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Backgroud - Reinforcement Learning

» State space: S.

» Action space: A.

» Dynamics model: p(s'|s, a), po(so).

» Policy: 7(als).

» Cost function: c: S x A — R.

» State action value: QS(st,ar) = Ep pr [Zt, A c(st/,at/)].
> State value: V(s) = E, .(s)[@s(s,a)].

» Advantage function: AS(s,a) = QS(s,a) — VE(s).
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Backgroud - Reinforcement Learning

State space: S.

Action space: A.

Dynamics model: p(s’|s, a), po(so)-

Policy: 7(als).

Cost function: ¢ : S x A — R.

State action value: QS(s¢,ar) =Ep pr [Zt, A c(st/,at/)].
State value: V<(s) = E, (. |5[Qs(s, a)].

Advantage function: AS(s,a) = Q5(s,a) — VS(s).

» Expected cost of a policy 7:

n°(m) = Espop[ Vi (50)] = D pa(s, a)c(s, a), (1)

s,a

where px(s, a) = 7(als) [X2 7 Prour (st = 5)]
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Backgroud

» Imitation Learning: learning from demonstrations of expert.
» Behavioral cloning: Suffer the cascading errors, and covariate shift.

» Inverse RL: Learn a cost function that fits expert's policy g at each
iteration, but extremely expensive.

» This paper: Learn a policy from export trajectories, through a class
of cost functions.
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Apprenticeship learning

» ldea: find a policy that performs at least as well as the expert mg on
an unknown true cost function.

nere () < noe(me). ()

» Assumption: ¢ lies in one cost function class C.
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Apprenticeship learning

Idea: find a policy that performs at least as well as the expert mg on
an unknown true cost function.

v

nctrue (7T) S ,rlctrue (7TE) (2)
» Assumption: ¢ lies in one cost function class C.
» Relaxation:
n°(m) < n°(mwg),for all c € C. (3)
de(m, mg) = supn(m) — n°(7E) (4)
ceC
» Objective:
min d¢ (7, 7) (5)
™
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Apprenticeship learning

» Objective:
min d¢ (7, 7E) (6)
T
» Two ingredients to go:
1. maximization over cost function class C.

2. minimization over policy .
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Policy Optimization

» Gradient of § w.r.t model’s parameters 6:

Vode(m, mg) = Von© (mp), (7)

where c* is the cost function that achieves supremum.
» Policy Gradient:

» Algorithm:

Von(mg) = E,,, [Vologmo(als)Qz; (s, a)] (8)

Algorithm 1 IM-REINFORCE
Input: Expert trajectories 7, initial policy parameters.
to
fori =0,1,2,... do
Roll out trajectories 7 ~ g,
Compute ¢ achieving the supremum in (10),
with expectations taken over 7 and 75
Estimate the gradient V7 (mg)|g—p, (8) with 7
Use the gradient to take a step from 6, to 0,
end for
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TRPO for apprenticeship learning

Background - Trust Region Policy Optimization (TRPO)
» performance of a new policy 7 in terms of the performance of current
policy mp:
n(m) = n(mo) + Eswp, Eanrn([s)[Ano (s, a)]
» first order approximation of 7():
L(7) £ 1(m0) + Esepry Bamn(.[s)[Ano (5, 2)]
» a surrogate loss function of L(7):
ey
(1—7)
where € = maxs 5 |Ar, (s, a)|, n(m) < M(r).
» reformulate as a trust region constraint.

min L(7), s.t. Dk (mol|7™) < A,
m

M(r) = L(m) + max Dyt (mo(-[s)||7(-[s)),

where Dy (mol|T) = Es~pn, Dk (mo(:[s)||m(+]s))
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TRPO for apprenticeship learning

» Define a surrogate function:

ME(m) £ L(m) + (12_1) max Dy (mo(-|5)][(-]5)).

where ¢ = zlc_—’";x > sup, Maxs a |Ar, (s, a)|, Cmax is the upper bound
for all cost functions.

» With the same proof at TRPO, we could get:

de(m,me) = supn(m) — n(mg) < sup M(7) — n®(mg).
ceC ceC

» It's ready to formulate as TRPO:

M (7, ) = sup(L()~ 1)) + (15 max i (a4 1)

Jun Gao Imitation Learning 2019-02-25 8 /16



TRPO for apprenticeship learning

» formulate as TRPO:

C c c 26/’7

M™(m, mg) = sup(L°(m) —n(7e)) + 77— 5 max Dxr(mo(:|s)||m(:|s))
ceC (1 - 7) s

» The problem becomes:

minsup(L¢(m) — 1°(mg)), st. Dii(mollr) < A
T ceC
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TRPO for apprenticeship learning

» Simplify the objective:

F = supLe(r) - n(re) Q
= U, [6(5.3)] ~ By (5. 2)] + By, EarrlAS, (5, 2)10)
— S, [c(5.)] - By [c(s. )] (1)

e, | 0 0) ~ Ve (9)] (12)

= SZBEPW[C(S’Q)]_EPWE[C(S"?)] (13)
[ 7T9(3|S)_ € (s.3

Ere | (T ) 9509) o
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TRPO for apprenticeship learning

Algorithm 2 IM-TRPO
Input: Expert trajectories 7g, initial policy params. o,
trust region size A
fori=0,1,2,... do
Roll out trajectories 7 ~ my,
Find 7, ., minimizing Equation (23)
subject to Dkr,(7g, || 7o,,,) < A,
with expectations taken over 7 and 75 (15)
end for
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Finding cost functions

» Assumption: linear or convex.

OCineer (s mE) = sup_ wT((7) — d(7E)). (15)

[lw|l2<1
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Finding cost functions

» Assumption: linear or convex.

OCineer (s mE) = sup_ wT((7) — d(7E)). (15)

[[wll2<1
» closed form solution:

o 0(m) — olre)
6(m) — o(me)llz

w

(16)
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Finding cost functions

» Assumption: linear or convex.

OCineer (s mE) = sup_ wT((7) — d(7E)). (15)

[[wll2<1
» closed form solution:

o 0(m) — olre)
6(m) — o(me)llz

w

» for TRPO:
a _ 9(mo) — ¢(me) + ¥(mo)

[6(70) — #(re) + ¥(ro)ll2
where (o) = By, | (435 — 1) (Ex (Y20 7" 6(51, ae) 50, a0))|

w
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Compared to other apprenticeship learning

Gridworld: Performance ratio Gridworld: Timing
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Figure I. Left: Gridworld performance ratio across varying
amounts of expert data. Right: Training time on increasing grid-
world sizes. (BC stands for behavioral cloning.)
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Experiments

Compared to other IRL methods
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Figure 2. Excess cost for each algorithm for globally and locally
optimal planar navigation examples, against variants of CIOC and
other competing algorithms.
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Influence of feature dimension
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Figure 3. Left: Excess cost over time for one run of Nsensors = 20.
Curves for other settings are similar. Right: Excess costs for
learned policies on various sensor counts.
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Conclusion

» Pros:

» blending state-of-the-art policy gradient algorithms for reinforcement
learning.

» Cons

» linear (convex) cost function assumption, hard to scale to non-convex
setting.
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