
Supporting Queries Spanning Across Phases of Evolving
Artifacts using Steiner Forests

Siarhei Bykau
University of Trento
bykau@disi.unitn.eu

John Mylopoulos
University of Trento

jm@disi.unitn.eu

Flavio Rizzolo
Carleton University

flavio@scs.carleton.ca

Yannis Velegrakis
University of Trento

velgias@disi.unitn.eu

ABSTRACT
The problem of managing evolving data has attracted considerable
research attention. Researchers have focused on the modeling and
querying of schema/instance-level structural changes, such as, ad-
dition, deletion and modification of attributes. Databases with such
a functionality are known as temporal databases. A limitation of the
temporal databases is that they treat changes as independent events,
while often the appearance (or elimination) of some structure in
the database is the result of an evolution of some existing structure.
We claim that maintaining the causal relationship between the two
structures is of major importance since it allows additional reason-
ing to be performed and answers to be generated for queries that
previously had no answers.

We present here a novel framework for exploiting the evolution
relationships between the structures in the database. In particu-
lar, our system combines different structures that are associated
through evolution relationships into virtual structures to be used
during query answering. The virtual structures define “possible”
database instances, in a fashion similar to the possible worlds in the
probabilistic databases. The framework includes a query answering
mechanism that allows queries to be answered over these possible
databases without materializing them. Evaluation of such queries
raises many interesting technical challenges, since it requires the
discovery of Steiner forests on the evolution graphs. On this prob-
lem we have designed and implemented a new dynamic program-
ming algorithm with exponential complexity in the size of the input
query and polynomial complexity in terms of both the attribute and
the evolution data sizes.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous

General Terms
Algorithms, Performance

Keywords
Data evolution, Probabilistic Databases; Graph Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

1. INTRODUCTION
Advances in information and telecommunication technologies

of the last two decades have allowed organizations and indi-
viduals alike to develop large scale data collections and make
them available on-line. These collections are often about enti-
ties that persist over time and the changes that occur to their at-
tributes/relationships. Considerable effort has gone toward the de-
velopment of advanced solutions for managing the evolution of
schemas[1, 22, 21], data [5, 23, 3, 19] and schema transforma-
tions [27, 26, 13]. Temporal databases are one of the outcomes of
this effort, where the notion of versioning has been central [4, 6].
In temporal databases, users have the ability to access and query
snapshots of the data at different points in time.

Unfortunately, such work fails to capture the full spectrum
of evolutionary phenomena. Specifically, those approaches are
founded on the assumption that the nature of each real world en-
tity represented in the database persists over time, e.g., students are
added, modified, and eventually deleted, but never become profes-
sors, with a direct link between the student tuple and the professor
one. As such, evolution amounts only to temporal changes of at-
tributes/relationships [1, 5, 21]. Evolution of an entity that spans
different concepts (e.g., student to professor, research lab to inde-
pendent corporate entity) are unaccounted for. And so are evolution
phenomena where one entity is split into several (e.g., Germany
splitting into East and West Germany at the end of WW II), or the
other way around (e.g., East and West Germany amalgamating into
one entity at the end of the Cold War). The result of this is that his-
torical queries, such as "give me all the heads-of-state of Germany
between 1800 and 2000" are hard to deal with, as they essentially
require hand-coding of the history of Germany into several queries
to be processed separately. Note that this may look similar to ter-
minology evolution [25], i.e., using different terms to describe the
same real world entity at different points in time, but it actually
goes far beyond that.

This form of evolution finds a natural fit in Dataspace Sys-
tems [10, 16] that are anchored on the notion of an entity. Such
entities may split/merge or otherwise evolve during their life-
time. Modeling and supporting evolution relationships for histori-
cal query processing finds many additional real-world applications.
For instance, modern historians will be able to model and study
the chains of human achievements and developments, e.g., how the
concept of biotechnology evolved from its beginnings as an agri-
cultural technology to the current notion that is coupled to genet-
ics and molecular biology. Educators will better track how courses
evolve and how the material and educational objectives for a course
are ”transferred" and become associated with another. Finally, bi-
ologists will become more effective in studying the evolution of a

Figure 1: The history of the AT&T Labs.
species by querying the dependencies and changes that have taken
place since the beginning of life on earth.

We have previously presented a formal foundation for model-
ing evolution [24]. This paper focuses on the query facilities re-
quired for our proposal and on algorithmic and performance issues.
Specifically, our contributions in this paper are as follows: (i) we
formally describe new semantics of query answering in which an-
swers are returned from virtual instances constructed on-the-fly by
merging series of entities representing different evolution phases
of a real-world object into one; (ii) we introduce the concept of
Steiner forest as a mean of finding the optimal mergings that need
to be done to answer a query and devise a dynamic programming
algorithm for solving it; (iii) we present an efficient indexing tech-
nique that facilitates the above queries, and we show effective eval-
uation methods; (iv) we experimentally evaluate our findings on
some large publicly available dataset.

The remainder of the paper is structured as follows. Section 2
provides a motivating example and sketches our solution. Sec-
tions 3 presents our modeling framework and formally defines
queries and evaluations. Section 4 shows the query evaluation strat-
egy and Section 5 describes the Steiner forest algorithm. The opti-
mization techniques are presented in Section 6. The experimental
evaluation results are shown in Section 7. Finally, we conclude in
Section 8.

2. MOTIVATING EXAMPLE
Consider AT&T, a company that over the years has gone through

a large number of break-ups, merges and acquisitions. Its famous
Bell Labs where many great innovations took place, had a similar
fate. It was founded in 1925 under the name Bell Telecommu-
nication Laboratories (BTL). In 1984, it was split into Bellcore (to
become Telcordia in 1997) and AT&T Bell Laboratories. The latter
existed until 1996 when it was split into Bell Labs, that was bought
by Lucent, and to AT&T Labs. The Lucent Bell Labs became
Alcatel-Lucent Bell Labs Research in 2006 due to the take-over
of Lucent by Alcatel. Furthermore, due to the take-over of AT&T
by SBC in 2005, the AT&T Labs were merged with the SBC Labs
to form the new AT&T Inc. Labs. Despite being research labs of
different legal entities, Lucent and AT&T Labs have actually main-
tained a special partnership relationship. All the different labs have
produced a large number of inventions, as the respective patents
can demonstrate. Examples of such inventions are the VoIP (Voice
over Internet Protocol), the ASR (Automatic Speech Recognition),
the P2P (Peer-to-Peer) Video and the laser. A graphical illustration
of the above can be found in Figure 1 where the labs are modeled
by rectangles and the patents by ovals.

Assume now a temporal database that models the above informa-
tion as illustrated in Figure 1, and consider a user who is interested

in finding the lab that invented the laser and the ASR patent. It is
true that these two patents have been filed by two different labs,
the AT&T Bell Labs and the AT&T Labs Inc. Thus, the query will
return no results. However, it can be noticed that the latter entity
is an evolution of the former. It may be the case that the user does
not have the full knowledge of the way the labs have changed or in
her own mind, the two labs are still considered the same. We argue
that instead of expecting from the user to know all the details of the
evolution granularity and the way the data has been stored, which
means that the user’s conceptual model should match the one of the
database, we’d like the system to try to match the user’s conceptual
model. This means that the system should have the evolution re-
lationships represented explicitly and take them into account when
evaluating a query. In particular, we want the system to treat the
AT&T Bell Labs, the AT&T Labs Inc, and the AT&T Labs as one
unified (virtual) entity. That unified entity is the inventor of both the
laser and the ASR, and should be the main element of the response
to the user’s query.

Of course, the query response is based on the assumption that the
user did not indend to distinguish between the three aforementioned
labs. Since this is an assumption, it should be associated with some
degree of confidence. Such a degree can be based, for instance, on
the number of labs that had to be merged in order to produce the
answer. A response that involves 2 evolution-related entities should
have higher confidence than one involving 4.

As a similar example, consider a query asking for all the partners
of AT&T Labs Inc. Apart from those explicitly stated in the data
(in the specific case, none), a traversal of the history of the labs can
produce additional items in the answer, consisting of the partners
of its predecessors. The further this traversal goes, the less the
likely it is that this is what the user wanted; thus, the confidence
of the answer that includes the partners of its predecessors should
be reduced. Furthermore, if the evolution relationships have also
an associated degree of confidence, i.e., less than 100% certainty,
the confidence computation of the answers should take this into
consideration as well.

3. DATA MODEL
We adopt a concept model [7] that is gaining popularity in many

areas including dataspaces [10]. Its fundamental component is the
entity which is used to model a real world object. An entity is a data
structure consisting of a unique identifier and a set of attributes.
Each attribute has a name and a value. The value of an attribute can
be an atomic value or an entity identifier. More formally, assume
the existence of an infinite set of entity identifiersO, an infinite set
of namesN and an infinite set of atomic values V .

DEFINITION 3.1. An attribute is a pair 〈n,v〉, with n∈N and
v∈V∪O. Attributes for which v∈O are specifically referred to as
associations. Let A=N×{V∪O} be the set of all the possible at-
tributes. An entity is a tuple 〈id, A〉 where A⊆A, is finite, and
id∈O. The id is referred to as the entity identifier while the set A
as the set of attributes of the entity.

We will use the symbol E to denote the set of all possible enti-
ties that exist and we will also assume the existence of a Skolem
function Sk [15]. Recall that a Skolem function is a function that
provides a unique different value for two different arguments. Each
entity is uniquely identified by its identifier, thus, we will often use
the terms entity and entity identifier interchangingly if there is no
risk of confusion. A database is a collection of entities, that is
closed in terms of associations between the entities.

DEFINITION 3.2. A database is a finite set of entities E⊆E such
that for each association 〈n, e′〉 of an entity e∈E: e′∈E.

As a query language we adopt a datalog style language. A query
consists of a head and a body. The body is a conjunction of atoms.
An atom is an expression of the form e(n1:v1, n2:v2, . . ., nk:vk)
or an arithmetic condition such as =, ≤, etc. The head is always
a non-arithmetic atom. Given a database, the body of the query
is said to be true if all its atoms are true. A non-arithmetic atom
e(n1:v1, n2:v2, . . ., nk:vk) is true if there is an entity with an
identifier e and attributes 〈ni, vi〉 for every i=1..k. When the body
of a query is true, the head is also said to be true. If a head e(n1:v1,
n2:v2, . . ., nk:vk) is true, the answer to the query is an entity with
identifier e and attributes 〈n1:v1〉, 〈n2:v2〉, . . ., 〈nk:vk〉.

The components e, ni and vi, for i=1..k of any atom in a query
can be either a constant or a variable. Variables used in the head
or in arithmetic atoms must also be used in some non-arithmetic
atom in the body. If a variable is used at the beginning of an atom,
it is bound to entity identifiers. If the variable is used inside the
parenthesis but before the “:“ symbol, it is bound to attribute names,
and if the variable is in the parenthesis after the “:“ symbol, it is
bound to attribute values. A variable assignment in a query is an
assignment of its variables to constants. A true assignment is an
assignment that makes the body of the query true. The answer set
of a query involving variables is the union of the answers produced
by the query for each true assignment.

EXAMPLE 3.3. Consider the query:
$x(isHolder:$y):-$x(name:′AT&TLabsInc.′, isHolder:$y)
that looks for entities called “AT&T Labs Inc.” and are holders
of a patent. For every such entity that is found, an entity with the
same identifier is produced in the answer set and has an attribute
isHolder with the patent as a value.

In order to model evolution we need to model the lifespan of the
real world objects that the entities represent and the evolution rela-
tionship between them. For the former, we assume that we have a
temporal database, i.e., each entity is associated to a time period;
however, this is not critical for this work so we will omit that part
from the following discussions. To model the evolution relation-
ship, on the other hand, we consider a special association that we
elevate into a first-class citizen in the database. We call this associa-
tion an evolution relationship. Intuitively, an evolution relationship
from one entity to another is an association indicating that the real
world object modeled by the latter is the result of some form of
evolution of the object modeled by the former. In Figure 1, the dot-
ted lines between the entities illustrate evolution relationships. A
database with evolution relationships is an evolution database.

DEFINITION 3.4. An evolution database is a tuple 〈E,Ω〉, such
that 〈E〉 is a database and Ω is a partial order relation over E. An
evolution relationship is every association (e1, e2)∈Ω.

Given an evolution database, one can construct a directed acyclic
graph by considering as nodes the entities and as edges its evolution
relationships. We refer to this graph as the evolution graph of the
database.

Our proposal is that entities representing different evolution
phases of the same real world object can be considered as one for
query answering purposes. To formally describe this idea we in-
troduce the notion of coalescence. Coalescence is defined only on
entities that are connected through a series of evolution relation-
ships; the coalescence of those entities is a new entity that replaces
them and has as attributes the union of their attributes (including
associations).

DEFINITION 3.5. Given an evolution database 〈E,Ω〉, The co-
alescence of two entities e1:〈id1,A1〉, e2:〈id2,A2〉∈E, connected
through an evolution relationship ev is a new evolution database
〈E′,Ω′〉 such that Ω′=Ω−ev and E′=(E − {e1, e2}) ∪ {enew},
where enew:〈idnew,Anew〉 is a new entity with a fresh identi-
fier idnew=Sk(id1, id2) and Anew=A1∪A2. Furthermore, each
association 〈n,id1〉 or 〈n,id2〉 of an entity e∈E, is replaced by
〈n,idnew〉. The relationship between the two databases is denoted
as 〈E,Ω〉 ev−→ 〈E′,Ω′〉

The Skolem function that we have mentioned earlier defines a
partial order among the identifiers, and this partial order extends
naturally to entities. We call that order subsumption.

DEFINITION 3.6. An identifier id1 is said to be subsumed by an
identifier id, denoted as id1

.
≺id if there is some identifier idx 6=id

and idx 6=id1 such that id=Sk(id1, idx). An entity e1=〈id1, A1〉
is said to be subsummed by an entity e2=〈id2, A2〉, denoted as
e1

.
≺e2, if id1

.
≺id2 and for every attribute 〈n,v1〉∈A1 there is at-

tribute 〈n,v2〉∈A2 such that v1=v2 or, assuming that the attribute
is an association, v1

.
≺v2.

Given an evolution database 〈E,Ω〉, and a set Ωs⊆Ω one can
perform a series of consecutive coalescence operations, each one
coalescing the two entities that an evolution relationship in the Ωs

associates.

DEFINITION 3.7. Given an evolution database D:〈E,Ω〉 and a
set Ωs={m1, m2, . . . , mm} such that Ωs⊆Ω, let Dm be the evolu-
tion database generated by the sequence of coalescence operations
D

m1−→D1
m2−→, . . . , mm−→Dm. The possible world of D according to

Ωs is the database DΩs generated by simply omitting from Dm all
its evolution relationships.

Intuitively, a set of evolution relationships specifies sets of enti-
ties in a database that should be considered as one, while the pos-
sible world represents the database in which these entities have ac-
tually been coalesced. Our notion of a possible world is similar to
the notion of a possible worlds in probabilistic databases [8]. Direct
consequence of the definition of a possible world is the following
theorem:

THEOREM 3.8. The possible world of an evolution database
D:〈E,Ω〉 for a set Ωs⊆Ω is unique.

Due to this uniqueness, a set Ωs of evolution relationships of a
database can be used to refer to the possible world.

According to the definition of a possible world, an evolution
database can be seen as a shorthand of a set of databases, i.e., its
possible worlds. Thus, a query on an evolution database can be
seen as a shorthand for a query on its possible worlds. Based on
this observation we define the semantics of query answering on an
evolution database.

DEFINITION 3.9. The evaluation of a query q on an evolution
database D is the union of the results of the evaluation of the query
on every possible world Dc of D.

For a given query, there may be multiple possible worlds that
generate the same results. To eliminate this redundancy we require
every coalescence to be well-justified. In particular, our principle
is that no possible world or variable assignment will be considered,
unless it generates some new results in the answer set. Further-
more, among the different possible worlds that generate the same
results in the answer set, only the one that requires the smaller num-
ber of coalescences will be considered. To support this, we define
a subsumption relationship among the variable assignments across
different possible worlds and we redefine the semantics of the eval-
uation of a query.

$x $y Possible Answer Cost
World

e1 P2P Video ∅ e1(isHolder:“P2P Video") 0
Sk(e1,e2) P2P Video e1,e2 Not generated 1

Sk(e1,e2,e3) P2P Video e1,e2,e3 Not generated 2
Sk(e1,e2,e3) ASR e1,e2,e3 Sk(e1,e2,e3)(isHolder:“ASR") 2

Sk(e1,e2,e3,e4) Laser e1,e2,e3,e4 Sk(e1,e2,e3,e4)(isHolder:“Laser") 3
.

Table 1: A fraction of variable assignments for Example 3.11.
DEFINITION 3.10. Let h and h′ be two variable assignment

for a set of variables X . h′ is said to be subsumed by h, de-
noted as h′⊆h if ∀x∈X: h(x)=h′(x)=constant, or h(x)=e and
h′(x)=e′, with e and e′ being entities for which e′

.
≺e or e=e′.

Given an evolution database D, let W be the set of its possible
worlds. The answer to a query q is the union of the results of eval-
uating q on every database in W . During the evaluation of q on
a database inW , true variable assignments that are subsumed by
some other true variable assignment, even in other possible worlds,
are not considered.

It is natural to assume that not all possible worlds are equally
likely to describe the database the user has in mind when she was
formulating the query. We assume that the more a possible world
differs from the original evolution database, the less likely it is to
represent what the user had in mind. This is also in line with the
minimality and well-justification principle described previously.
We reflect this as a reduced confidence to the answers generated
by the specific possible world and quantify it as a score assigned
to each answer. One way to measure that confidence is to count
how many evolution relationships have to be coalesced for the pos-
sible world to be constructed. The evolution relationships may also
be assigned a weight reflecting the confidence to the fact that its
second entity is actually an evolution of the first.

EXAMPLE 3.11. Consider again the query of Example 3.3.
and assume that it is to be evaluated on the database of Figure 1.
Table 1 illustrate a set of true variable assignments for some of
the possible worlds of the database. The possible world on which
each assignment is defined is expressed through its respective set
Ωs. The fourth column contains the result generated in the an-
swer set from the specific assignment and the last column contains
its respective cost, measured in number of coalesces that are re-
quired for the respective possible world to be generated from the
evolution database. Note that the second and the third assignment
(highlighted in bold), are redundant since they are subsumed by the
first.

The existence of a score for the different solutions, allows us to
rank the query results and even implement a top-k query answer-
ing. The challenging task though is how to identify in an efficient
way the possible worlds and more specifically the true variable as-
signments that lead into correct results.

4. QUERY EVALUATION TECHNIQUES

4.1 The naive approach
The straight forward approach in evaluating a query is to gen-

erate all the possible worlds and evaluate the query on each one
individually. In the sequel, generate the union of all the individ-
ually produced results, eliminate duplication and remove answers
subsumed by others. Finally, associate to each of the remaining
answers a cost based on the coalescences that were performed in
order to generate the possible world from which the answer was
produced, and rank the answers according to that score. The gen-
eration of all possible worlds is a time consuming task. For an evo-
lution database with an evolution graph of N edges, there are 2N

possible worlds. This is clearly a brut force solution, not desirable
for online query answering.

4.2 Materializing all the possible worlds
Since the possible worlds do not depend on the query that needs

to be evaluated, they can be pre-computed and stored in advance
so that they are available at query time. Of course, as it is the case
of any materialization technique, the materialized data need to be
kept in sync with the evolution database when its data is modified.
Despite the fact that this will require some effort, there are already
well-known techniques for change propagation [3] that can be used.
The major drawback, however, is the space overhead. A possible
world contains all the attributes of the evolution database, but in
fewer entities. Given that the number of attributes are typically
larger than the number of entities, and that entities associated with
evolution relationships are far fewer than the total number of enti-
ties in the database, we can safely assume that the size of a possible
world will be similar to the one of the evolution database. Thus,
the total space required will be 2n times the size of the evolution
database. The query answering time, on the other hand, will be 2n

times the average evaluation time of the query on a possible world.

4.3 Materializing only the maximum world
An alternative solution is to generate and materialize the possible

world Dmax generated by performing all possible coalescences.
For a given evolution database 〈E,Ω〉, this world is the one con-
structed according to the set of all evolution relationships in Ω. Any
query that has an answer in some possible world of the evolution
database will also have an answer in this maximal possible world
Dmax. This solution work has two main limitations. First it does
not follow our minimalistic principle and performs coalescences
that are not needed, i.e., they do not lead to any additional results
in the result set. Second, the generated world fails to include re-
sults that distinguish difference phases of the lifespan of an entity
(phases that may have to be considered individual entities) but the
approach coalesces them in one just because they are connected
through evolution relationships.

4.4 On-the-fly coalescence computations
To avoid any form of materialization, we propose an alternative

technique that computes the answers on the fly by performing co-
alescences on a need-to-do basis. In particular, we identify the at-
tributes that satisfy the different query conditions and from them
the respective entities to which they belong. If all the attributes
satisfying the conditions are on the same entity, then the entity is
added in the answer set. However, different query conditions may
be satisfied by attributes in different entities. In these cases we
identify sets of entities for each one of which the union of the at-
tributes of its entities satisfy all the query conditions. For each
such a set, we coalesce all its entities into one if they belong to the
same connected component of the evolution graph. Doing the coa-
lescence it is basically like creating the respective possible world;
however, we generate only the part of that world that is necessary
to produce an answer to the query. In more details, the steps of the
algorithm are the following.

[Step 1: Query Normalization] We decompose every non-
arithmetic atom in the body of the query that has more than one
condition into a series of single-condition atoms. More specifically,
any atom of the form x(n1:v1, n2:v2, . . . , nk:vk) is decomposed
into a conjunction of atoms x(n1:v1), x(n2:v2), . . . , x(nk:vk).

[Step 2: Individual Variable Assignments Generation] For each
non-arithmetic atom in the decomposed query, a list is constructed

that contains assignments of the variables in the respective atom
to constants that make the atom true. Assuming a total of N non-
arithmetic atoms after the decomposition, let L1, L2, . . . , LN be
the generated lists. Each variable assignment actually specifies the
part of the evolution database that satisfies the condition described
in the atom.

[Step 3: Candidate Assignment Generation] The elements of the
lists generated in the previous step are combined together to form
complete variable assignments, i.e., assignments that involve every
variable in the body of the query. In particular, the cartesian product
of the lists is created. Each element in the cartesian product is a
tuple of assignments. By construction, each such tuple will contain
at least one assignment for every variable that appears in the body
of the query. If there are two assignments of the same attribute
bound variable to different values, the whole tuple is rejected. Any
repetitive assignments that appear within each non-rejected tuple
is removed to reduce redundancy. The result is a set of variable
assignments, one from each of the tuples that have remained.

[Step 4: Arithmetic Atom Satisfaction Verification] Each assign-
ment generated in the previous step for which there is at least one
arithmetic atom not evaluating to true, is eliminated from the list.

[Step 5: Candidate Coalescence Identification] Within each of
the remaining assignments we identify entity-bound variables that
have been assigned to more than one values. Normally this kind of
assignment evaluates always to false. However, we treat them as
suggestions for coalescences, so that the assignment will become
a true assignment (ref. previous Section). For each assignment h
in the list provided by Step 4, the set Vh={Vx1 , Vx2 , . . . , Vxk} is
generated, where Vx is the set of different entities that variable x
has been assigned in assignment h. In order for the assignments of
variable x to evaluate to true, we need to be able to coalesce the
entities in Vx. To do so, these entities have to belong to the same
connected component in the evolution graph of the database. If this
is not the case, the assignment h is ignored.

[Step 6: Coalescence Realization & Cost Computation] Given
a set Vh={Vx1 , Vx2 , . . . , Vxk} for an assignment h among those
provided by Step 5, we need to find the minimum cost coalescences
that need to be done such that all the entities in a set Vi, for i=1..k,
are coalesced to the same entity. This will make the assignment
h a true assignment, in which case the head of the query can be
computed and an answer generated in the answer set. The cost of
the answer will be the cost of the respective possible world, which
is measured in terms of the number of coalescences that need to be
performed. Finding the required coalescences for the set Vh that
minimizes the cost boils down to the problem of finding a Steiner
forest [12],

EXAMPLE 4.1. Let us consider again the query of Exam-
ple 3.3. In Step 1, its body will be decomposed into two
parts: $x(name:′AT&TLabsInc.′) and $x(isHolder:$y). For
those two parts, during Step 2, the lists L1={{$x=e1}}
and L2={{$x=e1, $y=′P2PV ideo′}, {$x=e3, $y=′ASR′},
{$x=e4, $y=′Laser′}, {$x=e5, $y=′V oIP ′}} will be cre-
ated. Step 3 creates their cartesian product L={{$x=e1, $x=e1,
$y=′P2PV ideo′}, {$x=e1, $x=e3, $y=′ASR′}, {$x=e1,
$x=e4, $y=′Laser′}, {$x=e1, $x=e5, $y=′V oIP ′}}. The
only attribute bound variable is $y but this is never assigned to
more than one different value at the same time so nothing is elim-
inated. Since there are no arithmetic atoms, Step 4 makes no
change either to the list L. If for instance, the query had an atom
$y 6=′V OIP ′ in its body, then the last element of the list would have

Figure 2: An illustration of the Steiner forest problem.

been eliminated. Step 5 identifies that the last three elements in L
have the entity bound variable $x assigned to two different val-
ues; thus, it generates the candidate coalesences: V1={e1, e3},
V2={e1, e4} and V3={e1, e5}. Step 6 determines that all three
coalescences are possible. Entities e1, e2 and e3 will be coalesced
for V1, e1, e2, e3 and e4 for V2, and the e1, e2, e3 and e5 for V3.

5. STEINER FOREST ALGORITHM
The last step of the evaluation algorithm presented in the previ-

ous section takes as input a set of entity sets and needs to perform
a series of coalesce operations such that all the entities within each
set will become one. To do so, it needs to find an interconnect on
the evolution graph among all the entities within each set. Note
that the interconnect may involve additional entities not in the set
that unavoidably will also have to be coalesced with those in the set.
Thus, it is important to find an interconnect that minimizes the total
cost of the coalescences. The cost of a coalescence operation is the
weight of the evolution relationship that connects the two entities
that are coalesced. Typically, that cost is equal to one, meaning that
the total cost is actually the total number of coalescence operations
that need to be performed. For a given set of entities, this is known
as the problem of finding the Steiner tree [11]. However, given a
set of sets of entities, it turns out that finding the optimal solution,
i.e., the minimum cost interconnect of all the entities, is not always
the same as finding the Steiner tree for each of the sets individually.
The specific problem is found in the literature as the Steiner forest
problem [12].

The difference in the case of the Steiner forest is that edges
can be “used” by more than one interconnect. More specifically,
the Steiner tree problem aims at finding a tree on an undirected
weighted graph that connects all the nodes in a set and has the min-
imum cost. In contrast to the minimum spanning tree, a Steiner tree
is allowed to contain intermediate nodes in order to reduce its total
cost. The Steiner forest problem takes as input sets of sets of nodes
and needs to find a set of non-connected trees (branches) that make
all the nodes in each individual set connected and the total cost is
minimal, even if the cost of the individual trees are not always the
minimal. We refer to these individual trees with the term branches.
Figure 2 illustrates the difference through an example. Assuming
that we have the graph shown in the figure and the two sets of nodes
{x,y} and {u,v}. Clearly, the minimum cost branch that connects
nodes x and y is the one that goes through the nodes a, b and c.
Similarly the minimum cost branch that connects u and v is the one
that goes through the nodes e, f and g. Each of the two branches has
cost 4 (the number of edges in the branch), thus, the total cost will
be 8. However, if instead we connect all the four nodes x, y, u and
v though the tree that uses the nodes i, j, k and m, then, although
the two nodes in each set are connected with a path of 5 edges, the
total cost is 7.

Algorithm 1 Steiner tree algorithm

Input: graph G,f : E → R+, groups V= V1, . . . , VL

Output: ST for each element in flat(V)
1: QT : priority queue sorted in the increasing order
2: QT ⇐ ∅
3: for all si ∈ maxflat(V) do
4: enqueue T (si, {si}) into QT ;
5: end for
6: while QT 6= ∅ do
7: dequeue QT to T (v, p);
8: if p ∈ flat(V) then
9: ST (p) = T (v, p)

10: end if
11: if ST has all values then
12: return ST
13: end if
14: for all u ∈ N(v) do
15: if T (v, p)⊕ (v, u) < T (u, p) then
16: T (u, p)⇐ T (v, p)⊕ (v, u);
17: update QT with the new T (u, p);
18: end if
19: end for
20: p1 ⇐ p;
21: for all p2 s.t. p1 ∩ p2 = ∅ do
22: if T (v, p1)⊕ T (v, p2) < T (v, p1 ∪ p2) then
23: T (u, p1 ∪ p2)⇐ T (v, p1)⊕ T (v, p2);
24: update QT with the new T (u, p1 ∪ p2);
25: end if
26: end for
27: end while

Formally, the Steiner forest problem is defined as follows. Given
a graph G = 〈N,E〉 and a cost function f : E → R+, alongside
a set of groups of nodes V= V1, . . . , VL, where Vi ⊆ N , find a set
C⊆E such that C forms a connected component that involves all
the nodes of every group Vi and the

∑
i

f(ci) | ci ∈ C is minimal.

The literature contains a number of approximate solu-
tions [2][18][14] as well as a number of exact solution using Dy-
namic Programming [11][9][20] for the discovery of Steiner trees.
However, for the Steiner forest problem (which is known to be NP-
hard [12]) although there are approximate solutions [12], no opti-
mal algorithm has been proposed so far. In the current work we are
making a first attempt toward that direction by describing a solu-
tion that is based on dynamic programming and is constructed by
extending an existing Steiner tree discovery algorithm.

To describe our solution it is necessary to introduce the set
flat(V). Each element in [((V)) is a set of nodes created by tak-
ing the union of the nodes in a subset of V . More specifically,
flat(V)= {U | U=

⋃
Vi∈SVi with S⊆V}. Clearly flat(V) has

2L members. We denote by maxflat(V) the maximal element in
flat(V) which is the set of all possible nodes that can be found in
all the sets in V , i.e., maxflat(V)={n | n∈V1∪. . .∪VL}.

Our solution for the computation of the Steiner forest consists
of two parts. In the first part, we compute the Steiner trees for
every member of the flat(V) set, and in the second part we use the
computed Steiner trees to generate the Steiner forest on V .

The state-of-the-art optimal (i.e., no approximation) algorithm
for the Steiner tree problem is a dynamic programming solu-
tion developed in the context of keyword searching in relational
data [9]. The algorithm is called the Dynamic Programming Best
First (DPBF) algorithm and is exponential in the number of input

nodes and polynomial with respect to the size of graph. We ex-
tend DPBF in order to find a set of Steiner trees, in particular a
Steiner tree for every element in flat(V). The intuition behind the
extension is that we initially solve the Steiner tree problem for the
maxflat(V) and continue iteratively until the Steiner trees for ev-
ery element in flat(V) has been computed. We present next a brief
description of DPBF alongside our extension.

Let T (v,p) denote the minimum cost tree rooted at v that in-
cludes the set of nodes p⊆maxflat(V) Note that by definition, the
cost of the tree T (s,maxflat(V)) is 0, for every s∈maxflat(V).

Trees can be iteratively merged in order to generate larger trees
by using the following three rules.

T (v, p) = min(Tg(v, p), Tm(v, p)) (1)

Tg(v, p) = minu∈N(v)((v, u)⊕ T (u, p)) (2)

Tm(v, p1 ∪ p2) = minp1∩p2=∅(T (v, p1)⊕ T (v, p2)) (3)

where ⊕ is an operator that merges two trees into a new one and
N(v) is the set of neighbour nodes of node v. In [9] it was proved
that these equations are dynamic programming equations leading
to the optimal Steiner tree solution for maxflat(V) set of nodes.
To find it, the DPBF algorithm employs the Dijkstra’s shortest
path search algorithm in the space of T (v, p). The steps of the
Steiner tree computation are shown in Algorithm 1. In particu-
lar, we maintain a priority queue QT that keeps in an ascending
order the minimum cost trees that have been found at any given
point in time. Naturally, a dequeue operation retrieves the tree
with the minimal cost. Using the greedy strategy we look for the
next minimal tree which can be obtained from the current min-
imal. In contrast to DPBF, we do not stop when the best tree
has been found, i.e. when the solution for maxflat(V) has been
reached, but we keep collecting minimal trees (lines 7-10) until all
elements in flat(V) have been computed (lines 11-13). To prove
that all the elements of flat(V) are found during that procedure,
it suffices to show that our extension corresponds to the finding
of all the shortest paths for a single source in the Dijkstra’s algo-
rithm. The time and space complexity for finding the Steiner trees
is O(3

∑
lin+2

∑
li((

∑
li + logn)n+m)) and O(2

∑
lin), respec-

tively, where n and m are the number of nodes and edges of graph
G, and li is the size of the ith set Vi in the input of set V of the
algorithm.

Once all the Steiner trees for flat(V) have been computed, we
use them to find the Steiner forest for V . The Steiner forest prob-
lem has an optimal substructure and its subproblems overlap. This
means that we can find a dynamic programming solution to it. To
show this, we first we consider the case for L=1, i.e., the case in
which we have only one group of nodes. In that case finding the
Steiner forest is equivalent to finding the Steiner tree for the single
set of nodes that we have. Assume now that L>1, i.e., the input
set V is {V1, . . . , VL}, and that we have already computed all the
Steiner forests for every set V ′⊂V . Let SF (V) denote the Steiner
forest for an input set V . We do not know the exact structure of
SF (V), i.e. how many branches it has and what elements of V are
included in each. Therefore, we need to test all possible hypothe-
ses of the forest structure, which are 2L, and pick the one that has
minimal cost. For instance, we assume that the forest has a branch
that includes all nodes in V1. The total cost of the forest with that
assumption is the sum of the Steiner forest on V1 and the Steiner
forest for {V2, . . . , VL} which is a subset of V , hence it is consid-
ered known. The Steiner forest on V1 is actually a Steiner tree. This
is based on the following lemma.

LEMMA 5.1. Each branch of a Steiner forest is a Steiner tree.

Algorithm 2 Steiner forest algorithm
Input: G = 〈N,E〉, V= {V1, . . . , VL},ST (s) ∀s∈flat(V)
Output: SF (V)
1: for all Vi ∈ V do
2: SF (Vi) = ST (Vi)
3: end for
4: for i = 2 to L− 1 do
5: for all H ⊂ V and | H |= i do
6: u⇐∞
7: for all E ⊆ H and E 6= ∅ do
8: u⇐ min(u, ST (maxflat(E))⊕ SF (H \ E))
9: end for

10: SF (H)⇐ u
11: end for
12: end for
13: u⇐∞
14: for all H ⊆ V and H 6= ∅ do
15: u⇐ min(u, ST (maxflat(H))⊕ SF (V \ H))
16: end for
17: SF (V)⇐ u

PROOF. This proof is done by contradiction. Assuming that a
branch of the forest is not a Steiner tree, it can be replaced with a
Steiner tree and reduce the overall cost of the Steiner forest. This
means that the initial forest was not minimal.

We can formally express the above reasoning as:

SF (V) = min
H⊆V

(ST (maxflat(H))⊕ SF (V \H)) (4)

Using the above equation in conjunction with the fact that
SF (V)=ST (V1), if V={V1}, we construct an algorithm (Al-
gorithm 2) that finds the Steiner forest in a bottom-up fashion.
The time and space requirements of the specific algorithm are
O(3L−2L(L/2−1)−1) and O(2L), respectively. Summing this
with the complexities of the first part, it gives a total time complex-
ity O(3

∑
lin+2

∑
li((

∑
li+logn)n+m))+3L−2L(L/2−1)−1)

with space requirement O(2
∑

lin + 2L).

6. QUERY EVALUATION OPTIMIZATION
In the case of top-k query processing there is no need to actually

compute all possible Steiner forests to only reject some of them
later. It is important to prune as early as possible cases which are
expected not to lead to any of the top-k answers. We have devel-
oped a technique that achieves this. It is based on the following
lemma.

LEMMA 6.1. Given two sets of sets of nodes V ′ and V ′′ on a
graph G for which V ′⊆V ′′: cost(SF (V ′))≤cost(SF (V ′′)).

PROOF. The proof is based on the minimality of a Steiner forest.
Let SF(V ′) and SF(V ′′) be Steiner forests for V ′ and V ′′, with
costs w1 and w2, respectively. If cost(SF (V ′′))≤cost(SF (V ′)),
then we can remove V ′′\V ′ from V ′′ and cover V ′ with a smaller
cost forest than SF (V ′), which contradicts the fact that SF (V ′) is
a Steiner forest.

To compute the top-k answers to a query we do the following
steps. Assume that B = {V1, . . . ,Vn} is a set of inputs for the
Steiner forest algorithm. First, we find the Bmin⊆B such that for
each V ′∈Bmin there is no V ′′∈B such that V ′⊂V ′′. Then, we
compute the Steiner forest for each element in Bmin. According

to Lemma 6.1 and the construction procedure of Bmin we ensure
that the the Top-1 is among the computed Steiner forests. We re-
move the input which corresponds to that Top-1 answer from B
and then we continue with the computation of Steiner forests to up-
date Bmin. The above steps are repeated until k answers have been
found.

7. EXPERIMENTS
To evaluate the efficiency and effectiveness of our approach we

performed two kinds of experiments. First we studied the behavior
of the Steiner forest discovery algorithm in isolation, and then we
evaluated the performance of the query answering mechanism we
have developed and which uses internally the Steiner forest algo-
rithm. We also studied the effectiveness of our optimization tech-
nique for top-k query answering.

In the experiments we used both synthetic and real data. We
used the term non-evolution data to refer to entities and attributes,
and the term evolution data to refer to the the evolution relation-
ships and more generally to the evolution graph. We noticed that
in the real datasets, the non-evolution data were much larger than
the evolution data and we maintained a similar analogy during our
synthetic data generation.

For the synthetic data generation we used the Erdös-Rényi graph
generator [17] which can produce random graphs for which the
probability to have an edge between two nodes is constant and inde-
pendent of other edges. Since many real world data follow a power
law distribution, for the non-evolution synthetic data we used the
Zipf’s distribution. In our own implementation of the Zipfian dis-
tribution, as a rank we considered the number of occurrences of
an attribute-value pair in the entire dataset (e.g., if the attribute
〈State, CA〉 appeared 15 time, its rank was 15). This allowed
us to model the fact that there are few frequent attribute-value pairs
and the majority are rare attributes. The real corpora that we used
had similar properties. We will refer to the synthetic dataset gener-
ated using this method as ER-SYNTH.

For real dataset we used an extract from the trademark corpora
which is available from the United States Patent and Trademark Of-
fice1. The trademarks are a kind of intellectual property which may
belong to an individual or a company. If the owner of some trade-
mark changes, the trademark has to be re-registered accordingly.
Analyzing the trademark owner lists we could extract sequences of
companies that have registered the same trademark, and we used
this as an indication for evolution. We constructed the evolution
graphs by considering each such a pair as an evolution relationship.
The dataset we generated that way from the UPTSO files contained
approximately 16K unique companies, 200K attributes (the infor-
mation about companies such as name, place where it is registered
and so on), and an evolution graph with 573 components of sizes
between 5 and 373. To make the dataset extracted from real data
even richer, i.e., with components of higher complexity, we used
two graph merging strategies. In the first, a new evolution compo-
nent is constructed by connecting two components through an arti-
ficial evolution relationship edge between two random nodes from
the two components. We refer to this kind of merge as CHAIN,
because it creates a chain of source graphs. In the second strat-
egy, two components are merged, by choosing an arbitrary node
from one component and then adding evolution relationship edges
to some random node of every other component. We refer to this
method as STAR. Datasets generated using these methods will be
denoted as REAL-CHAIN and REAL-STAR, respectively.

The naive evaluation strategies that were described in Sec-

1http://www.uspto.gov/

Figure 3: Steiner forest discovery performance

tions 4.1 and 4.2 are omitted from the discussion since their high
complexity makes them practically infeasible to implement. In
some sense, the naive case corresponds to the brute force way of
finding a minimal Steiner forest, which is exponential in the size of
evolution graph.

The experiments were all carried out on a 2.4GHz CPU and 4G
memory PC running MS Windows Vista.

7.1 Steiner Forest
To study in detail the Steiner forest algorithm we performed two

kinds of experiments. First, we studied the scalability properties
of the algorithm for varying inputs, and then the behavior of the
algorithm for graphs with different characteristics.

Scaling the Input. Recall that the input to the Steiner forest algo-
rithm is the set V={V1, . . . , VL}. In this experiment we studied the
query evaluation time with respect to the size of the input. By size
we considered two parameters: (i) the total number of elements in
the sets of V , i.e., the

∑L
i=1 |Vi|; and (ii) the number of the groups,

i.e., the value L.
For the former, we started with L=1 and we scaled the

∑
|Vi|

(which in this case is actually equal to |V1|) from 2 to 10. For
each size the average evaluation time of 25 random queries was
recorded. The queries were evaluated both on synthetic and on
real data. The synthetic graph was obtained using the Erdös-Rényi
method and had n = 57 nodes and m = 65 edges. The real
dataset graph was the one described previously. The results of this
experiment are presented in Figure 3(a). The exponential grows in
time (note that the time is presented on a logarithmic scale) with
respect to a query size is consistent with the theoretical complexity
of the Steiner forest algorithm.

To study how the parameter L affects the query execution time
we kept the ΣL

i=1|Vi| constant but modified the number of the sets
L from 1 to 3, and then we repeated the experiment for values of∑L

i=1 |Vi| from 6 to 10 (we assumed that a minimal set size was 2).

The results of the average of 25 random query execution times are
reported in Figure 3(b). The characteristics of the graph were the
same as those in the previous experiment. The current experiment
showed that the execution time depends fully on the

∑L
i=1 |Vi| and

not on L itself. This means that within a reasonable range of query
sizes the number of forest branches does not have any influence on
the performance.

Scaling the Graph. In this experiment we studied the Steiner for-
est discovery time with respect to the size of the graph. We used
three kinds of graph data: ER-SYNTH, REAL-CHAIN and REAL-
STAR, with sizes from 25 to 250 nodes with a step of 25.

For the synthetic dataset the number of edges and nodes was
almost the same. We generated 25 random inputs to the Steiner
forest problem with L = 2 and |V1|=3, and |V2|=3. The results of
this experiment are presented in Figure 3(c). The query evaluation
time has a linear trend as expected, and it was interesting that the
execution time was always less than a second..

We also studied the scalability of the algorithm in terms of the
parameter L. For three queries with

∑
|Vi| = 6 and L=1, 2 and 3

we varied the evolution graph size from 25 to 250 with step 25. The
graph we used was the ER-SYNTH with the same number of nodes
and edges as before. The results are shown in Figure 3(d), where
it can be observed that the scalability of the algorithm depends on
the total number of elements in the sets in the input set V , i.e.,
the

∑L
i=1 |Vi|, and not on the number of forest branches, i.e., the

number L, at least for values of
∑L

i=1 |Vi| up to 10.

7.2 Query Evaluation
Apart from experimenting with the Steiner forest algorithm in

isolation, we run a number of experiments to evaluate the query
answering mechanism we have developed for evolution databases.
The query evaluation time depends not only on the evolution graph
size and structure but also on the size and structure of the whole
evolution database. First, we analyzed the behaviour of the system
with respect to the query size. The query size is determined by the
number of distinct variables, and their number of occurrences in
the query. We started with a 1-variable query and we observe its
behavior as size increases.. Then, we tested the scalability of the
query evaluation mechanism as a function of the evolution graph
only. Finally, we studied the scalability as a function of the data
(i.e., attributes and associations) and we found that their distribu-
tion (but not their size) can dramatically affect the performance of
the system.

In the synthetic data generation, we generated values that were
following the Zipfian distribution for the attributes/associations.
We controlled the generation of the ER-SYNTH dataset through
four parameters, and in particular, the pool of entities, the exponent
that is used to adjust the “steepness” of the Zipfian distribution, the
number of elements that describes the maximum frequency of an
attribute or association, and the number of attributes.The values of
the parameters for the synthetic data are chosen to coincide with
those of the real corpora.

Scaling the Query. We considered a number of 1-variable queries
with a body of the form:

$x(attr1:value1), . . . , $x(attrN :valueN)

and we performed a number of experiments for different values
of N , i.e., the number of atoms in the query. For every atom we
randomly chose an attribute-value pair from a pool of available dis-
tinct attribute name/value pairs. The ER-SYNTH graph that was
generated had 57 nodes and 65 edges. The results are shown in

Figure 4: Query evaluation performance

Figure 4(a). The same figure includes the results of the query eval-
uation on the real dataset that had a size similar to the synthetic.
For the generation of their non-evolution data we had the exponent
set to 3, the number of elements parameter set to 15 and their total
number was 537. The results of the Figure 4(a) are in a logarithmic
scale and confirm the expectation that the query evaluation time
is growing exponentially as the number of variables in the query
grows. If we compare these results with those of the Steiner for-
est algorithm for the respective case, it follows that the integrated
system adds a notable overhead on top of the Steiner forest algo-
rithm execution time. This is was due to the number of coalescence
candidates and the number of Steiner forests that needed to be com-
puted in order to obtain the cost of the elements in the answer set.
Although the parameters for the generation of the synthetic and real
data coincided, their trends were different, as Figure 4(c) illustrates.

We further tested how the number of entity variables in the query
affect the performance. Note that we are mainly interested in the
entity-bound variables. Let M represent the number of distinct
entity-bound variables in the query, and Mi the number of appear-
ances of the i-th variable in the query. Note that the number of
distinct variables will require to solve a Steiner forest problem in
which the input V={V1, . . . , VL} will have L=M and |Vi|=Mi,
for each i=1..M . The total number of variable appearances in the
query will naturally be

∑M
i=1 Mi.

In the experiment, we chose a constant value for the
∑M

i=1 Mi

and we run queries for M=1, 2 or 3. As a dataset we used the ER-
SYNTH with 57 nodes and 65 edges. 537 attributes were generated
with the exponent parameter having the value 3 and the number of
elements parameter to have the value 15.A total of 53 synthetic as-
sociations were also generated with the exponent parameter having
the value 3, and the number of elements parameter to have the value
10. We used 25 randomly generated queries for each of the 3 M
values, and took their average execution time. We did multiple runs
of the above experiments for different values of

∑M
i=1 Mi between

4 and 10. The outcome of the experiments is shown in Figure 4(b)
in a logarithmic scale. Clearly, the number of branches in a for-
est did not affect the query evaluation time, i.e., queries with many
variables showed the same increase in time as the 1-variable query
for the same

∑M
i=1 Mi.

Scaling the Data. In this experiment we examined the query eval-
uation time with respect to the size of the evolution graph. As evo-
lution data, we used both real and synthetic sources. Regarding
the real data, we used a series of graphs (and their attributes as
non-evolution data) with sizes from 25 to 250 with step 25. The
number of edges was 110% of the number of nodes for all graphs.
For the real dataset we used both the REAL-CHAIN and the REAL-
STAR data. For each graph we generated 25 random queries with 3
distinct variables, i.e., M=3, and each variable had M1=2, M2=2
and M3=3 appearances in the query, and we measured the aver-
age time required to evaluate them. As a synthetic dataset the ER-
SYNTH was used, generated to be the same size as before but with
the following Zipfian distribution parameters: exponent 3, number
of elements 15 and number attributes 10 times more than the num-
ber of nodes. Note that we did not generate associations because
the trademark dataset did not have any association that we could
use as a guide. Figure 4(c) depicts the results of this experiment.
It shows that there is a linear growth of time which is is accompa-
nied with an increasing oscillations which can be explained by the
growing exponent of non-evolution data, i.e. the number of coales-
cence candidates may become too large for evolution graphs with
considerable size.

Furthermore, we studied how the query evaluation time scales
for different values of M , i.e. for different distinct variables but
with the same total number of variable appearances in the query
(i.e., the

∑M
i=1 Mi). We used the ER-SYNTH dataset again with

sizes from 25 to 250, using a step 25. The number of evolution re-
lationships was 110% of the number of entities. For each case, we
generated 25 random queries with M=1 having M1=6, M=2 hav-
ing M1=3, and M2=3 and finally, M=3 having M1=3, M2=2,
and M3=2. We executed these queries and measured the average
evaluation time. The non-evolution data was following the Zipfian
distribution with exponent 3, the number of elements was 15 and
the total number of attributes was 10 times more that the number of
nodes (entities). For the associations, the exponent was 3, the num-
ber of elements was 10 and their total number was 5 times more
that the respective number for nodes. The results are presented in
Figure 4(d). Similarly to the previous experiment, we observed a
linear growth with increasing oscillations.

Evolution scalability for different forest structures. We further
examined how the number of evolution graph components influ-
ence the query evaluation time. For this purpose, we generated data
using ER-SYNTH, and in particular 5 datasets of evolution graphs
with a total size of 300 nodes and 330 edges. The sets had 1, 2, 3, 4
and 5 evolution graphs respectively. For each set we run 25 random
queries with two distinct variables (L = 2) that were appearing in
the query 3 times each, i.e., M1=3 and M2=3 and measured their
average execution time. As non-evolution data, we generated at-
tributes and associations with varying exponent parameter, 2.5, 3
and 3.5. The total number of elements and attributes/associations
were 15 and 1000 in one case, while it was 10 and 100 in the other.
Figure 5(a) contains a table with the query evaluation time for each
number of branches and exponent values. From the result, we could
observe the dramatic decrease in time with respect to the number
of evolution graph components. This can be explained by the fact
that the query evaluation ”smeared” across a number of evolution

Figure 5: Query evaluation time for graphs with different num-
bers of connected components and for varying exponent of data
distribution

graph components where each evaluation time becomes consider-
ably small.

Data distribution dependency. Finally, we studied the properties
of the system in relation to the data distribution parameter, namely
the exponent of Zip’s distribution. The query optimizer described
in Section 6 was taken into consideration here and we analyzed
how the non-evolution data were affecting the top-k query answer-
ing. For this experiment we used the following input parameters:
25 random queries with M=2 distinct variables, and M1=3 and
M2=3 respective appearances of each distinct variable in the query.
We used an ER-SYNTH dataset, the evolution graph of which had
n = 57 nodes and m = 65 evolution edges. We also had 10000
attributes distributed over 30 entities, and 1000 associations dis-
tributed over 15 entities. The exponent we used varied from 2.25
to 3.05 with a step of 0.1. The results of the specific experiment
are presented in Figure 5(b). For small exponents the difference
between regular query answering and the top-10 or top-1 was sig-
nificant. To justify this, recall that the number of pruned candidates
depends on how different are the input sets in the Steiner forest al-
gorithm input (ref. Section 6), thus, when the exponent is small the
input sets share many entities.

8. CONCLUSION
In this work we presented a novel framework for dealing with

evolution of entities at different granularity levels. We have made
first class citizens of the system associations between entities indi-
cating that they represent the same real world object but in different
evolution phases. We have designed and implemented a technique
that allows query answering over such databases even if the evolu-
tion model that the user has in mind is of different granularity than
the one used in the database. The solution required the computa-
tion of a Steiner forest. For the later we have presented a novel
algorithm for computing its optimal solution. Finally, we have per-
formed a number of extensive experimental evaluation to determine
the efficiency of our technique.

References
[1] J. Banerjee, W. Kim, H. Kim, and H. F. Korth. Semantics

and implementation of schema evolution in object-oriented
databases. In SIGMOD, pages 311–322, May 1987.

[2] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen
Chakrabarti, and S. Sudarshan. Keyword searching and
browsing in databases using banks. In ICDE, pages 431–440,
2002.

[3] J. Blakeley, P. A. Larson, and F. W. Tompa. Efficiently Up-
dating Materialized Views. In SIGMOD, pages 61–71, 1986.

[4] P. Buneman, S. Khanna, K. Tajima, and W. Tan. Archiving
scientific data. In SIGMOD, pages 1–12, 2002.

[5] S. Chawathe, S. Abiteboul, and J. Widom. Representing and
Querying Changes in Semistructured Data. In ICDE, pages
4–19, 1998.

[6] S. Chien, V. J. Tsotras, and C. Zaniolo. Efficient Management
of Multiversion Documents by Object Referencing. In VLDB,
pages 291–300, 2001.

[7] N. N. Dalvi, R. Kumar, B. Pang, R. Ramakrishnan,
A. Tomkins, P. Bohannon, S. Keerthi, and S. Merugu. A web
of concepts. In PODS, pages 1–12, 2009.

[8] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on
probabilistic databases. volume 16, pages 523–544, Secau-
cus, NJ, USA, 2007. Springer-Verlag New York, Inc.

[9] Bolin Ding, J Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, and
Xuemin Lin. Finding Top-k Min-Cost Connected Trees in
Databases. ICDE, pages 836–845, 2007.

[10] X. Dong and A. Y. Halevy. Indexing dataspaces. In SIGMOD,
pages 43–54, 2007.

[11] S E Dreyfus and R A Wagner. The Steiner problem in graphs.
Networks, 1(3):195–207, 1972.

[12] Elisabeth Gassner. The Steiner Forest Problem revisited.
Journal of Discrete Algorithms, 8(2):154–163, June 2010.

[13] A. Gupta, I. S. Mumick, and K. A. Ross. Adapting Material-
ized Views after Redefinitions. In SIGMOD, pages 211–222,
1995.

[14] Hao He, Haixun Wang, Jun Yang 0001, and Philip S. Yu.
Blinks: ranked keyword searches on graphs. In SIGMOD
Conference, pages 305–316, 2007.

[15] R. Hull and M. Yoshikawa. ILOG: Declarative Creation and
Manipulation of Object Identifiers. In VLDB, pages 455–468,
1990.

[16] E. Ioannou, W. Nejdl, C. Niederee, and Y. Velegrakis. Onthe-
Fly Entity-Aware Query Processing in the Presence of Link-
age. PVLDB, 3(1):429–438, 2010.

[17] Richard Johnsonbaugh and Martin Kalin. A graph generation
software package. In SIGCSE, pages 151–154, 1991.

[18] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti,
S. Sudarshan, Rushi Desai, and Hrishikesh Karambelkar.
Bidirectional expansion for keyword search on graph
databases. In VLDB, pages 505–516, 2005.

[19] A. M. Keller. Algorithms for Translating View Updates to
Database Updates for Views Involving Selections, Projec-
tions, and Joins. SIGMOD, March 1985.

[20] B. Kimelfeld and Y. Sagiv. New algorithms for com-
puting steiner trees for a fixed number of terminals.
http://www.cs.huji.ac.il/ bennyk/papers/steiner06.pdf.

[21] B. S. Lerner. A Model for Compound Type Changes En-
countered in Schema Evolution. ACM TODS, 25(1):83–127,
March 2000.

[22] P. McBrien and A. Poulovassilis. Schema Evolution in Het-
erogeneous Database Architectures, A Schema Transforma-
tion Approach. In CAiSE, pages 484–499, 2002.

[23] F. Rizzolo and A. A. Vaisman. Temporal XML: modeling,
indexing, and query processing. VLDB Journal, 17(5):1179–
1212, 2008.

[24] F. Rizzolo, Y. Velegrakis, J. Mylopoulos, and S. Bykau. Mod-
eling Concept Evolution: A Historical Perspective. In ER,
pages 331–345, 2009.

[25] N. Tahmasebi, T. Iofciu, T. Risse, C. Niederée, and W. Siber-
ski. Terminology Evolution in Web Archiving: Open Issues.
In IWAW, Sep 2008.

[26] Y. Velegrakis, R. J. Miller, and J. Mylopoulos. Representing
and Querying Data Transformations. In ICDE, pages 81–92,
2005.

[27] C. Yu and L. Popa. Semantic Adaptation of Schema Mappings
when Schemas Evolve. In VLDB, pages 1006–1017, 2005.

