats the state s as fixed

and only tries to optimize the behavior.

Algorithm - overview

The model-free approach treats the state s as fixed

and only tries to optimize the behavior.

Instead, we treat s as a function of the policy:

So that, by using the law of total derivative we can get:

Algorithm - overview

First, we know that , where

Algorithm - preparation

First, we know that , where

By using Bayes rule and the law of total probability we can get:

Algorithm - preparation

First, we know that , where

By using Bayes rule and the law of total probability we can get:

Algorithm - preparation

Re-writing it as following:

Algorithm - preparation

Re-writing it as following:

Let and , we can get:

Algorithm - preparation

Here stands for policy likelihood ratio

And stands for state distribution likelihood ratio

Algorithm - preparation

Here stands for policy likelihood ratio

And stands for state distribution likelihood ratio

By using differentiation rule we can easily get:

Algorithm - preparation

Here stands for policy likelihood ratio

And stands for state distribution likelihood ratio

By using differentiation rule we can easily get:

Recall what we need:

Algorithm - preparation

Assuming the policy is given by

Algorithm - re-parameterization of distribution

Assuming the policy is given by

We can rewrite it to

Algorithm - re-parameterization of distribution

Assuming the policy is given by

We can rewrite it to

So that we can get a Monte-Carlo estimator of the derivative

Algorithm - re-parameterization of distribution

Model-free block diagram Model-based block diagram

Algorithm

To maximize the reward function, we can view reward as ,

and then maximizing the total reward is equivalent to minimizing the total

discriminator beliefs along a trajectory.

Algorithm

To maximize the reward function, we can view reward as ,

and then maximizing the total reward is equivalent to minimizing the total

discriminator beliefs along a trajectory.

So that we can define:

And write down the derivatives: (this follows SVG paper [Heess et al. 2015])

Algorithm

Algorithm

Experiments

Conclusion

● A model-based method for adversarial imitation learning

● Pros:

○ Requires fewer interactions with the environment

○ Enable using the partial derivatives of the discriminator when calculating the

policy gradient

● Cons:

○ Requires learning a forward model, which could be difficult for some problems

since forward model is also affected by distribution changing of the policy’s

data

○ Inaccurate forward model will lead to noisy gradients and will impede

convergence

○ Experiment part in this paper is not very solid

Other take-home messages

● Discriminator network should be large (~ 2x) in comparison to the policy network

● Discriminator network should be trained with a large lr that slowly decays (to adapt

to the changing distribution of the policy data)

● Adding noise to the expert data helps convergence (otherwise it is easy for

discriminator to distinguish the expert)

● The discriminator holds valuable information and can be used such as a

confidence measure for the policy’s performance at inference time

