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Abstract—We propose an efficient optimization algorithm to select a subset of training data as the inducing set for sparse Gaussian

process regression. Previous methods either use different objective functions for inducing set and hyperparameter selection, or else

optimize the inducing set by gradient-based continuous optimization. The former approaches are harder to interpret and suboptimal,

whereas the latter cannot be applied to discrete input domains or to kernel functions that are not differentiable with respect to the input.

The algorithm proposed in this work estimates an inducing set and the hyperparameters using a single objective. It can be used to

optimize either the marginal likelihood or a variational free energy. Space and time complexity are linear in training set size, and the

algorithm can be applied to large regression problems on discrete or continuous domains. Empirical evaluation shows state-of-art

performance in discrete cases, competitive prediction results as well as a favorable trade-off between training and test time in

continuous cases.

Index Terms—Gaussian process regression, low rank, matrix factorization, sparsity
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1 INTRODUCTION

GAUSSIAN PROCESS (GP) learning and inference are
computationally prohibitive for large datasets, having

time complexitiesOðn3Þ andOðn2Þ, where n is the number of
training points. Sparsification algorithms exist that scale line-
arly in the training set size (see [12] for a review). They con-
struct a low-rank approximation to the GP covariancematrix
over the full dataset using a small set of inducing points. Some
approaches select inducing points from training points [9],
[10], [14], [15]. But these methods select the inducing points
using ad hoc criteria; i.e., they use different objective func-
tions to select inducing points and to optimize GP hyper-
parameters. More powerful sparsification methods [16], [17],
[18] use a single objective function and allow inducing points
to be free parameters in the input domain, learned via gradi-
ent descent. This continuous relaxation is not feasible, how-
ever, if the input domain is discrete, or if the kernel function
is not differentiable in the input variables. As a result, there
are problems in myraid domains, like bio-informatics, lin-
guistics and computer vision where current sparse GP
regressionmethods are inapplicable or ineffective.

We introduce an efficient sparsification algorithm for GP
regression. The method optimizes a single objective for joint
selection of inducing points and GP hyperparameters. Nota-
bly, it can be used to optimize either the marginal likeli-
hood, or a variational free energy [17], exploiting the QR
factorization of a partial Cholesky decomposition to

efficiently approximate the covariance matrix. Because it
chooses inducing points from the training data, it is applica-
ble to problems on discrete or continuous input domains.
To our knowledge, it is the first method for selecting dis-
crete inducing points and hyperparameters that optimizes a
single principled objective, with linear space and time com-
plexity. It is shown to outperform other methods on discrete
datasets from bio-informatics and computer vision. On con-
tinuous domains it is competitive with the Pseudo-point GP
[16] (a.k.a FITC). On the empirical evaluation framework
for approximate GPs introduced by Chalupka et al. [6], we
obtain a favourable trade-off of performance versus hyper-
parameter learning time and test time.

1.1 Previous Work

The computational cost of GP learning and inference can
be improved with fast matrix inversion techniques, such
as Bo and Sminchisescus greedy block coordinate descent
[3]. While this allows for fast computation of the predic-
tive mean, it entails repeatedly solving large linear sys-
tems for hyperparameter optimization and for computing
the predictive variance. Alternatively, efficient state-of-
the-art sparsification methods are Oðm2nÞ in time and
OðmnÞ in space for learning. They compute the predictive

mean and variance in time OðmÞ and Oðm2Þ. Methods
based on continuous relaxation, when applicable, entail
learning OðmdÞ continuous parameters, where d is the
input dimension. In the discrete case, combinatorial opti-
mization is required to select the inducing points, and
this is, in general, intractable. Existing discrete sparsifica-
tion methods therefore use other criteria to greedily select
inducing points [9], [10], [14], [15]. Although their criteria
are justified, each in their own way (e.g., [10], [14] take an
information theoretic perspective), they are greedy and
do not use the same objective to select inducing points
and to estimate GP hyperparameters.

The variational formulation of Titsias [17] treats inducing
points as variational parameters, and gives a unified objective
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for discrete and continuous inducing pointmodels. In the con-
tinuous case, it uses gradient-based optimization to find
inducing points and hyperparameters. In the discrete case,
ourmethod optimizes the same variational objective of Titsias
[17], but is a significant improvement over greedy forward
selection using the variational objective as selection criteria, or
some other criteria. In particular, given the cost of evaluating
the variational objective on all training points, Titsias [17]
evaluates the objective function on a small random subset of
candidates at each iteration, and then selects the best element
from the subset. This approximation is often slow to achieve
good results, as we explain and demonstrate below in
Section 4.1. That approach uses greedy forward selection,
which provides no way to refine the inducing set after hyper-
parameter optimization, except to discard all previous induc-
ing points and restart selection. Hence, the objective is not
guaranteed to decrease after each restart. By comparison, our
formulation considers all candidates at each step, revisiting
previous selections is efficient, and it is guaranteed todecrease
the objective or terminate.

Our low-rank decomposition is inspired by the Cholesky
with Side Information (CSI) algorithm for kernel machines
[1]. We extend that approach to GP regression. First, we
alter the form of the low-rank matrix factorization in CSI to
be suitable for GP regression with full-rank diagonal noise
term in the covariance. Second, the CSI algorithm selects
inducing points in a single greedy pass using an approxi-
mate objective. We propose an iterative optimization algo-
rithm that swaps previously selected points with new
candidates that are guaranteed to lower the objective.
Finally, we perform inducing set selection jointly with gra-
dient-based hyperparameter estimation instead of the grid
search in CSI. Our algorithm selects inducing points in a
principled fashion, optimizing the variational free energy or
the log likelihood. It does so with time complexity Oðm2nÞ,
and in practice provides an improved quality-speed trade-
off over other discrete selection methods.

2 SPARSE GP REGRESSION

Let y 2 R be the noisy output of a function, f , on input x. Let
X ¼ fxigni¼1 denote n training inputs, each belonging to
input space D, which is not necessarily Euclidean. Let
y 2 Rn be the corresponding vector of training outputs.
Under a zero-mean full GP prior, the covariance between
two outputs is

E½yiyj� ¼ kðxi; xjÞ þ s21½i ¼ j�; (1)

where k is the kernel function, 1½�� is the usual indicator

function, and s2 is the variance of the observation noise.
The predictive distribution over the output f$ at a test point
x$ is normally distributed. The mean and variance of the
predictive distribution can be expressed as

m$ ¼ kkðx$ ÞT K þ s2In
� ��1

y

v2$ ¼ kðx$ ; x$ Þ � kkðx$ ÞT K þ s2In
� ��1

kkðx$ Þ

where In is the n� n identity matrix, K is the kernel matrix
whose i jth element is kðxi; xjÞ, and kkðx$ Þ is the column vec-
tor whose ith element is kðx$ ; xiÞ.

The hyperparameters of a GP, denoted uu, comprise the
parameters of the kernel function, and the noise variance

s2. One natural objective for learning uu is the negative mar-
ginal log likelihood (NMLL) of the training data,
�log P ðyjX; uuÞð Þ, given up to a constant by

EfullðuuÞ ¼ ð y> K þ s2In
� ��1

yþ log jK þ s2Inj Þ = 2: (2)

The computational bottleneck lies in the Oðn2Þ storage and

Oðn3Þ inversion of the full covariance matrix, K þ s2In. To
lower this cost with a sparse approximation, Csat�o and
Opper [7] and Seeger et al. [14] proposed the Projected Pro-
cess (PP) model, wherein a set of m inducing points are
used to construct a low-rank approximation of the kernel
matrix. In the discrete case, where the inducing points are a
subset of the training data, with indices I � f1; 2; . . . ; ng,
and an arbitrary ordering ði1; i2; . . . ; ik; . . . ; imÞ of these indi-
ces1, this approach amounts to replacing the kernel matrix
K with the following Nystr€om approximation [13]:

K ’ K̂ ¼ K½:; I�K½I ; I��1 K½I ; :� (3)

where K½:; I� denotes the sub-matrix of K comprising col-
umns indexed by I , andK½I ; I� is the sub-matrix ofK com-
prising rows and columns indexed by I . We assume the
rank of K is m or higher so we can always find such rank-m
approximations. The PP NMLL is then algebraically equiva-

lent to replacingK in Eq. (2) with K̂, i.e.,

Eðuu; IÞ ¼ EDðuu; IÞ þ ECðuu; IÞ� �
=2; (4)

with data term EDðuu; IÞ ¼ y>ðK̂ þ s2InÞ�1y, and model

complexity ECðuu; IÞ ¼ log jK̂ þ s2Inj.
The computational cost reduction from Oðn3Þ to Oðm2nÞ

associated with the new likelihood is achieved by applying

the Woodbury inversion identity to EDðuu; IÞ and ECðuu; IÞ.
The objective in (4) can be viewed as an approximate log
likelihood for the full GP model, or as the exact log likeli-
hood for an approximate model, called the Deterministi-
cally Trained Conditional [12].

The same PP model can also be obtained by a variational
argument, as in [17]. That is, the variational free energy
objective can be shown to be Eq. (4) plus one extra term; i.e.,

F ðuu; IÞ ¼ EDðuu; IÞ þ ECðuu; IÞ þEV ðuu; IÞ� �
= 2; (5)

where EV ðuu; IÞ ¼ s�2trðK � K̂Þ arises from the variational
formulation. It effectively regularizes the trace norm, also
known as the nuclear norm, of the approximation residual
of the covariance matrix. The kernel machine of [1] also

uses a trace norm regularizer of the form � trðK � K̂Þ, how-
ever � is a free parameter that is set manually. Properties of
trace norm regularization have been studied extensively [2].

3 EFFICIENT OPTIMIZATION

We now outline our algorithm for optimizing the varia-
tional free energy (5) to select the inducing set I and the
hyperparameters uu. (The negative log-likelihood (4) is

1. We will relax the notation to use I to denote both the set and the
ordered sequence.
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similarly minimized by simply discarding the EV term.) The
algorithm is a form of hybrid coordinate descent that alter-
nates between discrete optimization of inducing points, and
continuous optimization of the hyperparameters. We first
describe the algorithm to select inducing points, then dis-
cuss continuous hyperparameter optimization and termina-
tion criteria in Section 3.4.

Finding the optimal inducing set is a combinatorial prob-
lem; global optimization is intractable. Instead, the inducing
set is initialized to a random subset of the training data, which
is then refined by a fixed number of swapupdates at each iter-
ation.2 In a single swap update, a randomly chosen inducing
point is considered for replacement. If swapping does not
improve the objective, then the original point is retained.

There are n�m potential replacements for each swap
update; the key is to efficiently determine which is likely to
maximally improve the objective. With the techniques
described below, the computation time required to approxi-
mately evaluate all possible candidates and swap an induc-
ing point is OðmnÞ. Swapping all inducing points once

takes Oðm2nÞ time.

3.1 Factored Representation

To support efficient evaluation of the objective and swap-
ping, we use a factored representation of the kernel
matrix. Given an inducing set I of k points, for any
k � m, the low-rank Nystr€om approximation to the kernel
matrix (Eq. 3) can be expressed in terms of a partial Cho-
lesky factorization:

K̂ ¼ K½:; I�K½I ; I��1 K½I ; :� ¼ LðIÞLðIÞ>; (6)

where LðIÞ 2 Rn�k is, up to permutation of rows, a lower
trapezoidal matrix (i.e., has a k� k top lower triangular
block, again up to row permutation).3 The proof of the iden-
tity in Eq. (6) follows from Proposition 1 in [1], and the fact
that, given the ordered sequence of pivots I , the partial
Cholesky factorization is unique.

Using this factorization and the Woodbury identities
(dropping the dependence on uu and I for clarity), the terms
of the negative marginal log-likelihood (4), or the varia-
tional free energy (5), become

ED ¼ s�2 y>y� y>L L>Lþ s2I
� ��1

L>y
� �

(7)

EC ¼ log ðs2Þn�kjL>Lþ s2Ij
� �

(8)

EV ¼ s�2ðtrðKÞ � trðL>LÞÞ: (9)

We can further simplify the data termED and the complexity

term EC by augmenting the factor matrix as eL ¼ ½L>; sIk�>,
where Ik is the k� k identity matrix, and eyey ¼ ½yT; 0Tk �T is the y
vector with k zeroes appended:

ED ¼ s�2 y>y� ey>ey> eL ð eL> eLÞ�1 eL>eyey� �
(10)

EC ¼ log ðs2Þn�kj eL> eLj� �
: (11)

Now, let eL ¼ QR be a QR factorization of eL, where

Q 2 RðnþkÞ�k has orthonormal columns and R 2 Rk�k is
invertible. The first two terms in the objective simplify
further to

ED ¼ s�2 kyk2 � kQ>eyeyk2� �
(12)

EC ¼ ðn� kÞ log ðs2Þ þ 2 log jRj: (13)

3.2 Factorization Update

Here we present the mechanics of the swap update algo-
rithm. See the Appendices for pseudo-code. Suppose we
wish to swap inducing point i with candidate point j in Im,
the inducing set of size m. We first modify the factor matri-
ces in order to remove point i from Im, i.e., to downdate the
factors, then update all the key terms using one step of Cho-
lesky and QR factorization with the new point j.

Downdating to remove inducing point i requires that we
shift the corresponding columns/rows in the factorization

to the right-most columns of eL, Q, R and to the last row of
R. We can then simply discard these last columns and rows,
and modify related quantities. When permuting the order
of the inducing points, the underlying GP model is invari-
ant, but the matrices in the factored representation are not.
If needed, any two points in Im, can be permuted, and the
Cholesky or QR factors can be updated in time OðmnÞ. This
is done with the efficient pivot permutation presented in
Algorithm 4 of Appendix B, which is based on the permuta-
tion algorithm in the Appendix of [1], with minor modifica-

tions to account for the augmented form of eL. In this way,
downdating and removing i take OðmnÞ time, as does the
updating with point j.

After downdating, we have factors eLm�1,Qm�1, Rm�1,
and inducing set Im�1. To add j to Im�1, and update the fac-
tors to rank m, one step of Cholesky factorization following
Algorithm 3 of Appendix A is performed with point j,4 for

which, the new column to append to eL is formed as

‘‘m ¼ ðK � K̂m�1Þ½:; j�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK � K̂m�1Þ½j; j�

q ; (14)

where K̂m�1 ¼ Lm�1Lm�1T. Then, we set eLm ¼ ½ eLm�1~‘‘m�,
where ~‘‘m is just ‘‘m augmented with seem, and eem being the

mth standard basis vector ½0; 0; . . . ; 1�>.
The final updates are Qm ¼ ½Qm�1qm�, where qm is given

by Gram-Schmidt orthogonalization step:

qm ¼
ððI �Qm�1Q>m�1Þ~‘‘mÞ
kðI �Qm�1Q>m�1Þ~‘‘mk

: (15)

and Rm is updated from Rm�1 so that eLm ¼ QmRm.
2. The inducing set can be incrementally constructed, as in [1], also

shown in Algorithms 2 of Appendix A, however we found no benefit to
this.

3. Note that k is a dummy variable used solely to describe that the
factorization shown in this section applies to any rank 1 � k � m. It is
not a parameter of the algorithm.

4. In Algorithm 3, j is related to the permuation by j ¼ p½t�, where p
is the vector used in actual implementation to track the permutation.
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3.3 Evaluating Candidates

Next we show how to select candidates for inclusion in the
inducing set. We first derive the exact change in the objec-
tive due to adding an element to Im�1. Later we provide an
approximation to this objective change that can be com-
puted efficiently.

Given an inducing set Im�1, and matrices eLm�1; Qm�1,
and Rm�1, we wish to evaluate the change in Eq. (5)
for Im ¼ Im�1 [ j. That is, DF 	 F ðuu; Im�1Þ � F ðuu; ImÞ ¼
ðDED þ DEC þ DEV Þ=2, where, based on the mechanics of
the incremental updates above, one can show that

DED ¼ s�2ðey> I �Qm�1Q>m�1
� �

~‘‘mÞ2
k I �Qm�1Q>m�1
� �

~‘‘mk2
(16)

DEC ¼ log s2
� �� log kðI �Qm�1Q>m�1Þ~‘‘mk2 (17)

DEV ¼ s�2k‘‘mk2: (18)

This gives the exact decrease in the objective function after
adding point j. For a single point this evaluation is OðmnÞ,
so to evaluate all n�m points would be Oðmn2Þ.

3.3.1 Fast Approximate Cost Reduction

While Oðmn2Þ is prohibitive, computing the exact change
is not required. Rather, we only need a ranking of the best
few candidates. Thus, instead of evaluating the change in
the objective exactly, we use an efficient approximation
based on a small number, z, of training points which pro-
vide information about the residual between the current
low-rank covariance matrix (based on inducing points)
and the full covariance matrix. After this approximation
proposes a candidate, we use the actual objective to
decide whether to include it. The techniques below reduce
the complexity of evaluating all n�m candidates to
OðznÞ.

To compute the change in objective for one candidate,
we need the new column of the updated Cholesky fac-
torization, ‘‘m. In Eq. (14) this vector is a (normalized)

column of the residual K � K̂m�1 between the full kernel
matrix and the Nystr€om approximation. Now consider

the full Cholesky decomposition of K ¼ L
L
> where
L
 ¼ ½Lm�1; LðJm�1Þ� is constructed with Im�1 as the first
pivots and Jm�1 ¼ f1; . . . ; ngnIm�1 as the remaining piv-
ots, so the residual becomes

K � K̂m�1 ¼ LðJm�1ÞLðJm�1Þ>: (19)

We approximate LðJm�1Þ with a rank z� n matrix, Lz, by
taking z points from Jm�1 and performing a partial Cho-

lesky factorization of K � K̂m�1 using these pivots. The
residual approximation becomes:

K � K̂m�1 � LzL
>
z (20)

yielding an approximation to the exact in Eq. (14) by

‘‘m � ðLzL
>
z Þ½:; j�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðLzL>z Þ½j; j�

p : (21)

The pivots used to construct Lz are called information pivots.
Their selection is discussed in Section 3.3.2.

The approximations to DED
k , DE

C
k and DEV

k , Eqs. (16)-(18),
for all candidate points, involve the following terms:

diagðLzL
>
z LzL

>
z Þ, y>LzL

>
z , and Qk�1½1 : n; :�ð Þ>LzL

>
z . The first

term can be computed in time Oðz2nÞ, and the other two in
OðzmnÞ with careful ordering of matrix multiplications.5

Computing Lz costs Oðz2nÞ, but can be avoided since infor-
mation pivots change by at most one when an information
pivot is added to the inducing set and needs to be replaced.
The techniques in Section 3.2 bring the associated update
cost to OðznÞ by updating Lz rather than recomputing it.
These z information pivots are equivalent to the “look-
ahead” steps of Bach and Jordan’s CSI algorithm [1], but as
described in Section 3.3.2, there is a more effective way to
select them.

3.3.2 Ensuring a Good Approximation

Selection of the information pivots determines the approxi-
mate objective, and hence the candidate proposal. To make
the optimization less likely to be stuck in bad local minima
due to the bias in a particular fixed approximation, we ran-
domly select the z pivots, and resample after a random num-
ber of swapping iteration (on average once per five swaps).

This is different from the CSI algorithm [1], which greed-
ily selects points to find an approximation of the residual

K � K̂m�1 in Eq. (14) that is optimal in terms of a bound of
the trace norm. The goal, however, is to approximate
Eqs. (16)-(18) . By analyzing the role of the residual matrix,
we see that the information pivots provide a low-rank
approximation to the orthogonal complement of the space
spanned by current inducing set. With a fixed set of infor-
mation pivots, parts of that subspace may never be cap-
tured. This suggests that we might occasionally update the
entire set of information pivots. Although information piv-
ots are changed when one is moved into the inducing set,
we find empirically that this is insufficient. Instead, our pro-
posed randomization works better than optimizing the
information pivots as in [1].

From a theoretical perspective, to ensure a good approxi-
mation of the residual K � K̂m�1, the number of informa-
tion pivots z has a subtle dependency on the difficulty of
the problem. In general, this approximation is good if, in
the kernel feature space, the projection of the points Jm�1
(including the z information pivots and the other unselected
points) onto the orthogonal complement of the subspace
spanned by the Im�1 inducing points are “close”. This
depends both on the properties of the reproducing kernel
Hilbert space (RKHS) defined by the kernel and the points
themselves. In the case of the square exponential kernel, the
characteristic length scale is the property that matters, since
a long length scale implies points are generally closer to
each other. For other kernels, such as a periodic kernel, this
intuition does not necessarily translate to “smoothness” of
functions drawn from the RKHS.

In practice however, z as small as 16 works well on
many problems, mainly because the overall swapping

5. Both can be further reduced to OðznÞ by appropriate caching dur-

ing the updates of Q,R and eL, and Lz.
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routine only needs a good ranking of the candidates. In
fact, as long as the ordering of the top few candidates are
the same under the approximate and exact change in
objective, the iterative swapping algorithm always picks
the optimal replacement candidate. In this case, the
approximation will give the same inducing set as the exact
case; while slight differences in ranking will generally give
a replacement candidate that is still good enough to
decrease the objective (albeit “smaller steps”). Fig. 1 illus-
trates this reasoning by comparing the exact and approxi-
mate cost reduction for candidate inducing points (left),
and their respective rankings (right). The approximation is
shown to work well.

When candidates that donot decrease the objective are pro-
posed based on the approximation, they will be rejected after
evaluating the change in the true objective function. This
mechanism makes the overall algorithm even more robust to
the quality and number of information pivots, as well as the
frequency of updates.We find that rejection rates are typically
low during early iterations (<20%), but increase as optimiza-
tion nears convergence (to 30 or 40 percent). Rejection rates
also increase for sparser models, where each inducing point
plays amore critical role and is harder to replace.

3.4 Hybrid Optimization

The overall hybrid optimization procedure performs block
coordinate descent in the inducing points and the continu-
ous hyperparameters as summarized in Algorithm 1.

The discussion so far has focused on the discrete phase of
the algorithm, as the continuous phase is mostly straight-
forward. The Nystr€om expression for K̂ in Eq. (6) allows us
to compute the gradient with respect to the hyperpara-
meters analytically. After the continuous steps, the hyper-
parameters have changed, so all factorization matrices have
to be recomputed. This batch re-computation can be done

efficiently by first computing Lm ¼ K½:; Im�M�>
m , where

MmM
>
m ¼ K½Im; Im� is the full Cholesky factorization of

the m-by-m submatrix of the kernel covariance matrix

indexed by Im; then eLm follows from its definition in Sec-
tion 3.1, while Qm, Rm can be computed using batch QR fac-

torization given eLm.
In practice, because we alternate the discrete and continu-

ous phases for many training epochs, attempting to swap
every inducing point in each epoch is unnecessary, just as
there is no need to run hyperparameter optimization until
convergence at every epoch. As long as all inducing set points
are eventually considered we find that optimized models can
achieve similar performancewith shorter learning times.

Algorithm 1. Hybrid optimization of inducing points
and hyperparameters

procedureHYBRID_OPT(Im, uu, eLm, Qm, Rm)
while improvement > threshold & time budget > 0 do
Randomly sample S 
 Im of predefined size to consider
for swapping; " Begin discrete steps

for all i 2 S do
Save a copy of the factorization matrices eLm, Qm, Rm, as

well as the objective value as Fold
m ;

Down-date the factorization matrices as described in
Section 3.2 to remove i;
Compute the true objective value Fm�1 over the down-
dated model with Imnfig, using (12), (13) and (9);
Select a replacement candidate using the fast approxi-
mate cost change from Section 3.3.1;
Evaluate the exact objective change DF , using (16), (17),
and (18);

Get the objective value with the new candidate:
Fnew
m ¼ Fm�1 þ DF ;

if Fnew
m < Fold

m then
Include the candidate replacing i in I and update the

matrices as in Section 3.2, set Fold
m ¼ Fnew

m ;
else
Reject the swap proposal and revert to the factoriza-
tion with i;

end if
Update the information pivots if needed as in
Sections 3.3.1 and 3.3.2.

end for
"Begin continuous steps

With Im fixed, run a fixed number of nonlinear conjugate
gradients (CG) steps to optimize the objective in Eq. (5)
with respect to uu.
With the new hyperparameters, batch recompute the fac-
torization matrices eLm, Qm, Rm, as described in Section 3.4.

end while
return Im, uu, eLm, Qm, Rm

end procedure

3.5 Variants

There are alternative ways of selecting information pivots,
which give slight variants to the main algorithm described
above. Here, we define two such variants, and later explore
them experimentally in Section 4.1, and in particular in
Figs. 3f and 3c.

The first variant, OI, uses optimized information pivots
as in the CSI algorithm instead of randomly chosen ones.
More specifically, each time a new information pivot needs
to be selected, we take the one that has the maximum d val-
ues, where d (defined in Appendix A), is the amount of
prior variance at that point which is not yet explained by
the existing factorization. This variant of our algorithm has
an interesting connection to the Informative Vector Machine
(IVM) [10]. If the likelihood model is isotropic Gaussian,
then the maximum reduction in entropy criteria of IVM is
equivalent to selection based on argmaxfdg. Therefore, this
variant actually selects information pivots using the IVM
criteria, except that the information pivots are not part of
the sparse representation as in IVM.

Fig. 1. Exact vs approximate costs, based on the 1D example of
Section 4, with z¼10, n¼200.
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The second variant actively adapts the size of informa-
tion pivot set, and is referred to as AA. Initialized to a small
size, and given an upper bound z, this variant exponentially
grows the information pivot set size whenever a proposed
candidate is rejected, and shrinks it linearly whenever one
is accepted. The idea behind the AA variant is the following:
as in most optimizations, large progress should be easier to
achieve at the beginning comparing to later when closer to
convergence, hence less computation is needed to construct
a useful approximation at early stages.

4 EXPERIMENTS AND ANALYSIS

For the experiments that follow we jointly learn inducing
points and hyperparameters, a more challenging task than
learning inducing points with known hyperparameters [14],
[16]. For all but the 1D example, the number of inducing
points swapped per epoch is minð60;mÞ. The maximum
number of function evaluations per epoch in conjugate gra-
dient hyperparameter optimization is minð20;maxð15; 2dÞÞ,
where d is the number of continuous hyperparameters.
Empirically we find the algorithm is robust to changes in
these limits. We use two performance measures, (a) stan-

dardized mean square error (SMSE), 1
N S

N
t¼1ðŷt � ytÞ2=ŝ2


,
where ŝ2


 is the sample variance of test outputs fytg, and (b)
standardized negative log probability (SNLP) defined in
[13] as

SNLP ¼ 1

2N
SN
t¼1 log ð2pŝ2

t Þ þ ðŷt � ytÞ2=ŝ2
t

� �
� CST; (22)

where ŝ2
t is the point-wise predictive variance (including

the observation noise variance), and CST ¼ 1
2N SN

t¼1
ðlog ð2pŝ2Þ þ ð�y� ytÞ2=ŝ2Þ is the negative log probability

under a Gaussian Nð�y; ŝ2Þ whose mean and variance are
sample estimates from training y.

4.1 Discrete Input Domain

4.1.1 Methods Compared

We first show results on two discrete datasets with kernels
that are not differentiable in the input variable x. Because
continuous relaxation methods are not applicable, we com-
pare to discrete selection methods, namely, random selec-
tion as baseline (Random), greedy subset-optimal selection
of Titsias [17] with either 16 or 512 candidates (Titsias-16
and Titsias-512), and Informative Vector Machine [10]. For
learning continuous hyperparameters, each method opti-
mizes the same objective using non-linear CG.

For our algorithm we use z ¼ 16 information pivots with
random selection (CholQR-z16). Later, we show how var-
iants of our algorithm trade-off speed and performance.
Additionally, we also compare to least-square kernel regres-
sion using CSI (in Fig. 3c).

4.1.2 Implementation of Compared Methods

To ensure fair comparison, all sparse GPmethods used in the
discrete domain experiments (CholQR, Random, Titsias’, and
IVM) use the same code for computing the variational free
energy objective function and its gradient. For the discrete
inducing point selection part of IVM, we use Lawrence’s IVM

toolbox.6 Furthermore, care is taken to ensure consistent ini-
tialization and termination criteria. For each random seed, all
methods start with exactly the same initial hyperparameters
and inducing points. All methods except IVM have the same
termination criteria: i.e., when they fail to decrease the objec-
tive function by a threshold amount, or when they exceed the
computational budget. For IVM, because of the inconsistent
objectives issue, the variational (or marginal likelihood) objec-
tive values highly fluctuate when alternating between the
discrete and continuous phases, as demonstrated in Figs. 3d
and 3e. Therefore in order to terminate learning at reasonable
time for IVM, wemake it stop either when there is insufficient
change in parameters (no change in inducing points and
change in hyperparameters below a predefined threshold), or
if the training epoch is larger than 10, and the average relative
change in objective function value for the past 10 epochs is
below a predefined threshold.

4.1.3 BindingDB Dataset and Graph Kernels

The first discrete dataset, from bindingdb.org, concerns the
prediction of binding affinity for a target (Thrombin), from
the 2D chemical structure of small molecules (represented
as graphs). We do 50-fold random splits to 3,660 training
points and 192 test points for repeated runs. We use a com-
pound kernel, comprising 14 different labeled and unla-
beled graph kernels [18], [19], [20], [21], [22], [23], [24], [25],7

Each graph kernel has its own data variance hyperpara-
meter determining its relevance, learned from data during
continuous hyperparameter optimization.

4.1.4 HoG Dataset and Histogram Intersection Kernels

The second discrete domain problem comes from the Twin
Gaussian Processes work by Bo and Sminchisescu [4],
where the task is to predict 3D human joint position from
histograms of HoG image features [8]. Training and test sets
have 4;819 and 4;811 data points. Because our goal is the
general purpose sparsification method for GP regression,
we make no attempt at the more difficult problem of model-
ling the multivariate output structure in the regression as in
[4]. Instead, we predict the vertical position of joints inde-
pendently, using a histogram intersection kernel [11], hav-
ing four hyperparameters: one noise variance, and three
data variances corresponding to the kernel evaluated over
the HoG from each of three cameras. We select and show
results on the representative left wrist here.

The results in Figs. 2 and 3 show that CholQR-z16 out-
performs the baseline methods in terms of test-time predic-
tive power with significantly lower training time. Titsias-16
and Titsias-512 shows similar test performance, but they are
two to four orders of magnitude slower than CholQR-z16
(see Figs. 3d and 3e). Indeed, Fig. 3a shows that the training
time for CholQR-z16 is comparable to IVM and Random
selection, but with much better performance. The poor per-
formance of Random selection highlights the importance
of selecting good inducing points, as no amount of hyper-
parameter optimization can correct for poor inducing
points. Fig. 3a also shows IVM to be somewhat slower due

6. From dcs.shef.ac.uk/people/N.Lawrence/ivm
7. Code from mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/

Graphkernels
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to the increased number of iterations needed, even though
per epoch, IVM is faster than CholQR. When stopped ear-
lier, IVM test performance further degrades.

Finally, Figs. 3c and 3f show the trade-off between the
test SMSE and training time for variants of CholQR, with
baselines and CSI kernel regression [1]. For CholQR we

Fig. 2. Test performance on discrete datasets. (top row) BindingDB, values at each marker is the average of 150 runs (50-fold random train/test splits
times three random initialization); (bottom row) HoG dataset, each marker is the average of 10 randomly initialized runs.

Fig. 3. Training time versus test performance on discrete datasets. (a) the average BindingDB training time; (b) the average BindingDB objective
function value at convergence; (d) and (e) show test scores versus training time withm ¼ 32 for a single run; (c) shows the trade-off between training
time and testing SMSE on the HoG dataset with m ¼ 32, for various methods including multiple variants of CholQR and CSI; (f) a zoomed-in version
of (c) comparing the variants of CholQR.
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consider different numbers of information pivots (denoted
z8, z16, z64 and z128), and different strategies for their
selection including random selection, optimized informa-
tion pivots (denote OI) and adaptively growing the informa-
tion pivot set (denoted AA). See Section 3.5 for details about
the later two strategies. These variants of CholQR trade-off
speed and performance (3(f)), all significantly outperform
the other methods (3(c)); CSI, which uses grid search to
select hyper-parameters, is slow and exhibits higher SMSE.
Interestingly, the variational sparse GP formulation with
random inducing points is on par with CSI in terms of accu-
racy; while with the same sparse GP framework, our hybrid
optimization makes CholQR methods significantly better.
This suggests that the hybrid optimization is the main
source of accuracy improvement over CSI.

4.1.5 Redundant Kernels for Avoiding Local Minimum

In the BindingDB problem, because we try to automatically
select relevant kernels from many choices as well as induc-
ing points, the optimization is prone to be trapped in bad
local minimum. In particular, bad initialization could lead
to local minima where good kernels are dropped while bad
ones are kept; this in turn renders selecting good inducing
points impossible.

In order to fix this problem when learning relevance from
many kernels for sparse GP, we include two kernels that are

redundant but useful to facilitate the automatic relevance
learning for all the methods. The first redundant kernel is
simply the sum of all graph kernels mentioned above; the
second one is a constant identity, which is redundant
because GP has a diagonal noise term.

The two extra redundant kernels allow us to handle this
problem without any modification to the learning algo-
rithms or putting explicit prior over hyper-parameters.
The sum kernel forces all individual kernels to be active at
the beginning until the data variance (relevance) on this
sum kernel is reduced to zero. In a way, it acts as a tempo-
rary parameter sharing that is automatically turned off by
the optimization once the truly relevant kernels are found.
The second constant diagonal kernel reduces the problem
of bad local minima where optimization quickly drives all
data variance hyper-parameters to zero, and use very large
data noise to explain the observations. This is often the
case where bad initial hyper-parameters and/or inducing
points give a GP model that cannot interpret the data at all.

Most importantly, with the variational energy objec-
tive, hyperparameter optimization for all methods learned
to reduce the data variance (relevance) on these two
redundant kernels to zero after a few training epochs;
while without this technique, we obtain good solutions in
most cases, but it produces degeneracy with some
initializations.

Fig. 4. Snelson’s 1D example: prediction mean (red curves); one standard deviation in prediction uncertainty (green curves); inducing point initializa-
tion (black points at top of each figure); learned inducing point locations (the cyan points at the bottom, also overlaid on data for CholQR).

Fig. 5. Test scores on KIN40K as function of number of inducing points: for each number of inducing points the value plotted is averaged over 10 runs
from 10 different (shared) initializations.
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4.2 Continuous Input Domain

Although CholQR was developed for discrete input

domains, it can be competitive on continuous domains. To

that end, we compare to FITC [16] and IVM [10], using RBF

kernels with one length-scale parameter per input dimen-

sion; kðxi; xjÞ ¼ cexpð�0:5Pd
t¼1 btðxðtÞi � x

ðtÞ
j Þ2Þ. We show

results from both the PP log likelihood and variational

objectives, suffixed byMLE and VAR.
We use the 1D toy dataset of [16] to show how the PP

likelihood with gradient-based optimization of inducing
points is easily trapped in local minima. Figs. 4a and 4d
show that for this dataset our algorithm does not get

Fig. 6. Comparison of SMSE on the four benchmark datasets: (left column) SMSE as a function of hyperparameter learning time; (right column)
SMSE as a function of testing time. Both axes are log-scaled in all figures.
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trapped when initialization is poor (as in Fig. 1c of [16]).
To simulate the sparsity of data in high-dimensional
problems we also down-sample the dataset to 20 points
(every 10th point). Here CholQR out-performs FITC (see
Figs. 4b, 4e, and 4c). By comparison, Fig. 4f shows FITC
learned with a more uniform initial distribution of induc-
ing points avoids this local optima and achieves a better

negative log likelihood of 11:34 compared to 14:54 in
Fig. 4c.

Finally, we compare CholQR to FITC [16] and IVM [10]
on a large dataset. KIN40K concerns nonlinear forward kine-
matic prediction. It has 8D real-valued inputs and scalar
outputs, with 10 K training and 30 K test points. We per-
form linear de-trending and re-scaling as pre-processing.

Fig. 7. Comparison of SNLP on the four benchmark datasets: (left column) SNLP as a function of hyperparameter learning time; (right column) SNLP
as a function of testing time. Horizontal (time) axes are log-scaled in all figures.
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For FITC we use the implementation of [16]. Fig. 5 shows
that CholQR-VAR outperforms IVM in terms of SMSE and
SNLP. Both CholQR-VAR and CholQR-MLE outperform
FITC in terms of SMSE on KIN40K with large m, but FITC
exhibits better SNLP. This disparity between the SMSE and
SNLPmeasures for CholQR-MLE is consistent with findings
about the PP likelihood in [17]. CholQR methods use
z ¼ 128 for this experiment.

4.3 Large Scale Time and Prediction Benchmark

Recently, Chalupka et al. [6] introduced an empirical evalu-
ation framework for approximate GP methods, and showed
that subset of data (SoD) often compares favorably to more
sophisticated sparse GP methods. Using this framework,
we benchmarked CholQR against SoD, FITC, and a heuristic
approach called Hybrid by Chalupka et al. [6], which learns
hyperparameters using SoD likelihood but uses FITC for
prediction with these learned hyperparameters. We use all
four large scale datasets from the framework, including two
synthetic sets, SYNTH2 and SYNTH8, of 30;543 training
points of two and eight dimensional inputs respectively, as
well as a 15 dimensional CHEM dataset of 31;535 training
points, and the 21 dimensional SARCOS dataset of 44;484
training points. As shown in Figs. 6 and 7, our experiments
show that CholQR outperforms FITC in speed and predic-
tive scores. Compared to SoD and Hybrid, CholQR finds a
much sparser model. It is slower during training, but,
because the model is sparser, it is faster during testing.

5 CONCLUSION

We describe an algorithm for selecting inducing points for
Gaussian Process sparsification. It optimizes principled
objective functions, and is applicable to discrete domains
and non-differentiable kernels. On such problems it is shown
to be as good as or better than competing methods and, for
methods whose predictive behavior is similar, our method is
several orders of magnitude faster. On continuous domains
themethod is competitivewith state-of-art methods.

APPENDIX A

INCREMENTAL CHOLESKY QR FACTORIZATION

Although not directly used in our swap-update algorithm,
the m-step incremental partial Cholesky and QR factoriza-
tion algorithm to be presented in this section lays the
ground for later on presenting all the details of the one-step
updating, downdating and permuting algorithms used in
swap-update algorithm.

For all the algorithms that follow, we frequently refer to
columns or rows of K, but K never needs to be precom-

puted (taking up Oðn2Þ time and storage). Instead it just
needs to return its diagonal and specific column when que-
ried (a function handle for example).

Both Algorithms 2 and 3 work with or without the aug-
mentation trick introduced in Section 3.1. If s is supplied,
they work on the augmented factors, in which case the

matrix L in the algorithms is the augmented version eL of
Section 3.1; and L½1 : n; :� is the non-augmented portion.
Q,R are the QR factorization of L. The procedures also
returns two vectors, p and d. p is a permutation of

ð1; 2; . . . ; nÞ, and d stores the diagonal values of the residual
matrix between the full K and current partial Cholesky fac-
torization. In our application to kernel covariance matrix, d
is also the point-wise variance that is not yet explained by
(the factorization using) existing inducing points. See post-
conditions after the algorithm for formal relationships
among various quantities.

For ease of description, explicit row pivoting is not per-
formed (consistent with the description in Section 3.1).
Instead, the ordering of rows of L½1 : n; :� always stays in the
original order of data points ð1; 2; . . . ; nÞ, and we use p to
keep track of the permutation, and index into the rows of
L½1 : n; :�. The columns are pivoted explicitly during the
algorithm. In practical implementation however, we find
the equivalent version with explicit row pivoting is slightly
faster due to better memory/cache locality.

Assuming that the inducing set Im ¼ ½i1; ::; ik; ::; im� is
known, Algorithm 2 CholQR_mStep builds the factors
incrementally.

Algorithm 2. m steps of incremental Cholesky and QR
factorizations:

procedure CHOLQR_MSTEP(Im, n, K, s)
p ½1; 2; . . . ; n�
d diagðKÞ
if s is given then "Need to do the augmentation
L zerosðnþm;mÞ
Q zerosðnþm;mÞ

else
L zerosðn;mÞ
Q zerosðn;mÞ

end if
R zerosðm;mÞ
for k ¼ 1! m do
t position of Im k½ � in p
p; L;Q;R;d CholQR 1ðt; k; n;K;p; L;Q;R;d; sÞ

end for
return p, L, Q, R, d

end procedure

Algorithm 3. one step of incremental Cholesky and QR
factorizations:

procedure CHOLQR_1(t, k, n, K, p, L, Q, R, d, s)
p½t�;p½k�  p½k�;p½t� " pivot the indices

L½p½k�; k�  ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d½p½k��p

llnew  K½p½ kþ 1ð Þ : n�;p½k��
L p kþ 1ð Þ : n½ �; k½ �  1

L p k½ �;k½ � 
 ðllnew � L p kþ 1ð Þ : n½ �; 1 :½
k� 1ð Þ� 
 L½p½k�; 1 : ðk� 1Þ�>Þ
d p k : n½ �½ �  d p k : n½ �½ � � L p k : n½ �; k½ �ð Þ: 2̂

" end of partial Cholesky part
if s is given then "Need to do the augmentation
L nþ k; k½ �  s

end if
" start of QR part

R 1 : k� 1ð Þ; k½ �  Q :; 1 : k� 1ð Þ½ �> 
 L :; k½ �
Q :; k½ �  L :; k½ � �Q :; 1 : k� 1ð Þ½ � 
R 1 : k� 1ð Þ; k½ �
R k; k½ �  kQ :; k½ �k
Q :; k½ �  Q :; k½ �=R k; k½ �
return p, L, Q, R, d

end procedure
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After the CholQR_mStep completes, the following post
conditions hold true:

(1) p 1 : m½ � has the same set of elements as Im;
(2) L p; 1 : m½ � is lower trapezoidal, and it is the rank - m

partial Cholesky factor ofK p;p½ �;
(3) L p 1 : m½ �; 1 : m½ � is lower triangular, and it is the (com-

plete) Cholesky factor ofK p 1 : m½ �;p 1 : m½ �½ �;
(4) d p 1 : m½ �½ � ¼ 0 and d ¼ diagðK � L 1 : n; 1 : m½ �

L 1 : n; 1 : m½ �>Þ
(5) if the augmentation trick is required by supplying s,

then L 1 : m; 1 : m½ � ¼ sIm�m, where Im�m is the rank m
identity matrix;

(6) with or without the augmentation, L :; 1 : k½ � ¼
Q :; 1 : k½ �R 1 : k; 1 : k½ � 8k 2 f1; . . . ;mg.

APPENDIX B

EFFICIENT PIVOT PERMUTATION AND REMOVAL

Given k < m, Algorithm 4 permutes pivot at position k

to the right most column of L, Q, and R. Afterward, this
pivot at the right most column would be removed by
Algorithm 5. If (1)-(6) of the previous section hold as
pre-conditions for CholQR_PermuteToRight, then they
also hold as post-conditions. The subroutine qr22 used
by Algorithm 4 simply computes the QR factorization of
a 2 by 2 matrix.

Algorithm 4. Fast permuting a pivot to the right most
position

procedure CHOLQR_PERMUTEToRIGHT(k, m, n, p, L, Q, R, d,
is_augmented)
for s ¼ k! ðm� 1Þ do
p½s�;p½sþ 1�  p½sþ 1�;p½s� " pivot the indices
Q1; R1 qr22ðL p s : sþ 1ð Þ½ �; s : sþ 1ð Þ½ �>Þ
L p s : n½ �; s : sþ 1ð Þ½ �  L p s : n½ �; s : sþ 1ð Þ½ � 
Q1
L p s½ �; sþ 1½ �  0
R 1 : m; s : sþ 1ð Þ½ � ¼ R 1 : m; s : sþ 1ð Þ½ � 
Q1
Q2; R2 qr22ðR s : sþ 1ð Þ; s : sþ 1ð Þ½ �Þ
R s : sþ 1ð Þ; 1 : m½ �  Q2> 
 R s : sþ 1ð Þ; 1 : m½ �
Q :; s : sþ 1ð Þ½ �  Q :; s : sþ 1ð Þ½ � 
Q2
R sþ 1; s½ �  0
if is_augmented then
Q nþ s : sþ 1ð Þð Þ; 1 : m½ �  Q1> 
Q nþ s : sþ 1ð Þð Þ; 1 :½ m�

end if
end for
return p, L, Q, R, d

end procedure

Algorithm 5. Remove pivot at the last position from the
factors

procedure CHOLQR_REMOVELAST(m, n, p, L, Q, R, dÞ
d p m : n½ �½ �  d p m : n½ �½ � þ L p m : n½ �;m½ �ð Þ: 2̂
L :;m½ �  0
Q :;m½ �  0
R 1 : m;m½ �  0
R m; 1 : m½ �  0
return L, Q, R, d

end procedure
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