
CSC2621
Imitation Learning for Robotics

Florian Shkurti

Week 2: Introduction to Optimal Control & Model-Based RL



Today’s agenda

• Intro to Control & Reinforcement Learning

• Linear Quadratic Regulator (LQR)

• Iterative LQR

• Model Predictive Control

• Learning the dynamics and model-based RL 
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What you can do with (variants of) 
LQR control

Pieter Abbeel, Helicopter Aerobatics



LQR: assumptions

• You know the dynamics model of the system

• It is linear:

State at the next time step Control / command / action applied to the system 
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The goal of LQR

• Stabilize the system around state                  with control 

• Then                   and the system will remain at zero forever 

If we want to stabilize around x* then

let x – x* be the state   
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Quadratic state cost:
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from the zero vector 
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Penalizes high control 

signals



LQR: assumptions

• You know the dynamics model of the system

• It is linear:

• There is an instantaneous cost associated with being at state 

and taking the action       :                 

Square matrices Q and R must be positive definite:

i.e. positive cost for ANY nonzero state and control vector
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• Idea: finding controls is an optimization problem

• Compute the control variables that minimize the cumulative cost 

We could solve this as a constrained

nonlinear optimization problem. But,

there is a better way: we can find a 

closed-form solution.



Finite-Horizon LQR

• Idea: finding controls is an optimization problem

• Compute the control variables that minimize the cumulative cost 

Open-loop plan!

Given first state compute 

action sequence



Finding the LQR controller in 
closed-form by recursion

• Let             denote the cumulative cost-to-go starting from state x 
and moving for n time steps.              

• I.e. cumulative future cost from now till n more steps

• is the terminal cost of ending up at state x, with 
no actions left to perform. Recall that 
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• Let             denote the cumulative cost-to-go starting from state x 
and moving for n time steps.              

• I.e. cumulative future cost from now till n more steps

• is the terminal cost of ending up at state x, with 
no actions left to perform. Recall that 

Q: What is the optimal cumulative cost-to-go function with 1 time step left? 
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closed-form by recursion

For notational convenience later on



Finding the LQR controller in 
closed-form by recursion

Bellman Update

Dynamic Programming

Value Iteration

In RL this would be the 

state-action value function



Finding the LQR controller in 
closed-form by recursion

Q: How do we optimize a multivariable function with respect to some 

variables (in our case, the controls)?
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Finding the LQR controller in 
closed-form by recursion

A: Take the partial derivative w.r.t. controls and set it to zero. That will give you a critical point.

Quadratic 

term in u

Quadratic 

term in u
Linear 

term in u
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The minimum is attained at:

Q: Is this matrix invertible? Recall R, Po are positive definite matrices.

is positive definite, so it is invertible
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Finding the LQR controller in 
closed-form by recursion

The minimum is attained at:

So, the optimal control for the last time step is:

Linear controller in terms of the state

We computed the location of the minimum.

Now, plug it back in and compute the 

minimum value



Finding the LQR controller in 
closed-form by recursion

Q: Why is this a big deal?

A: The cost-to-go function remains quadratic after the first recursive step. 



Finding the LQR controller in 
closed-form by recursion

J remains quadratic in x throughout the recursion

…

Time 0

Time N (planning horizon)

…

u remains linear in x throughout 

the recursion



Finite-Horizon LQR: algorithm summary

// n is the # of steps left

for n = 1…N

Optimal control for time t = N – n is       with cost-to-go 

where the states are predicted forward in time according to linear dynamics 
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Finite-Horizon LQR: algorithm summary

// n is the # of steps left

for n = 1…N One pass backward in time:

Matrix gains are precomputed based on the

dynamics and the instantaneous cost

One pass forward in time:

Predict states, compute 

controls and cost-to-go 

Optimal control for time t = N – n is       with cost-to-go 

where the states are predicted forward in time according to linear dynamics 



Finite-Horizon LQR: algorithm summary

// n is the # of steps left

for n = 1…N

Potential problem for states of dimension >> 100:

Matrix inversion is expensive: O(k^2.3)  for the best

known algorithm and O(k^3) for Gaussian Elimination.

Optimal control for time t = N – n is       with cost-to-go 

where the states are predicted forward in time according to linear dynamics 



LQR: general form of dynamics and cost functions

Even though we assumed

we can also accommodate

but the form of the computed controls becomes



LQR with stochastic dynamics

Assume                                                    and

Then the form of the optimal policy is the same as in LQR

No need to change the algorithm, as long as you observe the state at each 

step (closed-loop policy)

zero mean Gaussian



LQR with stochastic dynamics

Assume                                                    and

Then the form of the optimal policy is the same as in LQR

No need to change the algorithm, as long as you observe the state at each 

step (closed-loop policy)

zero mean Gaussian

Linear Quadratic Gaussian
LQG



LQR summary

• Advantages: 

• If system is linear LQR gives the optimal controller that takes the system’s 
state to 0 (or the desired target state, same thing) 

• Drawbacks:



LQR summary

• Advantages: 

• If system is linear LQR gives the optimal controller that takes the system’s 
state to 0 (or the desired target state, same thing) 

• Drawbacks:

• Linear dynamics

• How can you include obstacles or constraints in the specification?

• Not easy to put bounds on control values 



Today’s agenda

• Intro to Control & Reinforcement Learning

• Linear Quadratic Regulator (LQR)

• Iterative LQR

• Model Predictive Control

• Learning the dynamics and model-based RL 



What happens in the general nonlinear case?

Arbitrary differentiable functions c, f 



What happens in the general nonlinear case?

Arbitrary differentiable functions c, f 

Idea: iteratively approximate solution by solving linearized versions of the problem via LQR
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Iterative LQR (iLQR)

Given an initial sequence of states                      and actions 

Linearize dynamics

Taylor expand cost

Use LQR backward pass on the approximate dynamics                      and cost

Do a forward pass to get         and        and update state and action sequence                      and 



Iterative LQR: convergence & tricks 

• New state and action sequence in iLQR is not guaranteed to be close 
to the linearization point (so linear approximation might be bad)

• Trick: try to penalize magnitude of          and

Replace old LQR linearized cost with

• Problem: Can get stuck in local optima, need to initialize well

• Problem: Hessian might not be positive definite    
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Open loop vs. closed loop

• The instances of LQR and iLQR that we saw were open-loop

• Commands are executed in sequence, without feedback

• Idea: what if we throw away all commands except the first

• We can execute the first command, and then replan Takes into account the changing 

state 



Model Predictive Control

while True:

observe the current state

run LQR/iLQR or LQG/iLQG or other planner to get 

Execute 



Model Predictive Control

while True:

observe the current state

run LQR/iLQR or LQG/iLQG or other planner to get 

Execute 

Possible speedups:

1. Don’t plan too far ahead with LQR

2. Execute more than one planned action

3. Warm starts and initialization

4. Use faster / custom optimizer  

(e.g. CPLEX, sequential quadratic programming)
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and then use the learned model for planning



Learning a dynamics model

Test distribution is different 

from training distribution 

(covariate shift)

Idea #1: Collect dataset 

do supervised learning to minimize 

and then use the learned model for planning

Possibly a better idea: instead of minimizing single-step

prediction errors, minimize multi-step errors. 

See “Improving Multi-step Prediction of Learned Time 

Series Models” by Venkatraman, Hebert, Bagnell



Learning a dynamics model

Test distribution is different 

from training distribution 

(covariate shift)

Idea #1: Collect dataset 

do supervised learning to minimize 

and then use the learned model for planning

Possibly a better idea: instead of predicting next state

predict next change in state.

See “PILCO: A Model-Based and Data-Efficient Approach 

to Policy Search” by Deisenroth, Rasmussen



Model-based RL

Collect initial dataset 

Fit dynamics model

Plan through                      to get actions

Execute first action, observe new state

Append                           to
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• Intro to Control & Reinforcement Learning

• Linear Quadratic Regulator (LQR)

• Iterative LQR

• Model Predictive Control

• Learning the dynamics and model-based RL 

• Appendix



Appendix #1 (optional reading) 
LQR extensions: time-varying systems

• What can we do when                                  and                                              ?

• Turns out, the proof and the algorithm are almost the same

// n is the # of steps left

for n = 1…N

Optimal controller for n-step horizon is       with cost-to-go 



Appendix #2 (optional reading)
Why not use PID control?

• We could, but:

• The gains for PID are good for a small region of state-space. 
• System reaches a state outside this set → becomes unstable
• PID has no formal guarantees on the size of the set

• We would need to tune PID gains for every control variable.
• If the state vector has multiple dimensions it becomes harder to tune every control variable 

in isolation. Need to consider interactions and correlations.

• We would need to tune PID gains for different regions of the state-space and 
guarantee smooth gain transitions
• This is called gain scheduling, and it takes a lot of effort and time     



Appendix #2 (optional reading)
Why not use PID?

• We could, but:

• The gains for PID are good for a small region of state-space. 
• System reaches a state outside this set → becomes unstable
• PID has no formal guarantees on the size of the set

• We would need to tune PID gains for every control variable.
• If the state vector has multiple dimensions it becomes harder to tune every control variable 

in isolation. Need to consider interactions and correlations.

• We would need to tune PID gains for different regions of the state-space and 
guarantee smooth gain transitions
• This is called gain scheduling, and it takes a lot of effort and time     

LQR addresses these problems



Appendix #3 (optional reading)
Examples of models and solutions with LQR 



LQR example #1: 
omnidirectional vehicle with friction  

• Similar to double integrator dynamical system, but with friction:

Force 

applied 

to the vehicle

Control 

applied 

to the vehicle

Friction

opposed to

motion
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LQR example #1: 
omnidirectional vehicle with friction  

• Similar to double integrator dynamical system, but with friction:

• Set                and then you get:

• We discretize by setting        



LQR example #1: 
omnidirectional vehicle with friction  

• Define the state vector

Q: How can we express this as a linear system? 
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omnidirectional vehicle with friction  

• Define the state vector

• Define the instantaneous cost function 

A B
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Notice how the controls tend to zero. It’s because
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LQR example #1: 
omnidirectional vehicle with friction 

With initial state

Instantaneous cost function

Notice how the controls tend to zero. It’s because

the state tends to zero as well.

Also note that in the current LQR framework, 

we have not included hard constraints on the controls,

i.e. upper or lower bounds. We only penalize large 

norm for controls.  



LQR example #1: 
omnidirectional vehicle with friction 

With initial state

Instantaneous cost function

Notice how the state tends to zero. 



LQR example #2: 
trajectory following for omnidirectional vehicle



LQR example #2: 
trajectory following for omnidirectional vehicle

A B

We are given a desired trajectory 

Instantaneous cost
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LQR example #2: 
trajectory following for omnidirectional vehicle

A B

Define

Need to get rid of this additive term

Idea: augment the state

Redefine state: 

c

Redefine cost function: 

We want                                    



LQR example #2: 
trajectory following for omnidirectional vehicle

With initial state

Instantaneous cost function



LQR example #2: 
trajectory following for omnidirectional vehicle

With initial state

Instantaneous cost function



Appendix #4 (optional reading)
LQR extensions: trajectory following

• You are given a reference trajectory (not just path, but states and times,

or states and controls) that needs to be approximated

Linearize the nonlinear dynamics                                    around the reference point   

where
Trajectory following can be implemented as

a time-varying LQR approximation. Not 

always clear if this is the best way though.



Appendix #5 (optional reading)
LQR with nonlinear dynamics, quadratic cost 
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LQR variants: 
nonlinear dynamics, quadratic cost

What can we do when                                  but the cost is quadratic                                               ? 

We want to stabilize the system around state

But with nonlinear dynamics we do not know if                 will keep the system at the zero state.       

→ Need to compute        such  that    

Taylor expansion: linearize the nonlinear dynamics around the point   

Solve this via LQR



LQR examples: 
code to replicate these results

• https://github.com/florianshkurti/comp417.git

• Look under comp417/lqr_examples/python

https://github.com/florianshkurti/comp417.git

