
Data Quality is Context Dependent⋆

Leopoldo Bertossi1⋆⋆, Flavio Rizzolo2⋆⋆⋆, and Lei Jiang3

1 Carleton University, Ottawa, Canada. bertossi@scs.carleton.ca
2 Carleton University, Ottawa, Canada. flavio@scs.carleton.ca

3 University of Toronto, Toronto, Canada. leijiang@cs.toronto.edu

Abstract. We motivate, formalize and investigate the notions of data
quality assessment and data quality query answering as context depen-
dent activities. Contexts for the assessment and usage of a data source at
hand are modeled as collections of external databases, that can be ma-
terialized or virtual, and mappings within the collections and with the
data source at hand. In this way, the context becomes “the complement”
of the data source wrt a data integration system. The proposed model
allows for natural extensions, like considering data quality predicates,
and even more expressive ontologies for data quality assessment.
Topics. Data quality and cleansing.

1 Introduction

The assessment of the quality of a data source is context dependent, i.e. the
notions of “good” or “poor” data cannot be separated from the context in which
the data is produced or used. For instance, the data about yearly sales of a
product with seasonal variations might be considered quality data by a business
analyst assessing the yearly revenue of a product. However, the same data may
not be good enough for a warehouse manager who is trying to estimate the
orders for next month.

In addition, data quality is related to the discrepancy between the actual
stored values and the “real” values that were supposed or expected to be stored.
For instance, if a temperature measurement is taken with a faulty thermometer,
the stored value (the measurement) would differ from the right value (the actual
temperature), which was the one supposed to be stored. This is an example of
semantically inaccurate data [3].

Furthermore, another type of semantic discrepancy occurs when senses or
meanings attributed by the different agents to the actual values in the database
disagree [19], as shown in the Example 1. In this paper, we focus on data quality
(DQ) problems caused by this type of semantic discrepancy.

Example 1. Tom is a patient in a hospital. Several times a day his temperature
is measured and recorded by a nurse. His doctor, John, wants to see Tom’s
temperature around noon every day, to follow his evolution. The information

⋆ Research funded by the NSERC Strategic Network on BI (BIN, ADC05)
⋆⋆ Faculty Fellow of the IBM CAS. Also affiliated to University of Concepción (Chile).

⋆⋆⋆ Also affiliated to University of Ottawa.

that John needs appears in the TempNoon relation of Table 1, which contains
the temperatures between 11:30 and 12:30 per day for each of John’s patients.

TempNoon
Patient Value Time Date

1 Tom Waits 38.5 11:45 Sep/5
2 Tom Waits 38.2 12:10 Sep/5
3 Tom Waits 38.1 11:50 Sep/6
4 Tom Waits 38.0 12:15 Sep/6
5 Tom Waits 37.9 12:15 Sep/7

Table 1.

TempNoon
Patient Value Time Date

1 Tom Waits 38.5 11:45 Sep/5
2 Tom Waits 38.0 12:15 Sep/6
3 Tom Waits 37.9 12:15 Sep/7

Table 2.

John has additional quality requirements for the temperature measurements of
his patients: they need to be taken by a certified nurse with an oral thermometer.
On Sep/5, unaware of the new requirements, Cathy takes Tom’s temperature at
12:10 with a tympanal thermometer and records the result as the tuple number 2
in Table 1. Since the instrument used does not appear in the view that John has
of the data, he interprets the 38.2oC value as taken with an oral thermometer.

This is an example of a discrepancy between the semantics of the value as
intended by the data producer (38.2oC taken with a tympanal thermometer) and
the semantics expected by the data consumer (38.2oC taken with an oral ther-
mometer). This tuple should not appear in a quality table, i.e., one that satisfies
John’s quality requirements, since such a table would contain only temperatures
taken with an oral thermometer.

A similar problem appears in the third tuple in Table 1: It was taken by a
new nurse, Helen, who is not yet certified and, thus, does not satisfy one of the
doctor’s requirements. This tuple should not appear in a quality table containing
only temperatures taken by certified nurses.

Table 2 fixes the problems of Table 1 with respect to the doctor’s specifica-
tion: The problematic second and third tuples do not appear in it.

How can we say or believe that Table 2 does contain only quality data? Prima
facie it does not look much different from Table 1. This positive assessment would
be possible if we had a contextual database containing the additional information,
e.g., Tables 3, 4 and 5.

S (shift)
Date Shift Nurse

1 Sep/5 morning Susan
2 Sep/5 afternoon Cathy
3 Sep/5 night Joan
4 Sep/6 morning Helen
5 Sep/6 afternoon Cathy
6 Sep/6 night Cathy
7 Sep/7 morning Susan
8 Sep/7 afternoon Susan
9 Sep/7 night Joan

Table 3.

C (certification)
Name Year

1 Ann 2003
2 Cathy 2009
3 Irene 2000
4 Nancy 1995
5 Susan 1996

Table 4.

T (type)
Nurse Date Type

1 Susan Sep/5 Oral
2 Cathy Sep/5 Tymp
3 Joan Sep/5 Tymp
4 Helen Sep/6 Oral
5 Cathy Sep/6 Oral
6 Susan Sep/7 Oral
7 Joan Sep/7 Oral

Table 5.

2

The first relation contains the name of the nurses in Tom Waits’ ward and the
shifts they work in by day. These are the nurses taking the measurements; since
it is a small ward there is only one nurse per shift with that task. The second
relation records the name of the certified nurses in the ward and the year they
got the certification. The last relation contains the type of thermometer each
nurse is using by day (e.g., oral or tympanal); each nurse takes all temperature
measurements of the day using the same type of thermometer. This contextual
information allows us to assess the quality of the data in Tables 1 and 2. �

In this paper we take seriously the intuition and experience that data quality
is context dependent. Our formalization of context is given as a system of in-
tegrated data and metadata of which the data source under quality assessment
is a particular and special component. More precisely, the context for quality
assessment of data in a certain instance D of schema S is given by an instance
I of a possibly different schema C, which could be an extension of S. In order
to assess the quality of D, it has to be “put in context”, which is achieved by
mapping D (and S) into the contextual schema and data. Actually, C can be
more complex that a single schema or instance, namely a collection of database
schemas and instances interrelated by data- and schema mappings.

In our framework, a quality database instance D could be seen as a “foot-
print” of a the contextual, extended database I. The possibly extra information
in I is what gives context to- and explains the data in D. The contextual schema
and data is not used to enforce quality of a given instance. Instead, it is used to:
(a) Assess the quality of the data in the instance at hand; (b) Characterize the
quality answers to queries; and (c) Possibly obtain those quality answers to a
user query. All this is achieved by comparing the given instance D with instance
I, virtual or material, that can be defined for the contextual schema on the basis
of D, external sources that contribute with data to the contextual schema, and
possibly additional data at the contextual level, as shown in Example 1.

Instance I above could be replaced by a much richer contextual description,
e.g. a full-fledged ontology. Along this line, but still in a classic database scenario,
we might define some additional quality predicates on C [19]. They could be used
to assess the quality of the data in D (and also the quality of query answers
from D as we will explore later).

The following contributions can be found in this paper: (a) A model of context
for data quality assessment. (b) Its application to clean or quality query answer-
ing. (b) Its application to data quality assessment via some natural measures
that emerge from the model. (d) Some algorithms for the previously mentioned
tasks in a few particular, but common and natural cases. (e) The creation of a
framework that can be naturally extended in subsequent work to include more
general contextual ontologies and externally defined quality predicates.

The rest of the paper is organized as follows. In Section 2, we present a general
framework for contextual data quality and illustrate it with a running example.
In Section 3, we consider two special cases of the general framework where we
assume we have a contextual instance I that we can use for quality assessment
and present an algorithm for quality query answering under this assumption. In

3

Section 4, we explore more complex cases, e.g., where such contextual instances
do not exist. We discuss related work in Section 5; and conclude and point out
to our ongoing and future work in Section 6.

2 A Framework for Contextual Data Quality

Consider a relational schema S, with relational predicates R, . . . ∈ S. This
schema determines a language L(S) of first-order predicate logic. In this pa-
per we consider only monotone queries and views, e.g. conjunctive queries and
unions there of, which we will usually write in non-recursive Datalog with built-
ins [1]. We also consider an instance D of S, with extension R(D) for R, etc. If
database instances are conceived as finite sets of ground atoms, then, for each
R ∈ S, R(D) ⊆ D. Instances D,R(D), . . . are those under quality assessment
wrt to a contextual system.

In its simplest form, a contextual system consists of a contextual relational
schema C that may include a set B of built-in predicates. We may have or not an
instance for C. In a more complex scenario, the contextual system may consist of
several contextual schemas C1, . . . , Cn and also a set of external schemas E that
can be used by the contextual system for the assessment of an instance D of S.

In this general framework, the participating schemas are related by schema
mappings, like those found, for instance, in virtual data integration systems
(VDISs) [22, 4] or data exchange [21], or even more complex logical relationships,
like those common in peer data management systems [5, 6]. (Cf. [13] for an
analysis of the connections between these three areas.) Schema mappings take the
form of correspondences between two formulas, like queries or view definitions,
each of them containing predicates from a single or several schemas. In particular,
the data source under assessmentD will be mappings into the contextual schema.

A common form of association, or mapping, is of the form ∀x̄(S(x̄)→ φG (x̄)),
where S is a relational predicate of a data source and φG (x̄) is a conjunctive
query over a global relational schema G. These association can be found in local-
as-view (LAV) VDISs with open (or sound) sources. Another common form of
association is of the form ∀x̄(ψS (x̄) → G(x̄)), found in global-as-view (GAV)
VDISs with open sources, where ψR(x̄) is a conjunctive query over the union R
of the relational schemas at the sources, and G is a global relational predicate. In
global-and-local-as-view (GLAV) VDISs with open sources, we find associations
between views (or queries), of the form ∀x̄(ψR(x̄)→ φG (x̄)).

Figure 1 illustrates this general scenario. The relations Ri in D are under
quality assessment, which is done via the contextual schema C, which has rela-
tional predicates C1, . . . , Cm. There is also a set P of contextual quality predicates
(CQPs) P1, . . . , Pk, which are defined as views over C plus possibly external
sources E1, . . . , Ej . In some cases, the combination of schemas C,P, E can be
seen as a single, extended contextual schema. In other cases, it may be useful
to tell them apart. The external predicates Ei could have “nicknames” E′

i in C,
with simple view definitions as mappings, of the form ∀x̄(E′(x̄) ≡ E(x̄)) (or, in
Datalog notation, E′(x̄)← E(x̄)).

4

Fig. 1. General Framework for Contextual Data Quality

We will usually have a copy S ′ of schema S, with relational predicates
R′

1, . . . , R
′
n. The idea is that the R′

i stand for the quality versions of the Ri,
and their extensions can be compared. Those ideal predicates are related with
the (extended) contextual schema by the α mappings. If the mappings involve
quality predicates in P, we usually use a predicate R′

Pi, and mappings αP to
emphasize the dependency on P. In principle, each of the mappings in Figure 1
can be of any of the LAV, GAV, GLAV kind, plus additional assumptions about
openness/closedness of the involved instances, or a usual view definition.4

For example, the γ’s are view definitions of the quality predicates in terms
of the elements in C, plus possible the external sources in E . All these elements,
as in the case of virtual data integration and peer data management systems,
determines a collection of admissible instances I for the contextual instance C.

In following sections we consider and study some relevant special cases of this
general framework. In each of them, we address: (a) The problem of assessing
the quality of the instance D consisting of the relations R1(D), . . . , Rn(D). This
has to do with analyzing how they differ from ideal, quality instances of the
Ri. (b) The problem of characterizing and obtaining quality answers to queries
that are expected to be answered by the instance D that is under assessment.
As we will see, the two problems are related to each other. Actually, the former
problem can be seen as a particular case of the latter.

We can present the main ideas already in the general framework: Given the
different schemas involved, the mappings, and some materialized relations (e.g.
the Ri, the Ek, some (parts) of the Cj) the relational predicates R

′
i (or R

′
Pi) will

4 In virtual data integration it is possible to find semantics and algorithms for dealing
with sources that coexist under different combinations of openness/closure assump-
tions [16, 4].

5

have (possibly virtual) admissible extensions, say R′
i(I). The quality of Ri(D) is

determined by its “distance” to R′
i(I), e.g. by the cardinality, |Ri(D)△ R′

i(I)|,
of the symmetric difference. Different distance functions could be considered,
specially if there are several admissible extensions for the R′

i, as is often the case
in VDISs, where several virtual legal instances may appear.

With respect to quality query answering, if a query Q is posed to D, but
only quality answers are expected, the query could be rewritten in terms of the
predicates R′

i and answered on the basis of their extensions.

Example 2. (example 1 continued) Consider query about patients and their tem-
peratures around noon on Sep/5: Q(p, v) : ∃t∃d(TempNoon(p, v, t, d) ∧ d =
Sep/5). The quality answers to this query posed to Table 1 should be ⟨Tom
Waits, 38.5⟩, namely the projection on the first two attributes of tuple 1, but
not of tuple 2 because it does not comply with the quality requirements accord-
ing to the contextual tables 3, 4, and 5. Notice that if the same query is posed
to Table 2 instead, which contains only quality data with respect to the quality
requirements, we get exactly the same answer. �

If there are several admissible instances, forming a class I, the schema S ′ can
be instantiated in them, obtaining instances R′(I), with I ∈ I. In consequence,
S ′(I) := {R′(I) | R ∈ S} forms an instance for schema S ′. The quality answers
to Q ∈ L(S), can thus be defined as those that are certain:

QAnsCD(Q) = {t̄ | S ′(I) |= Q′[t̄], for all I ∈ I} (1)

where Q′ is obtained from Q by replacing the Ri predicates by their copies, R′
i.

The notion of quality answer could be used to define the quality of instance
D: For each of the relations R ∈ S, we can pose the query R(x̄) and obtain
the quality answers QAns(R). Each of the QAns(R) becomes an instance for
predicate R and can be compared with R(D).

3 Instances as Views and Contextual Instances

As a broad and common case of the general framework, in addition to schema
S, the contextual schema C, and an instance D of S, we have the following:
(a) Each CQP P ∈ P defined as a conjunctive view, P (x̄)← γC (x̄), in terms of
elements of C (and possibly built-in predicates). We denote with CP the schema
C expanded with schema P.
(b) For each database predicate R ∈ S, a copy of it, R′, which is defined as a
conjunctive view of schema CP :

R′
P(x̄) ←− φC

R
(x̄), φP

R
(x̄), (2)

where φC
R
(x̄), φP

R
(x̄) are in their turn conjunctions of atomic formulas with pred-

icates in C, P, respectively. A particular case is obtained when in (2) there are
no CQPs in the view definition:

R′(x̄) ←− ψC
R
(x̄). (3)

6

If we have an instance I for schema C, then we will obtain a computed extensions
R′(I) and R′

P(I) by applying definitions (2) or (3). Now, if we also have an
instance D of S, the one under quality assessment, then R(D) can be compared
with R′(I) and R′

P(I).
Intuitively, each CQP can be used to express an atomic quality requirement

requested by a data consumer or met by a data producer. With the CQPs we
can restrict the admissible values for certain attributes of tuples in I, so that
only quality tuples find their way into D.

Although CQPs can be eliminated by unfolding their Datalog definitions,
we make them explicit here, for several reasons: (a) To emphasize their role as
predicates capturing quality requirements. (b) They allow us to compare data
quality requirements in a more concrete way. For example, it is obvious that
the quality requirement “temperature values need to be measured by an oral or
tympanal thermometer” is less restrictive than “temperature values need to be
measured by an oral thermometer”. (c) Our approach allows for the consideration
of CQPs that are not defined only in terms of C alone, but also in terms of other
external sources, as indicated in Figure 1, that is, by view definitions of the form
P (x̄)← γC (x̄), γE (x̄).

3.1 The simple case

A simple, restricted case of the general framework, and of the one in the previous
section, in particular, occurs when the instance at hand D under assessment is
exactly a materialized view of a contextual instance via a definition of the form
(3). That is, for each R ∈ S, we assume that R(D) = R′(I). However, we may
add additional quality requirements, thus obtaining an instance R′

P(I) via a
view definition of the form (2). This would be an ideal instance of predicate R
obtained from I using additional quality conditions.

In this case, R(D) = R′(I), and D(I) := {R′(I) | R ∈ S} = D. We also have
the following instance for schema S:

DP(I) = {R′
P(I) | R ∈ S and R′

P is defined by (2)}. (4)

As expected, there may be differences between D and DP(I). The latter is
intended to be the clean version of D. Actually, it holds R′

P(I) ⊆ R′(I) = R(D),
for each R ∈ S.

Example 3. (example 1 continued) Schema S contains the database predicate
TempNoon(Patient, Value, Time, Date) with the instance in Table 1 under as-
sessment. The contextual schema C contains the database predicates S(Date,
Shift, Nurse), T(Nurse, Date, Type) and C(Name, Year) introduced before. We
have instances for them: Tables 3, 4 and 5, respectively. In addition, C contains
predicate M(Patient, Value, Time, Date, Instr), which records the values of all
measurements performed on patients by nurses (e.g., temperature, blood pres-
sure, etc.), together with their time, date, instrument used (e.g., thermometer,
blood pressure monitor), and the instance for it in Table 6.

7

M
Patient Value Time Date Instr

1 T. Waits 37.8 11:00 Sep/5 Therm.
2 T. Waits 38.5 11:45 Sep/5 Therm.
3 T. Waits 38.2 12:10 Sep/5 Therm.
.

4 T. Waits 110/70 11:00 Sep/6 BPM
5 T. Waits 38.1 11:50 Sep/6 Therm.

M (cont.)
Patient Value Time Date Instr

6 T. Waits 38.0 12:15 Sep/6 Therm.
.

7 T. Waits 37.6 10:50 Sep/7 Therm.
8 T. Waits 120/70 11:30 Sep/7 BPM
9 T. Waits 37.9 12:15 Sep/7 Therm.

Table 6.

Relation TempNoon(Patient, Value, Time, Date) can be seen as a materialized
view over the instance in Table 6. It contains, for each patient and day, only
temperature measurements close to noon.

According to (3), we can have the following view definition that captures the
temperatures taken between 11:30 and 12:30:

TempNoon ′(p, v , t , d)← M (p, v , t , d , i), 11:30 ≤ t ≤ 12:30, i = therm. (5)

By materializing this view we obtain the instance shown in Table 1.
In order to express quality concerns, we now introduce some CQPs. In this

way we will be in position to define the relation that contains only tuples sat-
isfying the doctor’s requirements, i.e., that the temperature has to be taken by
a certified nurse using an oral thermometer. Accordingly, P = { Oral(Instr),
Certified(Patient ,Date,Time), Valid(Value)}.

In order to facilitate the definitions, we first introduce an auxiliary predicate,
Temp(Patient ,Date,Time,Nurse, Instr ,Type), that compiles information about
the temperature measurements, the instruments used, and the name of the nurses
for the morning and afternoon shifts – we do not care at this point for the evening
shift because it does not overlap with the 11:30-12:30 interval of interest. Temp
associates to each measurement in M the nurse and type of thermometer used
depending on the time at which the temperature was taken.

Temp(p, d , t ,n, i , tp) ← M (p, v , t , d , i),S (d , s,n),T (n, d , tp), i = therm,

4:00 < t ≤ 12:00, s = morning.

Temp(p, d , t ,n, i , tp) ← M (p, v , t , d , i),S (d , s,n),T (n, d , tp), i = therm,

12:00 < t ≤ 20:00, s = afternoon.

With the help of this auxiliary predicate, the first two CQPs are defined by:

Oral(i)← Temp(p, d , t ,n, i , tp), tp = oral. (6)

Certified(p, d , t)← Temp(p, d , t ,n, i , tp),C (n, y). (7)

The first quality predicate is satisfied only when the instrument used is an oral
thermometer. (The only instruments that appear in Temp’s tuples are ther-
mometers and the additional requirement is specified by tp = oral). The second
predicate can be used to specify that a measurement (uniquely identified by the
patient, the date and the time) is made by a certified nurse.

8

A third CQP takes care of potential typing errors by checking that the tem-
perature is in a predefined valid range. It is defined by:

Valid(v)← M (p, v , t , d , i), 36 ≤ v ≤ 42. (8)

With these three CQPs, we can define, according to (2), a new relation:

TempNoon ′
P(p, v, t, d) ← M (p, v , t , d , i), 11:30 ≤ t ≤ 12:30,

Valid(v),Oral(i),Certified(p, d , t). (9)

The new extension, for predicate TempNoon ′
P , is intended to contain only mea-

surements satisfying the doctor’s requirements, which corresponds to the in-
stance shown in Table 2. �

3.2 Quality query answering

Queries are written in the language associated to schema S and posed to instance
D. However, clean answers to queries over D should be, in essence, the answers
to the same query posed to D′(I) or D′

P(I) instead. In consequence, and as a
particular case of (1), for a query Q(x̄) ∈ L(S), the set of quality answers to Q
wrt D becomes:

QAnsCD(Q) := Q(DP(I)). (10)

For monotone queries, e.g. conjunctive queries, it holds QAnsCD(Q) ⊆ Q(D),
where the latter denotes the set of answer to Q from D.

Since the R(D)s are obtained as materialized Datalog views of the contextual
instance I, query answering can be done via view unfolding. That is, in order to
get quality answers, we evaluate the original query on the clean relations R′(I)
via view unfolding:

Quality Unfold Algorithm: (QUA)

1. Replace each predicate R in Q by its corresponding R′ (or R′
P), obtaining

query Q′.
2. Replace Q′ by a query QC

P ∈ L(C ∪ P) via view unfolding based on (2).
3. If desired, or possible, unfold the definitions of the CQPs, obtaining the

“quality query” QC ∈ L(C), which can be evaluated on I.

The last step of the algorithm opens the possibility of considering CQPs that
are not defined on top of schema C only. This is the case, for example, when they
appeal to external sources, and also when they represent other kinds of quality
predicates, e.g. of the form introduced in [19].

The quality of D could be assessed by comparing each R(D) with the corre-
sponding R′

P(I). This is just a particular case of quality query answering: The
set of clean answers to each of the atomic queries Q(x̄) : R(x̄) can be compared
with the corresponding R(D)s.

9

Example 4. Consider the query on schema S of our running example that asks for
the temperature of the patients on Sep/5: Q(p, v) : ∃t∃d(TempNoon(p, v , t , d)∧
d = Sep/5), which in Datalog notation becomes:

Q(p, v)← TempNoon(p, v , t , d), d = Sep/5. (11)

To get quality answers, Q is rewritten in terms of schema S ′. Hence, Q is trivially
rewritten as: Q′(p, v) ← TempNoon ′

P(p, v , t , d), d = Sep/5. Now, TempNoon ′
P

is defined by (9). Thus, by view unfolding we get:

QC
P(p, v)← M (p, v, t, d, i), 11:30 ≤ t ≤ 12:30, d = Sep/5,

Valid(v),Oral(i),Certified(p, d , t). (12)

This query can be evaluated directly on I, which contains relation M , by un-
folding the definitions (6)-(8) of the quality predicates or directly using their
extensions if they have been materialized. �

Notice that in (12) we could have quality predicates that are not defined only
in terms of the contextual schema C, but defined also in terms of other external
sources. In consequence, the query cannot be evaluated on I alone, and this
might trigger requests for additional data.

Example 5. (example 4 continued) Consider now that, instead of having an in-
stance for C (Nurse,Year), we have its definition in terms of an external source
#X (Nurse) that contains information about certified nurses; #X (Nurse) re-
turns true if the input nurse appears in the source, and false otherwise. Since
C (Nurse,Year) is part of the definition of the Certified CQP (rule (7)), the
evaluation of the unfolded query in (12) will trigger a request for data from #X
in order to evaluate the Certified predicate. �

This independence of the quality predicates from the contextual data or schema
is particularly interesting in the case we want to use them to filter tuples from a
relation, say R, in D. This situation can be easily accommodated in our frame-
work, as follows. For predicate R ∈ S, we consider a copy, or nickname, R′ ∈ C.
Each R′ shares the arity, the attributes of R, and their domains. We also have a
simple GAV definition for R′: R′(x̄)← R(x̄), considering R as an exact source,
in the terminology of virtual data integration [22] (this is usual in view defini-
tions over a single instance). This creates a copy R′(D) of R(D) as a part of the
contextual instance, and the contextual instance becomes I := {R′(D) | R ∈ S}.

Now, if we want to obtain quality answers to a query Q on instance D
(with schema S), taking into account the quality predicates, we replace each
predicate R ∈ S in Q by the conjunction R′(x̄)∧φP

R
(x̄). The data to evaluate the

additional, quality formula φP
R
(x̄) would be obtained from the external sources.

The resulting query would be evaluated on I and extensions for the quality
predicates. If the latter is missing, the query evaluation process could trigger ad
hoc requests for external data.

In this section we considered the convenient, but not necessarily frequent, case
where the instance D under assessment is a collection of exact materialized views

10

of a contextual instance I. Alternative and natural cases we have to consider
may have only a partial contextual instance I− together with its metadata for
contextual reference. We examine this case in Section 4.

4 Missing Contextual Data

Against what may be suggested by the examples above, we cannot assume that
we always have a contextual instance I for schema C. There may be some data for
C, most likely an incomplete (possibly empty) instance I−, also data from other
external sources, and the data in the instance D under assessment mapped into
C. In this more general case, a situation similar to those investigated in virtual
data integration systems naturally emerges. Here, the contextual schema acts as
the mediated, global schema, and instance D as a materialized data source. In
the following we will explore this connection.

Let us now assume that we do not have a contextual instance I for schema
C, i.e. I− = ∅. We could see D as a data source for a virtual data integration
system, C, with a global schema that extends the contextual schema C [22, 4].
We may assume that all the data in D is related to C via C, but C may have
potentially more data than the one contributed by D and of the same kind as
the one in D. In consequence, we assume D to be an open source for C. This
assumption will be captured below through the set of intended or legal global
instances for C.

Since not all the data in D may be up to the quality expectations according
to C, we need to give an account of the relationship between D and its expected
quality version. For this purpose, as in the previous cases, we extend C with a
copy S ′ of schema S: S ′ = {R′ | R ∈ S}. Now, C′ := C ∪S ′, and it also becomes
part of the global schema for C.

Definition 1. Assume each R ∈ S is defined as a Datalog view: R(x̄)← φC
R
(x̄).

(a) A legal instance for system C is an instance I ′ of the global schema, such that:
(a1) For every R ∈ S, R(D) ⊆ R(I ′); (a2) I ′ |= ∀x̄(R′(x̄) ≡ φC

R
(x̄) ∧ φP

R
(x̄)).

(b) An instance I of C is legal contextual instance (LCI) if there is a legal instance
I ′ for C, such that I = I ′ ↓C (the restriction of I ′ to schema C). �

The condition in (a1) essentially lifts D’s data upwards to C. The legal instances
have extensions that extend the data in D when the views defining the Rs are
computed. The sentences in (a2) act as global integrity constraints, i.e. on schema
C′, and have the effect of cleaning the data (virtually) uploaded to C.

We can also consider a variation of this case, where, in addition to D, we
have only a fragment I− of the potential contextual instances I. That is, we
have a incomplete contextual data. In this case, Definition 1 has to be modified
by adding the condition on I: (a3) I− ⊆ I ′ ↓ C, which requires that the legal
instance I ′ is “compatible” with the partial instance I− at hand. With I− = ∅,
we obtain the previous case.5

5 The occurrence of partial and materialized global instance I− can be accommodated
in the scenario of VDISs by considering I− as a separate exact “source” for C.

11

Now, the idea is to pose queries in terms of the R′, to obtain quality answers.

Definition 2. A ground tuple t̄ is a quality answer to query Q(x̄) ∈ L(S) iff
t̄ ∈

∩
{Q′(I) | I is an LCI}, where Q′ is obtained from Q by replacing every

R ∈ S in it by R′. �

As before, we denote with QAnsCD(Q) the set of quality answers to Q from D
wrt C.

Example 6. Let us revisit the query Q(p, v) in (12) in Example 4. Let Q′(p, v)
denote the same query, now expressed in terms of schema S ′. The instance of
TempNoon(Patient, Value, Time, Date) in Table 1 is D, the instance under
quality assessment.

We now define a VDIS C with D as an open source, and the relations in
Tables 3, 4 and 5 as forming a partial global instance I−. In this case, there is
no instance (relation) for predicate M(Patient, Value, Time, Date, Instr) in C.

According to Definition 2, a quality answer toQ(p, v) has to be obtained from
every LCI for C. Now, every LCI will contain tuples from TempNoon(Patient,
Value, Time, Date) satisfying the conditions imposed by (9). In fact, Table 2
corresponds to the smallest LCI for C: No subset of it is an LCI and any su-
perset satisfying (9) is also an LCI. In consequence, the first tuple in Table 2
is the only one satisfying the additional query condition d = Sep/5. We obtain:
QAnsCD(Q(p, v)) = {⟨Tom Waits, 38.5⟩}. �

Since we have the original instance D defined as an open source, we can take
advantage of any of the existing algorithms for the computation of the certain
answers to global queries under the openness assumption [17]. Since we are
assuming that queries and view definitions are conjunctive, we can use, e.g.
the inverse rules algorithm [14] or extensions thereof [4, 11]. We illustrate its
application with an example.

Example 7. (example 6 continued) If we invert the definition of TempNoon in
(5), we get:

M (p, v , t , d , i)← TempNoon(p, v , t , d), 11:30 ≤ t ≤ 12:30, i = therm. (13)

We can evaluate QC
P(p, v) in (12) by unfolding the definition of predicate M

according to (13), obtaining:

QC
P(p, v)← TempNoon(p, v , t , d), 11:30 ≤ t ≤ 12:30, i = therm, d = Sep/5,

Valid(v),Oral(i),Certified(p, d , t).

The rewritten query can be now evaluated on the instances of TempNoon, S , C ,
and T (Tables 1, 3, 4 and 5, respectively). This produces the same result as in
the previous example. �

Finally, wrt data quality assessment, some alternatives naturally offer them-
selves. If we want to assess D, we can consider, for each LCI I, the instance

12

S ′(I) := {R′(I) | R ∈ S}. We have S ′(I) ⊆ D. A possible quality measure could
be QM1(D) := (|D| −max{|S ′(I)| : I is LCI})/|D|, inspired by the G3 measure
in [20].

Another possible measure is based, as suggested above, on quality query
answering: For each predicate R ∈ S, compute the query QR : R(x̄). Then, com-
pute QM2(D) := (|D r

∪
R∈S QAnsCD(QR)|)/|D|. The analysis and comparison

of these and other possible quality measures are left for future work.

5 Related Work

The study on data quality spans from the characterization of types of errors
in data (e.g., [25]), to the modeling of processes in which these errors may be
introduced (e.g., [2]), to the development of techniques for error detection and
repairing (e.g., [7]). Most of these approaches, however, are based on the implicit
assumption that data errors occur exclusively at the syntactic/symbolic level,
i.e., as discrepancies between data values (e.g., Kelvin vs. Kelvn).

As argued in [19], data quality problems may also occur at the semantic
level, i.e., as discrepancies between the meanings attached to these data values.
More specifically, according to [19], a data quality problem may arise when there
is a mismatch between the intended meaning (according to its producer) and
interpreted meaning (according to its consumer) of a data value. A mismatch
is often caused by ambiguous communication between the data producer and
consumer; such ambiguity is inevitable if some sources of variability (e.g., the
type of thermometer used and the conditions of a patient) are not explicitly
captured in the data (or metadata). Of course, whether or not such ambiguity
is considered a data quality problem depends on the purpose for which the data
is used.

In [19] a framework was proposed for defining both syntactic- and semantic-
level data quality in an uniformed way, based on the fundamental notion of signs
(values) and senses (meanings). A number of “macro-level” quality predicates
were also introduced, based on the comparison of symbols and their senses (exact
match, partial match and mismatch). In this work, we take the next step to
propose a specific mechanism for capturing and comparing semantic-level data
quality requirements using context relations and quality predicates, and show
how they are used in query answering.

Use of contexts in data management has been proposed before (see [9] for
a survey). Of course, there are different ways to capture, represent and use
contexts. For instance, contextual information has been used to support a semi-
automatic process for view design (see [8] for an overview). A context in [8]
consists of a number of context elements, which are essentially attribute-value
pairs (e.g., role=‘agent’, situation=‘on site’, time=‘today’); certain constraints
can also be specified on a context (e.g., when role is ’manager’, situation cannot
be ’on site’).

A context specification allows one to select from a potentially large database
schema a small potion (a view) that is deemed relevant in that context. Given

13

a context specification, the design of a context-aware view may be carried out
manually or semi-automatically by composing partial views corresponding to
individual elements in that context [10]. In this paper, a context is specified in
a similar manner as in [8], but with a different purpose. The main purpose in
[8] is size reduction (i.e., separating useful data from noise in a given context);
in our work however, the main purpose is quality-based selection (i.e., selecting
a subset of data that best meets certain quality requirements).

On the use of quality assessments for query answering, one of the most rel-
evant works is [24]. Naumann’s proposal is based on a universal relation [23]
constructed from the global relational schema for integrating autonomous data
sources. Queries are a set of attributes from the universal relation with possible
value conditions over the attributes. To map a query to source views, user queries
are translated to queries against the global relational schema. Naumann defines
several quality criteria to qualify the sources, such as believability, objectivity,
reputation and verifiability, among others. These criteria are then used to define
a quality model for query plans.

According to [24], the quality of a query plan is determined as follows. Each
source receives information quality (IQ) scores for each criterion considered rel-
evant, which are then combined in an IQ-vector where each component corre-
sponds to a different criterion. Users can specify their preferences of the selected
criteria by assigning weights to the components of the IQ-vector, hence obtain-
ing a weighting vector. This weighting vector is used in turn by multi-attribute
decision-making (MADM) methods for ranking the data sources participating in
the universal relation. These methods range from the simple scaling and summing
of the scores (SAW) to complex formulas based on concordance and discordance
matrices. The quality model is independent of the MADM method chosen, as
long as it supports user weighting and IQ-scores. Given IQ-vectors of sources,
the goal is to obtain the IQ-vector of a plan containing the sources. Plans are
described as trees of joins between the sources: leaves are sources whereas inner
nodes are joins. IQ-scores are computed for each inner node bottom-up and the
overall quality of the plan is given by the IQ-score of the root of the tree.

There has been some work on the formalization and use of contexts done
by the knowledge representation community. There are general, high level ideas
in that line of research that are are shared with our work, namely, the idea of
integration and interoperability of models and theories. In [15], the emphasis is
placed on the proper interaction of different logical environments. More recently,
the notion of context, or better, multi-contexts, has been formalized through the
use of bridge rules between denoted contexts, each of which can have a knowledge
base or ontology on its own [12]. The bridge rules are expressed as propositional
logic programming rules. It is not clear that they can express the rich mappings
found in data management applications. Not necessarily explicitly referring to
contexts, there is also recent work on the integration of ontologies and distributed
description logics (cf. [18] and references therein) that shows ideas similar to
those found in the literature on contexts in knowledge representation.

14

6 Discussion and Conclusions

We have proposed a general framework that allows for the assessment of a
database instance in terms of quality properties. These properties are captured
in terms of alternative instances that are obtained by interaction with addi-
tional contextual data or metadata. Our framework involves mappings between
database schemas like those found in data exchange, virtual data integration
and peer data management systems (PDMSs). Quality answers to a query also
become relative to the alternative instances that emerge from the interaction
between the instance under assessment and the contextual data or metadata.

These are first steps in the direction of capturing data quality and qual-
ity query answering as context dependent activities. We examined a few natural
cases of the general framework. We also made some assumptions about the map-
pings, views and queries involved. The general framework and also cases of more
intricate mappings (cf. [5, 6] for more complex mappings in PDMs) remain to
be investigated. More algorithms have to be proposed and investigated, both for
quality assessment and for quality query answering.

Among the most prominent objects of ongoing research, we can mention: (a)
The use of external quality predicates and data in the assessment of a given
database instance. (b) The use and integration in our framework of more “in-
trinsic” and “absolute” quality predicates of the kind introduced in [19]. They
can capture aspects as deep as data value syntax, correctness, sense, meaning,
timeliness, etc. (c) A detailed and comparative analysis of the quality measures
mentioned in this paper and others.

Contexts have appeared in the data management literature, mostly in re-
lation with obvious contextual aspects of data, like geographic and temporal
dimensions. However, in our view, a general notion of context, its formalization,
and use in data management have been missing so far. This is a most important
problem that still has to be fully investigated. We have proposed some first ideas
in this direction.

References

1. Abiteboul, S., Hull, R. and Vianu, V. Foundations of Databases. Addison-Wesley,
1995.

2. Ballou, D., Wang, R., Pazer, H. and Tayi, G. Modeling Information Manufac-
turing Systems to Determine Information Product Quality. Management Science,
44(4):462-484, 1998.

3. Batini, C. and Scannapieco, M. Data Quality: Concepts, Methodologies and Tech-
niques. Springer, 2006.

4. Bertossi, L. and Bravo, L. Consistent Query Answers in Virtual Data Integration
Systems. In Inconsistency Tolerance, Springer LNCS 3300, 2004, pp. 42-83.

5. Bertossi, L. and Bravo, L. Query Answering in Peer-to-Peer Data Exchange Sys-
tems. In ’Current Trends in Database Technology’, Springer LNCS 3268, 2004, pp.
478-485.

6. Bertossi, L. and Bravo, L. The Semantics of Consistency and Trust in Peer Data
Exchange Systems. Proc. International Conference on Logic for Programming, Ar-

15

tificial Intelligence, and Reasoning (LPAR 07), 2007, Springer LNCS 4790, pp.
107-122.

7. Bleiholder, J. and Naumann, F. Data Fusion. ACM Computing Surveys, 41(1):1-41,
2008.

8. Bolchini, C., Curino, C., Orsi, G., Quintarelli, E., Rossato, R., Schreiber, F. and
Tanca, L. And What Can Context Do for Data? Communications of the ACM,
52(11):136-140, 2009.

9. Bolchini, C., Curino, C., Quintarelli, E., Schreiber, F. and Tanca, L. A Data-
Oriented Survey of Context Models. SIGMOD Record, 36(4):19-26, 2007.

10. Bolchini, C., Quintarelli, E. and Rossato, R. Relational Data Tailoring Through
View Composition. Proc. ER’07, Springer LNCS 4801, 2007, pp. 149-164.

11. Bravo, L. and Bertossi, L. Logic Programs for Consistently Querying Data In-
tegration Systems. Proc. International Joint Conference on Artificial Intelligence
(IJCAI’03), 2003, Morgan Kaufmann, pp. 10-15.

12. Brewka, G. and Eiter, Th. Equilibria in Heterogeneous Nonmonotonic Multi-
Context Systems. Proc. AAAI 2007, pp. 385-390.

13. De Giacomo, G., Lembo, D., Lenzerini, M. and Rosati, R. On Reconciling Data
Exchange, Data Integration, and Peer Data Management. Proc. PODS 2007. pp.
133-142.

14. Duschka, O., Genesereth, M. and Levy, A. Recursive Query Plans for Data Inte-
gration. Journal of Logic Programming, 2000, 43(1):49-73.

15. Giunchiglia, F. and Serafini, L. Multilanguage Hierarchical Logics. Artificial Intel-
ligence, 1994, 65:29-70.

16. Grahne, G. and Mendelzon, A. O. Tableau Techniques for Querying Information
Sources through Global Schemas. Proc. ICDT 1999. pp. 332-347.

17. Halevy, A. Answering Queries Using Views: A Survey. VLDB Journal, 2001,
10(4):270-294.

18. Homola, M. and Serafini, L. Towards Formal Comparison of Ontology Linking,
Mapping and Importing. In Proc. DL’10, CEUR-WS 573, 2010, pp. 291-302.

19. Jiang, L., Borgida, A. and Mylopoulos, J. Towards a Compositional Semantic
Account of Data Quality Attributes. Proc. ER’08, Springer LNCS 5231, 2008, pp.
55-68.

20. Kivinen, J. and Mannila, H. Approximate Inference of Functional Dependencies
from Relations. Theoretical Computer Science, 1995, 149:129-149.

21. Kolaitis, Ph. Schema Mappings, Data Exchange, and Metadata Management.
Proc. PODS’05, 2005, pp. 61-75.

22. Lenzerini, M. Data Integration: A Theoretical Perspective. Proc. PODS’02, 2002,
pp. 233-246.

23. Maier, D., Ullman, J. and Vardi, M. On the Foundations of the Universal Relation
Model. ACM Transactions on Database Systems, 1984, 9(2):283-308.

24. Naumann, F. Quality-Driven Query Answering for Integrated Information Systems.
Springer, 2002.

25. Wang, R. and Strong, D. Beyond Accuracy: What Data Quality Means to Data
Consumers. J. Management and Information Systems, 1996, 12(4):5-33.

16

