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Markov Decision Process (MDP)

* AMDP s atuple (S,A,P,R,y)
» S: A finite set of states
e A: A finite set of actions
e P: A state transition function
* R: A reward function
* y: Discount factor

* Want to find a policy m: S — A such that it maximizes the expected
discounted total reward



Q-Function

* The action-value Q-function Q™ (s, a;) is the expected return
starting from state s;, taking action a;, and then following policy

* Q"(s¢,ar) = E[Req + YReyp + ¥ Reps + | Sty a4
= Eg[Reyq +vQ™(s",a) | s, a]
* The optimal policy ©*(s) can be obtained from optimal Q-function
argmax,Q* (s, a)



Q-Learning Algorithm

Q-Table

[

Update Q-Table

using <s, a, r, s'> Action a on current observation s

%

Reward r & New observation s'



Deep Q-Network (DQN)

* State-action space might be too big for storing a Q-table!

* |[dea: Replace Q-table with a neural network that approximates Q-
values

* Deep Q-Network = Deep Learning + Q-Learning

Q-Function
Q-Table Approximator

Inputs > Outputs
Q-Values ::> P Hidden Layers P




Q-Function Approximator

Q-Values

State — . | forall
Hidden Layers actions

+ Loss = [(R(s,@) +y maxQ(s',a; 6)) — Q(s,a;0)]’



DQN Algorithm

Q-Network

Sample b experiences uniformly
& Update Q-Network
using Gradient Descent

Replay Buffer

Action a on current observation s

Store Experience <s, a, r, s'>

L _/

Reward r & New observation s'



How to Combine
Demonstration Data with DQN?



Loss Function

* Recall that the loss function for Q-Learning is:
Joen (@) = [(R(s, @) + y max Q(s',a;0)) — Q(s,a; )]
* Given demonstration data, we want the agent to learn from it

* Issue: Demonstration data only covers a small subset of the state
space and does not consider a lot of actions

* Issue: Many (ungrounded) values are not realistic and the Q-
Network would propagate these values



Supervised Large Margin Classification Loss

* Push the values of other actions to be at least a margin lower than
the demonstrator’s action

* The loss function:

Je(Q) = max[Q(s,a) + l(a,ag)] — Q(s,ag),

acA
where [(a, ag) is a margin function that is 0 when a = a; and some
positive value otherwise, and ag is the demonstrator’s action

* In this paper, l(a,ar) = 0 if a = ag, and 0.8 otherwise



New Loss Function

* J(Q) = Jpon(Q) + A11],(Q) + A,]p(Q) + A3]12(Q),

where A’s control the weighting between the losses, J,,(Q) is the n-

ste

- T
o

b TD-loss, and J;,(Q) is the L2 regularization loss

here is a trade off between following demonstration data and finding

btimal Q-values



Prioritized Experience Replay

* In DQN, we sample experiences from the replay buffer uniformly

* Issue: We tend to learn better when there is a big difference
between what we imagine and the actual outcome

* For example, we focus on mistakes and learn from them!

* We can prioritized what we sample instead — By looking at the latest
TD-error: = R(s,a) +y max Q(s’,a;8) —Q(s,a;0)
a

\ ]| /
| |

“actual”’ outcome “estimated’ outcome




Prioritized Experience Replay

P
Yk K
where p; = |§;| + € is the absolute of last TD-error with some
positive constant

* What is a?

* o (hyperparameter) decides how much prioritization is used. If @ =
0, we are sampling uniformly

* Specifically, priority of experience i, P(i) =

* Issue: Sampling with priority introduces bias and changes the
distribution



Prioritized Experience Replay

* Solution: Correct using weighted importance-sampling with weights

li_)ﬁ, where N is number of samples
N P(i)

* What is f3?
* B (hyperparameter) decides how much we should compensate for
the non-uniform probabilities P(i). If § = 1, we fully compensate

* In general, @ and [ grows together as time goes on. The idea is that
we first sample close to uniformly, then slowly sample with priority

* In this paper, « = 0.4 and § = 0.6 (Fixed)

w; = (



Deep Q-Learning from
Demonstration (DQfD)



DQfD Pre-Training

For k times

Sample b experiences with priority
& Update Q-Network —>
using Gradient Descent

Replay Buffer
with only demonstration data



DQfD Post-Training

Q-Network

Sample b experiences with priority
& Update Q-Network
using Gradient Descent

Replay Buffer
with demonstration data  Store Experience <s, a, r, s'>

Action a on current observation s

and self-generated data

g _/

Reward r & New observation s'



DQIfD Replay Buffer Tweak

* We give more priority on demonstration data (by having a higher ¢)
* In this paper, €, = 0.001 (self-generated) and €; = 1.0 (demonstration)

* Problem: What if the replay buffer is full?

* 1) We want to make sure the agent does not go too far from
demonstrator unless some other action is optimal

* Keep demonstration data

* 2) Old sampled experiences are out-of-date
* Remove oldest self-generated data
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Removing Supervised Loss

Training Episode Returns

Loss Ablations: Montezuma Revenge
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Summary

* Improved initial performance in real system using demonstration data

* Accelerated learning by combining supervised large margin
classification loss and traditional DQN loss

* Smartly utilizes demonstration data during post-training using
prioritized experience replay



Limitations

* Does not explore continuous state-action space scenarios

* Similar to previous paper, algorithm does not explore hidden state
humans might consider



AggreVaTe:

Reinforcement and Imitation
Learning via Interactive No-Regret
Learning

CSC 2621
Renato Ferreira Pinto Junior

Stéphane Ross & J. Andrew Bagnell (2014)



Pick one:




Pick one:




Main idea

e DAgger aims to minimize disagreement with expert



Main idea
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 What if it’s easier to imitate the expert in an unsafe
situation than in safe ones?



Main idea

* DAgger aims to minimize disagreement with expert

 What if it’s easier to imitate the expert in an unsafe
situation than in safe ones?

* No consideration of cost-to-go of learned policy

Initialize D + (0.

Initialize 71 to any policy in II.

fori =1to N do
Letm; = B;7* + (1 — 5;)7.
Sample T'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by 7;
and actions given by expert.
Aggregate datasets: D < D |JD;.
Train classifier 7;.1 on D.

end for

Return best 7; on validation.

Algorithm 3.1: DAGGER Algorithm.



Main idea

* DAgger aims to minimize disagreement with expert

 What if it's easier to imitate the expert in an unsafe
situation than in safe ones?

* Instead, AggreVaTe (Aggregate Values to Imitate):
* Minimizes expert’s cost-to-go

* Provides regret (rather than error) guarantees



Regret

* In hindsight, how much better could | have performed?

| « | «
regret(h,,....h;) = — Z Cost(h,, 1) — min — Z Cost(h,t)
N =1 heH N —



Regret

* In hindsight, how much better could | have performed?

| « | «
regret(h,....h;) = F Z Cost(h,,t) — min— Z Cost(h,t)
=1 =1

¢ heHNr

Limited information at each time t



Regret

* In hindsight, how much better could | have performed?

| « 1 «
regret(h,....hy) = F Z Cost(h,, t) — min— Z Cost(h,t)
=1

hed N
=1 I f

Limited information at each time t

* AggreVaTle minimizes regret with respect to expert’s cost

* DAgger minimizes loss with respect to expert’s actions



Algorithm

Algorithm 1 AGGREVATE: Imitation Learning with Cost-To-Go

Initialize D « (), 7, to any policy in II.
fori=1to N do
Letm; = B;m* + (1 — 3;)7; #Optionally mix in expert’s own behavior.
Collect m data points as follows:
for ) = 1tomdo
Sample uniformly ¢ € {1,2, ..., T}.
Start new trajectory in some initial state drawn from initial state distribution
Execute current policy 7; up to time ¢t — 1.
Execute some exploration action a; in current state s; at time ¢
Execute expert from time ¢ 4 1 to 7', and observe estimate of cost-to-go () starting at time ¢
end for i
Get dataset D; = {(s,t,a,Q)} of states, times, actions, with expert’s cost-to-go.
Aggregate datasets: D < D|JD;.
Train cost-sensitive classifier 7,1 on D
(Alternately: use any online learner on the data-sets D; in sequence to get 7w; 11 )
end for
Return best 7; on validation.




Algorithm

Algorithm 1 AGGREVATE: Imitation Learning with Cost-To-Go

I N |t|a| |Zat|0n { Initialize D « (), 7y to any policy in II.



Algorithm

Algorithm 1 AGGREVATE: Imitation Learning with Cost-To-Go

forj=1tom .do
’ Sample uniformly ¢ € {1,2,..., T}.
OWﬂ pOllcy u p tot Start new trajectory in some initial state drawn from initial state distribution
. . Execute current policy 7; up to time ¢ — 1. —— gimilar to DAgger
Exploratlon action — Execute some exploration action a; in current state s; at time ¢

Expert Conc|udes —— Execute expert from time ¢ + 1 to 7', and observe estimate of cost-to-go Q starting at time ¢
end for ) L expert cost-to-go estimate




Algorithm

Algorithm 1 AGGREVATE: Imitation Learning with Cost-To-Go

New data point { Get dataset D; = {(s,t,a,Q)} of states, times, actions, with expert’s cost-t0-go.
) Aggregate datasets: D < D|JD;.
Train on dataset —— Train cost-sensitive classifier 7;,; on D ——>minimize total cost
(Alternately: use any online learner on the data-sets D; in sequence to get 7,1 )




Analysis

» (Classification regret: best in policy class compared to expert

. N .
€class — Mgl % Zizl Etmb’(]:]'),ﬂmd;i [Q:_:”_H—l (Sa a‘) —INiNg Q;ﬂ_ﬂ_l('g: 0)}



Analysis

e (Classification regret: best in policy class compared to expert

. N .
Cclass — MIN 7] % Zi:l Eth(l:T),swdgi [Q’}_t—}-l ('9? (.1-) — IIg Q%_t+1('81 0)}

Recall:

Q"(5,0) = Ey [r + Amax Q' (s',a') s, ]




Analysis

» (Classification regret: best in policy class compared to expert
. 1 N P *
€class — MINgell 77 Zi:1 Eth(]:T),SwdfTi [QT—t-}-l(S? (.1) — INl1lg Q*T_t+1(81 G)}

e Online learning regret: learned policies compared to best in
policy class

€regret — %[Zfil E’&(ﬁ-z) _ Ininﬂ'EH Zi\;l g? (WH

li(m) = EtMU(lsz,.swc.{;E Q7 y1(s, )]



Analysis

» (Classification regret: best in policy class compared to expert
. 1 N s *
€class — M g1l N Zi:1 EﬁNU(l:T),Sdei [QT—H-1 ('9? (.1) — INllg Q*T_t+1('91 G)]

e Online learning regret: learned policies compared to best in
policy class

Cregret = (oM 4i(7:) — minger Yo £ (7))
l; (’»’T) = Eth(l:T},smdfTi [Q?_Hl(& W)]

¢ (Guarantee:

male T
J(7) < J(F) < J(1*) + Tlectass + €regrer] + O (Q o8 )

alN



Analysis

e (Classification regret: best in policy class compared to expert
: N y .
€class = M 7]l % 23'21 Eth(l:T),SNdfTi [QT_t+1 (S? (.I) — INlNg Q*T—t—|—1('91 G)]

e Online learning regret: learned policies compared to best in
policy class

€regret — %[Zil (i(7;) — mingen Zi\;l li(m)]
bi(m) = EtNU(LT),smd;i [Q{j‘_t+1(89 71')]

e (Quarantee:

T T * QmaleOgT
J(7) < J) <[TE) T oo + erora I+ O (




Analysis

* |f no-regret online algorithm is used to pick policies:

lim J(%) < J(ﬂ'*) + T€ciass

N —oco



Analysis

e |f no-regret online algorithm is used to pick policies:

lim J(ﬁ) < J(ﬂ-*) + T'€class

N—=o00

e Can use online gradient descent descent



Conclusion

* Optimizes for cost-to-go rather than naive imitation
e Prefer actions in which it’s possible to act optimally

* |mitate expert toward favourable situations



Conclusion

* Optimizes for cost-to-go rather than naive imitation
e Prefer actions in which it’s possible to act optimally
* Imitate expert toward favourable situations
e Limitations:
e Expensive data collection (one data point per trajectory!)

e Requires policy class to contain good policy compared to
expert

 Empirical evidence?
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Problem Formulation

training/test track

off-the-road real-word scenario.
high-speed is a must

Auto-Rally car




Problem

Formulation
cheap sensors. ~ $500
NN learns from raw images and speed sensor
- - - - 7777~ / ________ '; - """ 77 1
Learner | $ Safety control
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L
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: Run/Stop button
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| GPS | | estimator |
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| dynamics cost |
| model function :
| EXpert :
expensive sensors ~ $6,000 IMU=Inertial Measurement Units

model predictive control GPS=Global Positioning System



Formulation

. L * needs to account for high-speed
i J(ﬂ-)’ I o {Zt 0 ((gt at) ’ * involves a physical robot

/

state, action, observation

dr(s,t) = %dﬁr(s)

J(m) = J(ﬂ,) + Es tnd Banr, {Ai" (s,a)]

AST"(S? a) = Qfﬁ (s,a) — Vif(s) > expected reward of this state

expected reward of taking this action



Formulation
_— Hard to solve

: | * needs to account for high-speed
7 J(ﬂ-)’ }( ) o EF’W {Zt 0 ((gt at)_ ’ * involves a physical robot

J(m) = J(7") + Eg tod Eamr. [AL (s, a)]

__~ expert

J(m) — J(7*)
= Eqtndy [Eamr, Q4+ (5,0)] = Eqr oz [Qh- (s, 07)]]

Wasserstein Distance

Dw(p,q) = sup  Epop[f(z)] — Eonylf ()]

fiLip(£(-))<1
p(f(+) mmﬂ
= inf / d(x,y)dy(x,y), X Y
Mx M

vel'(p,q)



Formulation

J(m) = J(7') + Es tod, Eqmn, [Aﬁr,(sj a)]

J(m) = J(77)
= Estnd, |Bamrm, [Qr-(8,0)] — Eqeor [Q7 (5, a7)]]
< CrvEgta [Dw (m,7")]
< CrEspnd, Banr Earnrs[lla —a™]], -

f
learner policy experts policy
: T . T o
min, E,_ [thl ¢( 8¢, at)] . s,a) = Egeope[lla — a*]

l

Online Imitation Learning Problem



Online Imitation Learning

) T . Ay o
Nz Epw [Zt:l C(Sta a’t)] . —— d(s,a) = EG*NWZ[HG’ — a*|]

\ online IL problem

DAgger

Sequence of
Supervised Learning Problems

m; = arg min, Ep|c(sg, at)l,



Batch Imitation Learning

Flipping the policies

J(m) = J(7")
— E.‘;‘ Jtrd e [an:'rﬁ* [(gir("* ”‘)] o Efl"“—r"ﬂ':_ [(—g;—("ﬁa ﬂ-*)]:|

< Eﬁ;‘ trod Era*w:‘r;* [(T:r("*)g*'("Hn ﬁ**ﬂ . (8)
T Texpert policy

expert policy

min, E, . [Zle Cr(sy, u}"}} ,

A

This resumes to supervised learning



System Diagram
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DNN Control Policy
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Expert — recall control

Optimal Control

control / action

observation e Uy « e
____________________________________ Xt :
| L2 | St;ie e e; external noise /
|
i My} state . pop-mpc | ! disturbance /
- (_Gps ) | estimator | system error
| I
I 1
: dynamics cost :
| model function :
I !
L 1

T
“““““““““““““““““““ minimize [Eg, E c(xy, 0y)
T gen s TT —1 '

ft(X¢, 1z, €¢) known dynamics

t — Wt(XD:tv uD:t_—l)

Sparse Spectrum Gaussian Process control law / policy



Expert - MPC

Differential Dynamic Program (DDP) ~ Recall iLQR

Given an initial sequence of states X, ..., Xy and actions Ug, ..., UN

-

.

i 9 :
Linearize dynamics  f(x¢, wy) = f(0x¢,0u) = f(Xy, 0y) + 8—}{(th ) (x; — X¢) + a(xh ) (g — uy)

L v )\ v J \ . o\ Y J
bt At 5Xt Bt (Sllt

T
Taylor expand cost ('.{X[' u") ~ ﬁ(ﬁxf'—ﬁuf) = ("'{}_{f" ﬁf}—i'_vxhuf. f-'(}_':h ﬁ’) |:3al _ }ff} +1f2 {X’ B )-Cf] vi;.u,(‘.(if,- l_lr) [Xll - }_cf‘|
¢ —

1y u; — Uy u; — uy
N
ht H t

Use LOQR backward pass on the approximate dynamics f((SXt, du;) and cost ¢(0x;, duy)

Do a forward pass to get Ju; and dx; and update state and action sequence X, ..., Xy and Ug, ..., Uy



Related works:

TABLE I: Comparison of our method to prior work on IL for autonomous driving

| Methods Observations Action Algorithm | Expert Experiment
[1] On-road low-speed Single image Steering Batch Human Real &simulated
[23] On-road low-speed Single image & laser Steering Batch Human Real &simulated
[24] On-road low-speed Single image Steering Batch Human Simulated
[20] Off-road low-speed Left & right images Steering Batch Human Real
[33] On-road unknown speed Single image Steering + break Online Pre-specified policy Simulated
Our . Single image + . Batch & . Real &

Method Off-road high-speed wheel speeds Steering + throttle online Model predictive controller simulated




Experiment — Setup Experts

High Speed driving
at 7.5 m/sor 135 km /h

Cost for expert:

c(St,a1) = @1 Cpos(St) + aacspa(st) + ascsiip(St) + azcact(ar)




Experiment- learning trajectories

Learned to
avoid crash

(c) Online IL.



Comparing — Loss (to expert)

Policy Avg. speed | Top speed | Training data | Completion ratio | Total loss | Steering/Throttle loss

Expert 6.05 m/s 8.14 m/s N/A 100 % 0 0

Batch 4.97 m/s 5.51 m/s 3000 100 % 0.108 0.092/0.124

Batch 6.02 m/s 8.18 m/s 6000 51 % 0108 0.162/0.055

Batch 5.79 m/s 7.78 m/s 9000 53 % 0.123 0.193/0.071

Batch 5.95 m/s 8.01 m/s 12000 69 % 0.105 0.125/0.083
Online (1 1ter) 6.02 m/s 7.88 m/s 6000 100 % 0.090 0.112/0.067
Online (2 iter) 5.89 m/s 8.02 m/s 9000 100 % 0.075 0.095/0.055
Online (3 1ter) 6.07 m/s 8.06 m/s 12000 100 % 0.064 0.073/0.055




Comparing — distance travelled

Performance of online and batch learning
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Comparing — generalizability

t-Distributed Stochastic Neighbor Embedding (t-SNE)

6000

4000 -

2000 -4

-2000 -

-4000 4

-6000

train
test

-6000 -4000 =-2000 0 2000 4000

(a) Batch raw image
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Comparing — generalizability

801 train 80 train
60 1 test & test
40 A 40 |
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(a) Batch data wrt online model (b) Online data wrt online model
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(c) Batch data wrt batch model (d) Online data wrt batch model



DNN - high and low capture

(a) raw image (b) max-pooling1

(c) max-pooling2 (d) max-pooling3

Fig. 9: The input RGB image and the averaged feature maps
for each max-pooling layer.



DNN > CNN ... or Limitation?

Performance of neural network policies
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Thank you!

Any Questions?
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t-Distributed Stochastic Neighbor Embedding

Introduction

Measure pairwise similarities between high-dimensional and
low-dimensonal objects

High Dim

Low Dim
a e @ yi
® =~ I
D @
 exp(=llx — xl1*/207)
Pjii =

Do ki &P(=1x% — x«l||2/207)

Laurens van der Maaten and Geoffrey Hinton t-SNE October 30, 2014 10 / 33




End-to-end Driving via Conditional Imitation Learning
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Electrical & Computer Engineering
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Brief Overview of the Paper

@ This paper focuses on the task of self-driving, while allowing users to interact
with high-level navigation commands.

@ As the conventional imitation learning is not sufficient, the agent solves the
task through conditional imitation learning.

Wei Cui (University of Toronto) End-to-end Driving via Conditional Imitation Learning Feb 1st 2019






Problem Formulation

@ The main task : given specified sensory inputs, the agent achieves self-driving
through computing controller outputs, while following navigational guidance.

@ Sensory Inputs (Observation o) :

e Controller Outputs :

» s : steering angle
» « : acceleration

Wei Cui (University of Toronto) =nd-to-end Drivi g via Conditional Imitation Lez Feb 1st 2019 3/16




Conditional Imitation Learning

@ Conditional Imitation Learning : for both training and testing, the agent
receives additional input : ¢ (navigation command).

@ The formulation for Conditional Imitation Learning :

min ZE(F(O;, ci:0).a;) (2)

‘|

Oy ay; 0441
— Controller —_ —

@ The high level commands explored for this paper :

c € {continue, left, straight, right} (3)

Wei Cui (University of Toronto Feb 1st 2019 4 /16



Network Architecture

@ Two models are explored :

» command input model
» branched model

— ) ~
i 9 (] o
Image C> <§_'1 I(i) [ ( \

i =
— L °
- M(m)|] (03 E:} D / I::) E:} o

Measurements C» = Action i
I Ll L i a o
— A Measurements C» =1 ] N =
Command ¢ P m J U] M (m) . Action
(or vector to goal) | UL | €te) Command C A a

(a) (b)

Wei Cui (University of Toronto) Feb 1st 2019 5 /16



System Setup

@ Two systems : a simulated urban environment and a physical system.
e Simulated Environment : an urban driving simulator, CARLA.

@ Town 1 for training; Town 2 for exclusive testing.

Town 1 (training) Town 2 (testing)

Wei Cui (University of Toronto =nd-to-end Driving via Conditional Imitation Le: Feb 1st 2019 6 /16



System Setup (Cont'd)

@ Physical System : An off-the-shelf 1/5 scale truck is used (Traxxas Maxx),
with an embedded computer (Nvidia TX2) which the agent model runs on.

14.8-16.8V 3 Webcams

Nvidia TX2

Speed Controller Steering Servo
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Training Data Preparation

@ Firstly, additional state-action pairs are collected through injecting noise into
expert’s control, and let the expert to respond. This method is an alternative
to DAgger (not used in the paper).
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Training Data Preparation (Cont'd)

@ The authors further augment the data through applying random
transformations to the images as inputs to the agent.

@ The types of transformations include :

» Change in contrast, brightness, and tone.

» Adding Gaussian blur, Gaussian noise, salt-and-pepper noise (sparse white and
black pixels).

» Region dropout (masking out a random set of rectangles of roughly 1% of
image area)
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Training Details

@ Some normalization used : 50% dropout after fully-connected hidden
layers, and 20% dropout after convolutional layers.

@ Loss Function : As mentioned before, each action contains a tuple of
signals : a = [s, a].
With model’s action a and expert's action a., the per-sample loss function :

L(a.a.) = ||5_Se||2+/\a||a_ae”2 (4)

@ Different than DAgger, the agent’s parameters are optimized once after all
the data is collected, without iterative loops.

@ For the command-conditional models, minibatches were constructed to
contain an equal number of samples with each command.
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Testing Methods : Simulation Environment

e Baseline Method :
» Standard Imitation Learning : a = F(o)

@ Variations on the current model : Investigate on the importance of each
component.

» The command input model.

» The branched model trained without noise-injected data.

» The branched model trained without data augmentation.

» The branched model implemented with a shallower network.
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Testing Results : Simulation Environment

Success rate Km per infraction
Model Town 1  Town 2 Town 1 Town 2
Non-conditional 20% 26% 5.76 0.89
Ours branched 88 % 64 % 2.34 1.18
Ours cmd. nput 78% 32% 3.97 1.30
Ours no noise 56% 22% 1.1 0.54
Ours no aug. 80% 0% 4.03 0.36
Ours shallow net 46% 14% 0.96 042

Wei Cui (University of Toronto)
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Testing Methods & Results : Physical System

@ The authors picked only 3 competitive methods in simulation environment
testing for this comparison :
» The command input model.
» The branched model trained without noise-injected data.
» The branched model trained without data augmentation.

@ The results still support the necessity for each of the model's component :

Model Missed turns  Interventions  Time
Ours branched 0% 0.67 2:19
Ours cmd. input 11.1% 2.33 4:13
Ours no noise 24.4% 8.67 4:39
Ours no aug. 13% 39 10:41

Wei Cui (University of Toronto) nd-to-end Driving via Conditional Imitation Learning Feb 1st 2019 13 / 16




Conclusions

@ This paper recognizes one key problem in conventional imitation learning :
expert's demonstrations are often decided by certain latent factors not
included in the observations (such as intentions).

@ |t is important to introduce a channel for the communication of this extra
information, which motivates conditional imitation learning

@ The method has been shown with its efficacy in self-driving task, where users’
high-level navigation needs are also considered into the requirement.
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A few discussions of mine...

e Under misguiding c, the agent might perform dangerous actions (such as
[o=driving on the straight highway, c=turn right!]). This is never tested for
this work (at least based on the paper).

@ Under these considerations, perhaps a rejection option against certain c
should be built into the agent as a safety feature.

@ |t is not convincing to me why the authors decided to remove the benchmark
during testing the physical system case.
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Appendix A : Network Architecture Details

@ For both architectures explored as shown above, the individual modules are
identical.

@ The image module :

» Consists of 8 convolutional and 2 fully connected layers.

» The convolution kernel size is 5 in the first layer and 3 in the following layers.
The first, third, and fifth convolutional layers have a stride of 2.

» The number of channels increases from 32 in the first convolutional layer to

256 in the last.
» Fully-connected layers contain 512 units each.

@ Other modules :

» Implemented as standard multilayer perceptrons, with RelLU nonlinearities
after all hidden layers.
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