
1

Gaussian Process Dynamical Models

for Human Motion

Jack M. Wang, David J. Fleet, Member, IEEE, Aaron Hertzmann

The authors are with the Department of Computer Science at the University of Toronto.

April 26, 2007 DRAFT

Digital Object Indentifier 10.1109/TPAMI.2007.1167 0162-8828/$25.00 © 2007 IEEE

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

1

Abstract

We introduce Gaussian process dynamical models (GPDM) for nonlinear time series analysis, with

applications to learning models of human pose and motion from high-dimensional motion capture data. A

GPDM is a latent variable model. It comprises a low-dimensional latent space with associated dynamics,

and a map from the latent space to an observation space. We marginalize out the model parameters in

closed-form, using Gaussian process priors for both the dynamics and the observation mappings. This

results in a non-parametric model for dynamical systems that accounts for uncertainty in the model.

We demonstrate the approach, and compare four learning algorithms on human motion capture data in

which each pose is 50-dimensional. Despite the use of small data sets, the GPDM learns an effective

representation of the nonlinear dynamics in these spaces.

Index Terms

Machine learning, motion, tracking, animation, stochastic processes, time series analysis.

I. INTRODUCTION

Good statistical models for human motion are important for many applications in vision and

graphics, notably, visual tracking, activity recognition, and computer animation. It is well known

in computer vision that the estimation of 3D human motion from a monocular video sequence

is highly ambiguous. Many recently-reported approaches have relied strongly on training prior

models to constrain inference to plausible poses and motions [1], [2], [3], [4]. Specific activities

could also be classified and recognized by evaluating the likelihood of the observation given

models for multiple activities [5]. In computer animation, instead of having animators specify all

degrees of freedom in a human-like character, the task of animating characters can be simplified

by finding the most likely motion given sparse constraints [6], [7].

One common approach is to learn a probability distribution over the space of possible poses

and motions, parameterized by the joint angles of the body, as well as its global position and

orientation. Such a density function provides a natural measure of plausibility, assigning higher

probabilities to motions that are similar to the training data. The task is challenging due to the

high-dimensionality of human pose data, and to the complexity of the motion. However, poses

from specific activities often lie near a nonlinear manifold with much lower dimensionality

than the number of joint angles. Motivated by this property, a common approach to define the

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

generative model is to decouple the modeling of pose and motion. The motion is modeled by a

dynamical process defined on a lower-dimensional latent space, and the poses are generated by

an observation process from the latent space.

The current literature offers a number of generative models where the dynamics is not directly

observed. Simple models such as hidden Markov models (HMM) and linear dynamical systems

(LDS) are efficient and easily learned, but limited in their expressiveness for complex motions.

More expressive models, such as switching linear dynamical systems (SLDS) and nonlinear

dynamical systems (NLDS), are more difficult to learn, requiring many parameters that need to

be hand-tuned and large amounts of training data.

In this article, we investigate a Bayesian approach to learning NLDS, averaging over model

parameters rather than estimating them. Inspired by the fact that averaging over nonlinear

regression models leads to a Gaussian process (GP) model, we show that integrating over NLDS

parameters can also be performed in closed-form. The resulting Gaussian process dynamical

model (GPDM) is fully defined by a set of low-dimensional representations of the training

data, with both observation and dynamics processes learned from GP regression. As a natural

consequence of GP regression, the GPDM removes the need to select many parameters associated

with function approximators while retaining the power of nonlinear dynamics and observation.

Our approach is directly inspired by the Gaussian process latent variable model (GPLVM)

[8]. The GPLVM models the joint distribution of the observed data and their corresponding

representation in a low-dimensional latent space. It is not, however, a dynamical model; rather,

it assumes that data are generated independently, ignoring temporal structure of the input. Here

we augment the GPLVM with a latent dynamical model, which gives a closed-form expression

for the joint distribution of the observed sequences and their latent space representations. The

incorporation of dynamics not only enables predictions to be made about future data, but also

helps to regularize the latent space for modeling temporal data in general (e.g., see [9]).

The unknowns in the GPDM consist of latent trajectories and hyperparameters. Generally, if

the dynamics process defined by the latent trajectories is smooth, then the models tend to make

good predictions. We first introduce a maximum a posteriori (MAP) algorithm for estimating

all unknowns, and discuss cases where it fails to learn smooth trajectories. Generally, if the

dynamics process defined by the latent trajectories is smooth, then the models tend to make good

predictions. To learn smoother models we also consider three alternative learning algorithms,

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

namely, the balanced GPDM (B-GPDM) [10], manually specifying hyperparameters [11], and

a two-stage MAP approach. These algorithms present trade-offs in efficiency, synthesis quality,

and ability to generalize. We compare learned models based on the visual quality of generated

motion, the learned latent space configuration, and their performance in predicting missing frames

of test data.

II. RELATED WORK

Dynamical modeling and dimensionality reduction are two essential tools for the modeling of

high-dimensional time series data. The latter is often necessary before one can approach density

estimation, while the former captures the temporal dependence in the data.

A. Dimensionality Reduction

Many tasks in statistics and machine learning suffer from the “curse of dimensionality.”

More specifically, the number of samples required to adequately cover a hypervolume increases

exponentially with its dimension. Performance in various algorithms, both in terms of speed and

accuracy, is often improved by first obtaining a low-dimensional representation of the data.

1) Linear Methods: A natural way to achieve dimensionality reduction is to represent the

data in a linear subspace of the observation space. Probabilistic principal components analysis

(PPCA) [12], [13], and factor analysis provide both a basis for the subspace and a probability

distribution in the observation space. They are straightforward to implement and efficient, and are

often effective as a simple preprocessing step before the application of more complex modeling

techniques [14], [15], [16]. For purposes of density estimation, however, PCA is often unsuitable

since many data sets are not well-modelled by a Gaussian distribution. For instance, images of

objects taken over the surface of the viewsphere usually occupy a nonlinear manifold [17], as

does human motion capture data (e.g., see Fig. 3(a)).

2) Geometrically Motivated Manifold Learning: Nonlinear dimensionality reduction tech-

niques allow one to represent data points based on their proximity to each other on nonlinear

manifolds. Locally linear embedding (LLE) [18] and the Laplacian eigenmap algorithm [19]

obtain the embedding by observing that all smooth manifolds are locally linear with respect to

sufficiently small neighbourhoods on the manifold. The Isomap algorithm [20] and its variants

C-Isomap, L-Isomap [21], and ST-Isomap [22] extend multidimensional scaling by ensuring

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

the “dissimilarity” measure between pairs of data correspond to approximate geodesics on the

manifold.

In applications such as data visualization and analysis [23], it is often sufficient to recover

a low-dimensional latent representation of the data without closed-form mappings between the

latent space and observation space. While manifold learning methods can be augmented with such

mappings as a post-process, they do not provide a probability distribution over data. Techniques

such as mixtures-of-Gaussians or the Parzen window method can be used to learn a density

model in the lower dimensional space, but as observed in [6] with human pose data, estimation

of mixture models is prone to overfitting and requires tuning a large number of parameters in

practice. For LLE and Isomap, an additional problem is that they assume the observed data are

densely sampled on the manifold, which is typically not true for human motion data.

3) Nonlinear Latent Variable Models: Nonlinear latent variable models (NLVM) are latent

variable models that are capable of modeling data generated from a nonlinear manifold. NLVM

methods treat the latent coordinates and the nonlinear mapping to observations as parameters in

a generative model, which are typically learned using optimization or Monte Carlo simulation

when needed. Compared to linear models such as PPCA, a lower number of dimensions can be

used in the latent space without compromising reconstruction fidelity.

The Gaussian process latent variable model (GPLVM) [8] is a generalization of probabilistic

PCA that allows for a nonlinear mapping from the latent space to the observation space. The

model estimates the joint density of the data points and their latent coordinates. The estimates

of the latent coordinates are used to represent a learned model, and can be directly used for data

visualization. The GPLVM has the attractive property of generalizing reasonably well from small

data sets in high-dimensional observation spaces [6], [24], and fast approximation algorithms

for sparse GP regression can be used for learning [25], [26].

Except for ST-Isomap, neither manifold learning nor such NLVM methods are designed to

model time series data. For applications in vision and graphics, the training data are typically

video and motion capture sequences, where the frame-to-frame dependencies are important.

Temporal models can also provide a prediction distribution over future data, which is important

for tracking applications.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

B. Dynamical Systems

The modeling of time-series data using dynamical systems is of interest to fields ranging from

control engineering to economics. Given a probabilistic interpretation, state-space dynamical

systems corresponding to the graphical model in Figure 1(a) provide a natural framework for

incorporating dynamics into latent variable models. In Fig. 1(a), xt represents the hidden state

of the system at time t, while yt represents the observed output of the system at time t. A

dynamics function, parameterized by A, and additive process noise govern the evolution of xt.

An observation function, parameterized by B, and measurement noise generate yt. The noise is

assumed to be Gaussian, and the dynamical process is assumed to be Markov. Note that dynamical

systems can also have input signals ut, which are useful for modeling control systems. We focus

on the fully unsupervised case, with no system inputs.

Learning such models typically involves estimating parameters A, B, and the noise covari-

ances, and is often referred to as system identification. In a maximum likelihood (ML) framework,

the parameters (θ) are chosen to maximize

p(y1...N | θ) =

∫
p(y1,...,N ,x1,...,N | θ) dx1,...,N , (1)

as the states, x1...N , are unobserved. The optimization can often be done using the expectation-

maximization (EM) algorithm [27]. Once a system is identified, a probability distribution over

sequences in the observation space is defined.

1) Linear Dynamical Systems: The simplest and most studied type of dynamical model is the

discrete-time linear dynamical system (LDS), where the dynamical and observation functions

are linear. The ML parameters can be computed iteratively using the EM algorithm [28], [29].

As part of the E-step, a Kalman smoother is used to infer the expected values of the hidden

states. LDS parameters can also be estimated outside of a probabilistic framework; subspace

state space system identification (4SID) methods [30] identify the system in closed-form, but

are sub-optimal with respect to ML estimates [31].

While computations in LDS are efficient and are relatively easy to analyze, the model is not

suitable for modeling complex systems such as human motion [32]. By definition, nonlinear

variations in the state space are treated as noise in an LDS model, resulting in overly smoothed

motion during simulation. The linear observation function suffers from the same shortcomings

as linear latent variable models, as discussed in Section II-A.1.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

2) Nonlinear Dynamical Systems: A natural way of increasing the expressiveness of the

model is to turn to nonlinear functions. For example switching linear dynamical systems (SLDS)

augment LDS with switching states to introduce nonlinearity, and appear to be better models for

human motion [32], [33], [34]. Nevertheless, determining the appropriate number of switching

states is challenging and such methods often require large amounts of training data as they

contain many parameters.

Ijspeert et al. [35] propose an approach for modeling dynamics by observing that, in robotic

control applications, the task of motion synthesis is often to make progress towards a goal state.

Since this behavior is naturally exhibited by differential equations with well-defined attractor

states or limit cycles, faster learning and more robust dynamics can be achieved by simply

parameterizing the dynamical model as a differential equation.

The dynamics and observation functions can be modeled directly using nonlinear basis func-

tions. Roweis and Ghahramani [36] use radial basis functions (RBF) to model the nonlinear

functions, and identify the system using an approximate EM algorithm. The distribution over

hidden states cannot be estimated exactly due to the nonlinearity of the system. Instead, extended

Kalman filtering, which approximates the system using locally linear mappings around the current

state, is used in the E-step.

In general, a central difficulty in modeling time series data is in determining a model that can

capture the nonlinearities of the data without overfitting. Linear autoregressive models require

relatively few parameters and allow closed-form analysis, but can only model a limited range

of systems. In contrast, existing nonlinear models can model complex dynamics, but usually

require many training data points to accurately learn models.

C. Applications

Our work is motivated by human motion modeling for video-based people tracking and data-

driven animation. People tracking requires dynamical models in the form of transition densities

in order to specify prediction distributions over new poses at each time instant. Similarly, data-

driven computer animation can benefit from prior distributions over poses and motion.

1) Monocular Human Tracking: Despite the difficulties with linear subspace models men-

tioned above, PCA has been applied to video-based people tracking of humans and other vision

applications [37], [3], [38], [5]. To this end, the typical data representation is the concatenation of

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

the entire trajectory of poses to form a single vector in observation space. The lower dimensional

PCA subspace is then used as the state space. In place of explicit dynamics, a phase parameter

which propagates forward in time can serve as an index to the prior distribution of poses.

Nonlinear dimensionality reduction techniques such as LLE have also been used in the context

of human pose analysis. Elgammal and Lee [1] use LLE to learn activity based manifolds from

silhouette data. They then use nonlinear regression methods to learn mappings from manifolds

back to the silhouette space and to the pose space. Jenkins and Matarić [22] use ST-Isomap to

learn embeddings of multi-activity human motion data and robot teleoperation data. Sminchisescu

and Jepson [4] used spectral embedding techniques to learn an embedding of human motion

capture data. They also learn a mapping back to pose space separately. None of the above

approaches learn a dynamics function explicitly, and no density model is learned in [22]. In

general, learning the embedding, the mappings, and the density function separately is undesirable.

2) Computer Animation: The applications of probabilistic models for animation revolve around

motion synthesis, subject to sparse user constraints. Brand and Hertzmann [15] augment an HMM

with stylistic parameters for style-content separation. Li et al. [7] model human motion using

a two-level statistical model, combining linear dynamics and Markov switching dynamics. A

GPLVM is applied to inverse kinematics by Grochow et al. [6], where ML is used to determine

pose given kinematics constraints.

Non-parametric methods have also been used for motion prediction [39] and animation [40],

[41], [42]. For example, in animation with motion graphs, each frame of motion is treated as a

node in the graph. A similarity measure is assigned to edges in the graph, and can be viewed as

transition probabilities in a first-order Markov process. Motion graphs are designed to be used

with large motion capture databases, and the synthesis of new motions typically amounts to

reordering poses already in the database. An important strength of motion graphs is the ability

to synthesis high quality motions, but the need for a large amount of data is undesirable.

Motion interpolation techniques are designed to create natural looking motions relatively far

from input examples. Typically, a set of interpolation parameters must be either well-defined

(i.e., location of the right hand) or specified by hand (i.e., a number representing emotion)

for each example. A mapping from the parameter space to the pose, or motion space is then

learned using nonlinear regression [43], [44]. Linear interpolation between motion segments using

the spatial-temporal morphable models is possible [45], [46], provided that correspondences

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

(a)

A

B

x1 x2 x3 x4

y1 y2 y3 y4 (b)

X

Y

Fig. 1. Time-series graphical models. (a) Nonlinear latent-variable model for time series. (Hyperparameters ᾱ, β̄ and W are

not shown.) (b) GPDM model. Because the mapping parameters A and B have been marginalized over, all latent coordinates

X = [x1, . . . ,xN]T are jointly correlated, as are all poses Y = [y1, . . . ,yN]T .

can be established between the available segments. More closely related to our work, Mukai

and Kuriyama [43] employ a form of Gaussian process regression to learn the mapping from

interpolation parameters to pose and motion. In particular, one can view the GPLVM and the

GPDM introduced below as interpolation methods with learned interpolation parameters.

III. GAUSSIAN PROCESS DYNAMICS

The Gaussian process dynamical model (GPDM) is a latent variable model. It comprises a

generative mapping from a latent space x to the observation space y, and a dynamical model in

the latent space (Fig. 1). These mappings are in general nonlinear. For human motion modeling,

a vector y in the observation space corresponds to a pose configuration, and a sequence of poses

defines a motion trajectory. The latent dynamical model accounts for the temporal dependence

between poses. The GPDM is obtained by marginalizing out the parameters of the two mappings,

and optimizing the latent coordinates of training data.

More precisely, our goal is to model the probability density of a sequence of vector-valued

states y1, . . . ,yt, . . . ,yN , with discrete-time index t and yt ∈ R
D. As a basic model, consider a

latent variable mapping (3) with first-order Markov dynamics (2):

xt = f(xt−1;A) + nx,t (2)

yt = g(xt;B) + ny,t. (3)

Here, xt ∈ R
d denotes the d-dimensional latent coordinates at time t, f and g are mappings pa-

rameterized by A and B, nx,t and ny,t are zero-mean, isotropic, white Gaussian noise processes.

Fig. 1(a) depicts the graphical model.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

While linear mappings have been used extensively in auto-regressive models, here we consider

the more general nonlinear case for which f and g are linear combinations of (nonlinear) basis

functions:

f(x;A) =
∑

i

ai φi(x) (4)

g(x;B) =
∑

j

bj ψj(x), (5)

for basis functions φi and ψj , with weights A ≡ [a1, a2, . . .]
T and B ≡ [b1,b2, . . .]

T . To fit

this model to training data, one must select an appropriate number of basis functions, and one

must ensure that there is enough data to constrain the shape of each basis function. After the

basis functions are chosen, one might estimate the model parameters, A and B, usually with

an approximate form of EM [36]. From a Bayesian perspective, however, the uncertainty in

the model parameters is significant, and because the specific forms of f and g are incidental,

the parameters should be marginalized out if possible. Indeed, in contrast with previous NLDS

models, the general approach we take in the GPDM is to estimate the latent coordinates while

marginalizing over model parameters.

Each dimension of the latent mapping, g in (5), is a linear function of the columns of B.

Therefore, with an isotropic Gaussian prior on the columns of B, and the Gaussian noise

assumption above, one can show that marginalizing over g can be done in closed form [47],

[48]. In doing so we obtain a Gaussian density over the observations, Y ≡ [y1, . . . ,yN]T , which

can be expressed as a product of Gaussian processes (one for each of the D data dimensions):

p(Y |X, β̄,W)

=
|W|N√

(2π)ND|KY |D
exp

(
−1

2
tr

(
K−1

Y YW2YT
))

, (6)

where KY is a kernel matrix with hyperparameters β̄ that are shared by all observation space

dimensions, and hyperparameters W. The elements of the kernel matrix, KY , are defined by a

kernel function, (KY)ij ≡ kY (xi,xj). For the mapping g, we use the RBF kernel,

kY (x,x′) = exp

(
−β1

2
||x − x′||2

)
+ β−1

2 δx,x′ . (7)

The width of the RBF kernel function is controlled by β−1
1 , and β−1

2 is the variance of the

isotropic additive noise in (3). The ratio of the standard deviation of the data and the additive

noise also provides a signal-to-noise ratio (SNR) [11]; here, SNR(β̄) =
√

β2.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

Following [6], we include D scale parameters, W ≡ diag(w1, . . . , wD), which model the

variance in each observation dimension.1 This is important in many data sets for which different

dimensions do not share the same length scales, or differ significantly in their variability over

time. The use of W in (6) is equivalent to a GP with kernel function kY (x,x′)/w2
m for dimension

m. That is, the hyperparameters {wm}D
m=1 account for the overall scale of the Gaussian processes

in each data dimension. In effect, this assumes that each dimension of the input data should exert

the same influence on the shared kernel hyperparameters, β1 and β2.

The dynamic mapping on the latent coordinates X ≡ [x1, . . . ,xN]T is conceptually similar,

but more subtle.2 As above, one can form the joint density over the latent coordinates and the

dynamics weights, A, in (4). Then, one can marginalize over the weights A to obtain

p(X | ᾱ) =

∫
p(X |A, ᾱ) p(A | ᾱ) dA, (8)

where ᾱ is a vector of kernel hyperparameters. Incorporating the Markov property (2) gives

p(X | ᾱ) = p(x1)

∫ N∏
t=2

p(xt |xt−1,A, ᾱ)p(A | ᾱ) dA. (9)

Finally, with an isotropic Gaussian prior on the columns of A, one can show that (9) reduces to

p(X | ᾱ)

=
p(x1)√

(2π)(N−1)d|KX |d
exp

(
−1

2
tr

(
K−1

X X2:NXT
2:N

))
, (10)

where X2:N = [x2, . . . ,xN]T , and KX is the (N−1) × (N−1) kernel matrix constructed from

X1:N−1 = [x1, . . . ,xN−1]
T . Below we also assume that x1 also has a Gaussian prior.

The dynamic kernel matrix has elements defined by a kernel function, (KX)ij ≡ kX(xi,xj),

for which a linear kernel is a natural choice; i.e.,

kX(x,x′) = α1x
T x′ + α−1

2 δx,x′. (11)

In this case, (10) is the distribution over state trajectories of length N , drawn from a distribution

of auto-regressive models with a preference for stability [49]. While a substantial portion of

1With the addition of the scale parameters, W, the latent variable mapping (3) becomes yt = W−1 (g(xt;B) + ny,t).

2Conceptually, we would like to model each pair (xt,xt+1) as a training pair for regression with g. However, we cannot simply

substitute them directly into the GP model of (6) as this leads to the nonsensical expression p(x2, . . . ,xN |x1, . . . ,xN−1).

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

human motion (as well as many other systems) can be well-modeled by linear dynamical models,

ground contacts introduce nonlinearity [32]. We found that the linear kernel alone is unable to

synthesize good walking motions (e.g., see Fig. 3(h-i)). Therefore, we typically use a “linear +

RBF” kernel:

kX(x,x′) = α1 exp
(
−α2

2
||x − x′||2

)
+ α3x

Tx′ + α−1
4 δx,x′ . (12)

The additional RBF term enables the GPDM to model nonlinear dynamics, while the linear term

allows the system to regress to linear dynamics when predictions are made far from the existing

data. Hyperparameters α1, α2 represent the output scale and the inverse width of the RBF terms,

and α3 represents the output scale of the linear term. Together, they control the relative weighting

between the terms, while α−1
4 represents the variance of the noise term nx,t. The SNR of the

dynamics process is given by SNR(ᾱ) =
√

(α1 + α3)α4.

It should be noted that, due to the marginalization over A, the joint distribution of the latent

coordinates is not Gaussian. One can see this in (10), where latent variables occur both inside

the kernel matrix and outside of it; i.e., the log likelihood is not quadratic in xt. Moreover, the

distribution over state trajectories in a nonlinear dynamical system is in general non-Gaussian.

Following [8], we place uninformative priors on the kernel hyperparameters (p(ᾱ) ∝ ∏
i α

−1
i ,

and p(β̄) ∝ ∏
i β

−1
i). Such priors represent a preference for a small output scale (i.e., small

α1, α3), a large width for the RBFs (i.e., small α2, β1), and large noise variances (i.e., small

α4, β2). We also introduce a prior on the variances wm that comprise the elements of W. In

particular, we use a broad half-normal prior on W; i.e.,

p(W) =

D∏
m=1

2

κ
√

2π
exp

(
−w2

m

2κ2

)
, (13)

where wm > 0, and κ is set to 103 in the experiments below. Such a prior reflects our belief that

every data dimension has a nonzero variance. This prior avoids singularities in the estimation

of the parameters wj (see Alg. 1), and prevents any one data dimension with an anomalously

small variance from dominating the estimation of the remaining kernel parameters.

Taken together, the priors, the latent mapping, and the dynamics define a generative model

for time-series observations (Fig. 1(b)):

p(X,Y, ᾱ, β̄,W)

= p(Y |X, β̄,W) p(X | ᾱ) p(ᾱ) p(β̄) p(W). (14)

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

A. Multiple Sequences

This model extends naturally to multiple sequences Y(1), . . . ,Y(P), with lengths N1, . . . , NP .

Each sequence has associated latent coordinates, X(1), . . . ,X(P), within a shared latent space.

To form the joint likelihood, concatenate all sequences, and proceed as above with (6). A similar

concatenation applies for the latent dynamical model (10), but accounting for the assumption

that the first pose of sequence i is independent of the last pose of sequence i − 1. That is, let

X2:N =
[
X

(1)
2:N1

T
, . . . ,X

(P)
2:NP

T
]T

(15)

X1:N−1 =
[
X

(1)
1:N1−1

T
, . . . ,X

(P)
1:NP−1

T
]T

. (16)

The kernel matrix KX is constructed with rows of X1:N−1 as in (10), and is of size (N−P) ×
(N−P). Finally, we place an isotropic Gaussian prior on the first pose of each sequence.

B. Higher-Order Features

The GPDM can be extended to model higher-order Markov chains, and to model velocity and

acceleration in inputs and outputs. For example, a second-order dynamical model,

xt = f(xt−1,xt−2;A) + nx,t, (17)

can be used to explicitly model dependence on two past frames (or on velocity). Accordingly,

the kernel function will depend on the current and previous latent positions,

kX([xt,xt−1], [xτ ,xτ−1])

= α1 exp
(
−α2

2
||xt − xτ ||2 − α3

2
||xt−1 − xτ−1||2

)

+ α4 xT
t xτ + α5 xT

t−1xτ−1 + α−1
6 δt,τ .

(18)

Similarly, the dynamics can be formulated to predict velocity in the latent space,

vt−1 = f(xt−1;A) + nx,t. (19)

Velocity prediction may be more appropriate for modeling smooth motion trajectories. Using a

first-order Taylor series approximation of position as a function of time, in the neighbourhood

of t − 1, with time-step Δt, we have xt = xt−1 + vt−1Δt. The dynamics likelihood p(X | ᾱ)

can then be written by redefining X2:N = [x2 − x1, . . . ,xN − xN−1]
T /Δt in (10). For a fixed

time-step of Δt = 1, velocity prediction is analogous to using xt−1 as a “mean function” for

predicting xt. Higher-order features have previously been used in GP regression as a way to

reduce the prediction variance [50], [51].

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

C. Conditional GPDM

Thus far we have defined the generative model and formed the posterior distribution (14).

Leaving the discussion of learning algorithms to Section IV, we recall here that the main

motivation for the GPDM is to use it as a prior model of motion. A prior model needs to

evaluate, or predict, whether a new observed motion is likely.

Given the learned model, Γ =
{
Y,X, ᾱ, β̄,W

}
, the distribution over a new sequence Y(∗)

and its associated latent trajectory X(∗) is given by

p(Y(∗),X(∗) |Γ) = p(Y(∗) |X(∗), Γ) p(X(∗) |Γ) (20)

=
p(Y,Y(∗) |X,X(∗), β̄,W)

p(Y |X, β̄,W)

p(X,X(∗) | ᾱ)

p(X | ᾱ)
(21)

∝ p(Y,Y(∗) |X,X(∗), β̄,W) p(X,X(∗) | ᾱ), (22)

where Y(∗) and X(∗) are M×D and M×d matrices respectively. Here, (20) factors the conditional

density into a density over latent trajectories, and a density over poses conditioned on latent

trajectories, which we refer to as the reconstruction and dynamics predictive distributions.

For sampling and optimization applications, we only need to evaluate (20) up to a constant.

In particular, we can form the joint distribution over both new and observed sequences (22) by

following the discussion in Section III-A. The most expensive operation in evaluating (22) is

the inversion of kernel matrices of size (N + M) × (N + M).3 When the number of training

data is large, the computation cost can be reduced by evaluating (20) in terms of pre-computed

block entries to the kernel matrices in (22).

Since the joint distribution over {Y(∗),Y} in (22) is Gaussian, it follows that Y(∗) |Y is also

Gaussian. More specifically, if the reconstruction kernel matrix in (22) is given by

KY,Y (∗) =

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎣ KY

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣ A

⎤
⎥⎥⎥⎦

[
AT

][
B

]

⎤
⎥⎥⎥⎥⎥⎥⎦

, (23)

3The dynamics kernel is only smaller by a constant subtraction.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

where (A)ij = kY (xi,x
(∗)
j) and (B)ij = kY (x

(∗)
i ,x

(∗)
j) are elements of N × M and M × M

kernel matrices respectively, then

p(Y(∗) |X(∗), Γ)

=
|W|M√

(2π)MD|KY (∗)|D exp

(
−1

2
tr

(
K−1

Y (∗)ZY W2ZT
Y

))
, (24)

where ZY = Y(∗) −ATK−1
Y Y and KY (∗) = B−ATK−1

Y A. Here, KY only needs to be inverted

once using the learned model. To evaluate (24) for new sequences, only KY (∗) must be inverted,

which has size M × M , and is not dependent on the size of the training data.

The distribution p(X(∗) |Γ) = p(X,X(∗) | ᾱ)
p(X | ᾱ)

is not Gaussian, but, by simplifying the quotient on

the right hand side, an expression similar to (24) can be obtained. As above, if the dynamics

kernel matrix in (22) is given by

KX,X(∗) =

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎣ KX

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣ C

⎤
⎥⎥⎥⎦

[
CT

][
D

]

⎤
⎥⎥⎥⎥⎥⎥⎦

, (25)

where (C)ij = kX(xi,x
(∗)
j) and (D)ij = kX(x

(∗)
i ,x

(∗)
j) are elements of (N − P)× (M − 1) and

(M − 1) × (M − 1) kernel matrices respectively, then

p(X(∗) |Γ)

=
p(x

(∗)
1)√

(2π)(M−1)d|KX(∗)|d
exp

(
−1

2
tr

(
K−1

X(∗)ZXZT
X

))
, (26)

where ZX = X
(∗)
2:N −CT K−1

X X2:N and KX(∗) = D−CT K−1
X C. The matrices X2:N and X

(∗)
2:N are

described in Section III-A. As with KY above, KX only need to be inverted once. Also similar

to KY (∗) , the complexity of inverting KX(∗) does not depend on the size of the training data.

IV. GPDM LEARNING

Learning the GPDM from measured data Y entails using numerical optimization to estimate

some or all of the unknowns in the model {X, ᾱ, β̄,W}. A model gives rise to a distribution over

new poses and their latent coordinates (20). We expect modes in this distribution to correspond

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

15

Fig. 2. The skeleton used in our experiments is a simplified version of the default skeleton in the CMU mocap database. The

numbers in parentheses indicate the number of DOFs for the joint directly above the labeled body node in the kinematic tree.

to motions similar to the training data and their latent coordinates. In the following sections, we

evaluate the models based on examining random samples drawn from the the models, and the

models’ performance in filling in missing frames. We find that models with visually smooth latent

trajectories X not only better match our intuitions, but also achieve better quantitative results.

However, care must be taken in designing the optimization method, including the objective

function itself. We discuss four options: MAP, B-GPDM [10], hand-tuning ᾱ [11], and two-

stage MAP in this section.

The data used for all experiments are human motion capture data from the CMU motion

capture database. As shown in Fig. 2, we use a simplified skeleton where each pose is defined

by 44 Euler angles for joints, 3 global (torso) pose angles, and 3 global (torso) translational

velocities.4 The data are mean-subtracted, but otherwise we do not apply preprocessing such as

time synchronization or time warping.

A. MAP Estimation

A natural learning algorithm for the GPDM is to minimize the joint negative log-posterior of

the unknowns, − ln p(X, ᾱ, β̄,W |Y), that is given, up to an additive constant, by

L = LY + LX +
∑

j

ln βj +
1

2κ2
tr

(
W2

)
+

∑
j

ln αj , (27)

4For each frame, the global velocity is set to the difference between the next and the current frame. Velocity for the last frame

is copied from the second to last frame.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

16

where

LY =
D

2
ln |KY | + 1

2
tr

(
K−1

Y YW2YT
) − N ln |W| (28)

LX =
d

2
ln |KX | + 1

2
tr

(
K−1

X X2:NXT
2:N

)
+

1

2
xT

1 x1. (29)

As described in Alg. 1, we alternate between minimizing L with respect to W in closed form5,

and with respect to
{
X, ᾱ, β̄

}
using scaled conjugate gradient (SCG). The latent coordinates are

initialized using a subspace projection onto the first d principal directions given by PCA applied

to mean-subtracted data Y. In our experiments, we fix the number of outer loop iterations as

I = 100 and the number of SCG iterations per outer loop as J = 10.

Figure 3 shows a GPDM on a 3D latent space, learned using MAP estimation. The training

data comprised two gait cycles of a person walking. The initial coordinates provided by PCA are

shown in Fig. 3(a). Fig. 3(c) shows the MAP latent space. Note that the GPDM is significantly

smoother than a 3D GPLVM (i.e., without dynamics), shown in Fig. 3(b).

Figure 5(b) shows a GPDM latent space learned from walking data of four different walkers.

In contrast to the model learned with a single walker in Fig. 3, the latent trajectories here are not

smooth. There are small clusters of latent positions separated by large jumps in the latent space.

While such models produce good reconstructions from latent positions close to the training data,

they often produce poor dynamical predictions. For example, neither the sample trajectories show

in Fig. 5(d) nor the reconstructed poses in Fig. 10(a) resemble the training data particularly well.

B. Balanced GPDM

Since the LX term in MAP estimation penalizes unsmooth trajectories, one way to encourage

smoothness is to increase the weight on LX during optimization. Urtasun et al. [10] suggest

replacing LX in (27) with D
d
LX , thereby “balancing” the objective function based on the ratio

between dimensions of data and latent spaces (D
d

). Learned from the same data as that in Fig.

5(b), Fig. 6(a) shows a model learned using the balanced GPDM (B-GPDM). It is clear that the

latent model is now much smoother. Furthermore, random samples drawn from the model yield

5The update for wk shown in Alg. 1 is a MAP estimate, given the current values of
˘
X, ᾱ, β̄

¯
. It is bounded by κ

√
N ,

which is due to our choice of prior on W (13). Note that a prior of p(wk) ∝ w−1
k would not regularize the estimation of wk

since its MAP estimate then becomes undefined when dT K−1
Y d = 0.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

17

Algorithm 1 MAP estimation of
{
X, ᾱ, β̄,W

}
Require: Data Y. Integers {d, I, J} .

Initialize X with PCA on Y with d dimensions.

Initialize ᾱ ⇐ (0.9, 1, 0.1, e), β̄ ⇐ (1, 1, e), {wk} ⇐ 1.

for i = 1 to I do

for j = 1 to D do

d ⇐
[
(Y)1j , . . . , (Y)Nj

]T

w2
j ⇐ N

(
dT K−1

Y d + 1
κ2

)−1

end for{
X, ᾱ, β̄

} ⇐ optimize (27) w.r.t.
{
X, ᾱ, β̄

}
using SCG for J iterations.

end for

better walking simulations, and it has proved to be successful as a prior for 3D people tracking

[52], [10]. Though simple and effective, the weighting constant in the B-GPDM does not have

a valid probabilistic interpretation, however, similar variations on time-series analysis have been

used successfully in speech recognition with HMMs [53], [54].

C. Manually Specified Hyperparameters

The B-GPDM manipulates the objective function to favour smooth latent trajectories. A more

principled way of achieving this is by ensuring that p(X | ᾱ) represents a strong preference for

smooth trajectories, which can be achieved by selecting ᾱ by hand instead of optimizing for

it. One way to select a suitable ᾱ is to examine samples from p(X | ᾱ) [11]. If a sufficiently

strong prior is selected, models with smooth trajectories can be learned. Figure 7(a) shows a

four-walker model learned with such a smoothness prior. We set ᾱ = [0.009, 0.2, 0.001, 1e6]T

inspired by observations from [11].6 It is conceivable that a better choice of ᾱ could give a very

different set of latent trajectories, and better results in our experiments.

D. Two-Stage MAP Estimation

6Note, the model in [11] used velocity prediction (cf. Section III-B), and an RBF kernel (rather than linear + RBF).

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

18

Algorithm 2 MAP estimation of
{
ᾱ, β̄,W

}
using MCEM

Require: Data matrix Y. Integers {d, R, I, J, K}.

Initialize ᾱ ⇐ (0.9, 1, 0.1, e), β̄ ⇐ (1, 1, e), {wk} ⇐ 1.

for i = 1 to I do

Generate {X(r)}R
r=1 ∼ p(X |Y, ᾱ, β̄,W) using hybrid Monte Carlo sampling.

Construct {K(r)
Y ,K

(r)
X }R

r=1 from {X(r)}R
r=1.

for j = 1 to J do

for k = 1 to D do

d ⇐ [(Y)1k
, . . . , (Y)

Nk
]T

w2
k ⇐ N

(
dT

(
1
R

∑R

r=1

(
K

(r)
Y

)−1
)

d + 1
κ2

)−1

end for{
ᾱ, β̄

} ⇐ minimize (31) w.r.t.
{
ᾱ, β̄

}
using SCG for K iterations.

end for

end for

Both the B-GPDM and hand-tuning ᾱ are practical ways to encourage smoothness. However,

MAP learning is still prone to overfitting in high-dimensional spaces.7 When we seek a MAP

estimate, we are looking to approximate the posterior distribution with a delta function. Here, as

there are clearly a multiplicity of posterior modes, the estimate may not represent a significant

proportion of the posterior probability mass [47]. To avoid this problem, we could aim to find a

mode of the posterior that effectively represents a significant proportion of local probability mass.

In effect this amounts to minimizing the expected loss with respect to different loss functions

(cf. [55]).

Toward this end, we consider a two-stage algorithm for estimating unknowns in the model:

first, estimate the hyperparameters Θ = {ᾱ, β̄,W} with respect an unknown distribution of latent

trajectories X, and then estimate X while holding Θ fixed. Because X comprises the vast majority

of the unknown model parameters, by marginalizing over X and therefore taking its uncertainty

into account while estimating Θ, we are finding a solution that is more representative of the

7We’re optimizing in a space with dimension over N × d since there is one latent point for every training pose.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

19

posterior distribution on average. This is also motivated by the fact that parameter estimation

algorithms for NLDS typically account for uncertainty in the latent space [36]. Thus, in the first

step, we find an estimate of Θ that maximizes p(Y |Θ) =
∫

p(Y,X |Θ)dX. The optimization

is approximated using a variant of EM [27], [56] called Monte Carlo EM (MCEM) [57].

In the E-step of the ith iteration, we compute the expected complete negative log likelihood8

− ln p(Y,X |Θ) under p(X|Y, Θi), the posterior given the current estimate of hyperparameters,

LE(Θ) = −
∫

X

p(X |Y, Θi) ln p(Y,X |Θ)dX. (30)

In the M-step, we seek a set of hyperparameters Θi+1, that minimizes LE . In MCEM, we

numerically approximate (30) by sampling from p(X|Y, Θi) using hybrid Monte Carlo (HMC)

[47]:9

LE(Θ) ≈ − 1

R

R∑
r=1

ln p(Y,X(r) |Θ), (31)

where {X(r)}R
r=1 ∼ p(X|Y, Θi). The derivative with respect to the hyperparameters is given by

∂LE

∂Θ
≈ − 1

R

R∑
r=1

∂

∂Θ
ln p(Y,X(r) |Θ). (32)

The approximations are simply sums of the derivatives of the complete log likelihood, which

we used for optimizing (14). Algorithm 2 describes the estimation in pseudocode. We set R =

50, I = 10, J = 10, K = 10 in our experiments.

In the second stage, we maximize ln p(X, Θ |Y) with respect to X using SCG. The resulting

trajectories estimated by two-stage MAP on walking data are shown in Fig. 8(a). In contrast

with previous methods, data from the four walking subjects are placed in separate parts of the

latent space. On the golf swings data set (Fig. 9(a)), smoother trajectories are learned compared

to the MAP model in Figure 4(a).

V. EVALUATION OF LEARNED MODELS

The computational bottleneck for the learning algorithms above is the inversion of the kernel

matrices, which is necessary to evaluate the likelihood function and its gradient. Learning using

8In practice, we compute the expected value of the log of (14), which is regularized by the priors on the hyperparameters.

9We initialize the sampler using SCG to find a mode in p(X|Y,Θi), and 50 samples in total are returned to compute the

expectation. We use 10 burn-in samples, take 100 steps per trajectory, and the step size is adjusted so that an acceptance rate

of 0.6 to 0.95 is achieved on the first 25 samples.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

20

MAP estimation, the B-GPDM, and fixed hyperparameters ᾱ, requires approximately 6000

inversions of the kernel matrices, given our specified number of iterations. These algorithms

take approximately 500 seconds for a data set of 289 frames. The two-stage MAP algorithm is

more expensive to run, as both the generation of samples in the E-step and the averaging of

samples in the M-step require evaluation of the likelihood function. The experiments below used

approximately 400,000 inversions, taking about 9 hours for the same data set of 289 frames. Note

that our implementation is written in Matlab, with no attempts made to optimize performance,

nor is sparsification exploited (e.g., see [25]).

In the rest of this section, we discuss visualizations and comparisons of GPDM models. We

first consider visualization methods on a single-walker model and golf swing models learned

using MAP and two-stage MAP, then we discuss the failure of MAP in learning a four-walker

model. Finally, we compare four-walker models learned using the different methods above. The

comparison is based on visually examining samples from the distribution over new motions, and

errors in the task of filling in missing frames of data.

A. Single-Walker Model

Figure 3 shows 3D latent models learned from data comprising two walk cycles from a single

subject.10 In all experiments here we use a 3D latent space. Learning with more than three latent

dimensions significantly increases the number of latent coordinates to be estimated. Conversely, in

two dimensions the latent trajectories often intersect which makes learning difficult. In particular,

GPs are function mappings, providing one prediction for each latent position. Accordingly,

learned 2D GPDMs often contain large “jumps” in latent trajectories as the optimization breaks

the trajectory to avoid nearby positions requiring inconsistent temporal predictions.

Figure 3(b) shows a 3D GPLVM (i.e., without dynamics) learned from walking data. Note that,

without the dynamical model, the latent trajectories are not smooth; there are several locations

where consecutive poses in the walking sequence are relatively far apart in the latent space.

In contrast, Fig. 3(c) shows that the GPDM produces a much smoother configuration of latent

positions. Here the GPDM arranges the latent positions roughly in the shape of a saddle.

10CMU database file 07 01.amc, frames 1 to 260, down-sampled by a factor of 2.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

21

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Models learned from a walking sequence comprising two gait cycles. The PCA initializations (a), latent coordinates

learned with a GPLVM (b) and GPDM (c) are shown in blue. Vectors depict the temporal sequence. (d) − ln variance for

reconstruction shows positions in latent space that are reconstructed with high confidence. (e) Random trajectories drawn from

the dynamic predictive distribution using hybrid Monte Carlo are green, the red trajectory is the mean-prediction sample. (f)

Longer random trajectories drawn from the dynamics predictive distribution. (g-i) − ln variance for reconstruction, random

trajectories, and longer random trajectories created in the same fashion as (d-f), using a model learned with the linear dynamics

kernel. Note that the samples do not follow the training data closely, and longer trajectories are attracted to the origin.

Figure 3(d) shows a volume visualization of the value ln p
(
x(∗),y(∗) = μY (x(∗)) |Γ)

, where

μY (x(∗)) is the mean of the Gaussian process for pose reconstruction [47], as a function of the

latent space position x(∗); i.e.,

μY (x) = YTK−1
Y kY (x) (33)

σ2
Y (x) = kY (x,x) − kY (x)TK−1

Y kY (x). (34)

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

22

The prediction variance is σ2
Y (x). The colour in the figure depicts the variance of the recon-

structions; i.e., it is proportional to − ln σ2
Y (x). This plot depicts the confidence with which the

model reconstructs a pose as a function of latent position x. The GPDM reconstructs the pose

with high confidence in a “tube” around the region occupied by the training data.

To further illustrate the dynamical process, we can draw samples from the dynamic predictive

distribution. As noted above, because we marginalize over the dynamic weights A, the resulting

density over latent trajectories is non-Gaussian. In particular, it cannot factored into a sequence

of low-order Markov transitions (Fig. 1(a)). Hence, one cannot properly draw samples from the

model in a causal fashion, one state at a time from a transition density, p(x
(∗)
t |x(∗)

t−1).

Instead, we draw fair samples of entire trajectories using a Markov chain Monte Carlo sampler.

The Markov chain was initialized with what we call a mean-prediction sequence, generated from

x
(∗)
1 by simulating the dynamical process one frame at a time. That is, the density over x

(∗)
t

conditioned on x
(∗)
t−1 is Gaussian:

x
(∗)
t ∼ N (μX(x

(∗)
t−1); σ

2
X(x

(∗)
t−1)I) (35)

μX(x) = XT
2:NK−1

X kX(x) (36)

σ2
X(x) = kX(x,x) − kX(x)TK−1

X kX(x), (37)

where kX(x) is a vector containing kX(x,xi) in the i-th entry and xi is the ith training vector. At

each step of mean-prediction, we set the latent position to be the mean latent position conditioned

on the previous step: x
(∗)
t = μX(x

(∗)
t−1).

Given an initial mean-prediction sequence, a Markov chain with several hundred samples is

generated using hybrid Monte Carlo (HMC).11 Figure 3(e) shows 23 fair samples from the latent

dynamics of the GPDM. All samples are conditioned on the same initial state, x
(∗)
1 , and each

has a length of 62 time steps (i.e., drawn from p(X
(∗)
2:62 |x(∗)

1 , Γ)). The length was chosen to be

just less than a full gait cycle for ease of visualization. The resulting trajectories are smooth and

roughly follow the trajectories of the training sequences. The variance in latent position tends

to grow larger when the latent trajectories corresponding to the training data are farther apart,

and toward the end of the simulated trajectory.

11We allow for 40 burn-in samples, and set the HMC parameters to obtain a rejection rate of about 20%.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

23

(a) (b) (c) (d)

Fig. 4. Models learned from four golf swings from the same golfer. The latent coordinates learned with a GPLVM (a) and

GPDM (b) are shown in blue. Vectors depict the temporal sequence. (c) − ln variance for reconstruction shows positions in

latent space that are reconstructed with high confidence. (d) Random trajectories drawn from the dynamic predictive distribution

using hybrid Monte Carlo are green, the red trajectory is the mean of the samples.

It is also of interest to see samples generated that are much longer than a gait cycle. Figure

3(f) shows one sample from an HMC sampler that is approximately four cycles in length. Notice

that longer trajectories are also smooth, generating what look much like limit cycles in this case.

To see why this process generates motions that look smooth and consistent, note that the variance

of pose x
(∗)
t+1 is determined in part by σ2

X(x
(∗)
t). This variance will be lower when x

(∗)
t is nearer

to other samples in the training data or the new sequence. As a consequence, the likelihood of

x
(∗)
t+1 can be increased by moving x

(∗)
t closer to latent positions of other poses in the model.

Figure 3(g-i) show a GPDM with only a linear term in the dynamics kernel (12). Here the

dynamical model is not as expressive, and there is more process noise. Hence random samples

from the dynamics do not follow the training data closely (Fig. 3(h)). The longer trajectories in

Fig. 3(i) are attracted towards the origin.

B. Golf Swing Model

The GPDM can be applied to both cyclic motions (like walking above) and acyclic motions.

Fig. 4 shows a GPDM learned from four swings of a golf club, all by the same subject.12 Figures

4(a) and 4(b) show a 3D GPLVM and a 3D GPDM on the same golf data. The swings all contain

periods of high acceleration; consequently, the spacing between points in latent space are more

12CMU database files 64 01.amc, frames 120 to 400; 64 02.amc, frames 170 to 420; 64 03.amc, frames 100 to 350; 64 04.amc,

frames 80 to 315; all down-sampled by a factor of 4.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

24

TABLE I

KERNEL PROPERTIES FOR FOUR-WALKER MODELS

MAP B-GPDM Fixed α Two-stage MAP

SNR(ᾱ) 6.47 940 100 18.0

CLS(ᾱ) 0.32 1.44 2.24 0.75

SNR(β̄) 34.0 5.23 9.32 45.0

CLS(β̄) 0.54 0.77 1.43 1.34

(a) (b) (c) (d)

Fig. 5. Models learned from walking sequences from four different subjects. The latent coordinates learned with a GPLVM (a)

and GPDM (b) are shown in blue. (c) − ln variance plot shows clumpy high confidence regions. (d) Samples from the dynamic

predictive distribution are shown in green, while the mean-prediction sample is shown in red. The samples do not stay close to

the training data.

varied compared to the single walker data. While the GPLVM latent space contains an abrupt

jump near the bottom of the figure, the GPDM is much smoother. Figure 4(c) shows the volume

visualization, and 4(d) shows samples drawn from the dynamics predictive distribution.

While the GPDM learned with MAP estimation is better behaved than the GPLVM, an even

smoother model can be learned using two-stage MAP. For example, Fig. 9(a,b) shows the GPDM

learned with two-stage MAP. Random samples from its predictive dynamical model, shown in

Fig. 9(c), nicely follow the training data and produce animations that are of visually higher

quality than samples from the MAP model in Fig. 4(d).

C. Four-Walker Models

The MAP learning algorithm produces good models for the the single walker and the golf

swings data. However, as discussed above, this is not the case with model learned with four

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

25

(a) (b) (c)

Fig. 6. B-GPDM models learned from walking sequences from three different subjects. (a) The learned latent coordinates

shown in blue. (b) − ln variance plot shows smooth high confidence regions, but the variance near data is larger than in Figure

5(c). (c) Samples from the dynamic predictive distribution are shown in green, while the mean-prediction sample is shown in

red.

(a) (b) (c)

Fig. 7. Models learned with fixed ᾱ from three different walking subjects. (a) The learned latent coordinates shown in blue.

(b) − ln variance plot shows smooth high confidence regions, but the variance near data is larger than in Fig. 5(c), similar to

B-GPDM. (c) Typical samples from the dynamic predictive distribution are shown in green, while the mean-prediction sample

is shown in red.

walkers (Fig. 5(b)).13 In contrast to the GPDM learned for the single walk data (Fig. 3), the

latent positions for the training poses in the four-walker GPDM consist of small clumps of points

connected by large jumps. The regions with high reconstruction certainty are similarly clumped

(Fig. 5(c)); only in the vicinity of these clumps is pose reconstructed reliably. Also note that the

latent positions estimated for the GPDM are very similar to those estimated by the GPLVM on

the same dataset (Fig. 5(a)). This suggests that the dynamical term in the objective function (27)

is overwhelmed by the data reconstruction term during learning, and therefore has a negligible

impact on the resulting model.

13CMU database files 35 02.amc, frames 55 to 338; 10 04.amc, frames 222 to 499; 12 01.amc, frames 22 to 328; 16 15.amc,

frames 62 to 342; all down-sampled by a factor of 4.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

26

(a) (b) (c)

Fig. 8. Models learned with two-stage MAP from four different walking subjects. (a) The learned latent coordinates shown in

blue, note the walkers are separated into distinct portions of the latent space. (b) − ln variance plot shows smooth high confidence

regions, and the variance near data is similar to Fig. 5(c). (c) Typical samples from the dynamic predictive distribution are shown

in green, while the mean-prediction sample is shown in red.

(a) (b) (c)

Fig. 9. Models learned with two-stage MAP from four golf swings from the same golfer. (a) The learned latent coordinates

shown in blue. (b) − ln variance for reconstruction shows positions in latent space that are reconstructed with high confidence.

(c) Random trajectories drawn from the dynamic predictive distribution using hybrid Monte Carlo are green, the red trajectory

is the mean-prediction sample. The distribution is conditioned on starting from the beginning of a golf swing.

To better understand this GPDM, it is instructive to examine the estimated kernel hyperparame-

ters. Following [11], Table V-C shows the signal-to-noise ratio (SNR) and the characteristic length

scale (CLS) of the kernels. The SNR depends largely on the variance of the additive process

noise. The CLS is defined as square root of the inverse RBF width, that is CLS(β̄) = α−0.5
2

and CLS(ᾱ) = β−0.5
1 . The CLS is directly related to the smoothness of the mapping [11], [47].

Table V-C reveals that dynamical hyperparameters ᾱ for the four-walker GPDM has both a low

SNR and a low CLS. Not surprisingly, random trajectories the dynamical model (see Fig. 5(d))

show larger variability than any of the other three models shown. The trajectories do not stay

close to regions of high reconstruction certainty, and therefore yield poor pose reconstructions

and unrealistic walking motions; in particular, note the feet locations in the fourth pose from

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

27

(a) (b)

Fig. 10. Walks synthesized by taking the mean of the predictive distribution, conditioned on a starting point in latent space. (a)

The walk produced by the MAP model is unrealistic, and does not resemble the training data. (b) High-quality walk produced

by a model learned using two-stage MAP.

(a) (b)

Fig. 11. Six walks synthesized by sampling from the predictive distribution, conditioned on a starting point in latent space.

(a) Walks generated from B-GPDM. (b) Walks generated from a two-stage MAP model; note the difference in variance.

the left in Fig. 10(a).

Figure 6 shows the balanced GPDM (B-GPDM) learned from the four-walker data. Note that

the learned trajectories are smooth and poses are not clumped. Sample trajectories from the

model dynamics stay close to the training data (Fig. 6(c)). On the other hand, Fig. 6(b) shows

that the B-GPDM exhibits higher reconstruction uncertainty near the training data (as compared

to Fig. 5(c)). The emphasis on smoothness when learning the B-GPDM yields hyperparameters

that give small variance to dynamical predictions, but large variance in pose reconstruction

predictions. For example, in Table V-C note that the dynamics kernel ᾱ has a high SNR of

940, while the SNR of reconstruction kernel β̄ is only 5.23. Because of the high reconstruction

variance, fair pose samples from the B-GPDM (20) are noisy and do not resemble realistic

walks (see Fig. 11(a)). Nevertheless, unlike the MAP model, mean motions produced from the

B-GPDM from different starting states usually correspond high-quality walking motions.

Figure 7 shows how a model learned with fixed hyperparameters ᾱ (Section IV-C) also

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

28

produces smooth learned trajectories. The samples from the dynamics predictive distribution

(see Fig. 7(c)) have low variance, staying close to the training data. Like the B-GPDM, the

pose reconstructions have high variance (Fig. 7(b)). One can also infer this from the low SNR

of 9.32 for the reconstruction kernel β̄. Hence, like the B-GPDM, sample poses from random

trajectories are noisy.

Figure 8 shows a model learned using two-stage MAP (Section IV-D). The latent trajectories

are smooth, but not as smooth as those in Fig. 6 and 7. Notably, the walk cycles from the four

subjects are separated in the latent space. Random samples from the latent dynamical model

tend to stay near the training data (Fig. 8(c)), like the other smooth models.

In contrast to other smooth models, the hyperparameters β̄ for the two-stage MAP model have

a higher SNR of 45.0. One can see this with the reconstruction uncertainty near training data

in Fig. 8(b)). On the other hand, the SNR for the dynamics kernel parameters ᾱ is 18.0, lower

than those those for the B-GPDM and the model learned with fixed ᾱ, but higher than that for

the MAP model. Random samples generated from this model (e.g., Fig. 11(b)) have smaller

variance and produce realistic walking motions.

We should stress here that the placement of the latent trajectories is not strictly a property

of the learning algorithm. The B-GPDM, for example, does sometimes produce separate walk

cycles when applied to other data sets [52]. We have observed the same behavior when ᾱ are

fixed at various settings to encourage smoothness. Conversely, the two-stage MAP model learned

on the golf swing data does not separate the swings in the latent space (Fig. 9). One conclusion

that can be made about the algorithms is on the smoothness of the individual trajectories. For

the same data sets, models learned from MAP tend to have the least smooth trajectories, while

models learned from B-GPDM and fixed ᾱ tend to produce the smoothest trajectories. Models

learned from two-stage MAP are somewhere in-between.

D. Missing Data

To further examine the models, we consider the task of filling in missing frames of new data

using the four-walker models. We take 50 frames of new data, remove 31 frames in the middle,

and attempt to recover the missing frames by optimizing (22).14 We set y(∗) = μY

(
x(∗)

)
for the

14The observed data roughly correspond to 1.5 cycles, of which nearly 1 cycle was missing.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

29

TABLE II

MISSING FRAMES RMS ERRORS

MAP B-GPDM Fix. α T. MAP KNN-15 Spline

35-03 58.06 12.15 16.32 20.74 17.88 62.98

12-02 48.51 37.06 30.95 26.60 33.99 67.35

16-21 72.28 32.87 73.46 53.13 47.26 100.10

12-03 57.46 40.40 26.00 23.16 30.89 64.27

07-01 84.16 65.38 42.41 68.69 75.28 90.83

07-02 85.58 64.47 56.70 64.43 65.93 93.45

08-01 87.77 70.05 114.86 72.61 90.57 139.75

08-02 97.15 72.11 102.12 90.80 83.14 128.01

AVG. 73.87 49.31 57.85 52.52 55.62 93.34

missing frames.

Table II compares the RMS error per frame of each of the learned models, the result of

optimizing a K-nearest neighbour (KNN) least squares objective function on eight test sets,15

as well as direct cubic spline interpolation in the pose space. Each error is an average of 12

experiments on different windows of missing frames (i.e., missing frames 5-35, 6-36, ... , 16-46).

None of the test data were used for training, however the first four rows in Table II are test

motions from the same subjects as were used to learn the models. The last four rows in Table

II are for test motions of new subjects.

Other than spline interpolation, the unsmooth model learned from MAP performed the worst

on average. As expected, test results on subjects whose motions were used to learn the models

show significantly smaller errors than for test motions from subjects not seen in the training set.

None of the models consistently perform well in the latter case.

The B-GPDM achieved the best average error with relatively small variability across sequences.

One possible explanation is that models with high variance in the reconstruction process, such as

the B-GPDM, do a better job at constraining poses far from the training data. This is consistent

with results from related work that it can be used as a prior for human tracking[10], where

observations are typically distinct from the training data.

Nevertheless, the visual quality of the animations do not necessarily correspond to the RMS

15We tried K = [3, 6, 9, 15, 20], with 15 giving the lowest average error.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

30

error values. The two-stage MAP model tends to fill in missing data by pulling the corresponding

latent coordinates close to one of the training walk cycles. Consequently, the resulting animation

contains noticeable “jumps” when transitioning from observed test frames to missing test frames,

especially for subjects not seen in the training set. Both the B-GPDM and models learned with

fixed ᾱ rely more on the smoothness of the latent trajectories to fill in the missing frames in

latent space. As a result, the transitions from observed to missing frames tend to be smoother in

the animation. For subjects not seen in the training set, the models with hand-specified ᾱ tend

to place all of the test data (both observed and missing) far from them training data in latent

space. This amounts to filling in missing frames only using newly observed frames, which does

not have enough information to produce high quality walks. Severe footskate is observed even

in cases with small RMS errors (such as on data set 07-01).

VI. DISCUSSION AND EXTENSIONS

We have presented the Gaussian process dynamical model, a non-parametric model for high-

dimensional dynamical systems that accounts for uncertainty in the model parameters. The model

is applied to 50-dimensional motion capture data, and four learning algorithms are investigated.

We showed that high-quality motions can be synthesized from the model without postprocessing,

as long as the learned latent trajectories are reasonably smooth. The model defines a density

function over new motions, which can be used to predict missing frames.

The smoothness of the latent trajectories and the corresponding inverse variance plots tell us

a lot about the quality of the learned models. With the single walker data set for example, if the

learned latent coordinates define a low-variance tube around the data, then new poses along the

walk cycle (in phases not in the training data) can be reconstructed. This is not true if the latent

space contains clumps of low-variance regions associated with an unsmooth trajectory. One of

the main contributions of the GPDM is the ability to incorporate a soft smoothness constraint

on the latent space for the family of GPLVMs.

In addition to the smoothness, the placement of latent trajectories is also informative. When

trajectories are placed far apart in the latent space with no low-variance region between them,

little or no structure between the trajectories is learned. That is not unreasonable, however, as

observed in related work [58], the intra-trajectory distance between poses is often much smaller

than the inter-trajectory distance. That is, it may well better reflect the data. The GPDM does not

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

31

explicitly constrain the placement of individual trajectories, and incorporating prior knowledge

to enable the modeling of inter-trajectory structure is an interesting area of future work. One

potential approach is adapting a mixture of GPs [59] to the latent variable model framework.

Performance is a major issue in applying GP methods to larger datasets. Previous approaches

prune uninformative vectors from the training data [8]. This is not straightforward when learning

a GPDM, however, because each timestep is highly correlated with the steps before and after it.

For example, if we hold xt fixed during optimization, then it is unlikely that the optimizer will

make much adjustment to xt+1 or xt−1. The use of higher-order features provides a possible

solution to this problem. Specifically, consider a dynamical model of the form vt = f(xt−1,vt−1).

Since adjacent time-steps are related only by the velocity vt ≈ (xt − xt−1)/Δt, we can handle

irregularly-sampled data points by adjusting the timestep Δt, possibly using a different Δt at

each step. Another intriguing approach for speeding up the GPDM learning is through the use

of pseudo-inputs [25], [60], [26].

A number of further extensions to the GPDM are possible. It would be straightforward to

include an input signal ut in the dynamics f(xt,ut), which could potentially be incorporated

into existing frameworks for GPs in reinforcement learning as a tool for model identification of

system dynamics [61]. The use of a latent space in the GPDM may be particularly relevant for

continuous problems with high-dimensional state-action spaces.

It would also be interesting to improve the MCEM algorithm used for two-stage MAP. The

algorithm currently used is only a crude approximation and does not utilize samples efficiently.

Methods such as ascent-based MCEM [62] can potentially be used to speed up the two-stage

learning algorithm.

For applications in animation, animator constraints could be specified in pose space to syn-

thesize entire motion sequences by constrained optimization. Such a system would be a general-

ization of the interactive posing application presented by Grochow et al. [6]. However the speed

of the optimization would certainly be an issue, due to the dimensionality of the state space.

A more general direction of future work is the learning and inference of motion models from

long, highly variable motion sequences such as a dance score. A latent variable representation of

such sequences must contain a variety of loops and branches, which the current GPDM cannot

learn regardless of performance issues. Modeling branching in latent space requires taking non-

Gaussian process noise into account in the dynamics. Alternatively, one could imagine building

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

32

a hierarchical model, where a GPDM is learned on segment(s) of motion and connected through

a higher level Markov model [7].

ACKNOWLEDGMENTS

An earlier version of this work appeared in [63]. The authors would like to thank Neil Lawrence

for his comments on the manuscript, as well as his publicly available GPLVM code. JMW would

like to thank Ryan Schmidt for assisting in producing the supplemental video. The volume

rendering figures were generated using Joe Conti’s code on www.mathworks.com. This project

is funded in part by the Alfred P. Sloan Foundation, Canadian Institute for Advanced Research,

Canada Foundation for Innovation, Microsoft Research, NSERC Canada, and Ontario Ministry

of Research and Innovation. The data used in this project was obtained from mocap.cs.cmu.edu.

The database was created with funding from NSF EIA-0196217.

REFERENCES

[1] A. Elgammal and C.-S. Lee, “Inferring 3D body pose from silhouettes using activity manifold learning.” in Proc. IEEE

CVPR’04, vol. 2, Washington, DC, June/July 2004, pp. 681–688.

[2] N. R. Howe, M. E. Leventon, and W. T. Freeman, “Bayesian reconstruction of 3D human motion from single-camera

video.” in Adv. Neural Info. Proc. Sys. 12. The MIT Press, 2000, pp. 820–826, Proc. NIPS’99.

[3] H. Sidenbladh, M. J. Black, and D. J. Fleet, “Stochastic tracking of 3D human figures using 2D image motion,” in Comput.

Vis. – ECCV’00. Springer, 2000, vol. 2, pp. 702–718.

[4] C. Sminchisescu and A. D. Jepson, “Generative modeling for continuous non-linearly embedded visual inference.” in Proc.

ICML’04, Banff, Canada, July 2004, pp. 759–766.

[5] Y. Yacoob and M. J. Black, “Parameterized modeling and recognition of activities.” Comput. Vis. Image Understanding,

vol. 73, no. 2, pp. 232–247, Feb. 1999.

[6] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popović, “Style-based inverse kinematics,” ACM Trans. Graph., vol. 23,

no. 3, pp. 522–531, Aug. 2004, Proc. SIGGRAPH.

[7] Y. Li, T. Wang, and H.-Y. Shum, “Motion texture: A two-level statistical model for character motion synthesis,” ACM

Trans. Graph., vol. 21, no. 3, pp. 465–472, July 2002, Proc. SIGGRAPH.

[8] N. D. Lawrence, “Probabilistic non-linear principal component analysis with Gaussian process latent variable models,” J.

Machine Learning Res., vol. 6, pp. 1783–1816, Nov. 2005.

[9] A. Rahimi, B. Recht, and T. Darrell, “Learning appearance manifolds from video.” in Proc. IEEE CVPR’05, vol. 1, San

Diego, CA, June 2005, pp. 868–875.

[10] R. Urtasun, D. J. Fleet, and P. Fua, “3D people tracking with Gaussian process dynamical models.” in Proc. IEEE CVPR’06,

vol. 1, New York, NY, June 2006, pp. 238–245.

[11] N. D. Lawrence, “The Gaussian process latent variable model.” Department of Computer Science, University of Sheffield,

Tech. Rep. CS-06-03, Jan. 2006.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

33

[12] S. T. Roweis, “EM algorithms for PCA and SPCA.” in Adv. Neural Info. Proc. Sys. 10. The MIT Press, 1998, pp.

626–632, Proc. NIPS’97.

[13] M. E. Tipping and C. M. Bishop, “Probabilistic principal component analysis,” J. Roy. Stat. Soc. B, vol. 61, no. 3, pp.

611–622, 1999.

[14] R. Bowden, “Learning statistical models of human motion.” in Proc. IEEE Workshop on Human Modeling, Analysis and

Synthesis, Hilton Head Island, SC, June 2000, pp. 10–17.

[15] M. Brand and A. Hertzmann, “Style machines,” in Proc. ACM SIGGRAPH’00, New Orleans, LA, July 2000, pp. 183–192.

[16] L. Molina-Tanco and A. Hilton, “Realistic synthesis of novel human movements from a database of motion capture

examples.” in Proc. HUMO’00, Austin, TX, Dec. 2000, pp. 137–142.

[17] H. Murase and S. Nayar, “Visual learning and recognition of 3D objects from appearance,” Int. J. Comput. Vis., vol. 14,

no. 1, pp. 5–24, Jan. 1995.

[18] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science, vol. 290, pp.

2323–2326, December 2000.

[19] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation.” Neural Comput.,

vol. 15, no. 6, pp. 1373–1396, June 2003.

[20] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction,”

Science, vol. 290, pp. 2319–2323, 2000.

[21] V. de Silva and J. B. Tenenbaum, “Global versus local methods in nonlinear dimensionality reduction.” in Adv. Neural

Info. Proc. Sys. 15. The MIT Press, 2003, pp. 705–712, Proc. NIPS’02.

[22] O. C. Jenkins and M. J. Matarić, “A spatio-temporal extension to Isomap nonlinear dimension reduction.” in Proc. ICML’04,

Banff, Canada, July 2004, pp. 441–448.

[23] R. Pless, “Image spaces and video trajectories: Using Isomap to explore video sequences.” in Proc. IEEE ICCV’03, vol. 2,

Nice, France, Oct. 2003, pp. 1433–1440.

[24] R. Urtasun, D. J. Fleet, A. Hertzmann, and P. Fua, “Priors for people tracking from small training sets.” in Proc. IEEE

ICCV’05, vol. 1, Beijing, China, Oct. 2005, pp. 403–410.

[25] N. D. Lawrence, “Learning for larger datasets with the Gaussian process latent variable model.” in Proc. AISTATS’07, San

Juan, Puerto Rico, Mar. 2007.

[26] E. Snelson and Z. Ghahramani, “Sparse Gaussian processes using pseudo-inputs.” in Adv. Neural Info. Proc. Sys. 18. The

MIT Press, 2006, pp. 1257–1264, Proc. NIPS’05.

[27] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J.

Roy. Stat. Soc. B, vol. 39, no. 1, pp. 1–38, 1977.

[28] Z. Ghahramani and G. E. Hinton, “Parameter estimation for linear dynamical systems,” Department of Computer Science,

University of Toronto, Tech. Rep. CRG-TR-96-2, Feb. 1996.

[29] R. H. Shumway and D. S. Stoffer, “An approach to time series smoothing and forecasting using the EM algorithm,” J.

Time Series Anal., vol. 3, no. 4, pp. 253–264, 1982.

[30] P. Van Overschee and B. De Moor, “N4SID : Subspace algorithms for the identification of combined deterministic-stochastic

systems,” Automatica, vol. 30, no. 1, pp. 75–93, Jan. 1994.

[31] G. A. Smith and A. J. Robinson, “A comparison between the EM and subspace identification algorithms for time-invariant

linear dynamical systems.” Cambridge University Engineering Department, Tech. Rep. CUED/F-INFENG/TR.345, Nov.

2000.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

34

[32] A. Bissacco, “Modeling and learning contact dynamics in human motion.” in Proc. IEEE CVPR’05, vol. 1, San Diego,

CA, June 2005, pp. 421–428.

[33] S. M. Oh, J. M. Rehg, T. R. Balch, and F. Dellaert, “Learning and inference in parametric switching linear dynamical

systems.” in Proc. IEEE ICCV’05, vol. 2, Beijing, China, Oct. 2005, pp. 1161–1168.

[34] V. Pavlović, J. M. Rehg, and J. MacCormick, “Learning switching linear models of human motion.” in Adv. Neural Info.

Proc. Sys. 13. The MIT Press, 2001, pp. 981–987, Proc. NIPS’00.

[35] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes for learning motor primitives.” in Adv. Neural

Info. Proc. Sys. 15. The MIT Press, 2002, pp. 1523–1530, Proc. NIPS’01.

[36] S. T. Roweis and Z. Ghahramani, “Learning nonlinear dynamical systems using the expectation-maximization algorithm.”

in Kalman Filtering and Neural Networks. Wiley, 2001, pp. 175–220.

[37] D. Ormoneit, H. Sidenbladh, M. J. Black, and T. Hastie, “Learning and tracking cyclic human motion.” in Adv. Neural

Info. Proc. Sys. 13. The MIT Press, 2001, pp. 894–900, Proc. NIPS’00.

[38] R. Urtasun, D. J. Fleet, and P. Fua, “Temporal motion models for monocular and multiview 3D human body tracking,”

Comput. Vis. Image Understanding, vol. 104, no. 2, pp. 157–177, Nov. 2006.

[39] H. Sidenbladh, M. J. Black, and L. Sigal, “Implicit probabilistic models of human motion for synthesis and tracking.” in

Comput. Vis. – ECCV’02. Springer, 2002, vol. 2, pp. 784–800.

[40] O. Arikan and D. A. Forsyth, “Interactive motion generation from examples,” ACM Trans. Graph., vol. 21, no. 3, pp.

483–490, July 2002, Proc. SIGGRAPH.

[41] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” ACM Trans. Graph., vol. 21, no. 3, pp. 473–482, July 2002, Proc.

SIGGRAPH.

[42] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard, “Interactive control of avatars animated with human

motion data,” ACM Trans. Graph., vol. 21, no. 3, pp. 491–500, July 2002, Proc. SIGGRAPH.

[43] T. Mukai and S. Kuriyama, “Geostatistical motion interpolation,” ACM Trans. Graph., vol. 24, no. 3, pp. 1062–1070, July

2005, Proc. SIGGRAPH.

[44] C. Rose, M. Cohen, and B. Bodenheimer, “Verbs and adverbs: Multidimensional motion interpolation.” IEEE Comput.

Graph. Appl., vol. 18, no. 5, pp. 32–40, Sept./Oct. 1998.

[45] M. A. Giese and T. Poggio, “Morphable models for the analysis and synthesis of complex motion patterns,” Int. J. Comput.

Vis., vol. 38, no. 1, pp. 59–73, June 2000.

[46] W. Ilg, G. H. Bakir, J. Mezger, and M. Giese, “On the representation, learning and transfer of spatio-temporal movement

characteristics,” Int. J. Humanoid Robotics, vol. 1, no. 4, pp. 613–636, Dec. 2004.

[47] D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms. New York, NY: Cambridge University Press,

2003.

[48] R. M. Neal, Bayesian Learning for Neural Networks. Secaucus, NJ: Springer-Verlag New York, Inc., 1996.

[49] K. Moon and V. Pavlović, “Impact of dynamics on subspace embedding and tracking of sequences.” in Proc. IEEE

CVPR’06, vol. 1, New York, NY, June 2006, pp. 198–205.

[50] R. Murray-Smith and B. A. Pearlmutter, “Transformations of Gaussian process priors.” in Deterministic and Statistical

Methods in Machine Learning. Springer, 2005, pp. 110–123, Proc. Int. Workshop.

[51] E. Solak, R. Murray-Smith, W. E. Leithead, D. J. Leith, and C. E. Rasmussen, “Derivative observations in Gaussian process

models of dynamic systems.” in Adv. Neural Info. Proc. Sys. 15. The MIT Press, 2003, pp. 1033–1040, Proc. NIPS’02.

[52] R. Urtasun, “Motion models for robust 3D human body tracking,” Ph.D. dissertation, EPFL, Switzerland, 2006.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

35

[53] A. Ogawa, K. Takeda, and F. Itakura, “Balancing acoustic and linguistic probabilities.” in IEEE ICASSP’98, vol. 1, Seattle,

WA, May 1998, pp. 181–184.

[54] A. Rubio, J. Diaz-Verdejo, and J. S. P. Garcia, “On the influence of frame-asynchronous grammar scoring in a CSR

system.” in IEEE ICASSP’97, vol. 1, Munich, Germany, Apr. 1997, pp. 895–898.

[55] D. H. Brainard and W. T. Freeman, “Bayesian color constancy,” J. Optical Soc. America, A, vol. 14, no. 7, pp. 1393–1411,

July 1997.

[56] R. M. Neal and G. E. Hinton, “A view of the EM algorithm that justifies incremental, sparse, and other variants,” in

Learning in Graphical Models. The MIT Press, 1999, pp. 355–368.

[57] G. Wei and M. Tanner, “A Monte-Carlo implementation of the EM algorithm and the poor man’s data augmentation

algorithms.” J. American Stat. Assoc., vol. 85, no. 411, pp. 699–704, 1990.

[58] A. Elgammal and C.-S. Lee, “Separating style and content on a nonlinear manifold.” in Proc. IEEE CVPR’04, vol. 1,

Washington, DC, June/July 2004, pp. 478–485.

[59] J. Q. Shi, R. Murray-Smith, and D. M. Titterington, “Hierarchical Gaussian process mixtures for regression,” Statistics

and Computing, vol. 15, pp. 31–41, 2005.

[60] N. D. Lawrence and J. Q. Candela, “Local distance preservation in the GP-LVM through back constraints.” in Proc.

ICML’06, Pittsburgh, PA, June 2006, pp. 513–520.

[61] C. E. Rasmussen and M. Kuss, “Gaussian processes in reinforcement learning.” in Adv. Neural Info. Proc. Sys. 16. The

MIT Press, 2004, pp. 751–759, Proc. NIPS’03.

[62] B. S. Caffo, W. Jank, and G. L. Jones, “Ascent-based Monte Carlo expectation-maximization,” J. Roy. Stat. Soc. B, vol. 67,

no. 2, pp. 235–251, Apr. 2005.

[63] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process dynamical models.” in Adv. Neural Info. Proc. Sys. 18.

The MIT Press, 2006, pp. 1441–1448, Proc. NIPS’05.

April 26, 2007 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

