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Supervised Approaches

Problems with supervised
approaches:

Covariance Shift

Linear policies work well still
errors.

Error in hold-out data and
training error were similar.

We need a system that updates
on the fly/ online.

We need a system adaptive to a
dynamic environment.



Introduction

Working alongside a
human.

What's a better way a
robot autonomy can
work.




Motivation

e Autonomous driving: A common goal shared by many is for an autonomous
driving solution that can operate robustly within diverse outdoor
environments.

e EXisting systems have failed due to diversity of environment conditions.

e Global Positioning Systems (GPS) are inappropriate for operations in
previously unseen or changing paths, suffers multipath noise interference
especially near buildings.



Contributions

e Demonstration of an interactive autonomous driving system using AfP
paradigm.

e Adaptation from Participation achieves the task of adjusting parameter values
automatically in a robust and flexible manner.

e This paper claims shared autonomy produces better results than teleoperated
and fully autonomous systems.

e Developed the Adaptive Parameter Exploration (APEX) algorithm in order to
implement AfP for shared autonomy.

e This adaptive system is able to adjust to dynamic changes to task conditions.

e Applied APEX to AfP case studies on previously unseen paths.



Background



Prior Work

AfP is an extension of Learning from Demonstration (LfD).

LfD/ Imitation Learning: learning behaviors from demonstrations provided by a
human or another robot expert with superior task knowledge.

e A key motivation for LfD is to eliminate the tedious task of manually
programming behaviors for robots similar to AfP.



Prior Work

e AfP also builds on previous research in the domain of shared autonomy.
e Shared autonomy shown to give better results than tele-operated and fully
autonomous vehicles.

e AfP aims to improve efficiency of a task specific robot by repeatedly adjusting
its parameters.



AfP vs previous LfD approaches

e AfP differs from previous LfD approaches as AfP is designed for highly
dynamic situations previous LfD approaches have a single, stationary task
objective.

e More so, in previous LfD approaches, the robot agent learns a novel set of
task behaviors while in AfD robot agent improves the performance of an
existing robot autonomy.



Adaptive Parameter Exploration




Adaptive Parameter Exploration (APEX)

e APEX: APEX is an algorithmic solution to the novel problem of Adaptation
from Participation.
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Parameter Hypothesis - Particles

e Particle - an evolving parameter hypothesis.

e APEX uses a multi-hypothesis search approach.

e Parameter optimization is between two consecutive sensor updates based on
training exemplars.

e Particles involved; local search particles, random search particles and
persistence particles.



Particle Types

Local search particles — employ gradient-based search method to iteratively
find numerical approximations.

Random restart search particles — provide non-local explorations of
parameter space by randomly sampling initial parameter values.
Persistence particles — enforce temporal consistency by duplicating winning
particle from previous loop iteration, and do not perform further parameter
optimizations.



APEX Algorithm

Algorithm 1 APEX’s main pipeline loop
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: end loop

Each particle optimizes between consecutive updates

Local search, random start search and persistence
particles

Update using a discount y hyparamter

This should be an argmin for lowest cost

During manual intervention



APEX Algorithm
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SL-Commander vehicle




System Infrastructure - SL-Commander vehicle

An electric-powered side-by-side All-Terrain Vehicle (ATV)
1. Mechanical Platform:
e The SL-Commander utilizes Ackerman steering and a four wheel drive
system.
e Safety feature includes a steel roll-cage for protection from roll-overs on steep

inclines, as well as front and rear ventilated disc brakes for rapid stopping
power.



System Infrastructure - SL-Commander vehicle

2. Actuation and Sensing:

A drive-by-wire system onboard the SL-Commander replicates many of the
operations typically conducted by a human driver during manual control,including
actuation of the brake and accelerator pedals, the gear shift, and also the steering

wheel.

3. Software Architecture was the Robot Operating System middleware (ROS).



Vision Based Algorithm - SL-Commander vehicle

Vision Based Path Following algorithm

(a) exclude horizon (b) segment target region (c) extract boundary curve (d) fit line and map into steering



Vision Based Algorithm - SL-Commander vehicle

Vision Based Path Following algorithm

e first the top of the image is excluded to remove the horizon and image content

near the vanishing point.

e next the target region is segmented using a specified image feature (e.g.
HSV).

e the dominant boundary curve is then extracted from the filtered segmented
image

e the resulting line fit of the boundary is mapped into a steering command (blue
arrow)



Vision Based Algorithm

e Geometric information — camera pose, intrinsic and extrinsic parameters,
inclination and desired boundary are tedious to obtain for the dynamic
environment.

e These geometric information is required to obtain steering angle.

e Adaptive parameterized linear mapping is used instead:

yr =MiX + M@ + Ms
yr — robot autonomy command to actuator,

X — intersection on X axis,

@ — slope of line
M1, M2 — scaling factors (to be optimized), Ms — bias (to be optimized as well)



Parameters of the system

As the parameters to optimize are:

Boundary type Tv» € {Edge, Strip}
and

Segmentation feature choice Ts €
{Hue, Grayscale, HSV}.

Horizon cut-off threshold Ho which
IS a continuous value,

Mapping coefficients M1, M2, and
Ms.
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Field Experiments

Test site route




Evaluation Scenario

(a) (b) (©) (d)

Fig. 6. Snapshots of a run through the primary test circuit: (a) the human passenger began by training the boundary tracker at 3 km/h speed to follow a
previously-unseen gravel road, with the user’s command shown as a green arrow; (b) shortly after, the passenger relinquished control to the autonomous
system, which continued to track the path, with its autonomous steering command shown as a blue arrow; (c) the passenger incrementally ramped up the
autonomous driving speed to 20 km/h after witnessing robust tracking of the gravel-grass border through diverse surroundings: and (d) the run concluded
near a large tent that produced a confusing secondary boundary, although autonomous tracking of the gravel path remained unfaltering.

(@) (b) ©) (d)

Fig. 7. Sample segment demonstrating interactive re-learning following a change in the camera’s positioning: (a) following initial manual training, the
vehicle autonomously tracked the gravel pathway, with steering command shown as a blue arrow: (b) the passenger began issuing intervening commands,
shown with the green arrow, in preparation to change the camera’s pose while the vehicle is in motion: (¢) after panning the camera to the right and
downwards, this unexpected change in image perspective caused the robot’s command to differ from the user’s desired steering: however (d) after AfP
swiftly adapted parameter settings to match the updated camera pose, the human quickly returned control back to autonomous driving system.



Evaluation Scenario
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Progressive vehicle speed during adaptation
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Major Benefits of Adaptation from Participation

e Extends Learning from Demonstration — imitation learning, adaptively improving
performance.
Dynamic adaptation to changing task objectives and conditions.

e AfP encourages continuous interactions between the robot autonomy and the human
participant for better performance.

e Demonstrates ability to handle accidental perturbations to robot’s physical
configuration.

e Human participants were always in full control over the vehicle.
Largely agnostic to the underlying system — can be extended to other human robot
teams.



Questions



Future Work

e Extend current work to explicitly modelling of user intention for different
interaction periods.

e Extend current work to other shared autonomies.

e Deployment in more challenging outdoor domains like agriculture, mining and
forestry.

e Capturing the user intentions for more desirable driving behavior.

e Improvement of user interface from laptop feedback to visualization by
Augmented Display and replacing gamepad controller with a steering wheel
for ongoing investigations.



Shared Autonomy via Hindsight
Optimization
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Teleoperation

Noisy, insufficient degrees of freedom, tedious
Image credit: Javdani RSS2015 talk



Shared Autonomy

User Input Autonomous Assistance Achieve Goal



Shared Autonomy

User Input Autonomous Assistance Achieve Goal



Shared Autonomy

Predict goal
Assist for single goal

[Dragan and Srinivasa 13]

[Kofman et al. 05]
[Kragic et al. 05]
[Yu et al. 05]
[McMullen et al. 14]

Autonomous Assistance Achieve Goal




Shared Autonomy

Predict goal
Assist for single goal

[Dragan and Srinivasa 13]
[Kofman et al. 05]
[Kragic et al. 05]
[Yu et al. 05]
[McMullen et al. 14]

Predict goal distribution
Assist for distribution

[Hauser 13]
This work!

Autonomous Assistance

Achieve Goal



Method

e System dynamics: X’ = T(x, a)

x' =T(x, a)




Method

» System dynamics: X’ = T(x, a)

5 goal
* User (MDP) as (X,U,T,Cy*) e
- User policy: 7%%(z) = p(ulz,g) )
- MaxEntIOC: C¥:XxU—-R (i J
User —
% X' =Tlx,a) &




Method

» System dynamics: X’ = T(x, a)

» User (MDP) as (X,U,T,Cy)
- User policy: 7% (z) = p(ulz,g)
- MaxEntlOC: C¥:XxU—-R

» System (POMDP) as (S,A4,T,C™,U,Q)
Uncertainty over user’s goal
System state: S =X x G
Observation: user inputs U
Observation model Q2

p(€°*9)p(9)
> g P(E%g")p(g")

Cost function C™ : S x AxU — R.

p(gle®™) =




Hindsight Optimization

* MDP solution:
ZC“(st,ut,at) | 50 = s]

V*(s) = min V™ (s)

V™ (s)=E




Hindsight Optimization

* MDP solution:
ZC'(st,ut,at) | 80 = .;|

V*(s) = min V™ (s)

V™(s) =E

« POMDP solution:
V™ (b) = ]Elz C*(st,us,az) | bo = b]

V*(b) = min V™ (b)



Hindsight Optimization

* MDP solution:
ZC’(S:, ug,a¢) | So = s:|

V*(s) = min V™ (s)

V™ (s)=E

« POMDRP solution:
V™ (b) = E[gcr(st,ut,ag} | by = b]
V*(b) = min V™ (b)
* HOP approximation:

VHS(b) = E, [H},irn V"r(s)}
=Ey[Vy(z)]



Hindsight Optimization

* MDP solution:
ZCr(st, ug,a;) | so = s:|

V*(s) = min V™ (s)

V™(s) =E

» POMDP solution:
V™ (b) = E[Z C(st,ur,ar) | bo = b]

V*(b) = min V™ (b)
i f11/ fi2 fins
* HOP approximation:
(s)]

VHS(h) = E, [mirn 748
= Eg[Vy(2)]

Deterministic
problem for

each future
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Results

Compare with method that
predicts one goal, the proposed

method has:

* Faster execution time

* Fewer user inputs
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User Study
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Limitations

* Requires prior knowledge about the world:
- a dynamics model that predicts the consequences of taking a given
action in a given state of the environment;
- the set of possible goals for the user;
- the user's control policy given their goal.

» Suitable in constrained domains where where this knowledge can be
directly hard-coded or learned.

* Unsuitable for unstructured environments with ill-defined goals and
unpredictable user behavior.
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