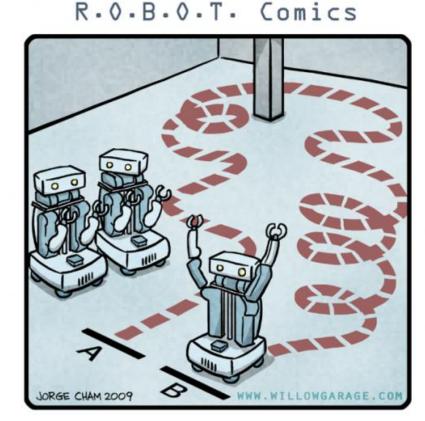
CSC2621 Imitation Learning for Robotics

Florian Shkurti

Week 2: Introduction to Optimal Control & Model-Based RL

Today's agenda

- Intro to Control & Reinforcement Learning
- Linear Quadratic Regulator (LQR)
- Iterative LQR
- Model Predictive Control
- Learning the dynamics and model-based RL

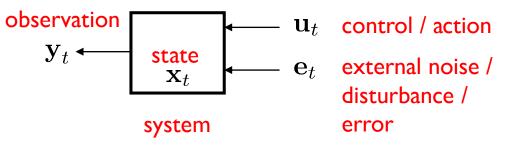


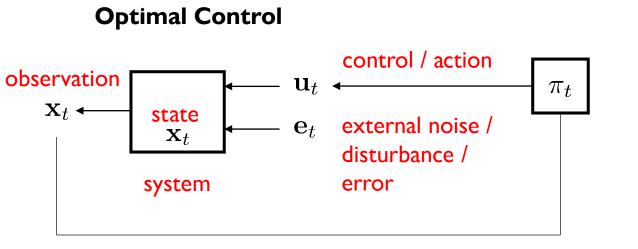
"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

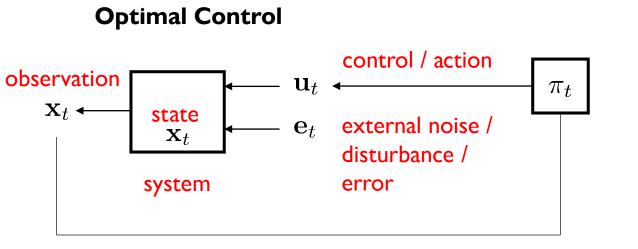
Acknowledgments

Today's slides have been influenced by: Pieter Abbeel (ECE287), Sergey Levine (DeepRL), Ben Recht (ICML'18), Emo Todorov, Zico Kolter

Optimal Control







Optimal Control observation $x_t \leftarrow state \\ x_t \leftarrow e_t$ external noise / disturbance / error

$$\underset{\pi_0,\ldots,\pi_{T-1}}{\text{minimize}}$$

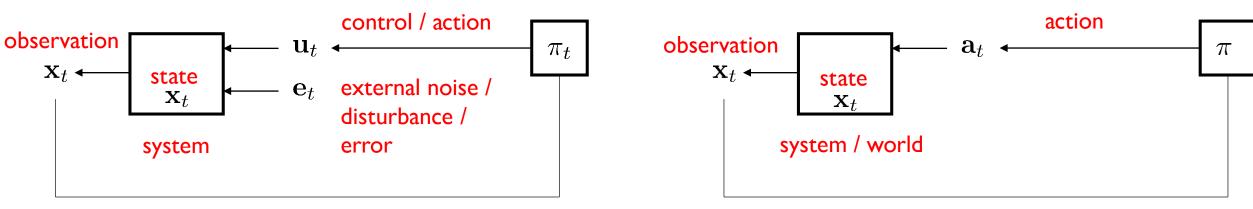
$$\mathbb{E}_{\mathbf{e}_t} \left[\sum_{t=0}^T c(\mathbf{x}_t, \mathbf{u}_t) \right]$$

subject to

 $\mathbf{L}_{t=0} \quad \mathbf{J}$ $\mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \mathbf{e}_t) \text{ known dynamics}$ $\mathbf{u}_t = \pi_t(\mathbf{x}_{0:t}, \mathbf{u}_{0:t-1})$

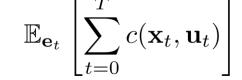
control law / policy

Optimal Control



Reinforcement Learning

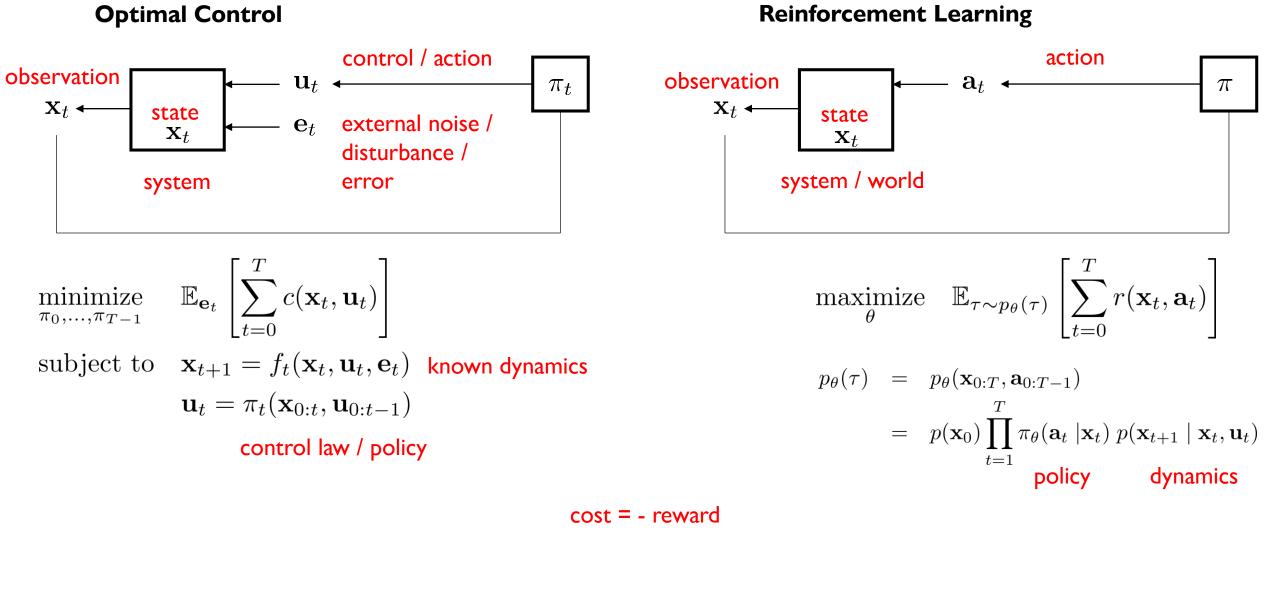
 $\underset{\pi_0,\ldots,\pi_{T-1}}{\text{minimize}}$

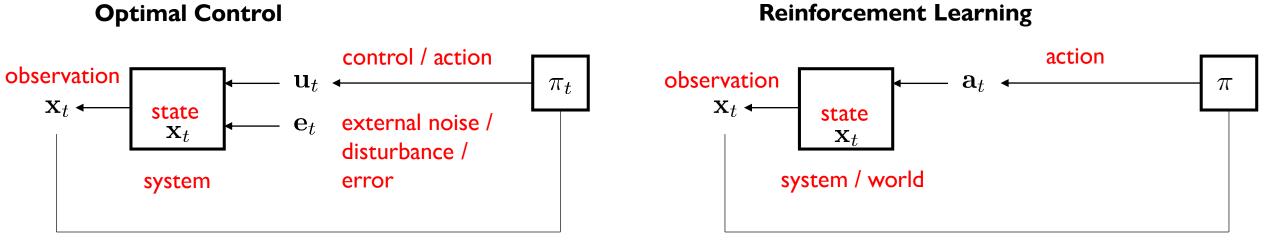


subject to $\mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \mathbf{e}_t)$ known dynamics

$$\mathbf{u}_t = \pi_t(\mathbf{x}_{0:t}, \mathbf{u}_{0:t-1})$$

control law / policy

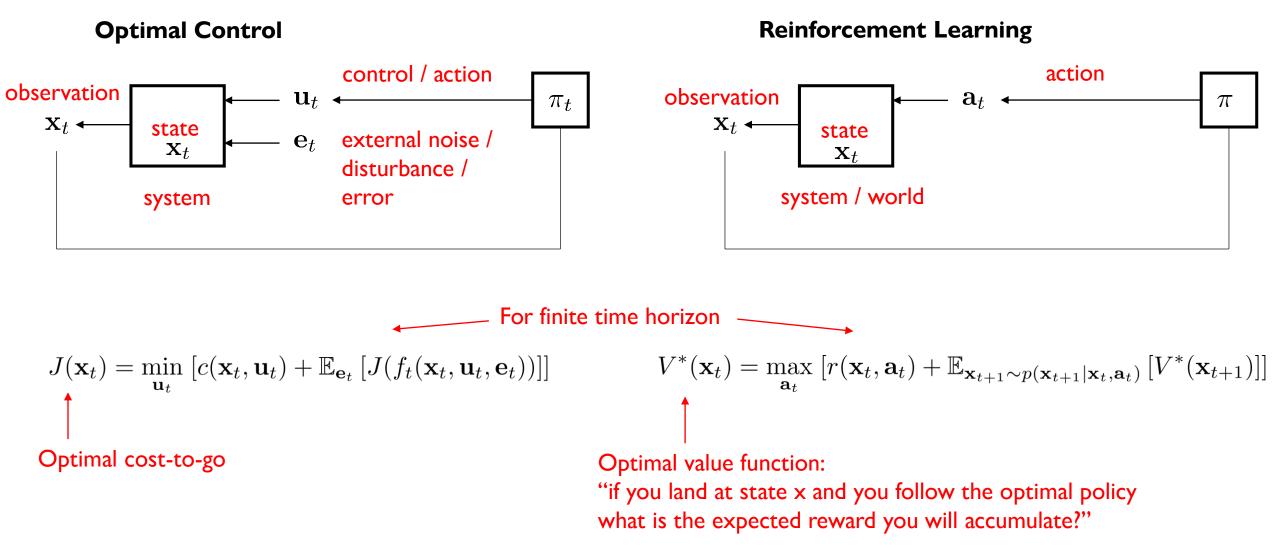


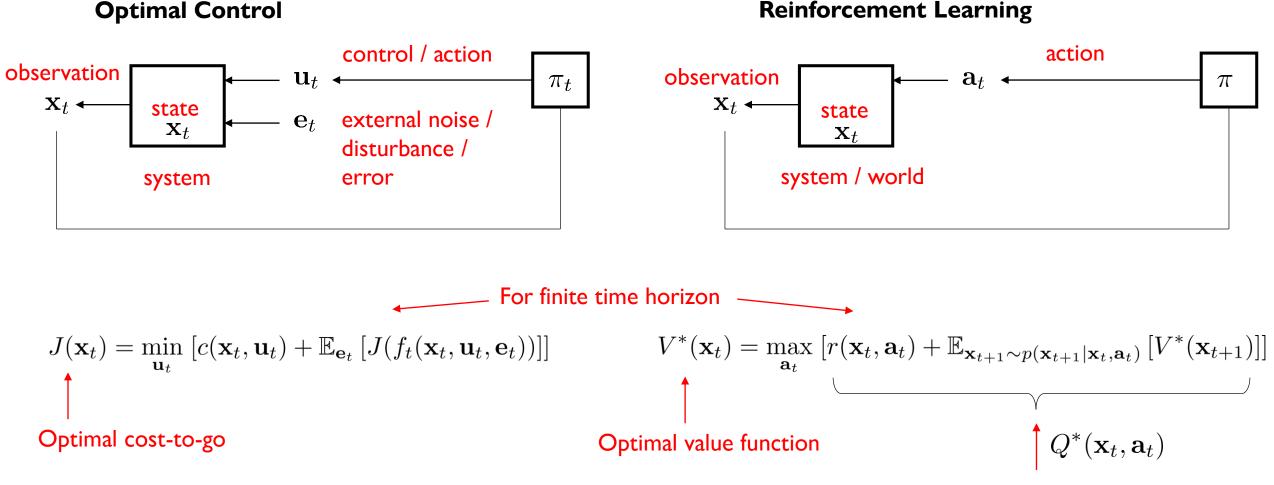


$$J(\mathbf{x}_t) = \min_{\mathbf{u}_t} \left[c(\mathbf{x}_t, \mathbf{u}_t) + \mathbb{E}_{\mathbf{e}_t} \left[J(f_t(\mathbf{x}_t, \mathbf{u}_t, \mathbf{e}_t)) \right] \right]$$

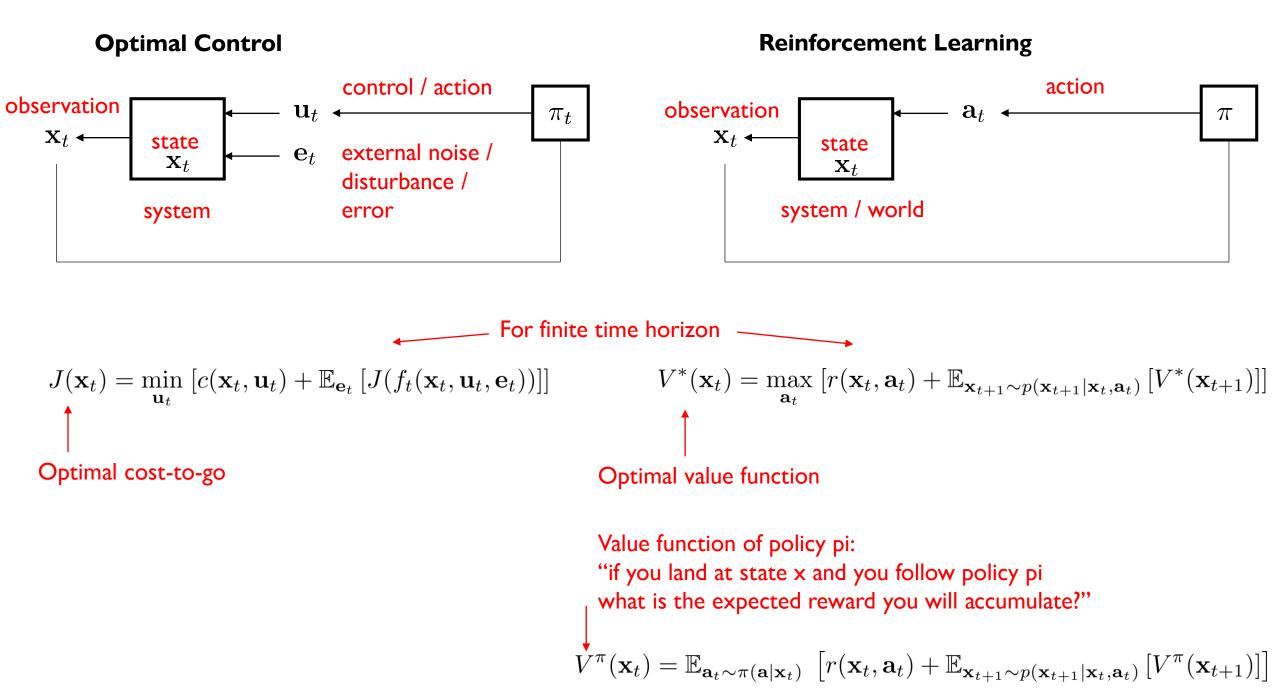
$$\uparrow$$
Optimal cost-to-go:

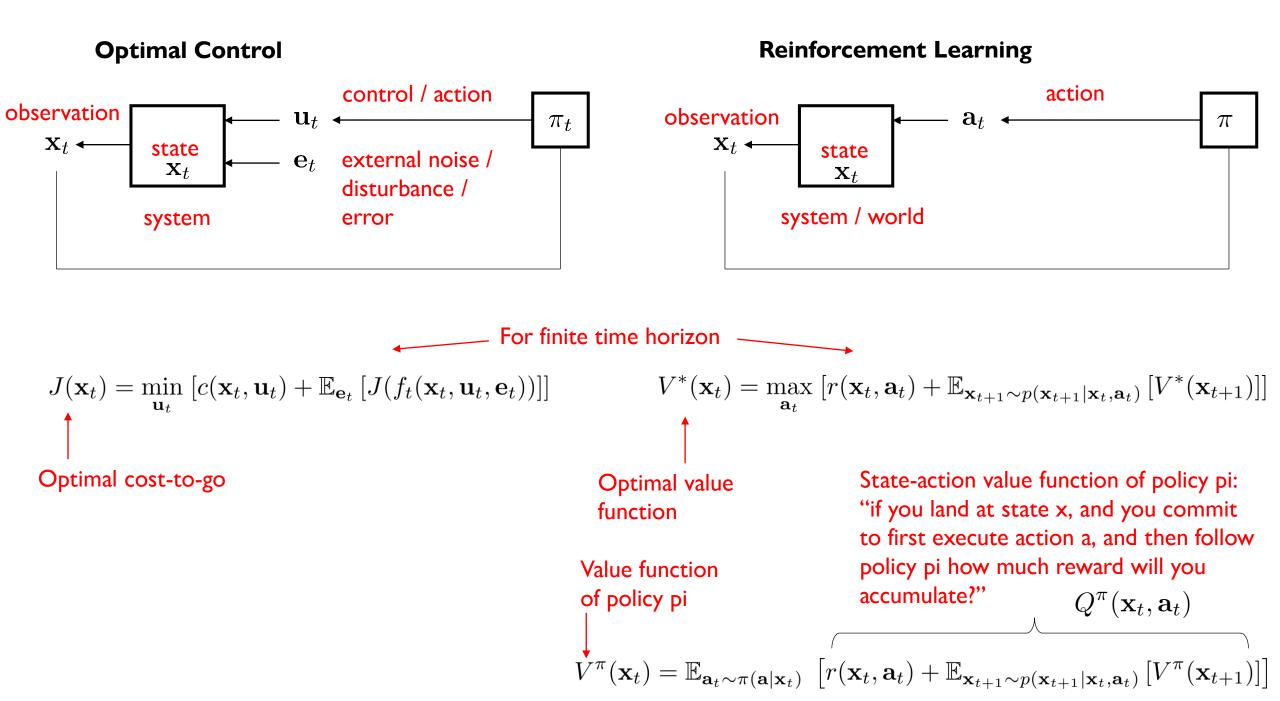
"if you land at state x and you follow the optimal actions what is the expected cost you will pay?

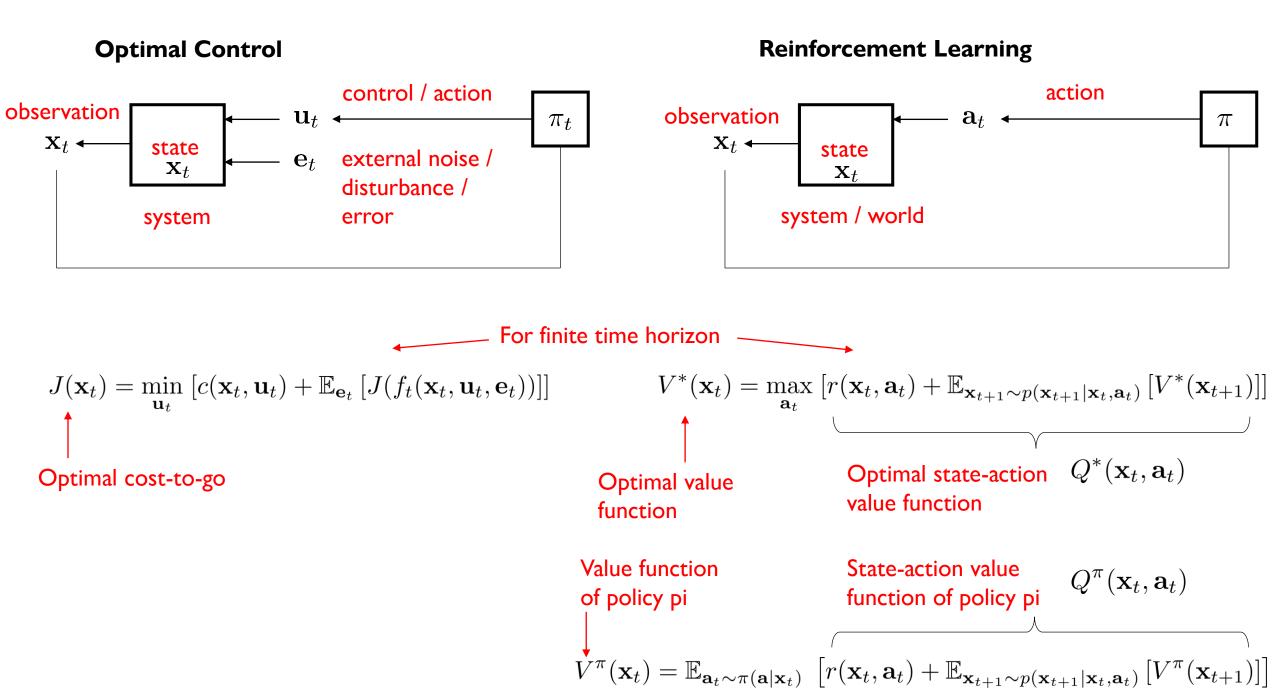




Optimal state-action value function: "if you land at state x, and you commit to first execute action a, and then follow the optimal policy how much reward will you accumulate?"

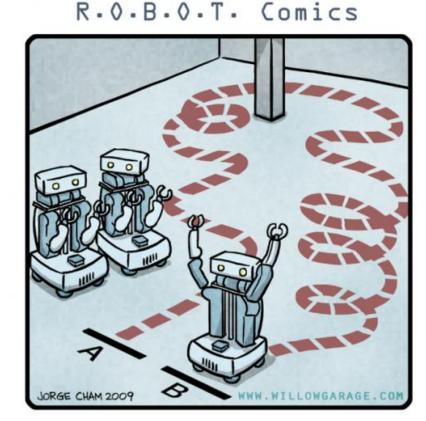






Today's agenda

- Intro to Control & Reinforcement Learning
- Linear Quadratic Regulator (LQR)
- Iterative LQR
- Model Predictive Control
- Learning the dynamics and model-based RL

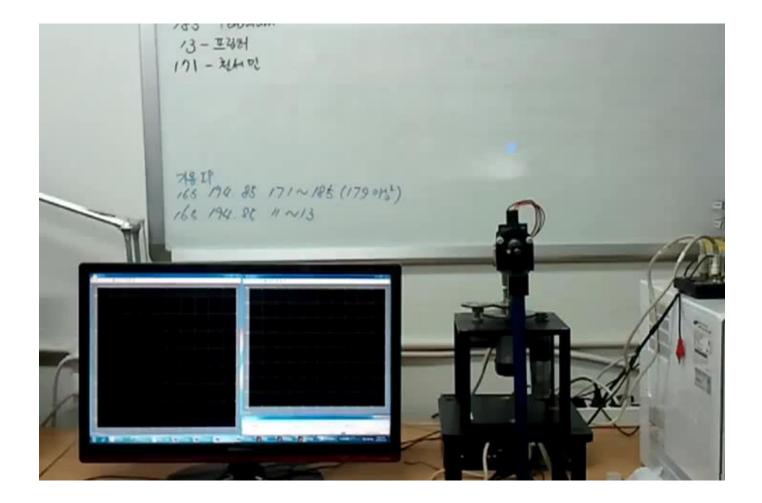


"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Acknowledgments

Today's slides have been influenced by: Pieter Abbeel (ECE287), Sergey Levine (DeepRL), Ben Recht (ICML'18), Emo Todorov, Zico Kolter

What you can do with LQR control



What you can do with (variants of) LQR control

Pieter Abbeel, Helicopter Aerobatics

LQR: assumptions

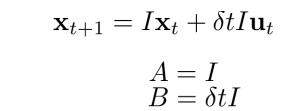
- You know the dynamics model of the system
- It is linear: $\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t$

Control / command / action applied to the system $rac{1}{k}$

 $A \in \mathbb{R}^{d \times d}$

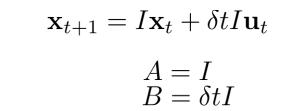
Omnidirectional robot

 $x_{t+1} = x_t + v_x(t)\delta t$ $y_{t+1} = y_t + v_y(t)\delta t$ $\theta_{t+1} = \theta_t + \omega_z(t)\delta t$



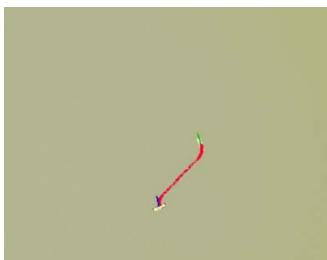
Omnidirectional robot

 $x_{t+1} = x_t + v_x(t)\delta t$ $y_{t+1} = y_t + v_y(t)\delta t$ $\theta_{t+1} = \theta_t + \omega_z(t)\delta t$



• Simple car

 $x_{t+1} = x_t + v_x(t)\cos(\theta_t)\delta t$ $y_{t+1} = y_t + v_x(t)\sin(\theta_t)\delta t$ $\theta_{t+1} = \theta_t + \omega_z \delta t$



Omnidirectional robot

 $x_{t+1} = x_t + v_x(t)\delta t$ $y_{t+1} = y_t + v_y(t)\delta t$ $\theta_{t+1} = \theta_t + \omega_z(t)\delta t$

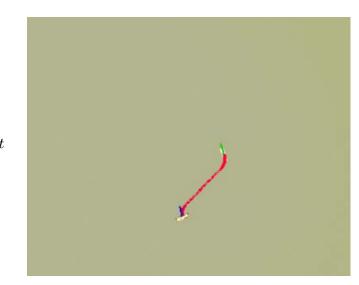
$$\mathbf{x}_{t+1} = I\mathbf{x}_t + \delta t I \mathbf{u}_t$$
$$A = I$$
$$B = \delta t I$$

• Simple car

Omnidirectional robot

 $x_{t+1} = x_t + v_x(t)\delta t$ $y_{t+1} = y_t + v_y(t)\delta t$ $\theta_{t+1} = \theta_t + \omega_z(t)\delta t$

$$\mathbf{x}_{t+1} = I\mathbf{x}_t + \delta t I\mathbf{u}_t$$
$$A = I$$
$$B = \delta t I$$



The goal of LQR

- Stabilize the system around state $\mathbf{x}_t = \mathbf{0}$ with control $\mathbf{u}_t = \mathbf{0}$
- Then $\mathbf{x}_{t+1} = \mathbf{0}$ and the system will remain at zero forever

The goal of LQR

If we want to stabilize around x^* then let $x - x^*$ be the state

- Stabilize the system around state $\mathbf{x}_t = \mathbf{0}$ with control $\mathbf{u}_t = \mathbf{0}$
- Then $\mathbf{x}_{t+1} = \mathbf{0}$ and the system will remain at zero forever

LQR: assumptions

- You know the dynamics model of the system
- It is linear: $\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t$

• There is an instantaneous cost associated with being at state \mathbf{x}_t and taking the action \mathbf{u}_t : $c(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{x}_t^T Q \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$

Quadratic state cost: Penalizes deviation from the zero vector Quadratic control cost: Penalizes high control signals

LQR: assumptions

- You know the dynamics model of the system
- It is linear: $\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t$

• There is an instantaneous cost associated with being at state \mathbf{x}_t and taking the action \mathbf{u}_t : $c(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{x}_t^T Q \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$

Square matrices Q and R must be positive definite: $Q = Q^T$ and $\forall x, x^T Q x > 0$ $R = R^T$ and $\forall u, u^T R u > 0$

i.e. positive cost for ANY nonzero state and control vector

Finite-Horizon LQR

- Idea: finding controls is an optimization problem
- Compute the control variables that minimize the cumulative cost

.

$$u_{0}^{*}, \dots, u_{N-1}^{*} = \underset{u_{0}, \dots, u_{N}}{\operatorname{argmin}} \qquad \sum_{t=0}^{N} c(\mathbf{x}_{t}, \mathbf{u}_{t})$$

s.t.
$$\mathbf{x}_{1} = A\mathbf{x}_{0} + B\mathbf{u}_{0}$$

$$\mathbf{x}_{2} = A\mathbf{x}_{1} + B\mathbf{u}_{1}$$

$$\dots$$

$$\mathbf{x}_{N} = A\mathbf{x}_{N-1} + B\mathbf{u}_{N-1}$$

Finite-Horizon LQR

We could solve this as a constrained

nonlinear optimization problem. But,

there is a better way: we can find a

closed-form solution.

- Idea: finding controls is an optimization problem
- Compute the control variables that minimize the cumulative cost

$$u_{0}^{*}, \dots, u_{N-1}^{*} = \underset{u_{0}, \dots, u_{N}}{\operatorname{argmin}} \qquad \sum_{t=0}^{N} c(\mathbf{x}_{t}, \mathbf{u}_{t})$$
s.t.
$$\mathbf{x}_{1} = A\mathbf{x}_{0} + B\mathbf{u}_{0}$$

$$\mathbf{x}_{2} = A\mathbf{x}_{1} + B\mathbf{u}_{1}$$

$$\dots$$

$$\mathbf{x}_{N} = A\mathbf{x}_{N-1} + B\mathbf{u}_{N-1}$$

Finite-Horizon LQR

- Idea: finding controls is an optimization problem
- Compute the control variables that minimize the cumulative cost

$$u_{0}^{*}, ..., u_{N-1}^{*} = \underset{u_{0}, ..., u_{N}}{\operatorname{argmin}} \qquad \sum_{t=0}^{N} c(\mathbf{x}_{t}, \mathbf{u}_{t})$$

$$S.t.$$
Open-loop plan!
$$\mathbf{x}_{1} = A\mathbf{x}_{0} + B\mathbf{u}_{0}$$
Given first state compute
action sequence
$$\mathbf{x}_{2} = A\mathbf{x}_{1} + B\mathbf{u}_{1}$$

$$\mathbf{x}_N = A\mathbf{x}_{N-1} + B\mathbf{u}_{N-1}$$

. . .

- Let $J_n(\mathbf{x})$ denote the cumulative cost-to-go starting from state \mathbf{x} and moving for n time steps.
- I.e. cumulative future cost from now till n more steps
- $J_0(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x}$ is the terminal cost of ending up at state x, with no actions left to perform. Recall that $c(\mathbf{x}, \mathbf{u}) = \mathbf{x}^T Q \mathbf{x} + \frac{\mathbf{u}^T R \mathbf{u}}{\mathbf{u}}$

- Let $J_n(\mathbf{x})$ denote the cumulative cost-to-go starting from state \mathbf{x} and moving for n time steps.
- I.e. cumulative future cost from now till n more steps
- $J_0(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x}$ is the terminal cost of ending up at state x, with no actions left to perform. Recall that $c(\mathbf{x}, \mathbf{u}) = \mathbf{x}^T Q \mathbf{x} + \frac{\mathbf{u}^T R \mathbf{u}}{\mathbf{u}}$

Q: What is the optimal cumulative cost-to-go function with 1 time step left?

$$J_0(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x}$$

$$J_0(\mathbf{x}) = \mathbf{x}^T P_0 \mathbf{x}$$

For notational convenience later on

$$J_0(\mathbf{x}) = \mathbf{x}^T P_0 \mathbf{x}$$

$$J_1(\mathbf{x}) = \min_{\mathbf{u}} [\mathbf{x}^T Q \mathbf{x} + \mathbf{u}^T R \mathbf{u} + J_0 (A \mathbf{x} + B \mathbf{u})]$$

In RL this would be the state-action value function

Bellman Update Dynamic Programming Value Iteration

$$J_0(\mathbf{x}) = \mathbf{x}^T P_0 \mathbf{x}$$

$$J_1(\mathbf{x}) = \min_{\mathbf{u}} [\mathbf{x}^T Q \mathbf{x} + \mathbf{u}^T R \mathbf{u} + J_0 (A \mathbf{x} + B \mathbf{u})]$$

$$= \min_{\mathbf{u}} [\mathbf{x}^T Q \mathbf{x} + \mathbf{u}^T R \mathbf{u} + (A \mathbf{x} + B \mathbf{u})^T P_0 (A \mathbf{x} + B \mathbf{u})]$$

Q: How do we optimize a multivariable function with respect to some variables (in our case, the controls)?

$$J_0(\mathbf{x}) = \mathbf{x}^T P_0 \mathbf{x}$$

$$J_1(\mathbf{x}) = \min_{\mathbf{u}} [\mathbf{x}^T Q \mathbf{x} + \mathbf{u}^T R \mathbf{u} + J_0 (A \mathbf{x} + B \mathbf{u})]$$

$$= \min_{\mathbf{u}} [\mathbf{x}^T Q \mathbf{x} + \mathbf{u}^T R \mathbf{u} + (A \mathbf{x} + B \mathbf{u})^T P_0 (A \mathbf{x} + B \mathbf{u})]$$

$$= \mathbf{x}^T Q \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^T R \mathbf{u} + (A \mathbf{x} + B \mathbf{u})^T P_0 (A \mathbf{x} + B \mathbf{u})]$$

$$J_0(\mathbf{x}) = \mathbf{x}^T P_0 \mathbf{x}$$

$$J_1(\mathbf{x}) = \min_{\mathbf{u}} [\mathbf{x}^T Q \mathbf{x} + \mathbf{u}^T R \mathbf{u} + J_0 (A \mathbf{x} + B \mathbf{u})]$$

$$= \min_{\mathbf{u}} [\mathbf{x}^T Q \mathbf{x} + \mathbf{u}^T R \mathbf{u} + (A \mathbf{x} + B \mathbf{u})^T P_0 (A \mathbf{x} + B \mathbf{u})]$$

$$= \mathbf{x}^T Q \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^T R \mathbf{u} + (A \mathbf{x} + B \mathbf{u})^T P_0 (A \mathbf{x} + B \mathbf{u})]$$

$$= \mathbf{x}^T Q \mathbf{x} + \mathbf{x}^T A^T P_0 A \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^T R \mathbf{u} + 2\mathbf{u}^T B^T P_0 A \mathbf{x} + \mathbf{u}^T B^T P_0 B \mathbf{u}]$$

$$J_{0}(\mathbf{x}) = \mathbf{x}^{T} P_{0} \mathbf{x}$$

$$J_{1}(\mathbf{x}) = \min_{\mathbf{u}} [\mathbf{x}^{T} Q \mathbf{x} + \mathbf{u}^{T} R \mathbf{u} + J_{0} (A \mathbf{x} + B \mathbf{u})]$$

$$= \min_{\mathbf{u}} [\mathbf{x}^{T} Q \mathbf{x} + \mathbf{u}^{T} R \mathbf{u} + (A \mathbf{x} + B \mathbf{u})^{T} P_{0} (A \mathbf{x} + B \mathbf{u})]$$

$$= \mathbf{x}^{T} Q \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^{T} R \mathbf{u} + (A \mathbf{x} + B \mathbf{u})^{T} P_{0} (A \mathbf{x} + B \mathbf{u})]$$

$$= \mathbf{x}^{T} Q \mathbf{x} + \mathbf{x}^{T} A^{T} P_{0} A \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^{T} R \mathbf{u} + 2 \mathbf{u}^{T} B^{T} P_{0} A \mathbf{x} + \mathbf{u}^{T} B^{T} P_{0} B \mathbf{u}]$$

$$\int_{Q uadratic} term in \mathbf{u}$$

$$\int_{Q uadratic} term in \mathbf{u}$$

A: Take the partial derivative w.r.t. controls and set it to zero. That will give you a critical point.

 $J_1(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x} + \mathbf{x}^T A^T P_0 A \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^T R \mathbf{u} + 2\mathbf{u}^T B^T P_0 A \mathbf{x} + \mathbf{u}^T B^T P_0 B \mathbf{u}]$

From calculus/algebra:

$$\frac{\partial}{\partial \mathbf{u}} (\mathbf{u}^T M \mathbf{u}) = (M + M^T) \mathbf{u}$$
$$\frac{\partial}{\partial \mathbf{u}} (\mathbf{u}^T M \mathbf{b}) = M \mathbf{b}$$

If M is symmetric:

$$\frac{\partial}{\partial \mathbf{u}}(\mathbf{u}^T M \mathbf{u}) = 2M \mathbf{u}$$

 $J_1(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x} + \mathbf{x}^T A^T P_0 A \mathbf{x} + \min[\mathbf{u}^T R \mathbf{u} + 2\mathbf{u}^T B^T P_0 A \mathbf{x} + \mathbf{u}^T B^T P_0 B \mathbf{u}]$

The minimum is attained at:

 $2R\mathbf{u} + 2B^T P_0 A\mathbf{x} + 2B^T P_0 B\mathbf{u} = \mathbf{0}$ $(R + B^T P_0 B)\mathbf{u} = -B^T P_0 A\mathbf{x}$

Q: Is this matrix invertible? Recall R, Po are positive definite matrices.

From calculus/algebra:

$$\frac{\partial}{\partial \mathbf{u}} (\mathbf{u}^T M \mathbf{u}) = (M + M^T) \mathbf{u}$$
$$\frac{\partial}{\partial \mathbf{u}} (\mathbf{u}^T M \mathbf{b}) = M \mathbf{b}$$

If M is symmetric:

$$\frac{\partial}{\partial \mathbf{u}}(\mathbf{u}^T M \mathbf{u}) = 2M \mathbf{u}$$

$$J_1(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x} + \mathbf{x}^T A^T P_0 A \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^T R \mathbf{u} + 2\mathbf{u}^T B^T P_0 A \mathbf{x} + \mathbf{u}^T B^T P_0 B \mathbf{u}]$$

The minimum is attained at:

$$2R\mathbf{u} + 2B^T P_0 A\mathbf{x} + 2B^T P_0 B\mathbf{u} = \mathbf{0}$$
$$(R + B^T P_0 B)\mathbf{u} = -B^T P_0 A\mathbf{x}$$

Q: Is this matrix invertible? Recall R, Po are positive definite matrices.

 $R + B^T P_0 B$ is positive definite, so it is invertible

 $J_1(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x} + \mathbf{x}^T A^T P_0 A \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^T R \mathbf{u} + 2\mathbf{u}^T B^T P_0 A \mathbf{x} + \mathbf{u}^T B^T P_0 B \mathbf{u}]$

The minimum is attained at:

 $2R\mathbf{u} + 2B^T P_0 A\mathbf{x} + 2B^T P_0 B\mathbf{u} = \mathbf{0}$ $(R + B^T P_0 B)\mathbf{u} = -B^T P_0 A\mathbf{x}$

So, the optimal control for the last time step is: $\mathbf{u} = -(R + B^T P_0 B)^{-1} B^T P_0 A \mathbf{x}$ $\mathbf{u} = K_1 \mathbf{x}$

Linear controller in terms of the state

 $J_{1}(\mathbf{x}) = \mathbf{x}^{T}Q\mathbf{x} + \mathbf{x}^{T}A^{T}P_{0}A\mathbf{x} + \min_{\mathbf{u}}[\mathbf{u}^{T}R\mathbf{u} + 2\mathbf{u}^{T}B^{T}P_{0}A\mathbf{x} + \mathbf{u}^{T}B^{T}P_{0}B\mathbf{u}]$ The minimum is attained at: $2R\mathbf{u} + 2B^{T}P_{0}A\mathbf{x} + 2B^{T}P_{0}B\mathbf{u} = \mathbf{0}$ $(R + B^{T}P_{0}B)\mathbf{u} = -B^{T}P_{0}A\mathbf{x}$ So, the optimal control for the last time step is: We computed the location of the minimum.

 $\mathbf{u} = -(R + B^T P_0 B)^{-1} B^T P_0 A \mathbf{x}$ $\mathbf{u} = K_1 \mathbf{x}$

Linear controller in terms of the state

e computed the location of the minimum Now, plug it back in and compute the minimum value

$$J_{0}(\mathbf{x}) = \mathbf{x}^{T} P_{0} \mathbf{x}$$

$$J_{1}(\mathbf{x}) = \mathbf{x}^{T} Q \mathbf{x} + \mathbf{x}^{T} A^{T} P_{0} A \mathbf{x} + \min_{\mathbf{u}} [\mathbf{u}^{T} R \mathbf{u} + 2 \mathbf{u}^{T} B^{T} P_{0} A \mathbf{x} + \mathbf{u}^{T} B^{T} P_{0} B \mathbf{u}]$$

$$= \mathbf{x}^{T} (Q + K_{1}^{T} R K_{1} + (A + B K_{1})^{T} P_{0} (A + B K_{1})) \mathbf{x}$$

$$P_{1}$$

Q: Why is this a big deal?A: The cost-to-go function remains quadratic after the first recursive step.

Finding the LQR controller in
closed-form by recursion
Time N (planning horizon)

$$J_{0}(\mathbf{x}) = \mathbf{x}^{T}P_{0}\mathbf{x}$$

$$u = -(R + B^{T}P_{0}B)^{-1}B^{T}P_{0}A\mathbf{x}$$

$$u = K_{1}\mathbf{x}$$

$$J_{1}(\mathbf{x}) = \mathbf{x}^{T}(Q + K_{1}^{T}RK_{1} + (A + BK_{1})^{T}P_{0}(A + BK_{1}))\mathbf{x}$$

$$u = -(R + B^{T}P_{n-1}B)^{-1}B^{T}P_{n-1}A\mathbf{x}$$

$$u = K_{n}\mathbf{x}$$

$$u = -(R + B^{T}P_{n-1}B)^{-1}B^{T}P_{n-1}A\mathbf{x}$$

$$u = -(R + B^{T}P_$$

 $P_0 = Q$

// n is the # of steps left

for n = 1...N

$$K_{n} = -(R + B^{T} P_{n-1} B)^{-1} B^{T} P_{n-1} A$$
$$P_{n} = Q + K_{n}^{T} R K_{n} + (A + B K_{n})^{T} P_{n-1} (A + B K_{n})$$

Optimal control for time t = N - n is $u_t = K_t x_t$ with cost-to-go $J_t(\mathbf{x}) = \mathbf{x}^T P_t \mathbf{x}$ where the states are predicted forward in time according to linear dynamics

 $P_0 = Q$

// n is the # of steps left

for n = 1...N

$$K_{n} = -(R + B^{T} P_{n-1} B)^{-1} B^{T} P_{n-1} A$$
$$P_{n} = Q + K_{n}^{T} R K_{n} + (A + B K_{n})^{T} P_{n-1} (A + B K_{n})$$

One pass **backward** in time:

Matrix gains are precomputed based on the dynamics and the instantaneous cost

Optimal control for time t = N - n is $u_t = K_t x_t$ with cost-to-go $J_t(x) = x^T P_t x$ where the states are predicted forward in time according to linear dynamics

 $P_0 = Q$

// n is the # of steps left

for n = 1...N

$$K_{n} = -(R + B^{T} P_{n-1} B)^{-1} B^{T} P_{n-1} A$$

$$P_{n} = Q + K_{n}^{T} R K_{n} + (A + B K_{n})^{T} P_{n-1} (A + B K_{n})$$

One pass **backward** in time:

Matrix gains are precomputed based on the dynamics and the instantaneous cost

Optimal control for time t = N – n is $\mathbf{u}_t = K_t \mathbf{x}_t$ with cost-to-go $J_t(\mathbf{x}) = \mathbf{x}^T P_t \mathbf{x}$ where the states are predicted forward in time according to linear dynamics One pass **forward** in time

Predict states, compute controls and cost-to-go

Potential problem for states of dimension >> 100: Matrix inversion is expensive: $O(k^2.3)$ for the best known algorithm and $O(k^3)$ for Gaussian Elimination.

// n is the # of steps left

for n = 1...N

 $P_0 = Q$

 $K_{n} = -(R + B^{T} P_{n-1} B)^{-1} B^{T} P_{n-1} A$ $P_{n} = Q + K_{n}^{T} R K_{n} + (A + B K_{n})^{T} P_{n-1} (A + B K_{n})$

Optimal control for time t = N – n is $\mathbf{u}_t = K_t \mathbf{x}_t$ with cost-to-go $J_t(\mathbf{x}) = \mathbf{x}^T P_t \mathbf{x}$ where the states are predicted forward in time according to linear dynamics

LQR: general form of dynamics and cost functions

Even though we assumed $\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t$ $c(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{x}_t^T Q \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$

we can also accommodate
$$\mathbf{x}_{t+1} = A_t \mathbf{x}_t + B_t \mathbf{u}_t + \mathbf{b}_t$$
 $c(\mathbf{x}_t, \mathbf{u}_t) = \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T H_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{h}_t$

but the form of the computed controls becomes $\mathbf{u}_t = K_t \mathbf{x}_t + \mathbf{k}_t$

LQR with stochastic dynamics

Assume
$$\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t + \mathbf{w}_t$$
 and $c(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{x}_t^T Q \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$

zero mean Gaussian

Then the form of the optimal policy is the same as in LQR $\mathbf{u}_t = K_t \mathbf{x}_t$

No need to change the algorithm, as long as you observe the state at each step (closed-loop policy)

LQR with stochastic dynamics

Assume
$$\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t + \mathbf{w}_t$$
 and $c(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{x}_t^T Q \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$

zero mean Gaussian

Then the form of the optimal policy is the same as in LQR $\mathbf{u}_t = K_t \mathbf{x}_t$

No need to change the algorithm, as long as you observe the state at each step (closed-loop policy)

Linear Quadratic Gaussian LQG

LQR summary

- Advantages:
 - If system is linear LQR gives the optimal controller that takes the system's state to 0 (or the desired target state, same thing)
- Drawbacks:

LQR summary

- Advantages:
 - If system is linear LQR gives the optimal controller that takes the system's state to 0 (or the desired target state, same thing)
- Drawbacks:
 - Linear dynamics
 - How can you include obstacles or constraints in the specification?
 - Not easy to put bounds on control values

Today's agenda

- Intro to Control & Reinforcement Learning
- Linear Quadratic Regulator (LQR)
- Iterative LQR
- Model Predictive Control
- Learning the dynamics and model-based RL

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

What happens in the general nonlinear case?

$$u_{0}^{*}, \dots, u_{N-1}^{*} = \underset{u_{0}, \dots, u_{N}}{\operatorname{argmin}} \qquad \sum_{t=0}^{N} c(\mathbf{x}_{t}, \mathbf{u}_{t})$$
s.t.
$$\mathbf{x}_{1} = f(\mathbf{x}_{0}, \mathbf{u}_{0}) \qquad \text{Arbitrary differentiable functions c, f}$$

$$\mathbf{x}_{2} = f(\mathbf{x}_{1}, \mathbf{u}_{1})$$

$$\dots$$

$$\mathbf{x}_{N} = f(\mathbf{x}_{N-1}, \mathbf{u}_{N-1})$$

What happens in the general nonlinear case?

$$u_0^*, \dots, u_{N-1}^* = \underset{u_0, \dots, u_N}{\operatorname{argmin}} \sum_{\substack{t=0}}^N c(\mathbf{x}_t, \mathbf{u}_t)$$
s.t.
$$\mathbf{x}_1 = f(\mathbf{x}_0, \mathbf{u}_0) \qquad \text{Arbitrary differentiable functions c, f}$$

$$\mathbf{x}_2 = f(\mathbf{x}_1, \mathbf{u}_1)$$

$$\dots$$

$$\mathbf{x}_N = f(\mathbf{x}_{N-1}, \mathbf{u}_{N-1})$$

Idea: iteratively approximate solution by solving linearized versions of the problem via LQR

Given an initial sequence of states $\, ar{\mathbf{x}}_0, ..., ar{\mathbf{x}}_N$ and actions $\, ar{\mathbf{u}}_0, ..., ar{\mathbf{u}}_N$

Given an initial sequence of states $\, ar{\mathbf{x}}_0, ..., ar{\mathbf{x}}_N$ and actions $\, ar{\mathbf{u}}_0, ..., ar{\mathbf{u}}_N$

 $\begin{array}{ll} \text{Taylor expand cost} \quad c(\mathbf{x}_t, \mathbf{u}_t) \approx \tilde{c}(\delta \mathbf{x}_t, \delta \mathbf{u}_t) = c(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} c(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \bar{\mathbf{x}}_t \\ \mathbf{u}_t - \bar{\mathbf{u}}_t \end{bmatrix}^T \nabla_{\mathbf{x}_t, \mathbf{u}_t}^2 c(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \bar{\mathbf{x}}_t \\ \mathbf{u}_t - \bar{\mathbf{u}}_t \end{bmatrix} \\ & \swarrow & \swarrow & \swarrow \\ \mathbf{h}_t & H_t \end{array}$

Given an initial sequence of states $\,ar{\mathbf{x}}_0,...,ar{\mathbf{x}}_N$ and actions $\,ar{\mathbf{u}}_0,...,ar{\mathbf{u}}_N$

Taylor expand cost
$$c(\mathbf{x}_t, \mathbf{u}_t) \approx \tilde{c}(\delta \mathbf{x}_t, \delta \mathbf{u}_t) = c(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} c(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \bar{\mathbf{x}}_t \\ \mathbf{u}_t - \bar{\mathbf{u}}_t \end{bmatrix}^T \nabla_{\mathbf{x}_t, \mathbf{u}_t}^2 c(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \bar{\mathbf{x}}_t \\ \mathbf{u}_t - \bar{\mathbf{u}}_t \end{bmatrix}$$

 \mathbf{h}_t
 H_t

Use LQR backward pass on the approximate dynamics $\tilde{f}(\delta \mathbf{x}_t, \delta \mathbf{u}_t)$ and cost $\tilde{c}(\delta \mathbf{x}_t, \delta \mathbf{u}_t)$

Given an initial sequence of states $\, ar{\mathbf{x}}_0, ..., ar{\mathbf{x}}_N$ and actions $\, ar{\mathbf{u}}_0, ..., ar{\mathbf{u}}_N$

$$\begin{array}{c} \text{Linearize dynamics} \quad f(\mathbf{x}_t, \mathbf{u}_t) \approx \tilde{f}(\delta \mathbf{x}_t, \delta \mathbf{u}_t) = f(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t) + \frac{\partial f}{\partial \mathbf{x}}(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t)(\mathbf{x}_t - \bar{\mathbf{x}}_t) + \frac{\partial f}{\partial \mathbf{u}}(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t)(\mathbf{u}_t - \bar{\mathbf{u}}_t) \\ & & & & \\ \mathbf{b}_t \qquad A_t \qquad \delta \mathbf{x}_t \qquad B_t \qquad \delta \mathbf{u}_t \end{array}$$

$$\begin{array}{ll} \text{Taylor expand cost} & c(\mathbf{x}_t, \mathbf{u}_t) \approx \tilde{c}(\delta \mathbf{x}_t, \delta \mathbf{u}_t) = c(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} c(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \bar{\mathbf{x}}_t \\ \mathbf{u}_t - \bar{\mathbf{u}}_t \end{bmatrix}^T \nabla_{\mathbf{x}_t, \mathbf{u}_t}^2 c(\bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \bar{\mathbf{x}}_t \\ \mathbf{u}_t - \bar{\mathbf{u}}_t \end{bmatrix} \\ & \swarrow & \swarrow & \swarrow & \swarrow & \swarrow & \swarrow \\ \mathbf{h}_t & H_t \end{array}$$

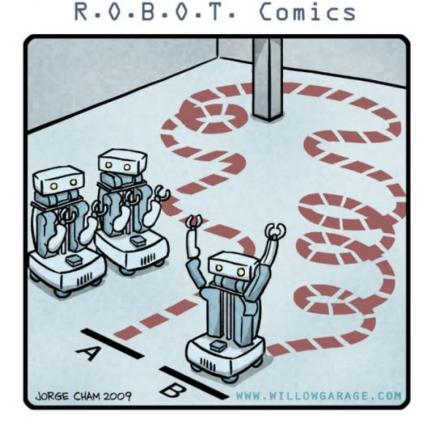
Use LQR backward pass on the approximate dynamics $\tilde{f}(\delta \mathbf{x}_t, \delta \mathbf{u}_t)$ and cost $\tilde{c}(\delta \mathbf{x}_t, \delta \mathbf{u}_t)$ Do a forward pass to get $\delta \mathbf{u}_t$ and $\delta \mathbf{x}_t$ and update state and action sequence $\bar{\mathbf{x}}_0, ..., \bar{\mathbf{x}}_N$ and $\bar{\mathbf{u}}_0, ..., \bar{\mathbf{u}}_N$

Iterative LQR: convergence & tricks

- New state and action sequence in iLQR is not guaranteed to be close to the linearization point (so linear approximation might be bad)
- Trick: try to penalize magnitude of $\delta \mathbf{u}_t$ and $\delta \mathbf{x}_t$ Replace old LQR linearized cost with $(1 - \alpha)\tilde{c}(\delta \mathbf{x}_t, \delta \mathbf{u}_t) + \alpha(||\delta \mathbf{x}_t||^2 + ||\delta \mathbf{u}_t||^2)$
- Problem: Can get stuck in local optima, need to initialize well
- Problem: Hessian might not be positive definite

Today's agenda

- Intro to Control & Reinforcement Learning
- Linear Quadratic Regulator (LQR)
- Iterative LQR
- Model Predictive Control
- Learning the dynamics and model-based RL



"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Open loop vs. closed loop

- The instances of LQR and iLQR that we saw were open-loop
- Commands are executed in sequence, without feedback

Open loop vs. closed loop

- The instances of LQR and iLQR that we saw were open-loop
- Commands are executed in sequence, without feedback
- Idea: what if we throw away all commands except the first
- We can execute the first command, and then replan Takes into account the changing state

Model Predictive Control

while True:

observe the current state \mathbf{x}_0

run LQR/iLQR or LQG/iLQG or other planner to get $\mathbf{u}_0, ..., \mathbf{u}_{N-1}$

Execute \mathbf{u}_0

Model Predictive Control

while True:

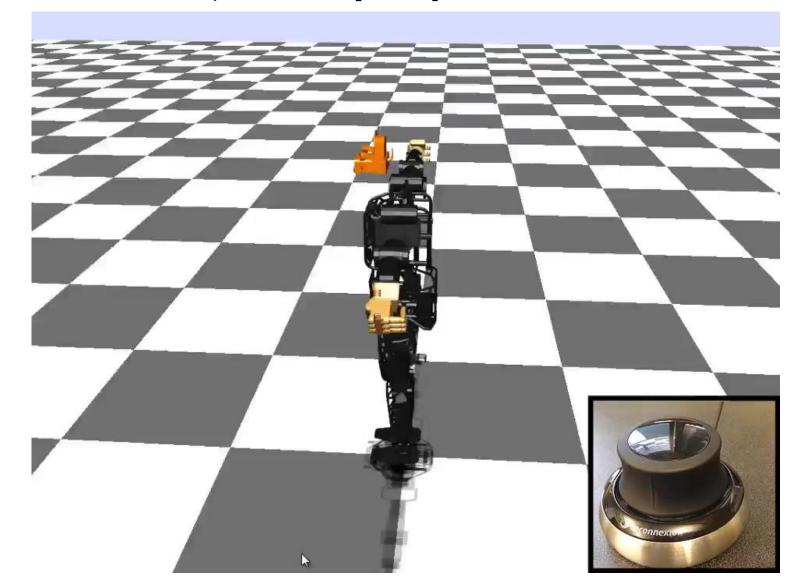
observe the current state \mathbf{x}_0

run LQR/iLQR or LQG/iLQG or other planner to get $\mathbf{u}_0,...,\mathbf{u}_{N-1}$

Execute \mathbf{u}_0

Possible speedups:

- 1. Don't plan too far ahead with LQR
- 2. Execute more than one planned action
- 3. Warm starts and initialization
- 4. Use faster / custom optimizer
 - (e.g. CPLEX, sequential quadratic programming)



Synthesis of Complex Behaviors with Online Trajectory Optimization

Yuval Tassa, Tom Erez & Emo Todorov

IEEE International Conference on Intelligent Robots and Systems 2012

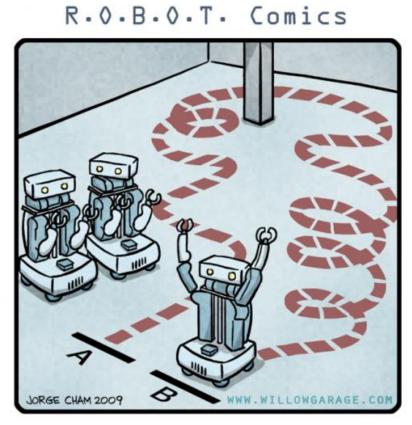
Test 3: Dynamic Maneuvers

ETH zürich

Learning Model Predictive Control for Autonomous Racing

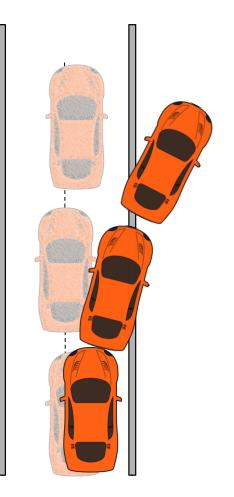
Today's agenda

- Intro to Control & Reinforcement Learning
- Linear Quadratic Regulator (LQR)
- Iterative LQR
- Model Predictive Control
- Learning the dynamics and model-based RL



"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Learning a dynamics model



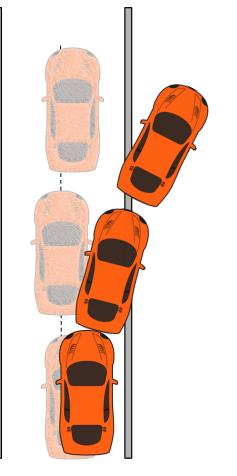
Idea #1: Collect dataset $D = \{(\mathbf{x}_t, \mathbf{u}_t, \mathbf{x}_{t+1})\}$

do supervised learning to minimize $\sum_t ||f_ heta(\mathbf{x}_t,\mathbf{u}_t)-\mathbf{x}_{t+1}||^2$

and then use the learned model for planning

Test distribution is different from training distribution (covariate shift)

Learning a dynamics model



Test distribution is different from training distribution (covariate shift)

Idea #1: Collect dataset $D = \{(\mathbf{x}_t, \mathbf{u}_t, \mathbf{x}_{t+1})\}$

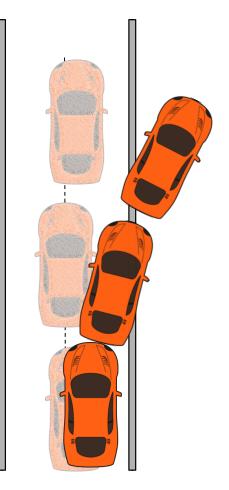
do supervised learning to minimize $\sum_t ||f_{ heta}(\mathbf{x}_t,\mathbf{u}_t)-\mathbf{x}_{t+1}||^2$

and then use the learned model for planning

Possibly a better idea: instead of minimizing single-step prediction errors, minimize multi-step errors.

See "Improving Multi-step Prediction of Learned Time Series Models" by Venkatraman, Hebert, Bagnell

Learning a dynamics model



Test distribution is different from training distribution (covariate shift)

Idea #1: Collect dataset $D = \{(\mathbf{x}_t, \mathbf{u}_t, \mathbf{x}_{t+1})\}$

do supervised learning to minimize $\sum_t ||f_ heta(\mathbf{x}_t,\mathbf{u}_t)-\mathbf{x}_{t+1}||^2$

and then use the learned model for planning

Possibly a better idea: instead of predicting next state predict next change in state.

See "PILCO: A Model-Based and Data-Efficient Approach to Policy Search" by Deisenroth, Rasmussen

Model-based RL

Collect initial dataset $D = \{(\mathbf{x}_t, \mathbf{u}_t, \mathbf{x}_{t+1})\}$

Fit dynamics model $f_{ heta}(\mathbf{x}_t,\mathbf{u}_t)$

Plan through $\ f_{ heta}(\mathbf{x}_t,\mathbf{u}_t)$ to get actions

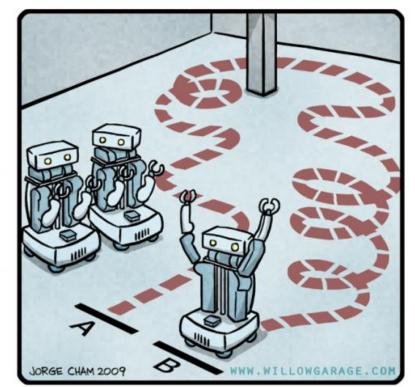
Execute first action, observe new state \mathbf{x}_{t+1}

Append $(\mathbf{x}_t, \mathbf{u}_t, \mathbf{x}_{t+1})$ to D

Today's agenda

- Intro to Control & Reinforcement Learning
- Linear Quadratic Regulator (LQR)
- Iterative LQR
- Model Predictive Control
- Learning the dynamics and model-based RL
- Appendix

R.O.B.O.T. Comics



"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Appendix #1 (optional reading) LQR extensions: time-varying systems

- What can we do when $\mathbf{x}_{t+1} = A_t \mathbf{x}_t + B_t \mathbf{u}_t$ and $c(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{x}_t^T Q \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$?
- Turns out, the proof and the algorithm are almost the same

 $P_0 = Q_N$

// n is the # of steps left

for n = 1...N

$$K_{n} = -(R_{N-n} + B_{N-n}^{T} P_{n-1} B_{N-n})^{-1} B_{N-n}^{T} P_{n-1} A_{N-n}$$

$$P_{n} = Q_{N-n} + K_{n}^{T} R_{N-n} K_{n} + (A_{N-n} + B_{N-n} K_{n})^{T} P_{n-1} (A_{N-n} + B_{N-n} K_{n})$$

Optimal controller for n-step horizon is $\mathbf{u}_n = K_n \mathbf{x}_n$ with cost-to-go $J_n(\mathbf{x}) = \mathbf{x}^T P_n \mathbf{x}$

Appendix #2 (optional reading) Why not use PID control?

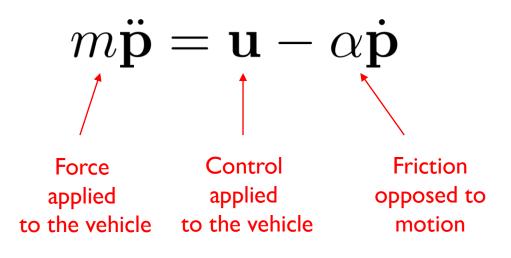
- We could, but:
- The gains for PID are good for a small region of state-space.
 - System reaches a state outside this set \rightarrow becomes unstable
 - PID has no formal guarantees on the size of the set
- We would need to tune PID gains for every control variable.
 - If the state vector has multiple dimensions it becomes harder to tune every control variable in isolation. Need to consider interactions and correlations.
- We would need to tune PID gains for different regions of the state-space and guarantee smooth gain transitions
 - This is called gain scheduling, and it takes a lot of effort and time

Appendix #2 (optional reading) LOR addresses these problems Why not use PID?

- We could, but:
- The gains for PID are good for a small region of state-space.
 - System reaches a state outside this set \rightarrow becomes unstable
 - PID has no formal guarantees on the size of the set
- •We would need to tune PID gains for every control variable.
 - If the state vector has multiple dimensions it becomes harder to tune every control variable in isolation. Need to consider interactions and correlations.
- •We would need to tune PID gains for different regions of the state-space and guarantee smooth gain transitions
 - This is called gain scheduling, and it takes a lot of effort and time

Appendix #3 (optional reading) Examples of models and solutions with LQR

• Similar to double integrator dynamical system, but with friction:



• Similar to double integrator dynamical system, but with friction:

$$m\ddot{\mathbf{p}} = \mathbf{u} - \alpha\dot{\mathbf{p}}$$

• Set $\dot{\mathbf{p}} = \mathbf{v}$ and then you get:

 $m\dot{\mathbf{v}} = \mathbf{u} - \alpha \mathbf{v}$

• Similar to double integrator dynamical system, but with friction:

$$m\ddot{\mathbf{p}} = \mathbf{u} - \alpha\dot{\mathbf{p}}$$

• Set
$$\dot{\mathbf{p}} = \mathbf{v}$$
 and then you get:
 $m\dot{\mathbf{v}} = \mathbf{u} - lpha \mathbf{v}$

• We discretize by setting

$$\frac{\mathbf{p}_{t+1} - \mathbf{p}_t}{\delta t} \simeq \mathbf{v}_t \qquad \qquad m \frac{\mathbf{v}_{t+1} - \mathbf{v}_t}{\delta t} \simeq \mathbf{u}_t - \alpha \mathbf{v}_t$$

$$\frac{\mathbf{p}_{t+1} - \mathbf{p}_t}{\delta t} \simeq \mathbf{v}_t \qquad \qquad m \frac{\mathbf{v}_{t+1} - \mathbf{v}_t}{\delta t} \simeq \mathbf{u}_t - \alpha \mathbf{v}_t$$

• Define the state vector
$$\mathbf{x}_t = \begin{bmatrix} \mathbf{p}_t \\ \mathbf{v}_t \end{bmatrix}$$

Q: How can we express this as a linear system?

$$\frac{\mathbf{p}_{t+1} - \mathbf{p}_t}{\delta t} \simeq \mathbf{v}_t \qquad \qquad m \frac{\mathbf{v}_{t+1} - \mathbf{v}_t}{\delta t} \simeq \mathbf{u}_t - \alpha \mathbf{v}_t$$

• Define the state vector
$$\mathbf{x}_t = \begin{bmatrix} \mathbf{p}_t \\ \mathbf{v}_t \end{bmatrix}$$

$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} \mathbf{p}_t + \delta t \mathbf{v}_t \\ \mathbf{v}_t + \frac{\delta t}{m} \mathbf{u}_t - \frac{\alpha \delta t}{m} \mathbf{v}_t \end{bmatrix} = \begin{bmatrix} \mathbf{p}_t + \delta t \mathbf{v}_t \\ \mathbf{v}_t - \frac{\alpha \delta t}{m} \mathbf{v}_t \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_t$$

$$\frac{\mathbf{p}_{t+1} - \mathbf{p}_t}{\delta t} \simeq \mathbf{v}_t \qquad \qquad m \frac{\mathbf{v}_{t+1} - \mathbf{v}_t}{\delta t} \simeq \mathbf{u}_t - \alpha \mathbf{v}_t$$

• Define the state vector
$$~~ \mathbf{x}_t =$$

$$\mathbf{x}_t = egin{bmatrix} \mathbf{p}_t \ \mathbf{v}_t \end{bmatrix}$$

$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} \mathbf{p}_t + \delta t \mathbf{v}_t \\ \mathbf{v}_t + \frac{\delta t}{m} \mathbf{u}_t - \frac{\alpha \delta t}{m} \mathbf{v}_t \end{bmatrix} = \begin{bmatrix} 1 & 0 & \delta t & 0 \\ 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 - \alpha \delta t/m & 0 \\ 0 & 0 & 0 & 1 - \alpha \delta t/m \end{bmatrix} \mathbf{x}_t + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_t$$

LQR example #1:
omnidirectional vehicle with friction
$$\frac{\mathbf{p}_{t+1} - \mathbf{p}_t}{\delta t} \simeq \mathbf{v}_t \qquad \qquad m \frac{\mathbf{v}_{t+1} - \mathbf{v}_t}{\delta t} \simeq \mathbf{u}_t - \alpha \mathbf{v}_t$$

• Define the state vector

tor
$$\mathbf{x}_t = egin{bmatrix} \mathbf{p}_t \ \mathbf{v}_t \end{bmatrix}$$

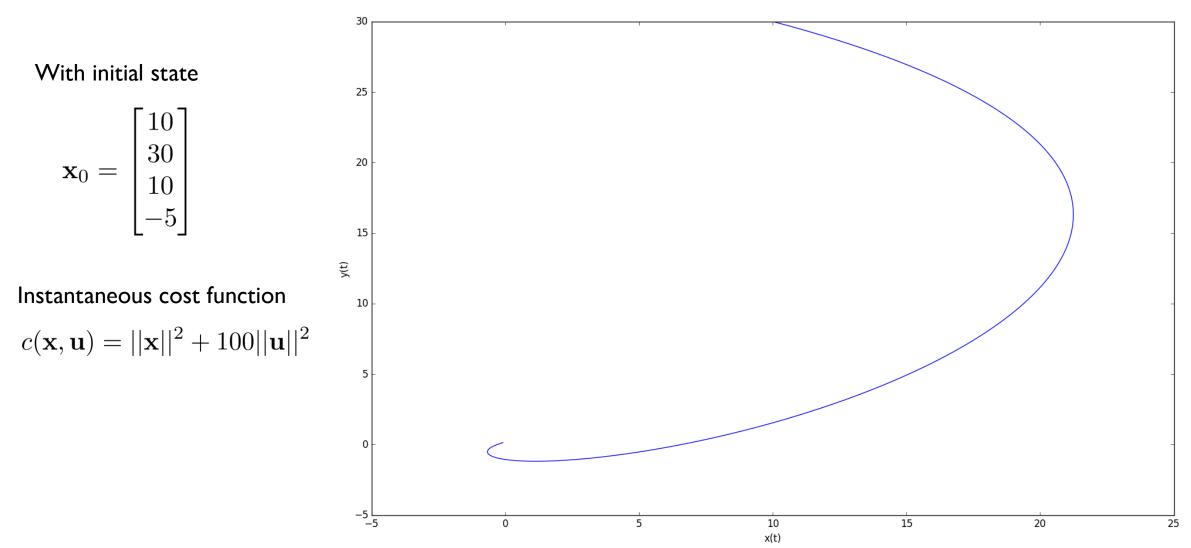
$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} \mathbf{p}_t + \delta t \mathbf{v}_t \\ \mathbf{v}_t + \frac{\delta t}{m} \mathbf{u}_t - \frac{\alpha \delta t}{m} \mathbf{v}_t \end{bmatrix} = \begin{bmatrix} 1 & 0 & \delta t & 0 \\ 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 - \alpha \delta t/m & 0 \\ 0 & 0 & 0 & 1 - \alpha \delta t/m \end{bmatrix} \mathbf{x}_t + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_t$$

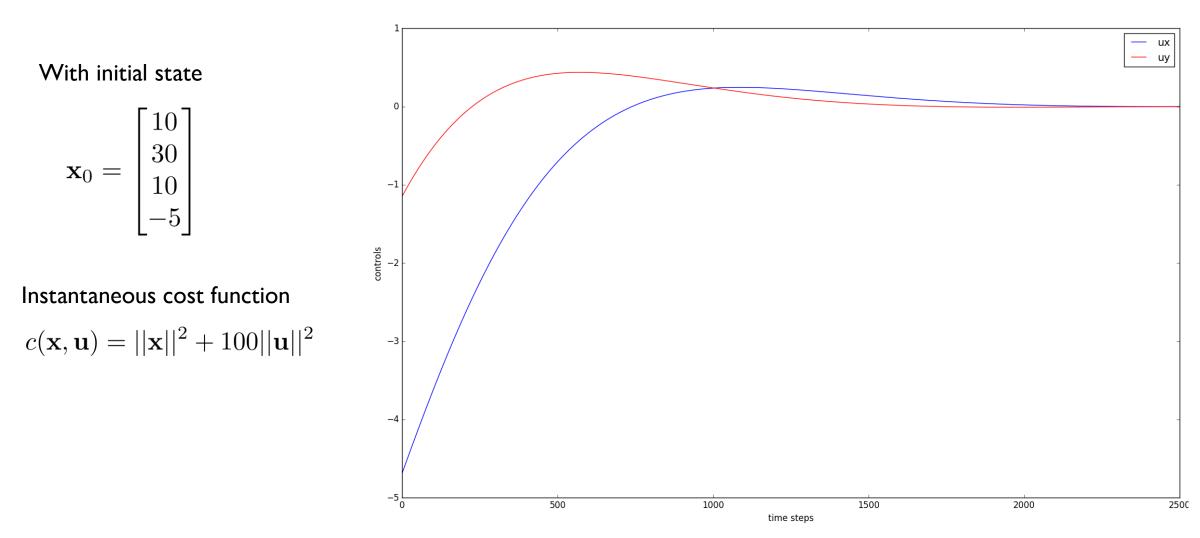
• Define the state vector
$$\mathbf{x}_t = \begin{bmatrix} \mathbf{p}_t \\ \mathbf{v}_t \end{bmatrix}$$

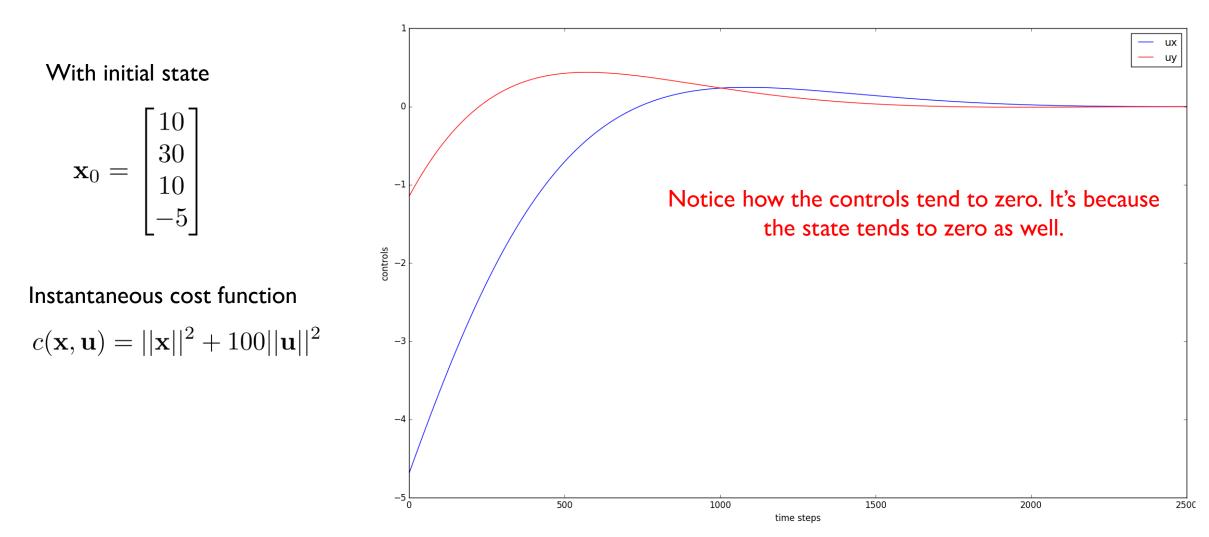
 $\mathbf{A} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} \mathbf{p}_t + \delta t \mathbf{v}_t \\ \mathbf{v}_t + \frac{\delta t}{m} \mathbf{u}_t - \frac{\alpha \delta t}{m} \mathbf{v}_t \end{bmatrix} = \begin{bmatrix} 1 & 0 & \delta t & 0 \\ 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 - \alpha \delta t/m & 0 \\ 0 & 0 & 0 & 1 - \alpha \delta t/m \end{bmatrix} \mathbf{x}_t + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_t$

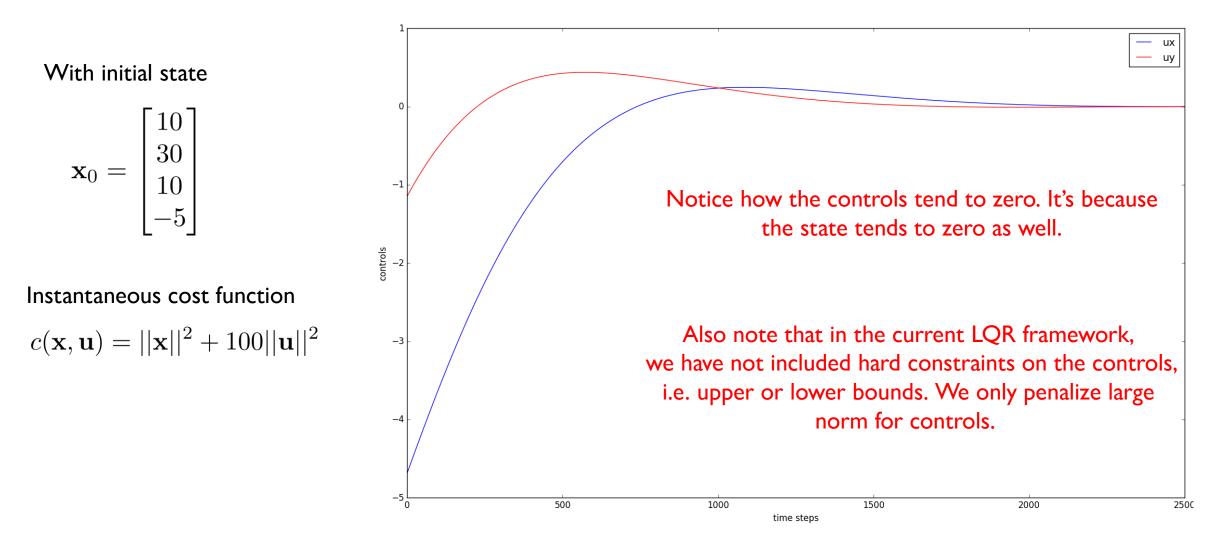
• Define the instantaneous cost function $c(\mathbf{x}, \mathbf{u}) =$

$$\begin{aligned} \mathbf{(x,u)} &= \mathbf{x}^T Q \mathbf{x} + \mathbf{u}^T R \mathbf{u} \\ &= \mathbf{x}^T \mathbf{x} + \rho \mathbf{u}^T \mathbf{u} \\ &= ||\mathbf{x}||^2 + \rho ||\mathbf{u}||^2 \end{aligned}$$







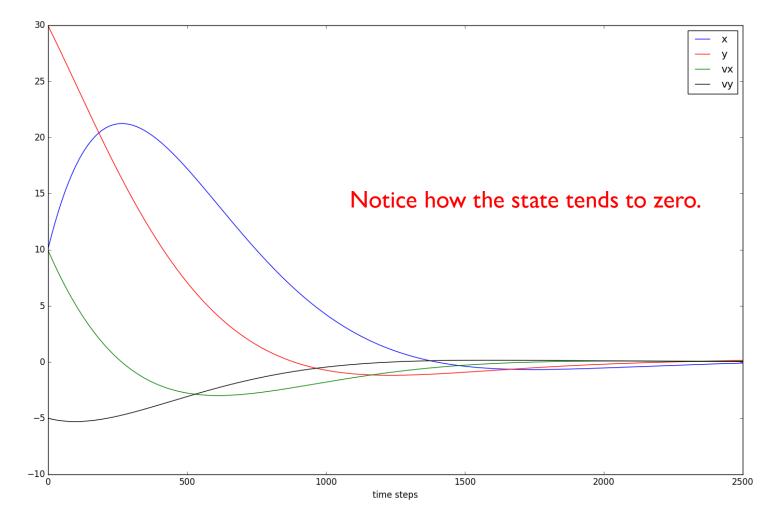


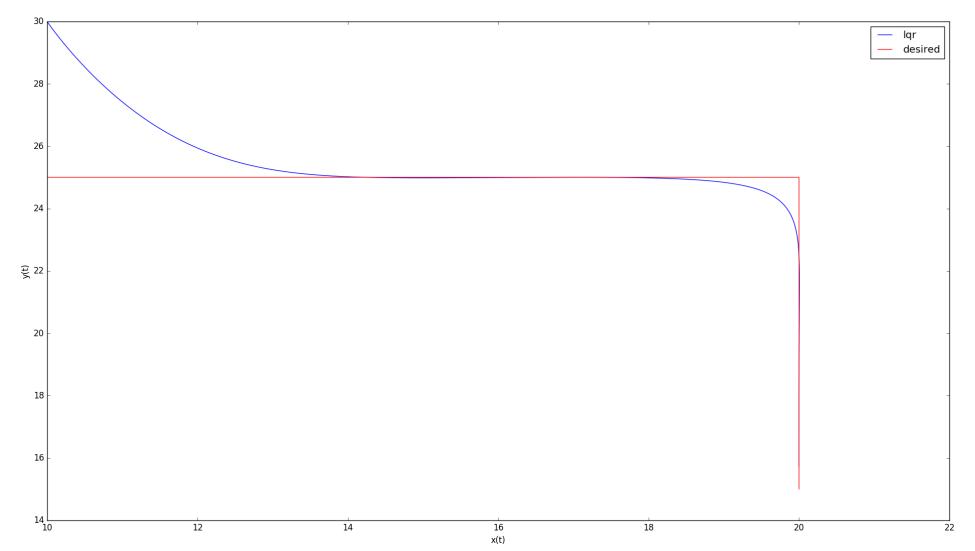
With initial state

 $\mathbf{x}_0 = \begin{bmatrix} 10\\30\\10\\-5 \end{bmatrix}$

Instantaneous cost function

 $c(\mathbf{x}, \mathbf{u}) = ||\mathbf{x}||^2 + 100||\mathbf{u}||^2$





$$\mathbf{A} \qquad \mathbf{B}$$
$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \delta t & 0 \\ 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 - \alpha \delta t/m & 0 \\ 0 & 0 & 0 & 1 - \alpha \delta t/m \end{bmatrix} \mathbf{x}_t + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_t$$

We are given a desired trajectory $\mathbf{p}_0^*, \mathbf{p}_1^*, ..., \mathbf{p}_T^*$

Instantaneous cost $c(\mathbf{x}_t, \mathbf{u}_t) = (\mathbf{p}_t - \mathbf{p}_t^*)^T Q(\mathbf{p}_t - \mathbf{p}_t^*) + \mathbf{u}_t^T R \mathbf{u}_t$

$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \delta t & 0 \\ 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 - \alpha \delta t/m & 0 \\ 0 & 0 & 0 & 1 - \alpha \delta t/m \end{bmatrix} \mathbf{x}_t + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_t$$

Define
$$\bar{\mathbf{x}}_{t+1} = \mathbf{x}_{t+1} - \mathbf{x}_{t+1}^*$$

 $= A\mathbf{x}_t + B\mathbf{u}_t - \mathbf{x}_{t+1}^*$
 $= A\bar{\mathbf{x}}_t + B\mathbf{u}_t - \mathbf{x}_{t+1}^*$
 $= A\bar{\mathbf{x}}_t + B\mathbf{u}_t - \mathbf{x}_{t+1}^* + A\mathbf{x}_t^*$

$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \delta t & 0 \\ 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 - \alpha \delta t/m & 0 \\ 0 & 0 & 0 & 1 - \alpha \delta t/m \end{bmatrix} \mathbf{x}_t + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_t$$

Define
$$\bar{\mathbf{x}}_{t+1} = \mathbf{x}_{t+1} - \mathbf{x}_{t+1}^*$$

 $= A\mathbf{x}_t + B\mathbf{u}_t - \mathbf{x}_{t+1}^*$
 $= A\bar{\mathbf{x}}_t + B\mathbf{u}_t - \mathbf{x}_{t+1}^*$ We want $\bar{\mathbf{x}}_{t+1} = \bar{A}\bar{\mathbf{x}}_t + \bar{B}\mathbf{u}_t$
 $= A\bar{\mathbf{x}}_t + B\mathbf{u}_t - \mathbf{x}_{t+1}^* + A\mathbf{x}_t^*$ Need to get rid of this additive term

LQR example #2: trajectory following for omnidirectional vehicle $\begin{bmatrix} 1 & 0 & \delta t & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix}$

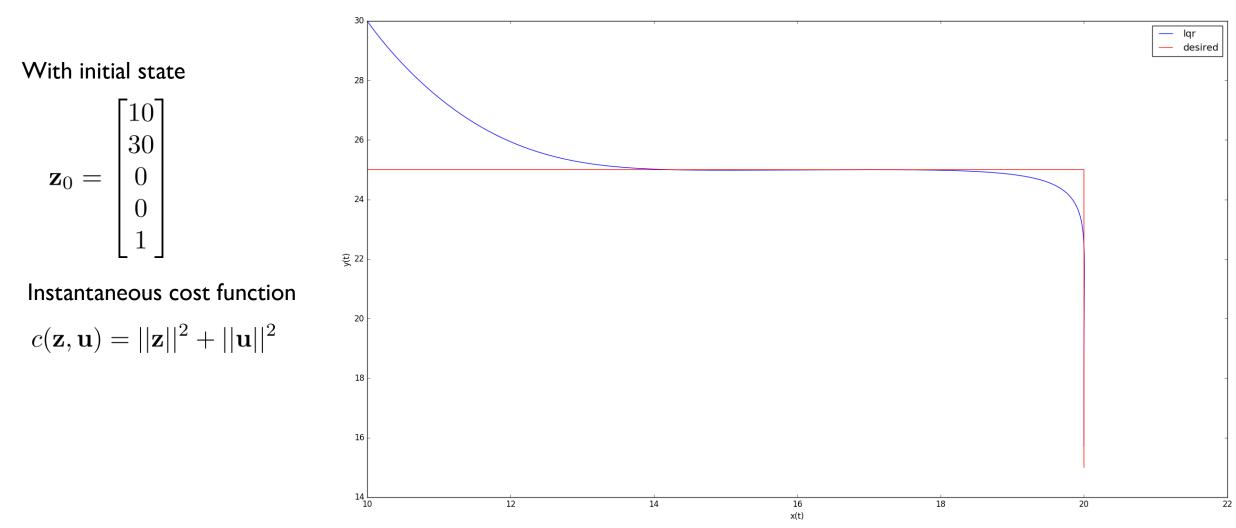
$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 - \alpha \delta t/m & 0 \\ 0 & 0 & 0 & 1 - \alpha \delta t/m \end{bmatrix} \mathbf{x}_t + \begin{bmatrix} 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_t$$

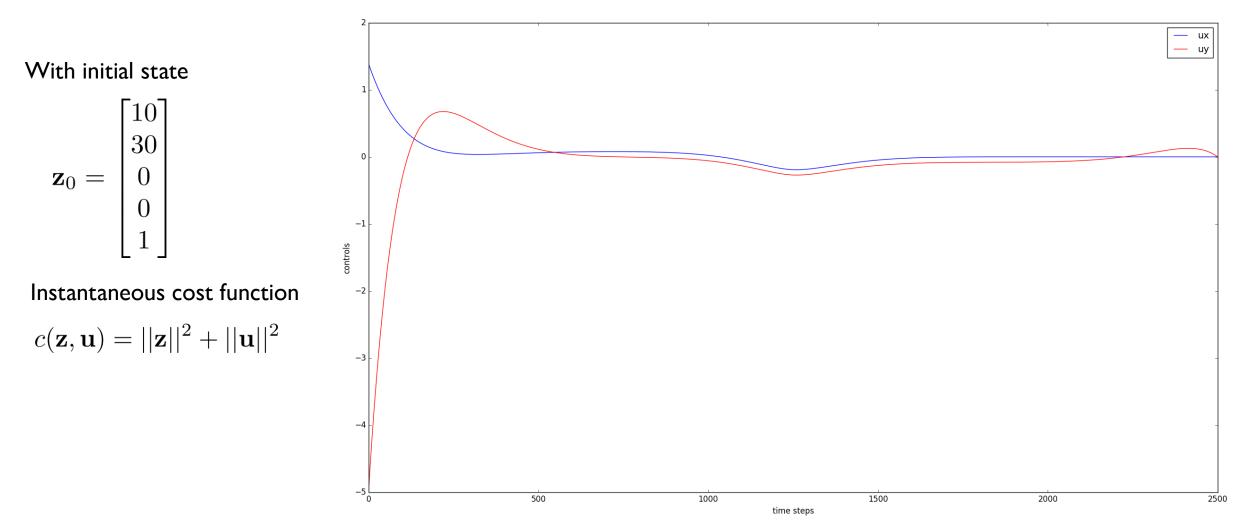
Define $\bar{\mathbf{x}}_{t+1} = \mathbf{x}_{t+1} - \mathbf{x}_{t+1}^*$ We want $\bar{\mathbf{x}}_{t+1} = \bar{A}\bar{\mathbf{x}}_t + \bar{B}\mathbf{u}_t$ $= A\mathbf{x}_t + B\mathbf{u}_t - \mathbf{x}_{t+1}^*$ Need to get rid of this additive term **C** Redefine state: $\mathbf{z}_{t+1} = \begin{bmatrix} \bar{\mathbf{x}}_{t+1} \\ 1 \end{bmatrix} = \begin{bmatrix} A & c \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \bar{\mathbf{x}}_t \\ 1 \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} \mathbf{u}_t = \bar{A}\mathbf{z}_t + \bar{B}\mathbf{u}_t$

LQR example #2: trajectory following for omnidirectional vehicle A B $\begin{bmatrix} 1 & 0 & \delta t & 0 \\ 0 & 1 & \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{p}_{t+1} \\ \mathbf{v}_{t+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \delta t \\ 0 & 0 & 1 - \alpha \delta t/m & 0 \\ 0 & 0 & 0 & 1 - \alpha \delta t/m \end{bmatrix} \mathbf{x}_t + \begin{bmatrix} 0 & 0 \\ \frac{\delta t}{m} & 0 \\ 0 & \frac{\delta t}{m} \end{bmatrix} \mathbf{u}_t$$

Define $\bar{\mathbf{x}}_{t+1} = \mathbf{x}_{t+1} - \mathbf{x}_{t+1}^*$ We want $\bar{\mathbf{x}}_{t+1} = \bar{A}\bar{\mathbf{x}}_t + \bar{B}\mathbf{u}_t$ $= A\mathbf{x}_t + B\mathbf{u}_t - \mathbf{x}_{t+1}^*$ $= A\bar{\mathbf{x}}_t + B\mathbf{u}_t - \mathbf{x}_{t+1}^* + A\mathbf{x}_t^*$ Need to get rid of this additive term Idea: augment the state Redefine state: $\mathbf{z}_{t+1} = \begin{bmatrix} \bar{\mathbf{x}}_{t+1} \\ 1 \end{bmatrix} = \begin{bmatrix} A & c \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \bar{\mathbf{x}}_t \\ 1 \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} \mathbf{u}_t = \bar{A}\mathbf{z}_t + \bar{B}\mathbf{u}_t$ Redefine cost function: $c(\mathbf{z}_t, \mathbf{u}_t) = \mathbf{z}_t^T \bar{Q} \mathbf{z}_t + \mathbf{u}_t^T R \mathbf{u}_t$





Appendix #4 (optional reading) LQR extensions: trajectory following

• You are given a reference trajectory (not just path, but states and times, or states and controls) that needs to be approximated

 $\mathbf{x}_{0}^{*}, \mathbf{x}_{1}^{*}, ..., \mathbf{x}_{N}^{*}$ $\mathbf{u}_{0}^{*}, \mathbf{u}_{1}^{*}, ..., \mathbf{u}_{N}^{*}$

Linearize the nonlinear dynamics $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$ around the reference point $(\mathbf{x}_t^*, \mathbf{u}_t^*)$

$$\mathbf{x}_{t+1} \simeq f(\mathbf{x}_t^*, \mathbf{u}_t^*) + \frac{\partial f}{\partial \mathbf{x}}(\mathbf{x}_t^*, \mathbf{u}_t^*)(\mathbf{x}_t - \mathbf{x}_t^*) + \frac{\partial f}{\partial \mathbf{u}}(\mathbf{x}_t^*, \mathbf{u}_t^*)(\mathbf{u}_t - \mathbf{u}_t^*)$$

 $\begin{aligned} \bar{\mathbf{x}}_{t+1} &\simeq A_t \bar{\mathbf{x}}_t + B_t \bar{\mathbf{u}}_t \\ c(\mathbf{x}_t, \mathbf{u}_t) &= \bar{\mathbf{x}}_t^T Q \bar{\mathbf{x}}_t + \bar{\mathbf{u}}_t^T R \bar{\mathbf{u}}_t \end{aligned} \qquad \begin{array}{l} \bar{\mathbf{x}}_t &= \mathbf{x}_t - \mathbf{x}_t^* \\ \bar{\mathbf{u}}_t &= \mathbf{u}_t - \mathbf{u}_t^* \end{aligned}$

Trajectory following can be implemented as a time-varying LQR approximation. Not always clear if this is the best way though. Appendix #5 (optional reading) LQR with nonlinear dynamics, quadratic cost

What can we do when $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$ but the cost is quadratic $c(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{x}_t^T Q \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$?

We want to stabilize the system around state $x_t = 0$ But with nonlinear dynamics we do not know if $u_t = 0$ will keep the system at the zero state.

What can we do when $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$ but the cost is quadratic $c(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{x}_t^T Q \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$?

We want to stabilize the system around state $x_t = 0$ But with nonlinear dynamics we do not know if $u_t = 0$ will keep the system at the zero state.

 \rightarrow Need to compute \mathbf{u}^* such that $\mathbf{0}_{t+1} = f(\mathbf{0}_t, \mathbf{u}^*)$

What can we do when $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$ but the cost is quadratic $c(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{x}_t^T Q \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$?

We want to stabilize the system around state $x_t = 0$ But with nonlinear dynamics we do not know if $u_t = 0$ will keep the system at the zero state.

 \rightarrow Need to compute \mathbf{u}^* such that $\mathbf{0}_{t+1} = f(\mathbf{0}_t, \mathbf{u}^*)$

What can we do when $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$ but the cost is quadratic $c(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{x}_t^T Q \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$?

We want to stabilize the system around state $x_t = 0$ But with nonlinear dynamics we do not know if $u_t = 0$ will keep the system at the zero state.

 \rightarrow Need to compute \mathbf{u}^* such that $\mathbf{0}_{t+1} = f(\mathbf{0}_t, \mathbf{u}^*)$

Taylor expansion: linearize the nonlinear dynamics around the point $(\mathbf{0}, \mathbf{u}^*)$ $\mathbf{x}_{t+1} \simeq f(\mathbf{0}, \mathbf{u}^*) + \frac{\partial f}{\partial \mathbf{x}}(\mathbf{0}, \mathbf{u}^*)(\mathbf{x}_t - \mathbf{0}) + \frac{\partial f}{\partial \mathbf{u}}(\mathbf{0}, \mathbf{u}^*)(\mathbf{u}_t - \mathbf{u}^*)$

 $\begin{aligned} \mathbf{x}_{t+1} \simeq A \mathbf{x}_t + B(\mathbf{u}_t - \mathbf{u}^*) \\ \text{Solve this via LQR} \end{aligned}$

LQR examples: code to replicate these results

- <u>https://github.com/florianshkurti/comp417.git</u>
- Look under comp417/lqr_examples/python