Neural Programmer
Interpreters

By Scott Reed & Nando de Freitas

Presenter: Zeqi LI

Motivation

Why do we learn and use
machine learning?

Motivation

Consider the problem of teaching a machine to do some
particular task automatically

Task could be as simple as adding numbers or as difficult as
driving a car

Motivation

Neural Programmeinterpreters (NPI) is an attempt to useural
methodsto train machines to carry out simple tasks based cmall

amount of training data

Recurrent neural network (RNN)

h) h B)
L.T | |
A é; A

: ..
b

A
A RNN is a neural network with feedback

A Hidden state is to capture history information and current state of
the network

Long Short Term Memory (LSTM)

A LSTM is a special kind of RNN

A Gates are used to control information
flow. Just like a valve

Model

AThe NPI core is a LSTM network that learns to represent and execute
programs given their execution traces

Traces: fénp {et, 14, a} fot : {it—|—13 at—i—la""t}

NS/

environment program program
observation indices args

return bit

NPI| core module

NPI inference

Algorithm- inference

Algorithm 1 Neural programming inference

I: Inputs: Environment observation e, program id 7, arguments a, stop threshold o

2: function RUN(7, a)

3 h 0,70, p+« MP9W > Init LSTM and return probability.

4: while < o do |

5: s < fenc(e€, u)(._z h — fratm(S. p,h) > Feed-forward NPI one step.

6: 14— fena(h)Tk _fpmg(h%‘.‘h-,g & farg(h)”

7 ig 4— arg max (M J].‘__:ey)Tk(G) > Decide the next program to run.

j=1..N

8: if i == ACT then ¢ < fepny(e,p.a)” > Update the environment based on ACT.

0: else RUN(is, as) > Run subprogram io with arguments aq
(1). 0 and0 are memory storing program embeddings and program keys

(2):"Q is a domairspecific encoder (for different tasks, have different encoders)
(3):"Q is to calculate the probability of finishing the program

(4)."Q is to retrieve the next program key from memory

GXQ A& G2 NBGdzNY G(KS ySEG LINRIAINI YQa
(6). 0 il (¥s to measure cosine similarity

(7). "Q is a domairspecific transition mapping

I NEdzYSy 4 a

Algorithm- inference

Algorithm 1 Neural programming inference

I: Inputs: Environment observation e, program id 7, arguments a, stop threshold a
2: function RUN(7, a)
3 h<0,7<0,p< MP™ > Init LSTM and return probability.

Line 30 andv are memory banks to store program embeddings and
program keys

Algorithm- inference

Algorithm 1 Neural programming inference

I: Inputs: Environment observation e, program id 7, arguments a, stop threshold o
2: function RUN(7, a)
3 h<0,7<0,p< MP™ > Init LSTM and return probability.
4 while » < a do
5 s < fencle,a), h < fistm(s,p,h) > Feed-forward NPI one step.
6 "<]LEnd(h) k< .fprcg(h)- g <— fa.rg("i"")
: . (N TkevyT 1. = . . .
7 ig ¢ arg max(M; 77)" A > Decide the next program to run.
j=1..N '

Line7 0 il ‘(s directly measurement for cosine similarity

Training

Directly maximize the probability of the correct execution trace output
conditionedon d

—~ &ifoA @ aéQ0 s A

¢

Then we can just run gradient ascent to optimize it

Tasks

AAddition
ATeach the model the standard grade school algorithm of adding 2&se
numbers
ASorting
ATeach the model bubble sorting to sort an array of numbers in ascending
order
ACanonicalizing 3D models

ATeach the model to generate a trajectory of actions that delivers the camera
to the target viewge.g, frontal pose at @ televation

Adding numbers together

NPI inference Generated commands

ADD

Output program
Addition scratch pad ﬁ
S —— NP
x 1t = : ~ Previous OIS
oo s Tagt e
—FL 302840305

Next
NPI state

jﬂ i l ‘ Input program

* 3|N3l-0°>(-

[
. Environment
observation

Addition demo

NPI inference Generated commands
ADD
Output program
Addition scratch pad ﬁ
e ——. NPl Tl
- = e Previous ::> Core :> ex

;7_4;___4_; 8u.0t2:8;3_.8_4:§~: NPI state ht- :Pltstate
e e e
=4 39284905 % ; j ﬁ
— : 0 —— * . [Environment mpUt program

observation ADD

Bubble sort

Input array NPI inference Generated commands

I I I Output program ﬁ

Previous ::> Core Next
NPI state

t NPI state

BUBBLESORT

[j i | ‘ Input program

Environment

observation BUBBLESORT

*
*
*

Sorting demo

Input array NPI inference Generated commands

Qutput program T ks,
IlI ¢ IIlI NP1
+*

Previous Core [—| Next
NP! state! > NPI state

BUBBLESORT

* []
l Environment _;}

observation BUBBLESORT

Input program

Canonicalizing 3D models

Car rendering NPI inference Generated commands

Output program ﬁ
Next

Previous ::> Core
NPI state — !l: NPI state

ht
j‘ Z | ‘ Input program
Environment

observation GOTO 1 2

GOTO 1 2

|

Canonicalizing demo

Car rendering NPI inference Generated commands
GOTO 1 2
Output program ﬁ
Previous Core
NPI state:> :{>::)I(tstate

ht,
ﬁ ‘ ‘ Input program
Environment

observation GOTO 1 2

[

Experiments

AData Efficiency
AGeneralization

ALearning new programs with a fixed NPI cores

Data EfficiencySorting

Sorting per-sequence accuracy vs. # training examples
100 *

/

0 —i 1 o T R -
1 p 4 8 16 32 64 128 266 512 1024 2048
Training examples
—— SeqlSeq -—e— NP

A Seq2Seq LSTM and NPI used the
same number of layers and hidden
units.

A Trained on length up to 20 arrays
of singledigit numbers.

A NPI benefits from mining multiple
subprogram examples per sorting
iInstance, and additional
parameters of the program
memory.

Generalization Sorting

AFor each lengtlup to 20 we
Szrting per-seguence accuracy vs sequence length provided 64 examp|e bubble
sort traces, for a total of
1216 examples.

AThen, we evaluated whether
the network can learn to
sort arrays beyond length 20

100

75

Sequence length
—&— Seq2Seq —e— NPI

Generalization Adding

ANPI trained on 32
VR examples for sequence

sequence

Mg 525-stack@32 Iength Up to 20

per-character

323 eas ot savesi2 As2seasy trained onwice as
Y wssasen - Many examples as NP

50.0% per-sequence
\ 8- 525-0a5@64 (p urp lecu rVE)

per-sequence
As2sstack trained orl6
times more examples than
T o0 NPI { curve)

Test sequence length

Addition Praﬂonm vs Seq2Seq

100.0% @

75.0%

25.0%

0.0%

Generalization Adding

,{dm Malizmn:l\MS SﬁSeq_ — ~—y, NPI

-0 o |@32 per-
_— — — C sequence
-8 S52S-stack@32
75 0% per-character

per-character
—&— S525-easy@32
50.0% per-sequence
—8- 525-easy@b4
per-sequence

25.0%

0.0%

10 100 1000
Test sequence length

525-stack@512

ANPI trained on 32
examples for sequence
length up to 20

As2seasy trained onwice as
many examples as NPI
(purplecurve)

As2sstack trained orl6
times more examples than
NPI { curve)

Learning New Programs with a Fixed NPI Cor

AToy example: maximusfinding in an array

ASimple (not optimal) way: call BUBBLESORT and then take the right
most element of the array. Two new programs:

ARJMP Move all pointers to the rightmost position in the array by repeatedly
calling RSHIFT program

AMAX: Call BUBBLESORT and then RIMP

AExpand program memory by adding 2 slots. Then learn by
backpropagation with the NPI core and all other parameters fixed.

Learning New Programs with a Fixed NPI Cor

Only the memory slots of

MEY JIMP9 the new program are
: 4 | RJMP updated!
!_________;.: ________________________ All other weights are
| i 'MAX fixed!

Protocol:
ARandomly initialize new program vectors in memory

AFreeze core and other program vectors
ABackpropagate gradients to new program vectors

Quantitative Results

Task Single | Multi | + Max
Addition 100.0 97.0 97.0
Sorting 100.0 | 100.0 | 100.0
Canon. seencar | 89.5 014 01.4
Canon. unseen 88.7 89.9 89.9
Maximum - - 100.0

A Numbers are pesequence % accuracy
A+ Max: indicates performance after addition of MAX program to

memory

AddzyaSSyé

set

N
4

dza Sa |

Pay

U S

4

a

[,J

Pay

asiu

g AUK

Thanks!

Any questions and comments?

Neural Task Programming: Learning to
Generalize Across Hierarchical Tasks

Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg,

Li Fei-Fei, Silvio Savarese

Presented by Angran Li
February 8, 2019

