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Motivation

Why do we learn and use
machine learning?



Motivation

Consider the problem of teaching a machine to do some
particular task automatically

Task could be as simple as adding numbers or as difficult as
driving a car



Motivation

Neural Programmeinterpreters (NPI) is an attempt to useural
methodsto train machines to carry out simple tasks based cmall

amount of training data



Recurrent neural network (RNN)
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A RNN is a neural network with feedback

A Hidden state is to capture history information and current state of
the network




Long Short Term Memory (LSTM)

A LSTM is a special kind of RNN

A Gates are used to control information
flow. Just like a valve




Model

AThe NPI core is a LSTM network that learns to represent and execute
programs given their execution traces
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NPI| core module

NPI inference




Algorithm- inference

Algorithm 1 Neural programming inference

I: Inputs: Environment observation e, program id 7, arguments a, stop threshold o

2: function RUN(7, a)

3 h 0,70, p+« MP9W > Init LSTM and return probability.

4: while < o do |

5: s < fenc(e€, u)(._z h — fratm(S. p,h) > Feed-forward NPI one step.

6: 14— fena(h)Tk _fpmg(h%‘.‘h-,g & farg(h)”

7 ig 4— arg max (M J].‘__:ey)Tk(G) > Decide the next program to run.

j=1..N

8: if i == ACT then ¢ < fepny(e,p.a)” > Update the environment based on ACT.

0: else RUN(is, as) > Run subprogram io with arguments aq
(1). 0 and0 are memory storing program embeddings and program keys

(2):"Q is a domairspecific encoder (for different tasks, have different encoders)
(3):"Q is to calculate the probability of finishing the program

(4)."Q is to retrieve the next program key from memory
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(6). 0 il (¥s to measure cosine similarity

(7). "Q is a domairspecific transition mapping
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Algorithm- inference

Algorithm 1 Neural programming inference

I: Inputs: Environment observation e, program id 7, arguments a, stop threshold a
2: function RUN(7, a)
3 h<0,7<0,p< MP™ > Init LSTM and return probability.

Line 30 andv are memory banks to store program embeddings and
program keys



Algorithm- inference

Algorithm 1 Neural programming inference

I: Inputs: Environment observation e, program id 7, arguments a, stop threshold o
2: function RUN(7, a)
3 h<0,7<0,p< MP™ > Init LSTM and return probability.
4 while » < a do
5 s < fencle,a), h < fistm(s,p,h) > Feed-forward NPI one step.
6 "< ]LEnd(h) k< .fprcg(h)- g <— fa.rg("i"")
: . (N TkevyT 1. = . . .
7 ig ¢ arg max(M; 77 )" A > Decide the next program to run.
j=1..N '

Line7 0 il ‘(s directly measurement for cosine similarity



Training

Directly maximize the probability of the correct execution trace output
conditionedon d
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Then we can just run gradient ascent to optimize it



Tasks

AAddition
ATeach the model the standard grade school algorithm of adding 2&se
numbers
ASorting
ATeach the model bubble sorting to sort an array of numbers in ascending
order
ACanonicalizing 3D models

ATeach the model to generate a trajectory of actions that delivers the camera
to the target viewge.g, frontal pose at @ televation



Adding numbers together

NPI inference Generated commands

ADD

Output program
Addition scratch pad ﬁ
S —— NP
x 1t = : ~ Previous OIS
oo s Tagt e
—FL 302840305

Next
NPI state

jﬂ i l ‘ Input program

* 3|N3l-0°>(-

[
. Environment
observation



Addition demo

NPI inference Generated commands
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Bubble sort

Input array NPI inference Generated commands
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Sorting demo

Input array NPI inference Generated commands
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Canonicalizing 3D models

Car rendering NPI inference Generated commands
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Canonicalizing demo

Car rendering NPI inference Generated commands
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Experiments

AData Efficiency
AGeneralization

ALearning new programs with a fixed NPI cores



Data EfficiencySorting

Sorting per-sequence accuracy vs. # training examples
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A Seq2Seq LSTM and NPI used the
same number of layers and hidden
units.

A Trained on length up to 20 arrays
of singledigit numbers.

A NPI benefits from mining multiple
subprogram examples per sorting
iInstance, and additional
parameters of the program
memory.



Generalization Sorting

AFor each lengtlup to 20 we
Szrting per-seguence accuracy vs sequence length provided 64 examp|e bubble
sort traces, for a total of
1216 examples.

AThen, we evaluated whether
the network can learn to
sort arrays beyond length 20
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Generalization Adding
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Generalization Adding
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Learning New Programs with a Fixed NPI Cor

AToy example: maximusfinding in an array

ASimple (not optimal) way: call BUBBLESORT and then take the right
most element of the array. Two new programs:

ARJMP Move all pointers to the rightmost position in the array by repeatedly
calling RSHIFT program

AMAX: Call BUBBLESORT and then RIMP

AExpand program memory by adding 2 slots. Then learn by
backpropagation with the NPI core and all other parameters fixed.



Learning New Programs with a Fixed NPI Cor

Only the memory slots of

MEY JIMP9 the new program are
: 4 | RJMP updated!
!_________;.: ________________________ All other weights are
| i 'MAX fixed!

-------------------

Protocol:
ARandomly initialize new program vectors in memory

AFreeze core and other program vectors
ABackpropagate gradients to new program vectors



Quantitative Results

Task Single | Multi | + Max
Addition 100.0 97.0 97.0
Sorting 100.0 | 100.0 | 100.0
Canon. seencar | 89.5 014 01.4
Canon. unseen 88.7 89.9 89.9
Maximum - - 100.0

A Numbers are pesequence % accuracy
A+ Max: indicates performance after addition of MAX program to

memory
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Thanks!

Any questions and comments?



Neural Task Programming: Learning to
Generalize Across Hierarchical Tasks

Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg,

Li Fei-Fei, Silvio Savarese

Presented by Angran Li
February 8, 2019






