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Teleoperation

Noisy, insufficient degrees of freedom, tedious
Image credit: Javdani RSS2015 talk
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Predict goal distribution
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e System dynamics: X’ = T(x, a)

« User (MDP) as (X,U,T,C)
- User policy: #(z) = p(ulz, g)
- MaxEnt IOC: C¥:XxU->R

e System (POMDP) as (S,A4,T,C™,U,Q)
- Uncertainty over user’s goal
- System state: S =X x G
- Observation: user inputs U
- Observation model

oty P g)p(9)
p(g|§" ") = Eg’ p(£9-tg")p(g")

- Cost function C™ : S x AxU —» R
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e MDP solution:

V™ (s)=E ZCr(st,ut,at) | sg =8

| L

V*(s) = min V™ (s)

w

e POMDP solution:

V™ (b)

R’

=K ZCr(st,ut,at) | bp = b

V*(b) = min V™ (b)

w

e HOP approximation:

VHS(b) = ":b P

“g

min V"™
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Deterministic
problem for
each future
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Results

Compare with method that

predicts one goal, the proposed

method has:
e Faster execution time

 Fewer user inputs
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User Study

Blend
6 Policy

Control Want Quickly Like Prefer
Survey Question



Limitations

 Requires prior knowledge about the world:
- a dynamics model that predicts the consequences of taking a given
action in a given state of the environment;
- the set of possible goals for the user;
- the user's control policy given their goal.

e Suitable in constrained domains where where this knowledge can be
directly hard-coded or learned.

 Unsuitable for unstructured environments with ill-defined goals and
unpredictable user behavior.
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