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Supervised Approaches

Problems with supervised 

approaches:

• Covariance Shift

• Linear policies work well still 

errors.

• Error in hold-out data and 

training error were similar.

• We need a system that updates 

on the fly/ online.

• We need a system adaptive to a 

dynamic environment.



Introduction

What’s a better way a 

robot autonomy can 

work. 

Working alongside a 

human.



Motivation

● Autonomous driving: A common goal shared by many is for an autonomous 

driving solution that can operate robustly within diverse outdoor 

environments.

● Existing systems have failed due to diversity of environment conditions. 

● Global Positioning Systems (GPS) are inappropriate for operations in 

previously unseen or changing paths, suffers multipath noise interference 

especially near buildings.



Contributions

● Demonstration of an interactive autonomous driving system using AfP 

paradigm.

● Adaptation from Participation achieves the task of adjusting parameter values 

automatically in a robust and flexible manner.

● This paper claims shared autonomy produces better results than teleoperated 

and fully autonomous systems.

● Developed the Adaptive Parameter Exploration (APEX) algorithm in order to 

implement AfP for shared autonomy.

● This adaptive system is able to adjust to dynamic changes to task conditions.

● Applied APEX to AfP case studies on previously unseen paths.



Background



Prior Work

● AfP is an extension of Learning from Demonstration (LfD).

● LfD/ Imitation Learning: learning behaviors from demonstrations provided by a 

human or another robot expert with superior task knowledge. 

● A key motivation for LfD is to eliminate the tedious task of manually 

programming behaviors for robots similar to AfP. 



Prior Work

● AfP also builds on previous research in the domain of shared autonomy.

● Shared autonomy shown to give better results than tele-operated and fully 

autonomous vehicles.

● AfP aims to improve efficiency of a task specific robot by repeatedly adjusting 

its parameters.



AfP vs previous LfD approaches

● AfP differs from previous LfD approaches as AfP is designed for highly 

dynamic situations previous LfD approaches have a single, stationary task 

objective.

● More so, in previous LfD approaches, the robot agent learns a novel set of 

task behaviors while in AfD robot agent improves the performance of an 

existing robot autonomy.



Adaptive Parameter Exploration



Adaptive Parameter Exploration (APEX)

● APEX: APEX is an algorithmic solution to the novel problem of Adaptation 

from Participation.



Parameter Hypothesis - Particles

● Particle - an evolving parameter hypothesis.

● APEX uses a multi-hypothesis search approach.

● Parameter optimization is between two consecutive sensor updates based on 

training exemplars.

● Particles involved; local search particles, random search particles and 

persistence particles.



Particle Types

● Local search particles – employ gradient-based search method to iteratively 

find numerical approximations.

● Random restart search particles – provide non-local explorations of 

parameter space by randomly sampling initial parameter values.

● Persistence particles – enforce temporal consistency by duplicating winning 

particle from previous loop iteration, and do not perform further parameter 

optimizations.



APEX Algorithm

fefefefefefefefefefefe

This should be an argmin for lowest cost

Local search, random start search and persistence 

particles

During manual intervention

Each particle optimizes between consecutive updates

Update using a discount γ hyparamter



APEX Algorithm

● Updating long term cost 

● Updating Mean Square objective Cost 

● For continuous particles

long-term cost Parameter 

hypothesis

discount 

factor

γ - discount factor enforces 

temporal consistency and 

reduces  the likelihood of 

oscillating between different 

winning particiles in 

successive iterations

W – optimizing using a 

sequence of W most recent 

training exemplars

Robot 

autonomy

- Human intervening commands

continuous 

particles

α – learning rate є [0,1]



SL-Commander vehicle



System Infrastructure - SL-Commander vehicle

An electric-powered side-by-side All-Terrain Vehicle (ATV) 

1. Mechanical Platform: 

● The SL-Commander utilizes Ackerman steering and a four wheel drive 

system.

● Safety feature includes a steel roll-cage for protection from roll-overs on steep 

inclines, as well as front and rear ventilated disc brakes for rapid stopping 

power. 



System Infrastructure - SL-Commander vehicle

2. Actuation and Sensing: 

A drive-by-wire system onboard the SL-Commander replicates many of the 

operations typically conducted by a human driver during manual control,including 

actuation of the brake and accelerator pedals, the gear shift, and also the steering 

wheel.

3. Software Architecture was the Robot Operating System middleware (ROS).



Vision Based Algorithm - SL-Commander vehicle

Vision Based Path Following algorithm 



Vision Based Algorithm - SL-Commander vehicle

Vision Based Path Following algorithm

● first the top of the image is excluded to remove the horizon and image content 

near the vanishing point.

● next the target region is segmented using a specified image feature (e.g. 

HSV).

● the dominant boundary curve is then extracted from the filtered segmented 

image

● the resulting line fit of the boundary is mapped into a steering command (blue 

arrow)



Vision Based Algorithm

● Geometric information – camera pose, intrinsic and extrinsic parameters, 

inclination and desired boundary are tedious to obtain for the dynamic 

environment.

● These geometric information is required to obtain steering angle.

● Adaptive parameterized linear mapping is used instead:

yr  = M1X + M2Ø + M3

yr – robot autonomy command to actuator,

X – intersection on X axis,

Ø – slope of line

M1, M2 – scaling factors (to be optimized), M3 – bias (to be optimized as well)



Parameters of the system

As the parameters to optimize are: 

● Boundary type Tb ∈ {Edge, Strip} 

and 

● Segmentation feature choice Ts ∈

{Hue, Grayscale, HSV}. 

● Horizon cut-off threshold H0 which 

is a continuous value, 

● Mapping coefficients M1, M2, and 

M3.



Field Experiments

Test site route



Evaluation Scenario



Evaluation Scenario



Progressive vehicle speed during adaptation



Major Benefits of Adaptation from Participation

● Extends Learning from Demonstration – imitation learning, adaptively improving 

performance.

● Dynamic adaptation to changing task objectives and conditions.

● AfP encourages continuous interactions between the robot autonomy and the human 

participant for better performance.

● Demonstrates ability to handle accidental perturbations to robot’s physical 

configuration.

● Human participants were always in full control over the vehicle.

● Largely agnostic to the underlying system – can be extended to other human robot 

teams.



Questions



Future Work

● Extend current work to explicitly modelling of user intention for different 

interaction periods.

● Extend current work to other shared autonomies.

● Deployment in more challenging outdoor domains like agriculture, mining and 

forestry.

● Capturing the user intentions for more desirable driving behavior.

● Improvement of user interface from laptop feedback to visualization by 

Augmented Display and replacing gamepad controller with a steering wheel 

for ongoing investigations.






































