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Room Layout Estimation

Task: Estimate the 3D layout from a single image
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Room Layout Estimation

Task: Estimate the 3D layout from a single image

QUESTION: How would you do this?
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No structure: Pixel Labeling
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Underlying Assumption: Manhattan World

Layout and the Objects are oriented with 3 dominant orientations which are
orthogonal [Lee et al. 09]

S. Fidler, R. Urtasun (UofT) Room Layout June 7, 2015 5 / 109



Geometric Context [Hoiem et al., 2007]

D. Hoiem, A. A. Efros, M. Hebert, Recovering Surface Layout from an Image, IJCV, Vol. 75, No. 1, 2007

Code and data: http://web.engr.illinois.edu/~dhoiem/projects/context/

A rough sense of the scene geometry can be obtained from a single image by
learning appearance-based models of surfaces at various orientations

Originally developed for outdoor scenes: Ground, Sky, Vertical (left, center,
right, porous, solid)

Figure : (Hoiem et al. 07)

S. Fidler, R. Urtasun (UofT) Room Layout June 7, 2015 6 / 109

http://web.engr.illinois.edu/~dhoiem/projects/context/


Geometric Context: Greedy Reasoning [Hoiem et al., 2007]

Built sequentially: from pixel to super pixels to regions

Generating segmentations: Use agglomerative clustering with learned
affinities to merge regions. Different segmentations use different feature
combinations.

Generate Labelings: build classifiers and average the likelihood of the
classifiers on the different segmentations. They used Adaboost with decision
trees.

Inference: Greedy (independent for each pixel)
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Geometric Context: Features [Hoiem et al., 2007]
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Geometric Context for Indoors [Hedau et al., 2009]

V. Hedau, D. Hoiem, D. Forsyth, Recovering the Spatial Layout of Cluttered Rooms, ICCV, 2009

Code and data: http://vision.cs.uiuc.edu/~vhedau2/Research/research_spatialLayout.html

GC modified by (Hedau et al. 09) to handle indoor scenes

6 Classes: Left-wall, right-wall, front-wall, ceiling, floor and object

Features: color, texture, edge, and vanishing point cues computed over
each segment

A boosted decision tree classifier estimates the likelihood that a segment is
valid (contains only one type of label) and likelihood of each possible label

These likelihoods are then integrated pixel-wise over the segmentations to
provide label confidences for each superpixel
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Layout Dataset [Hedau et al., 2009]

Was created by (Hedau et al. 09)

Contains 204 training and 104 test images collected from the web

GT surface labeling: floor, left-wall, right-wall, ceiling, object

Figure : Projection of the 3D box into the image
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Metrics

Despite the fact that we are after 3D, the metric used is the % of pixels that
have the correct wall labeled

Corner Error: RMSE of the image diagonal.

What happens when the front wall is not present?

Alternatively we could compute IOU of free-space

3D metrics are tricky as a small change in 2D can be a large change in 3D

But, that’s the reason why is difficult in the first place!
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Geometric Context: Results

OM GC OM/GC Other GC/Oth OM/Oth Time

[Hoiem07] - 28.9 - - - - -

[Hedau09] (a) - 26.5 - - - - -

Table : Pixel classification error in the layout dataset of (Hedau et al. 09).
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Orientation maps [Lee et al., 2009]

D. C. Lee, M. Hebert, T. Kanade, Geometric Reasoning for Single Image Structure Recovery. CVPR, 2009
Code: https://www.cs.cmu.edu/~dclee/code/index.html

Can you recognize the structure given only lines?
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Orientation maps [Lee et al., 2009]

Given a line segment with end points p1 and p2, create the convex hull by
sweeping the line α in the direction of the VP

Do the sweep until the region contains a line that ”blocks” the sweep

A pixel is believed to have orientation z when two lines of different
orientation x and y support the pixel, and only when it is exclusively
supported to be z

Figure : (Lee et al. 09)
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OM Results

OM GC OM/GC Other GC/Oth OM/Oth Time

[Hoiem07] - 28.9 - - - - -

[Hedau09] (a) - 26.5 - - - - -

[Lee10] w/o 24.7 22.7 18.6 - - - -

Table : Pixel classification error in the layout dataset of (Hedau et al. 09).
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A bit more Structure: Pixel Labeling
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Semantic Segmentation

Hey, I know about semantic segmentation!!!

Formulate the problem with one label per face

Write down a Markov Random Field (MRF) that uses the independent
predictors (that we just reviewed) ...

p(f|x) =
1

Z
exp (−E (f))

... but also relationships between neighboring pixels

E (f) = λ
∑
p∈P

Dp(fp) +
∑

(p,q)∈N

Vpq(fp, fq)

How would you define Vpq(fp, fq)?

How would you do inference?

The answer depends on your choose of Vpq(fp, fq)

Let’s think of less general potentials, but more specific for the problem
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Ordering Constraints [Liu et al., 2008]

X. Liu, O. Veksler, J. Samarabandu, Graph Cut with Ordering Constraints on Labels and its Applications, CVPR, 2009

Five Labeling problem: ”center”, ”left”,
”right”, ”top”, and ”bottom”

The front wall is a rectangle!

1 a ”left” pixel cannot be to the right of a pixel with any other label;

2 a ”right” pixel cannot be the left of a pixel with any other label;

3 a ”top”pixel cannot be below a pixel with any other label;

4 a ”bottom” pixel cannot be above a pixel with any other label;

5 if the neighbor of a ”center” pixel has other label, then the neighbor
has to be labeled as ”left”, ”right”, ”top”, or ”bottom” if it is to the
L,R,A,B respectively.

6 The ”center” region is a rectangle.
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MRF formulation [Liu et al., 2008]

Let fp be the label for each pixel

Formulate the problem as Energy Minimization

E (f) = λ
∑
p∈P

Dp(fp) +
∑

(p,q)∈N

Vpq(fp, fq)

The pairwise potential defines ordering constraints

Question: How can we do inference?

S. Fidler, R. Urtasun (UofT) Room Layout June 7, 2015 19 / 109



MRF formulation [Liu et al., 2008]

Let fp be the label for each pixel

Formulate the problem as Energy Minimization

E (f) = λ
∑
p∈P

Dp(fp) +
∑

(p,q)∈N

Vpq(fp, fq)

The pairwise potential defines ordering constraints

Question: How can we do inference?

S. Fidler, R. Urtasun (UofT) Room Layout June 7, 2015 19 / 109



Move Making Algorithms

Unlike regular binary energies, optimal solution is not possible in multi-label
problems

Proceed by solving to optimality subproblems that include current iterate

This guarantees decrease in the objective

Figure : from (Nowozin et al)
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Move Making Algorithms

Alpha Expansion: Checks if current nodes want to switch to label α

Alpha - Beta Swaps: Checks if a node with class α wants to switch to β.

Binary problems that can be solve exactly for certain type of potentials

Figure : Alpha-beta Swaps. Figure from (Nowozin et al)
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Binary Moves

α− β moves works for semi-metrics

α expansion works for V being a metric

Figure : from P. Kohli tutorial on graph-cuts

For certain x1 and x2, the move energy is sub-modular and can be solved via
graph-cuts
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α-Expansion on Our problem

(Problem) Dp(fp = T ) Dp(fp = C) Dp(fp = B)

(Init) (T-expansion) (B-Expansion) (Global Opt)

Figure : Illustration of Local Minima Problem (Liu et al. 08)
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Can we derive an inference algorithm that uses the structure of the
problem?
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Problem-Specific Moves

Use the structure to derive specific moves: vertical and horizontal

Although its a 3-label problem, it can be optimally solved via graph-cuts
(see Liu et al. 08 for graph construction)

Why 3 labels?
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Still Suboptimal Solutions

Figure : Illustration of the local minima problem (Bai et al. 12)
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Can we do even better and get the global optima?
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Yes we can!

J. Bai, Q. Song, O. Veksler, X. Wu, Fast Dynamic Programming for Labeling Problems with Ordering Constraints,
CVPR, 2012

It turns out that this problem is NOT NP-hard

Caution: This assumes that the front wall is a rectangle, and the curves are
monotonic!

Trick: Go over all possible rectangles, and for each the computation is much
simpler

Figure : (Bai et al. 12)
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Efficient Dynamic Programming [Bai et al., 2012]

The quadrants N, W, M, E and S are fixed given the front wall.

NW, SW, NE and SE, we want to estimate a monotonic curve

Dynamic programing algorithm that does shortest path

Use of integral images to accelerate computation

O(N1.5) computation: and O(N) memory, with N = w × h
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Qualitative Results [Bai et al., 2012]

Use 300 images of (Liu et al 08)

Same results as (Liu et al 08), but half the time (≈20s/image)

Figure : (Bai et al. 12)
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Qualitative Results [Bai et al., 2012]

Figure : (Bai et al. 12)
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Beyond Pixels: Use the Structure of the Problem
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Room layout as a 3D Bounding Box

Predict the 3D parametric cuboid that best describes the layout.

How many degrees of freedom do we need?
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Room as a cuboid [del Pero et al., 2011]

L. Del Pero, J. G. E. Brau, J. Schlecht, K. Barnard, Sampling Bedrooms, CVPR, 2011

The floor is constrained to be parallel to the x − z plane, and the room box
can only rotate around the vertical axis

The room is represented

rb = (xr , yb, zb,wb, hb, lb, γ)

with (xr , yb, zb) the coordinates of the room centre in 3D, (wb, hb, lb) are
the with, height and length and γ is the angle of rotation

Intrinsics: Assume no skew and unity aspect ratio, and principal point in the
center.

Camera model is fully specify with

c = (ψ, φ, f )

with ψ, φ the pitch an roll angles and f the focal length
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Generative Model of Rooms [del Pero et al., 2011]

Generative model
p(θ|E )︸ ︷︷ ︸
posterior

∝ p(E |θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

The likelihood p(E |θ) is the prob. of matching edges (after projecting the
cuboid into the image)

The prior p(θ) are box constraints

Learning: Parameters set by hand

Inference: Sampling with different proposal distributions

Use moves that change the random variable values
Use proposal distribution that proposes the camera parameters and 3D
orthogonal corner given 2D corner and f (Shi et al. 04).
Trick: Use a lot of samples!
Thus you need a fairly efficient likelihood computation, as the prior is
usually easy
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Results

OM GC OM/GC Other GC/Oth OM/Oth Time

[Hoiem07] - 28.9 - - - - -

[Hedau09] (a) - 26.5 - - - - -

[Lee10] w/o 24.7 22.7 18.6 - - - -

[delPero11] - - - 26.8 - - 10s?

Table : Pixel classification error in the layout dataset of (Hedau et al. 09).
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What’s next?

Generative Model
p(θ|E )︸ ︷︷ ︸
posterior

∝ p(E |θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

How can we improve results?

Better Priors
Better Likelihood: more features
Better Inference
Use of other information, e.g. VPs
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More Powerful Generative Models [del Pero et al., 2012]

L. Del Pero J. Bowdish, D. Fried, B. Kermgard, E. Hartley, K. Barnard, Bayesian geometric modeling of indoor scenes,
CVPR, 2012

Generative Model
p(θ|E )︸ ︷︷ ︸
posterior

∝ p(E |θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

Better Priors: Gaussian priors over ratio of width and length and over ratio
of width and height

Better Likelihood: count ”right” OM features on the faces of the room

Better Inference:

Init camera parameters from the VPs
Init proposals from corners detected in the image
Keep best 20 and multithread sampling strategy

S. Fidler, R. Urtasun (UofT) Room Layout June 7, 2015 38 / 109



More Powerful Generative Models [del Pero et al., 2012]

L. Del Pero J. Bowdish, D. Fried, B. Kermgard, E. Hartley, K. Barnard, Bayesian geometric modeling of indoor scenes,
CVPR, 2012

Generative Model
p(θ|E )︸ ︷︷ ︸
posterior

∝ p(E |θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

Better Priors: Gaussian priors over ratio of width and length and over ratio
of width and height

Better Likelihood: count ”right” OM features on the faces of the room

Better Inference:

Init camera parameters from the VPs
Init proposals from corners detected in the image
Keep best 20 and multithread sampling strategy

S. Fidler, R. Urtasun (UofT) Room Layout June 7, 2015 38 / 109



More Powerful Generative Models [del Pero et al., 2012]

L. Del Pero J. Bowdish, D. Fried, B. Kermgard, E. Hartley, K. Barnard, Bayesian geometric modeling of indoor scenes,
CVPR, 2012

Generative Model
p(θ|E )︸ ︷︷ ︸
posterior

∝ p(E |θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

Better Priors: Gaussian priors over ratio of width and length and over ratio
of width and height

Better Likelihood: count ”right” OM features on the faces of the room

Better Inference:

Init camera parameters from the VPs
Init proposals from corners detected in the image
Keep best 20 and multithread sampling strategy

S. Fidler, R. Urtasun (UofT) Room Layout June 7, 2015 38 / 109



More Powerful Generative Models [del Pero et al., 2012]

L. Del Pero J. Bowdish, D. Fried, B. Kermgard, E. Hartley, K. Barnard, Bayesian geometric modeling of indoor scenes,
CVPR, 2012

Generative Model
p(θ|E )︸ ︷︷ ︸
posterior

∝ p(E |θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

Better Priors: Gaussian priors over ratio of width and length and over ratio
of width and height

Better Likelihood: count ”right” OM features on the faces of the room

Better Inference:

Init camera parameters from the VPs
Init proposals from corners detected in the image
Keep best 20 and multithread sampling strategy

S. Fidler, R. Urtasun (UofT) Room Layout June 7, 2015 38 / 109



Results on Layout Dataset

OM GC OM/GC Other GC/Oth OM/Oth Time

[Hoiem07] - 28.9 - - - - -

[Hedau09] (a) - 26.5 - - - - -

[Lee10] w/o 24.7 22.7 18.6 - - - -

[delPero11] - - - 26.8 - - X min

[delPero12] - - - 24.7 - 21.3 10s?

Table : Pixel classification error in the layout dataset of (Hedau et al. 09).
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Even more structure
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Utilizing Vanishing Points [Hedau et al., 2009]

V. Hedau, D. Hoiem, D. Forsyth, Recovering the Spatial Layout of Cluttered Rooms, ICCV, 2009

If you know VPs, there are only 4 dof left, and e.g., 504 boxes!
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Formal Parameterization [Hedau et al., 2009]

x is an image, and y is a layout

Energy minimization task (max score/probability):

ŷ = arg max
y

wTφ(x, y)

with φ(x, y) potentials based on image features

How do we incorporate our prior knowledge?

How do we construct φ(x, y)?

Learning: How do we score a 3D box?

Inference: How do we reason about all possible 3D boxes?
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How do we score? [Hedau et al., 2009]

We need to compute φ(x, y)

1 Weighted line membership: Sum the lines of a particular VP vs all other
lines in the face

Figure : (Hedau et al. 09)

For a wall, lines appear mainly on two orientations.

Objects violate this: weight the lines by conf. of been inside an object region
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Let’s look at Hedau et al. 09

2 For each face, compute the normalized sum of the geometric context
features

Figure : (Hedau et al. 09)
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How do we inference? [Hedau et al., 2009]

”Sample” a set of 3D box candidates, e.g., 200

Figure : (Hedau et al. 09)
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Learning a Scoring Function [Hedau et al., 2009]

Use Structure Prediction to learn the scoring function

Formulate the problem as structured ranking, which involves minimizing
the following QP:

min
w ,ξ

1

2
||w||22 + C

∑
i

ξi

s.t. ξi ≥ 0 ∀i

wTφ(x(i), y(i))−wTφ(x(i), y) ≥ ∆(y(i), y)− ξi ∀i ,∀y ∈ Y

with ξi the slack variables and ∆(y(i), y) the loss function

The loss function ∆(y(i), y) penalizes deviation from the GT

Their loss function penalizes

the absence of a face,
the shift of the centroid of the faces
the sum of pixel errors for all faces.
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Results on Layout Dataset

OM GC OM/GC Other GC/Oth OM/Oth Time

[Hoiem07] - 28.9 - - - - -

[Hedau09] (a) - 26.5 - - - - -

[Hedau09] (b) - - - - 21.2 - 10-30 min

[Lee10] w/o 24.7 22.7 18.6 - - - -

[delPero11] - - - 26.8 - - X min

[delPero12] - - - 24.7 - 21.3 10s?

Table : Pixel classification error in the layout dataset of (Hedau et al. 09).
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Qualitative Results [Hedau et al., 2009]
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Can we solve this problem more efficiently?
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Efficient 3D Room Layout Estimation

Task: Given an image, predict the 3D parametric cuboid that best describes
the layout

x is an image, and y is a layout , solve via structure prediction

ŷ = arg max
y

wTφ(x, y)

with φ(x, y) potentials based on image features
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Parameterizing The Layout

We parameterize a layout with 4 variables yi ∈ Y, i ∈ {1, ..., 4} (Hedau et
al. 09)
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Layout Energy or Scoring Function

Image feaures

OM (Lee et al. 09) GC (Hoiem et al. 05)

The potentials count for each layout face the occurrence of each feature type

Efull−layout(x , y) = wTφlayout(x , y) =
∑
α∈F

wT
αφα(x, yα)

with F = {left-wall, right-wall, ceiling, floor, front-wall}
High-order potentials a priori. Why?

Faces are defined by four (front-wall) or three angles (otherwise)

Learning done via structured prediction

What do you expect learning to ”learn”
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Inference

Is inference easy in this model? Why?

What can we do?

Multi-label problem, message passing seems the best option

Problem: High order potentials → very very slow !

Let’s think about it for a second, maybe we can do something

Remember we want to compute sum of features in faces, and search over all
possible faces

Let’s first take a detour
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Integral Images

We are interested in computing the sum of some features inside a rectangle,
and we want to vary the rectangle

How can we do this efficiently?

Compute the sum area table, also called integral image

s(i , j) =
i∑

k=0

j∑
l=0

f (k, l)

This can be efficiently computed using a recursive (raster-scan) algorithm

s(i , j) = s(i − 1, j) + s(i , j − 1)− s(i − 1, j − 1) + f (i , j)

Then compute the sum on the rectangle by accessing 4 numbers

S([i0, i1]× [j0, j1]) = s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1)

Can we do something similar in our case?
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Generalization to 3D [Schwing et al., 2012]

A. Schwing, T. Hazan, M. Pollefeys and R. Urtasun, Efficient Structured Prediction for 3D Indoor Scene Understanding,
CVPR, 2012

Faces are generalizations of rectangles

We need to extend the concept of integral images to 3D

This is called integral geometry (Schwing et al. 12a)

How does this work?

φ{left w}(yi , yj , yk , x) = H1(yi , yj , x)− H2(yj , yk , x)

H1(yi , yj , x)

H2(yj , yk , x)

yi

yj

yk
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What are the implications? [Schwing et al., 2012]

We can now write the problem in terms of potentials of order at most 2

E (y1, · · · , y4) =
∑

r

wT
r (yr , x)

and r only contains sets of 2 random variables

Life is a bit more complicated than what I showed you as I was varying the
parameterization to make you understand easily

Good news is that it still depends on pairwise potentials (which are
accumulators) but there is quite a few more

Some of these r share the same weights, as they come from the integral
geometry.

If they are not shared then they do not represent the same problem

This speeds up the message passing inference by a few orders of magnitude
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Results on Layout Dataset

OM GC OM/GC Other GC/Oth OM/Oth Time

[Hoiem07] - 28.9 - - - - -

[Hedau09] (a) - 26.5 - - - - -

[Hedau09] (b) - - - - 21.2 - 10-30 min

[Lee10] w/o 24.7 22.7 18.6 - - - -

[delPero11] - - - 26.8 - - 10s?

[delPero12] - - - 24.7 - 21.3 X min

Schwing12a 18.6 15.4 13.6 - - - 0.15s

Table : Pixel classification error in the layout dataset of (Hedau et al. 09).
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Can we get the global optima?
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Branch and Bound

We have to define:

1 A parameterization that defines sets of hypothesis.

2 A scoring function f

3 Tight bounds on the scoring function that can be computed very efficiently
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Parameterization of the Problem [Schwing & Urtasun, 2012]

A. Schwing and R. Urtasun, Efficient Exact Inference for 3D Indoor Scene Understanding, ECCV, 2012

Layout with 4 variables yi ∈ Y, i ∈ {1, ..., 4}
How do we define Y?

Is this problem continuous or discrete?

We parameterize the sets by intervals of minimum and maximum angles

{[y min
1 , y max

1 ], · · · , [y min
4 , y max

4 ]}

Why intervals?

We have defined already the scoring function. What about the bounds?
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Properties of the Bounds

Derive bounds f̄ for the original scoring function wTφ(y, x) that satisfy:

1 The bound of the interval Ŷ has to upper-bound the true cost of each
hypothesis y ∈ Ŷ,

∀y ∈ Ŷ, f̄ (Ŷ) ≥ wTφ(y, x).

2 The bound has to be exact for every single hypothesis,

∀y ∈ Y, f̄ (y) = wTφ(y, x).

Can we define this for our problem?
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Intuitions from 2D

C. H. Lampert, M. B. Blaschko, T. Hofmann: Efficient Subwindow Search: A Branch and Bound Framework for Object
Localization. IEEE T-PAMI, 31(12):2129-2142, 2009
Code: http://www.robots.ox.ac.uk/~blaschko/software/ESS-1_2.zip

Let’s look at the 2D case again

We want to compute the bounding box that maximizes a scoring function

Let’s try to do this with branch and bound

We define an interval as the max and min of the x and y axis of the rectangle

The scoring function sums features in the rectangle defined by the BBox

E (y1, · · · , y4) =
∑

i∈BBox(y)

fi (x)
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Branch and Bound for BBox prediction [Lampert & Blaschko, 2009]

The scoring function sums features in the rectangle defined by the BBox

E (y1, · · · , y4) =
∑

i∈BBox(y)

fi (x)

Some features are positive and some are negative

Trick: Divide the space into negative and positive features

E (y1, · · · , y4) =
∑

i∈BBox(y)

f +
i (x)

︸ ︷︷ ︸
f +(y,x)

+
∑

i∈BBox(y)

f −i (x)

︸ ︷︷ ︸
f −(y,x)

Bound the positive and negative independently

bound(E (Ȳ)) = f̄ +(Ȳ, x) + f̄ −(Ȳ, x)
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Bounding the functions [Lampert & Blaschko, 2009]

Energy was defined as

E (y1, · · · , y4) =
∑

i∈BBox(y)

f +
i (x)

︸ ︷︷ ︸
f +(y,x)

+
∑

i∈BBox(y)

f −i (x)

︸ ︷︷ ︸
f −(y,x)

Bound the positive and negative independently

bound(E (Ȳ)) = f̄ +(Ȳ, x) + f̄ −(Ȳ, x)

These bounds are very simple? What are they?

How can we compute them very fast?

What’s the complexity of computing them?

How many integral images do we need?
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Algorithm for 2D BBox [Lampert & Blaschko, 2009]

How do we split?

When do we terminate?
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3D layout estimation [Schwing & Urtasun, 2012]

Let’s go back to our problem

We parameterize the sets by intervals of minimum and maximum angles

{[y min
1 , y max

1 ], · · · , [y min
4 , y max

4 ]}

The scoring function sums features over the faces

E (y1, · · · , y4) =
∑

r

wT
r φ(yr , x) =

∑
α

fα(y, x)

with α = {floor , left w , right w , ceiling , front w}
What about the bounds?

S. Fidler, R. Urtasun (UofT) Room Layout June 7, 2015 67 / 109



Bounds for 3D layout [Schwing & Urtasun, 2012]

The scoring function sums features over the faces

E (y1, · · · , y4) =
∑

r

wT
r φ(yr , x) =

∑
α

fα(y, x)

with α = {floor , left w , right w , ceiling , front w}
Let’s bound each ”face” α separately

Recall where the features come from

original image orientation map geometric context

Some features are positive, some are negative. Why? How do I know which
ones are positive/negative?
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Deriving bounds [Schwing & Urtasun, 2012]

Inference can be then done by

E (y1, · · · , y4) =
∑
α

f +
α (x , y) + f −α (x , y),

We can bound each of this terms separately

bound(E (Ŷ, x)) =
∑
α∈F

f̄ +
α (Ŷ, x) + f̄ −α (Ŷ, x)

We construct bounds by computing the max positive and min negative
contribution of the score within the set Ŷ for each face α ∈ F .

f̄front-wall(Ŷ) = f +
front-wall(x , yup) + f −front-wall(x , ylow ),

(Front Wall) (Minimal left wall) (Maximal left wall)
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Efficient bounds [Schwing & Urtasun, 2012]

How can we compute the bounds efficiently?

What’s the complexity?

How many evaluations?

Learning uses Structured SVMs, trains in 1min!
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Results on Layout Dataset

OM GC OM/GC Other GC/Oth OM/Oth Time

[Hoiem07] - 28.9 - - - - -

[Hedau09] (a) - 26.5 - - - - -

[Hedau09] (b) - - - - 21.2 - 10-30 min

[Lee10] w/o 24.7 22.7 18.6 - - - -

[delPero11] - - - 26.8 - - 10s?

[delPero12] - - - 24.7 - 21.3 X min

Schwing12a 18.6 15.4 13.6 - - - 0.15s

Schwing12b 18.6 15.4 13.6 - - - 0.007s

Table : Pixel classification error in the layout dataset of (Hedau et al. 09).

[delPero11] [Hoiem07] [Hedau09](a) Schwing12b

w/o box 29.59 23.04 22.94 16.46

Table : Pixel classification error in the bedroom data set [Hedau et al. 10].

Takes on average 0.007s for exact solution over 504 possibilities !

It’s 6 orders of magnitude faster!
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Qualitative Results [Schwing & Urtasun, 2012]
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But rooms are not empty, what about the objects?
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Joint inference over layout and 3D objects
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Objects as Clutter [Wang et al., 2010]

H. Wang, S. Gould, D. Koller (2010), Discriminative Learning with Latent Variables for Cluttered Indoor Scene Under-
standing, ECCV, 2010

(Wang et al. 10) formulate the problem as inference of the room (4 rays)
and clutter

Clutter as a latent variable → no need for annotations of clutter

Let x image, y the layout and h the clutter, the enegy

E (x, y,h) = wT Ψ(x, y,h)− (αE a(x, y,h) + βE c (y,h))

Ψ contains a rich set of features: color, texture, perspective consistency, and
overall layout

E a is the variance of the appearance value within a layout face excluding
clutter

E c penalizes clutterness of each face

Learning: latent structured SVM

Inference: Alternate optimization scheme with local search
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Results [Wang et al., 2010]
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Results on Layout Dataset

OM GC OM/GC Other GC/Oth OM/Oth Time

[Hoiem07] - 28.9 - - - - -

[Hedau09](a) - 26.5 - - - - -

[Hedau09](b) - - - - 21.2 - 10-30 min

[Wang10] - - - 22.2 - - -

[Lee10] w/o 24.7 22.7 18.6 - - - -

[delPero11] - - - 26.8 - - 10s?

[delPero12] - - - 24.7 - 21.3 X min

Schwing12a 18.6 15.4 13.6 - - - 0.15s

Schwing12b 18.6 15.4 13.6 - - - 0.007s

Table : Pixel classification error in the layout dataset of (Hedau et al. 09).
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Rescoring Candidates [Hedau et al., 2010]

V. Hedau, D. Hoiem, D. Forsyth, Thinking Inside the Box: Using Appearance Models and Context Based on Room
Geometry, ECCV, 2010

Model Interactions between a small set of layout hypothesis (i.e., 100),
camera and objects

p(o1, · · · , oN , L,C ) = p(C )p(L|C )
∏

i

p(oi |L,C )

What’s the non-reasonable assumption?

Potentials: overlap between object’s footprint and the floor, distance
between object and the walls, scores from our object detector, inferred
object height

Due to the assumptions of the approach, inference is very easy
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Results [Hedau et al., 2010]

3D Cuboid DPM Both Both + layout

AP 0.513 0.542 0.596 0.628
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Objects in 3D [Lee et al., 2010]

D. C. Lee, A. Gupta, M. Hebert, T. Kanade, Estimating Spatial Layout of Rooms using Volumetric Reasoning about
Objects and Surfaces, NIPS 2010
Code: https://www.cs.cmu.edu/~dclee/code/index.html

Jointly extract the spatial layout of the room and the configuration of
objects in the scene.

Objects parameterized as 3D cuboids which occupy 3D volumes in the free
space defined by the room walls

Select configuration that best matches local surface geometry estimated via
image cues and satisfies the volumetric constraints of the physical world

Each object has non-zero finite volume
The objects cannot intersect
The objects are inside the room
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Model Overview [Lee et al., 2010]
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Details and Results [Lee et al., 2010]

Learning via Structured SVMs

Loss function: percentage of pixels in the entire image having

Inference via Beam Search incorrect label
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Results on Layout Dataset

OM GC OM/GC Other GC/Oth OM/Oth Time

[Hoiem07] - 28.9 - - - - -

[Hedau09](a) - 26.5 - - - - -

[Hedau09](b) - - - - 21.2 - 10-30 min

[Wang10] - - - 22.2 - - -

[Lee10] w/o 24.7 22.7 18.6 - - - -

[Lee10] + o 19.5 20.2 16.2 - - - -

[delPero11] - - - 26.8 - - 10s?

[delPero12] - - - 24.7 - 21.3 X min

Schwing12a 18.6 15.4 13.6 - - - 0.15s

Schwing12b 18.6 15.4 13.6 - - - 0.007s

Table : Pixel classification error in the layout dataset of (Hedau et al. 09).
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More Powerful Generative Models [del Pero et al., 2012]

L. Del Pero, J. Bowdish, D. Fried, B. Kermgard, E. Hartley, K. Barnard, Bayesian geometric modeling of indoor scenes,
CVPR 2012

Generative Model p(θ|E )︸ ︷︷ ︸
posterior

∝ p(E |θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

Room is represented

rb = (xr , yb, zb,wb, hb, lb, γ)

with (xr , yb, zb) the coordinates of the room centre in 3D, (wb, hb, lb) are
the with, height and length and γ is the angle of rotation

Intrinsics: no skew and unity aspect ratio, and principal point in the center.

Camera model is fully specify with

c = (ψ, φ, f )

with ψ, φ the pitch an roll angles and f the focal length

Add objects (o1, o2, · · · ), where the object

oi = (bi , ti )

with bi the bounding box and ti the type of object
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Complex and Slow Inference [del Pero et al., 2012]

Likelihood uses lines and GCs

Inference via Sampling

Diffusion moves: sample parameters

Jump Moves: change the structure of the model by adding and removing
objects.

Need to use Reversible Jumps → complicated!
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Positive Results [del Pero et al., 2012]
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Results on Layout Dataset

OM GC OM/GC Other GC/Oth OM/Oth Time

[Hoiem07] - 28.9 - - - - -

[Hedau09](a) - 26.5 - - - - -

[Hedau09](b) - - - - 21.2 - 10-30 min

[Wang10] - - - 22.2 - - -

[Lee10] w/o 24.7 22.7 18.6 - - - -

[Lee10] + o 19.5 20.2 16.2 - - - -

[delPero11] - - - 26.8 - - 10s?

[delPero12] - - - 24.7 - 21.3 X min

[delPero12]+o - - - - - 16.3 12 min

Schwing12a 18.6 15.4 13.6 - - - 0.15s

Schwing12b 18.6 15.4 13.6 - - - 0.007s

Table : Pixel classification error in the layout dataset of (Hedau et al. 09).
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Geometric Phrases [Choi et al., 2013]

W. Choi, Y. -W. Chao, C. Pantofaru, S. Savarese. Understanding Indoor Scenes Using 3D Geometric Phrases, CVPR,
2013
Code and data: http://wwweb.eecs.umich.edu/vision/3DGP/

Learn the typical configuration of objects in 3D

Solve jointly for scene type, layout and objects
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Energy Formulation [Choi et al., 2013]

The energy is defined

Learning by ”clustering” and fitting parameters with max-margin

Inference via Reversible Jump MCMC
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Positive Results [Choi et al., 2013]
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Results on Layout Dataset

OM GC OM/GC Other GC/Oth OM/Oth Time

[Hoiem07] - 28.9 - - - - -

[Hedau09](a) - 26.5 - - - - -

[Hedau09](b) - - - - 21.2 - 10-30 min

[Wang10] - - - 22.2 - - -

[Lee10] w/o 24.7 22.7 18.6 - - - -

[Lee10] + o 19.5 20.2 16.2 - - - -

[delPero11] - - - 26.8 - - 10s?

[delPero12] - - - 24.7 - 21.3 X min

[delPero12]+o - - - - - 16.3 12 min

Schwing12a 18.6 15.4 13.6 - - - 0.15s

Schwing12b 18.6 15.4 13.6 - - - 0.007s

Table : Pixel classification error in the layout dataset of (Hedau et al. 09).

They didn’t evaluate on this dataset but in their own data, performance for
layout is 1% better than Hedau09
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Optimal solution to the joint layout and object problem?
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3D Scene Understanding from Single Image

A. Schwing, S. Fidler, M. Pollefeys, R. Urtasun, Box In the Box: Joint 3D Layout and Object Reasoning from Single
Images, ICCV, 2013

Task: Given a single image, obtain the layout as well as the 3D objects
present in the scene

GT

Ours

Assumption: The world is Manhattan, objects and room are 3D cuboids
oriented in accordance with the vanishing points (VPs)

Conjecture: A holistic approach that does joint inference over layout and
objects should be better than serial reasoning
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Parameterization [Schwing et al., 2013]

Given the VPs, we need 4 angles to describe the room layout and 5 angles
to describe each object

For simplicity let’s consider a single object

Let y be the layout and z the object

Branch and bound for exact inference
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Scoring Function Over Joint Problem [Schwing et al., 2013]

Combined energy is

Etotal (x , y, z) = Eobject(x , z) + Elayout(x , y, z)

= +
Etotal (x , y, z) Eobject(x , z) Elayout(x , y, z)
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Individual Terms: Object Term [Schwing et al., 2013]

Log linear model Eobject(x , z) = wTφobject(x , z),

Count for each face of the object geometric features (i.e., normal
direction), as well as probability map generated by a 3D detector
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Layout Scoring Function with Occlusion [Schwing et al., 2013]

Take into account occlusion to not over-count evidence

Elayout(x , y, z) = Efull−layout(x , y)− Eocc (x , y, z) + Epen(x , y, z)

= -
Elayout(x , y, z) Efull layout(x , y) Eocc (x , y, z)

We have seen how to compute Efull−layout(x , y) before

Epen(x , y, z) ensures that the object does not penetrate the walls
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Individual Terms: occlusion term [Schwing et al., 2013]

E = Eobject(x , z) + Efull−layout(x , y)− Eocc (x , y, z) + Epen(x , y, z)︸ ︷︷ ︸
Elayout (x,y,z)

Eocc subtracts the object from the layout for the OM and GC features

Figure : Example of how the front face of the object affects the floor
estimation of the layout

Difficulty: The shape varies depending on where the object is relative to the
layout
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Branch & Bound for Exact Inference [Schwing et al., 2013]

We have to define:

1 A parameterization that defines sets of hypothesis.

2 A scoring function

3 Tight bounds on the scoring function that can be computed very efficiently

Energy is a sum of terms, we bound them individually
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Parameterization of the Problem [Schwing et al., 2013]

Param. layout with 4 variables yi ∈ Y, i ∈ {1, ..., 4}
We parameterize an object with 5 variables zi ∈ Z, i ∈ {1, ..., 5}

We parameterize the sets by intervals of minimum and maximum angles

{[y min
1 , y max

1 ], · · · , [y min
4 , y max

4 ]}

The same thing for the object, use intervals for the angles

{[zmin
1 , zmax

1 ], · · · , [zmin
5 , zmax

5 ]
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Deriving bounds for the Layout [Schwing et al., 2013]

Decompose potential into positive and negative contributions

Efull−layout(x , y) = w +>
fl φ+

fl (x , y) + w−>fl φ−fl (x , y)

Bound each face individually

f̄ (Ŷ) =
∑
α∈F

(
f̄ +
α (Ŷ) + f̄ −α (Ŷ)

)
Bounds are max positive and min negative contributions for each face

f̄left-wall(Ŷ) = f +
left-wall(x , yup) + f −left-wall(x , ylow ),

(Minimal left wall) (Maximal left wall)
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Deriving bounds for the Object [Schwing et al., 2013]

Decompose potential into positive and negative contributions

Eobj (x , z) = w +>
obj φ

+
obj (x , z) + w−>obj φ

−
obj (x , z)

Bound each face individually, using integral geometry

ḡ(Ẑ) =
∑
α∈F

(
ḡ +
α (Ẑ) + ḡ−α (Ẑ)

)
Bounds are max positive and min negative contributions for each face

ḡtop-obj(Ẑ) = g +
top-obj(x , zup) + g−top-obj(x , zlow ),
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Bounds for Penetration and Occlusion [Schwing et al., 2013]

Penetration is implicitly bounded by carving out the space, i.e., removing
hypothesis that do not satisfy the penetration constraint

Life gets harder with the occlusion constraint: integral geometry does not
work anymore!!!

Decompose intersections into triangles and compute more accumulators so
that you can get constant time access
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Bounds for Penetration and Occlusion [Schwing et al., 2013]

It looks complicated and high order!

But look at pairs of faces and decompose intersections into triangles

Compute more accumulators so that you can get constant time access

This accumulators are also pairwise potentials!

Bounds computed also by looking at min and max areas of each accumulator

Sounds easy... but it’s a nightmare ;)
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Results: Full system [Schwing et al., 2013]

Experiments on the bedroom dataset (Hedau et al. 10)

The layout is improved by 1.5%

Top Side Hull BB

loc
DPM (Felzenszwalb et al. 10) - - 56.12 57.14
3D-DPM (Fidler et al. 12) 30.61 35.71 53.06 66.33
Sup. DPM - - 61.22 63.27
Ours 35.05 39.18 68.04 74.23

Table : Comparison to state-of-the-art in 3D detection.
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Results: Importance of the features [Schwing et al., 2013]

Intersection over union Labeling measures
joint greedy joint greedy

Top Side Hull BB Top Side Hull BB 9L 5L 9L 5L

lo
c

Geo 25.51 19.39 48.98 64.29 26.53 24.49 50.00 63.27 26.16 22.00 26.62 22.70
Geo+2D 33.67 27.55 60.20 65.31 33.67 27.55 60.20 65.31 24.34 21.44 24.46 21.45
Geo+3D 37.76 38.78 60.20 71.43 35.71 37.76 60.20 69.39 23.20 20.43 23.95 21.03
Geo+2D+3D 35.05 39.18 68.04 74.23 34.69 38.78 65.31 74.49 22.65 20.30 23.81 21.22

d
et

Geo 36.30 32.59 51.11 54.07 36.30 34.07 49.63 51.11 27.84 23.81 26.95 23.05
Geo+2D 42.22 38.52 62.22 66.67 43.70 40.74 62.96 65.93 25.77 22.94 24.50 21.64
Geo+3D 44.44 43.70 58.52 60.74 42.96 43.70 57.78 60.00 24.45 21.64 24.28 21.37
Geo+2D+3D 42.96 47.41 66.67 69.63 45.19 48.89 65.93 70.37 24.66 21.67 24.57 21.73

Table : Importance of the features: note that every feature we add generally
improves detection. We refer to OM+GC features via Geo, the 2D detector via
2D, and the 3D detector via 3D.
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Results: Greedy vs Joint [Schwing et al., 2013]

joint greedy

Oracle 9L 12.88s 0.07s
Oracle 5L 6.95s 0.07s
Geo 331.43s 0.37s
Geo+2D 230.68s 0.30s
Geo+3D 583.18s 0.43s
Geo+2D+3D 3333.09s 1.58s

Table : Average inference time in seconds for the joint and greedy approach with
different features provided
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Results: Free-Space estimation [Schwing et al., 2013]

Pascal Average
Floor Object Free Floor Object Free

Oracle 9L 89.76 62.22 77.95 77.22 62.83 64.64
Oracle 5L 90.55 60.00 77.95 78.37 60.81 64.88
Geo 63.78 29.63 35.43 57.21 35.07 40.47
Geo+2D 71.65 29.63 39.37 59.24 37.76 42.40
Geo+3D 68.50 37.78 40.94 58.36 40.95 43.33
Geo+2D+3D 70.63 37.04 38.89 58.64 41.92 42.05

Table : Computation of average F1 score for intersection over union of floor,
object footprint and free-space for joint inference with indicated features. While
the Pascal approach counts scores larger than 0.5 as correct detections, we also
provide the mean.
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Qualitative Results [Schwing et al., 2013]

GT Ours GT Ours GT Ours

GT Ours GT Ours GT Ours
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