Deep Q-Learning from
Demonstrations (DQfD)

Bryan Chan & Chandripal Budnarain

Markov Decision Process (MDP)

* AMDP s atuple (S,A,P,R,y)
» S: A finite set of states
e A: A finite set of actions
e P: A state transition function
* R: A reward function
* y: Discount factor

* Want to find a policy m: S — A such that it maximizes the expected
discounted total reward

Q-Function

* The action-value Q-function Q™ (s, a;) is the expected return
starting from state s;, taking action a;, and then following policy

* Q"(s¢,ar) = E[Req + YReyp + ¥ Reps + | Sty a4
= Eg[Reyq +vQ™(s",a) | s, a]
* The optimal policy ©*(s) can be obtained from optimal Q-function
argmax,Q* (s, a)

Q-Learning Algorithm

Q-Table

[

Update Q-Table

using <s, a, r, s'> Action a on current observation s

%

Reward r & New observation s'

Deep Q-Network (DQN)

* State-action space might be too big for storing a Q-table!

* |[dea: Replace Q-table with a neural network that approximates Q-
values

* Deep Q-Network = Deep Learning + Q-Learning

Q-Function
Q-Table Approximator

Inputs > Outputs
Q-Values ::> P Hidden Layers P

Q-Function Approximator

Q-Values

State — . | forall
Hidden Layers actions

+ Loss = [(R(s,@) +y maxQ(s',a; 6)) — Q(s,a;0)]’

DQN Algorithm

Q-Network

Sample b experiences uniformly
& Update Q-Network
using Gradient Descent

Replay Buffer

Action a on current observation s

Store Experience <s, a, r, s'>

L _/

Reward r & New observation s'

How to Combine
Demonstration Data with DQN?

Loss Function

* Recall that the loss function for Q-Learning is:
Joen (@) = [(R(s, @) + y max Q(s',a;0)) — Q(s,a;)]
* Given demonstration data, we want the agent to learn from it

* Issue: Demonstration data only covers a small subset of the state
space and does not consider a lot of actions

* Issue: Many (ungrounded) values are not realistic and the Q-
Network would propagate these values

Supervised Large Margin Classification Loss

* Push the values of other actions to be at least a margin lower than
the demonstrator’s action

* The loss function:

Je(Q) = max[Q(s,a) + l(a,ag)] — Q(s,ag),

acA
where [(a, ag) is a margin function that is 0 when a = a; and some
positive value otherwise, and ag is the demonstrator’s action

* In this paper, l(a,ar) = 0 if a = ag, and 0.8 otherwise

New Loss Function

* J(Q) = Jpon(Q) + A11],(Q) + A,]p(Q) + A3]12(Q),

where A’s control the weighting between the losses, J,,(Q) is the n-

ste

- T
o

b TD-loss, and J;,(Q) is the L2 regularization loss

here is a trade off between following demonstration data and finding

btimal Q-values

Prioritized Experience Replay

* In DQN, we sample experiences from the replay buffer uniformly

* Issue: We tend to learn better when there is a big difference
between what we imagine and the actual outcome

* For example, we focus on mistakes and learn from them!

* We can prioritized what we sample instead — By looking at the latest
TD-error: = R(s,a) +y max Q(s’,a;8) —Q(s,a;0)
a

\]| /
| |

“actual”’ outcome “estimated’ outcome

Prioritized Experience Replay

P
Yk K
where p; = |§;| + € is the absolute of last TD-error with some
positive constant

* What is a?

* o (hyperparameter) decides how much prioritization is used. If @ =
0, we are sampling uniformly

* Specifically, priority of experience i, P(i) =

* Issue: Sampling with priority introduces bias and changes the
distribution

Prioritized Experience Replay

* Solution: Correct using weighted importance-sampling with weights

li_)ﬁ, where N is number of samples
N P(i)

* What is f3?
* B (hyperparameter) decides how much we should compensate for
the non-uniform probabilities P(i). If § = 1, we fully compensate

* In general, @ and [grows together as time goes on. The idea is that
we first sample close to uniformly, then slowly sample with priority

* In this paper, « = 0.4 and § = 0.6 (Fixed)

w; = (

Deep Q-Learning from
Demonstration (DQfD)

DQfD Pre-Training

For k times

Sample b experiences with priority
& Update Q-Network —>
using Gradient Descent

Replay Buffer
with only demonstration data

DQfD Post-Training

Q-Network

Sample b experiences with priority
& Update Q-Network
using Gradient Descent

Replay Buffer
with demonstration data Store Experience <s, a, r, s'>

Action a on current observation s

and self-generated data

g _/

Reward r & New observation s'

DQIfD Replay Buffer Tweak

* We give more priority on demonstration data (by having a higher ¢)
* In this paper, €, = 0.001 (self-generated) and €; = 1.0 (demonstration)

* Problem: What if the replay buffer is full?

* 1) We want to make sure the agent does not go too far from
demonstrator unless some other action is optimal

* Keep demonstration data

* 2) Old sampled experiences are out-of-date
* Remove oldest self-generated data

Experiment 120000 Hero

......... Imitation
PDD DQN

100000

80000

60000

40000

Training Episode Returns

i, . el el el

BN

AP U W A

geey 20000
20625 Y NS S I
=M isioN 0
0 50 100 150 200

Training lteration

Removing Supervised Loss

Training Episode Returns

Loss Ablations: Montezuma Revenge

5000
4000
3000 ne "\l't‘ﬂe's'u"“"i'&'\':i
o
- Y '.'
‘o.l't‘:‘."‘ ’ » | l.."":‘“:‘“
ol l-:“ oante "'."‘\d".""
"y 'y 217 Vo
2000 h{""f"u " ‘“:1
-0
]
' »
: 4‘4‘."0'..'
1000 , &
Loy - DQfD
=) === No Supervised Loss
':' === No n-step TD loss
0 -
0 50 100 150 200

Training Iteration

Summary

* Improved initial performance in real system using demonstration data

* Accelerated learning by combining supervised large margin
classification loss and traditional DQN loss

* Smartly utilizes demonstration data during post-training using
prioritized experience replay

Limitations

* Does not explore continuous state-action space scenarios

* Similar to previous paper, algorithm does not explore hidden state
humans might consider

AggreVaTe:

Reinforcement and Imitation
Learning via Interactive No-Regret
Learning

CSC 2621
Renato Ferreira Pinto Junior

Stéphane Ross & J. Andrew Bagnell (2014)

Pick one:

Pick one:

Main idea

e DAgger aims to minimize disagreement with expert

Main idea

* DAgger aims to minimize disagreement with expert

 What if it’s easier to imitate the expert in an unsafe
situation than in safe ones?

Main idea

* DAgger aims to minimize disagreement with expert

 What if it’s easier to imitate the expert in an unsafe
situation than in safe ones?

* No consideration of cost-to-go of learned policy

Initialize D + (0.

Initialize 71 to any policy in II.

fori =1to N do
Letm; = B;7* + (1 — 5;)7.
Sample T'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by 7;
and actions given by expert.
Aggregate datasets: D < D |JD;.
Train classifier 7;.1 on D.

end for

Return best 7; on validation.

Algorithm 3.1: DAGGER Algorithm.

Main idea

* DAgger aims to minimize disagreement with expert

 What if it's easier to imitate the expert in an unsafe
situation than in safe ones?

* Instead, AggreVaTe (Aggregate Values to Imitate):
* Minimizes expert’s cost-to-go

* Provides regret (rather than error) guarantees

Regret

* In hindsight, how much better could | have performed?

| « | «
regret(h,,....h;) = — Z Cost(h,, 1) — min — Z Cost(h,t)
N =1 heH N —

Regret

* In hindsight, how much better could | have performed?

| « | «
regret(h,....h;) = F Z Cost(h,,t) — min— Z Cost(h,t)
=1 =1

¢ heHNr

Limited information at each time t

Regret

* In hindsight, how much better could | have performed?

| « 1 «
regret(h,....hy) = F Z Cost(h,, t) — min— Z Cost(h,t)
=1

hed N
=1 I f

Limited information at each time t

* AggreVaTle minimizes regret with respect to expert’s cost

* DAgger minimizes loss with respect to expert’s actions

Algorithm

Algorithm 1 AGGREVATE: Imitation Learning with Cost-To-Go

Initialize D « (), 7, to any policy in II.
fori=1to N do
Letm; = B;m* + (1 — 3;)7; #Optionally mix in expert’s own behavior.
Collect m data points as follows:
for) = 1tomdo
Sample uniformly ¢ € {1,2, ..., T}.
Start new trajectory in some initial state drawn from initial state distribution
Execute current policy 7; up to time ¢t — 1.
Execute some exploration action a; in current state s; at time ¢
Execute expert from time ¢ 4 1 to 7', and observe estimate of cost-to-go () starting at time ¢
end for i
Get dataset D; = {(s,t,a,Q)} of states, times, actions, with expert’s cost-to-go.
Aggregate datasets: D < D|JD;.
Train cost-sensitive classifier 7,1 on D
(Alternately: use any online learner on the data-sets D; in sequence to get 7w; 11)
end for
Return best 7; on validation.

Algorithm

Algorithm 1 AGGREVATE: Imitation Learning with Cost-To-Go

I N |t|a| |Zat|0n { Initialize D « (), 7y to any policy in II.

Algorithm

Algorithm 1 AGGREVATE: Imitation Learning with Cost-To-Go

forj=1tom .do
’ Sample uniformly ¢ € {1,2,..., T}.
OWﬂ pOllcy u p tot Start new trajectory in some initial state drawn from initial state distribution
. . Execute current policy 7; up to time ¢ — 1. —— gimilar to DAgger
Exploratlon action — Execute some exploration action a; in current state s; at time ¢

Expert Conc|udes —— Execute expert from time ¢ + 1 to 7', and observe estimate of cost-to-go Q starting at time ¢
end for) L expert cost-to-go estimate

Algorithm

Algorithm 1 AGGREVATE: Imitation Learning with Cost-To-Go

New data point { Get dataset D; = {(s,t,a,Q)} of states, times, actions, with expert’s cost-t0-go.
) Aggregate datasets: D < D|JD;.
Train on dataset —— Train cost-sensitive classifier 7;,; on D ——>minimize total cost
(Alternately: use any online learner on the data-sets D; in sequence to get 7,1)

Analysis

» (Classification regret: best in policy class compared to expert

. N .
€class — Mgl % Zizl Etmb’(]:]'),ﬂmd;i [Q:_:”_H—l (Sa a‘) —INiNg Q;ﬂ_ﬂ_l('g: 0)}

Analysis

e (Classification regret: best in policy class compared to expert

. N .
Cclass — MIN 7] % Zi:l Eth(l:T),swdgi [Q’}_t—}-l ('9? (.1-) — IIg Q%_t+1('81 0)}

Recall:

Q"(5,0) = Ey [r + Amax Q' (s',a') s,]

Analysis

» (Classification regret: best in policy class compared to expert
. 1 N P *
€class — MINgell 77 Zi:1 Eth(]:T),SwdfTi [QT—t-}-l(S? (.1) — INl1lg Q*T_t+1(81 G)}

e Online learning regret: learned policies compared to best in
policy class

€regret — %[Zfil E’&(ﬁ-z) _ Ininﬂ'EH Zi\;l g? (WH

li(m) = EtMU(lsz,.swc.{;E Q7 y1(s,)]

Analysis

» (Classification regret: best in policy class compared to expert
. 1 N s *
€class — M g1l N Zi:1 EﬁNU(l:T),Sdei [QT—H-1 ('9? (.1) — INllg Q*T_t+1('91 G)]

e Online learning regret: learned policies compared to best in
policy class

Cregret = (oM 4i(7:) — minger Yo £ (7))
l; (’»’T) = Eth(l:T},smdfTi [Q?_Hl(& W)]

¢ (Guarantee:

male T
J(7) < J(F) < J(1*) + Tlectass + €regrer] + O (Q o8)

alN

Analysis

e (Classification regret: best in policy class compared to expert
: N y .
€class = M 7]l % 23'21 Eth(l:T),SNdfTi [QT_t+1 (S? (.I) — INlNg Q*T—t—|—1('91 G)]

e Online learning regret: learned policies compared to best in
policy class

€regret — %[Zil (i(7;) — mingen Zi\;l li(m)]
bi(m) = EtNU(LT),smd;i [Q{j‘_t+1(89 71')]

e (Quarantee:

T T * QmaleOgT
J(7) < J) <[TE) T oo + erora I+ O (

Analysis

* |f no-regret online algorithm is used to pick policies:

lim J(%) < J(ﬂ'*) + T€ciass

N —oco

Analysis

e |f no-regret online algorithm is used to pick policies:

lim J(ﬁ) < J(ﬂ-*) + T'€class

N—=o00

e Can use online gradient descent descent

Conclusion

* Optimizes for cost-to-go rather than naive imitation
e Prefer actions in which it’s possible to act optimally

* |mitate expert toward favourable situations

Conclusion

* Optimizes for cost-to-go rather than naive imitation
e Prefer actions in which it’s possible to act optimally
* Imitate expert toward favourable situations
e Limitations:
e Expensive data collection (one data point per trajectory!)

e Requires policy class to contain good policy compared to
expert

 Empirical evidence?

/////////////"'flf///ﬂ// /////M//m///////////

n:,

] #

v By
" - 49
’l
vy

Agile Autonomous Driving using
End-to-End Deep Imitation Learning

Yunpeng Pan*, Ching-An Cheng*, Kamil Saigol*, Keuntaek Lee', Xinyan Yan*,
Evangelos A. Theodorou®, and Byron Boots*

*Institute for Robotics and Intelligent Machines, TSchool of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, Georgia 30332-0250
{ypan37, cacheng, kamilsaigol, keuntaek.lee,xyan43}@gatech.edu
evangelos.theodoroulgatech.edu, bbootsfcc.gatech.edu

Presented by David Acuna and Brenna Li

1// st

M ////////////////////

.

L N

S

e

///////

Problem Formulation

training/test track

off-the-road real-word scenario.
high-speed is a must

Auto-Rally car

Problem

Formulation
cheap sensors. ~ $500
NN learns from raw images and speed sensor
- - - - 7777~ / ________ '; - """ 77 1
Learner | $ Safety control

- . |
camera :
|

RC transmitter

L
-,
e
Z

=
2
=

-

" Wheel speed | | controller

|
|
1
|
|
low-level ”' |
1
|
|

: Run/Stop button
| sensor ! . .
e I S !
e e |
I I
. MU || state e i
| . -
| GPS | | estimator |
| |
I
| dynamics cost |
| model function :
| EXpert :
expensive sensors ~ $6,000 IMU=Inertial Measurement Units

model predictive control GPS=Global Positioning System

Formulation

. L * needs to account for high-speed
i J(ﬂ-)’ I o {Zt 0 ((gt at) ’ * involves a physical robot

/

state, action, observation

dr(s,t) = %dﬁr(s)

J(m) = J(ﬂ,) + Es tnd Banr, {Ai" (s,a)]

AST"(S? a) = Qfﬁ (s,a) — Vif(s) > expected reward of this state

expected reward of taking this action

Formulation
_— Hard to solve

: | * needs to account for high-speed
7 J(ﬂ-)’ }() o EF’W {Zt 0 ((gt at)_ ’ * involves a physical robot

J(m) = J(7") + Eg tod Eamr. [AL (s, a)]

__~ expert

J(m) — J(7*)
= Eqtndy [Eamr, Q4+ (5,0)] = Eqr oz [Qh- (s, 07)]]

Wasserstein Distance

Dw(p,q) = sup Epop[f(z)] — Eonylf ()]

fiLip(£(-))<1
p(f(+) mmﬂ
= inf / d(x,y)dy(x,y), X Y
Mx M

vel'(p,q)

Formulation

J(m) = J(7') + Es tod, Eqmn, [Aﬁr,(sj a)]

J(m) = J(77)
= Estnd, |Bamrm, [Qr-(8,0)] — Eqeor [Q7 (5, a7)]]
< CrvEgta [Dw (m,7")]
< CrEspnd, Banr Earnrs[lla —a™]], -

f
learner policy experts policy
: T . T o
min, E,_ [thl ¢(8¢, at)] . s,a) = Egeope[lla — a*]

l

Online Imitation Learning Problem

Online Imitation Learning

) T . Ay o
Nz Epw [Zt:l C(Sta a’t)] . —— d(s,a) = EG*NWZ[HG’ — a*|]

\ online IL problem

DAgger

Sequence of
Supervised Learning Problems

m; = arg min, Ep|c(sg, at)l,

Batch Imitation Learning

Flipping the policies

J(m) = J(7")
— E.‘;‘ Jtrd e [an:'rﬁ* [(gir("* ”‘)] o Efl"“—r"ﬂ':_ [(—g;—("ﬁa ﬂ-*)]:|

< Eﬁ;‘ trod Era*w:‘r;* [(T:r("*)g*'("Hn ﬁ**ﬂ . (8)
T Texpert policy

expert policy

min, E, . [Zle Cr(sy, u}"}} ,

A

This resumes to supervised learning

System Diagram

e 1 |~ —————— 1
Learner $ Safety control

camera

RC transmitter

L
-,
e
Z

=
2
=

-

" Wheel speed | | controller i
P Run/Stop button

|
|
. SEensor | I
R | b e e
[T EmmmEmmmm_m—mmmmmm—_—_———————————_y == 1

|
|
1
|
|
low-level ”' .
1
|
|

| I
| |
IMU state

i | g estimator | 7| DPP-MPC | |
L 6ps] !
| |
|

| dynamics cost |
| model function :
I I
L

DNN Control Policy

32 filters
RelU

32 filters

RelU

RGB image
160x80x3

S
Caonv Conv
3x3 3x3

64 filters

64 filters

RelLU j&LU

Fully connected

Wheel speed

128 filters 128 filters

—1

Max
pooling
2x2

Conv
3x3

Conv pooling Conv
3x3 %2 3x3

Ix3

®

®6

Max
Conv pooling -

®@ _ .

RelLU
—_—
Flatten
—
RelU

ox2 Fully connected

/'
ReLU \

Fully connected

Fully connected

Expert — recall control

Optimal Control

control / action

observation e Uy « e
____________________________________ Xt :
| L2 | St;ie e e; external noise /
|
i My} state . pop-mpc | ! disturbance /
- (_Gps) | estimator | system error
| I
I 1
: dynamics cost :
| model function :
I !
L 1

T
“““““““““““““““““““ minimize [Eg, E c(xy, 0y)
T gen s TT —1 '

ft(X¢, 1z, €¢) known dynamics

t — Wt(XD:tv uD:t_—l)

Sparse Spectrum Gaussian Process control law / policy

Expert - MPC

Differential Dynamic Program (DDP) ~ Recall iLQR

Given an initial sequence of states X, ..., Xy and actions Ug, ..., UN

-

.

i 9 :
Linearize dynamics f(x¢, wy) = f(0x¢,0u) = f(Xy, 0y) + 8—}{(th) (x; — X¢) + a(xh) (g — uy)

L v)\ v J \ . o\ Y J
bt At 5Xt Bt (Sllt

T
Taylor expand cost ('.{X[' u") ~ ﬁ(ﬁxf'—ﬁuf) = ("'{}_{f" ﬁf}—i'_vxhuf. f-'(}_':h ﬁ’) |:3al _ }ff} +1f2 {X’ B)-Cf] vi;.u,(‘.(if,- l_lr) [Xll - }_cf‘|
¢ —

1y u; — Uy u; — uy
N
ht H t

Use LOQR backward pass on the approximate dynamics f((SXt, du;) and cost ¢(0x;, duy)

Do a forward pass to get Ju; and dx; and update state and action sequence X, ..., Xy and Ug, ..., Uy

Related works:

TABLE I: Comparison of our method to prior work on IL for autonomous driving

| Methods Observations Action Algorithm | Expert Experiment
[1] On-road low-speed Single image Steering Batch Human Real &simulated
[23] On-road low-speed Single image & laser Steering Batch Human Real &simulated
[24] On-road low-speed Single image Steering Batch Human Simulated
[20] Off-road low-speed Left & right images Steering Batch Human Real
[33] On-road unknown speed Single image Steering + break Online Pre-specified policy Simulated
Our . Single image + . Batch & . Real &

Method Off-road high-speed wheel speeds Steering + throttle online Model predictive controller simulated

Experiment — Setup Experts

High Speed driving
at 7.5 m/sor 135 km /h

Cost for expert:

c(St,a1) = @1 Cpos(St) + aacspa(st) + ascsiip(St) + azcact(ar)

Experiment- learning trajectories

Learned to
avoid crash

(c) Online IL.

Comparing — Loss (to expert)

Policy Avg. speed | Top speed | Training data | Completion ratio | Total loss | Steering/Throttle loss

Expert 6.05 m/s 8.14 m/s N/A 100 % 0 0

Batch 4.97 m/s 5.51 m/s 3000 100 % 0.108 0.092/0.124

Batch 6.02 m/s 8.18 m/s 6000 51 % 0108 0.162/0.055

Batch 5.79 m/s 7.78 m/s 9000 53 % 0.123 0.193/0.071

Batch 5.95 m/s 8.01 m/s 12000 69 % 0.105 0.125/0.083
Online (1 1ter) 6.02 m/s 7.88 m/s 6000 100 % 0.090 0.112/0.067
Online (2 iter) 5.89 m/s 8.02 m/s 9000 100 % 0.075 0.095/0.055
Online (3 1ter) 6.07 m/s 8.06 m/s 12000 100 % 0.064 0.073/0.055

Comparing — distance travelled

Performance of online and batch learning

400 ,
B Batch
350/l Online
E 300
!
c 250
o
2 200
©
o
@D 150
Q
>
© 100
|_
50
’ 3000 6000 9000 12000

Training data size

Comparing — generalizability

t-Distributed Stochastic Neighbor Embedding (t-SNE)

6000

4000 -

2000 -4

-2000 -

-4000 4

-6000

train
test

-6000 -4000 =-2000 0 2000 4000

(a) Batch raw image

6000

801

-2000

-4000 -

6000 -

4000 ~4

2000

train
test

-4000 -2000 0 2000 4000

(b) Online raw 1mage

6000

Comparing — generalizability

801 train 80 train
60 1 test & test
40 A 40 |
201 204
0 0
=20 1 =20 A
-40 -40 A
60 4 -60 -
-80 -80
-75 =50 =25 0 25 50 75 100 -80 =60 -40 =20 0 20 40 60 80

(a) Batch data wrt online model (b) Online data wrt online model

train train
60 1 test 60 A test

40 40 4
204 204
04 0-
=20 A =201
-40 -40 1
~60 - -60 -

-80 : . : ; : : - — 801, : . . . - - .

=75 =50 =25 0 25 50 75 100 =75 =50 =25 0 25 50 75 10(

(c) Batch data wrt batch model (d) Online data wrt batch model

DNN - high and low capture

(a) raw image (b) max-pooling1

(c) max-pooling2 (d) max-pooling3

Fig. 9: The input RGB image and the averaged feature maps
for each max-pooling layer.

DNN > CNN ... or Limitation?

Performance of neural network policies

0.072

0.070

0.068 ¢

0LDGE &

0.064 }

D062 &

Imitation loss

0.060

0.058}

0.056

6000 9000 12000
Training data size

Thank you!

Any Questions?

I e V , .
» QI L, N1

/
[t

-

‘

t-Distributed Stochastic Neighbor Embedding

Introduction

Measure pairwise similarities between high-dimensional and
low-dimensonal objects

High Dim

Low Dim
a e @ yi
® =~ I
D @
 exp(=llx — xl1*/207)
Pjii =

Do ki &P(=1x% — x«l||2/207)

Laurens van der Maaten and Geoffrey Hinton t-SNE October 30, 2014 10 / 33

End-to-end Driving via Conditional Imitation Learning

Wei Cui

Electrical & Computer Engineering
University of Toronto

Feb 1st 2019

Wei Cui (University of Toronto) Feb 1st 2019 1/16

Brief Overview of the Paper

@ This paper focuses on the task of self-driving, while allowing users to interact
with high-level navigation commands.

@ As the conventional imitation learning is not sufficient, the agent solves the
task through conditional imitation learning.

Wei Cui (University of Toronto) End-to-end Driving via Conditional Imitation Learning Feb 1st 2019

Problem Formulation

@ The main task : given specified sensory inputs, the agent achieves self-driving
through computing controller outputs, while following navigational guidance.

@ Sensory Inputs (Observation o) :

e Controller Outputs :

» s : steering angle
» « : acceleration

Wei Cui (University of Toronto) =nd-to-end Drivi g via Conditional Imitation Lez Feb 1st 2019 3/16

Conditional Imitation Learning

@ Conditional Imitation Learning : for both training and testing, the agent
receives additional input : ¢ (navigation command).

@ The formulation for Conditional Imitation Learning :

min ZE(F(O;, ci:0).a;) (2)

‘|

Oy ay; 0441
— Controller —_ —

@ The high level commands explored for this paper :

c € {continue, left, straight, right} (3)

Wei Cui (University of Toronto Feb 1st 2019 4 /16

Network Architecture

@ Two models are explored :

» command input model
» branched model

—) ~
i 9 (] o
Image C> <§_'1 I(i) [(\

i =
— L °
- M(m)|] (03 E:} D / I::) E:} o

Measurements C» = Action i
I Ll L i a o
— A Measurements C» =1] N =
Command ¢ P m J U] M (m) . Action
(or vector to goal) | UL | €te) Command C A a

(a) (b)

Wei Cui (University of Toronto) Feb 1st 2019 5 /16

System Setup

@ Two systems : a simulated urban environment and a physical system.
e Simulated Environment : an urban driving simulator, CARLA.

@ Town 1 for training; Town 2 for exclusive testing.

Town 1 (training) Town 2 (testing)

Wei Cui (University of Toronto =nd-to-end Driving via Conditional Imitation Le: Feb 1st 2019 6 /16

System Setup (Cont'd)

@ Physical System : An off-the-shelf 1/5 scale truck is used (Traxxas Maxx),
with an embedded computer (Nvidia TX2) which the agent model runs on.

14.8-16.8V 3 Webcams

Nvidia TX2

Speed Controller Steering Servo

Feb 1st 2019 7 / 16

Wei Cui (University of Toronto)

Training Data Preparation

@ Firstly, additional state-action pairs are collected through injecting noise into
expert’s control, and let the expert to respond. This method is an alternative
to DAgger (not used in the paper).

0.3
0.2
0.1

0.0

Steering
[
o
s

|
bt
N}

[
o
w

|
o
S

— NoOise
w— Control
—— Resultant

[
o
w

|
o
o
O
(=}

05 10 15 2.0 : : (c)
Time

Wei Cui (University of Toronto) *7? C l 1 Feb 1st 2019 8 /16

Training Data Preparation (Cont'd)

@ The authors further augment the data through applying random
transformations to the images as inputs to the agent.

@ The types of transformations include :

» Change in contrast, brightness, and tone.

» Adding Gaussian blur, Gaussian noise, salt-and-pepper noise (sparse white and
black pixels).

» Region dropout (masking out a random set of rectangles of roughly 1% of
image area)

Wei Cui (University of Toronto) Feb 1st 2019 9/16

Training Details

@ Some normalization used : 50% dropout after fully-connected hidden
layers, and 20% dropout after convolutional layers.

@ Loss Function : As mentioned before, each action contains a tuple of
signals : a = [s, a].
With model’s action a and expert's action a., the per-sample loss function :

L(a.a.) = ||5_Se||2+/\a||a_ae”2 (4)

@ Different than DAgger, the agent’s parameters are optimized once after all
the data is collected, without iterative loops.

@ For the command-conditional models, minibatches were constructed to
contain an equal number of samples with each command.

Feb 1st 2019 10 / 16

Wei Cui (University of Toronto)

Testing Methods : Simulation Environment

e Baseline Method :
» Standard Imitation Learning : a = F(o)

@ Variations on the current model : Investigate on the importance of each
component.

» The command input model.

» The branched model trained without noise-injected data.

» The branched model trained without data augmentation.

» The branched model implemented with a shallower network.

Wei Cui (University of Toronto) :nd-to-end Driving via Conditi Feb 1st 2019 11 / 16

Testing Results : Simulation Environment

Success rate Km per infraction
Model Town 1 Town 2 Town 1 Town 2
Non-conditional 20% 26% 5.76 0.89
Ours branched 88 % 64 % 2.34 1.18
Ours cmd. nput 78% 32% 3.97 1.30
Ours no noise 56% 22% 1.1 0.54
Ours no aug. 80% 0% 4.03 0.36
Ours shallow net 46% 14% 0.96 042

Wei Cui (University of Toronto)

Feb 1st 2019 12 / 16

Testing Methods & Results : Physical System

@ The authors picked only 3 competitive methods in simulation environment
testing for this comparison :
» The command input model.
» The branched model trained without noise-injected data.
» The branched model trained without data augmentation.

@ The results still support the necessity for each of the model's component :

Model Missed turns Interventions Time
Ours branched 0% 0.67 2:19
Ours cmd. input 11.1% 2.33 4:13
Ours no noise 24.4% 8.67 4:39
Ours no aug. 13% 39 10:41

Wei Cui (University of Toronto) nd-to-end Driving via Conditional Imitation Learning Feb 1st 2019 13 / 16

Conclusions

@ This paper recognizes one key problem in conventional imitation learning :
expert's demonstrations are often decided by certain latent factors not
included in the observations (such as intentions).

@ |t is important to introduce a channel for the communication of this extra
information, which motivates conditional imitation learning

@ The method has been shown with its efficacy in self-driving task, where users’
high-level navigation needs are also considered into the requirement.

Wei Cui (University of Toronto) Feb 1st 2019 14 / 16

A few discussions of mine...

e Under misguiding c, the agent might perform dangerous actions (such as
[o=driving on the straight highway, c=turn right!]). This is never tested for
this work (at least based on the paper).

@ Under these considerations, perhaps a rejection option against certain c
should be built into the agent as a safety feature.

@ |t is not convincing to me why the authors decided to remove the benchmark
during testing the physical system case.

Wei Cui (University of Toronto) Feb 1st 2019 15 / 16

Appendix A : Network Architecture Details

@ For both architectures explored as shown above, the individual modules are
identical.

@ The image module :

» Consists of 8 convolutional and 2 fully connected layers.

» The convolution kernel size is 5 in the first layer and 3 in the following layers.
The first, third, and fifth convolutional layers have a stride of 2.

» The number of channels increases from 32 in the first convolutional layer to

256 in the last.
» Fully-connected layers contain 512 units each.

@ Other modules :

» Implemented as standard multilayer perceptrons, with RelLU nonlinearities
after all hidden layers.

Wei Cui (University of Toronto) Feb 1st 2019 16 / 16

