
Facilitating Discourse Analysis with Interactive Visualization

Jian Zhao, Fanny Chevalier, Christopher Collins, and Ravin Balakrishnan

a b c

Fig. 1. The DAViewer, a visualization system for discourse analysis. (a) The overview panel shows similarity statistics about a
collection of discourse trees; (b) the detail panel shows the full structure of the discourse trees; (c) the text panel is coordinated with
the visualizations to allow detailed analysis of the correspondence of rhetorical structure and text content.

Abstract—A discourse parser is a natural language processing system which can represent the organization of a document based
on a rhetorical structure tree—one of the key data structures enabling applications such as text summarization, question answering
and dialogue generation. Computational linguistics researchers currently rely on manually exploring and comparing the discourse
structures to get intuitions for improving parsing algorithms. In this paper, we present DAViewer, an interactive visualization system
for assisting computational linguistics researchers to explore, compare, evaluate and annotate the results of discourse parsers. An
iterative user-centered design process with domain experts was conducted in the development of DAViewer. We report the results of
an informal formative study of the system to better understand how the proposed visualization and interaction techniques are used in
the real research environment.

Index Terms—Discourse structure, tree comparison, computational linguisitics, visual analytics, interaction techniques.

1 INTRODUCTION

Natural Language Processing (NLP) has become a vitally important
area of computer science research, as the results of research in this
field are quickly put to wide use in systems such as text categoriza-
tion, automatic translation, topic extraction, and summarization. A
large portion of current efforts in this area involve computational lin-
guistics researchers working to improve statistical parsing algorithms
to gain ever higher accuracy and recall. Of particular interest is the
subfield of automated discourse analysis, which aims to analyze the
semantic structure and relationships within a text document. While
parsing a sentence for its grammatical structure may be familiar to
many readers, discourse parsing crosses sentence boundaries, extract-
ing relationships within an entire document. These discourse struc-
tures are the foundation of many text-based algorithms such as certain
types of summarization [19], question answering [5] and dialogue gen-
eration [24]. Yet, accurate discourse analysis remains a challenge due
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to the complex and nuanced nature of language, and research in this
area is still very active. In this paper we present DAViewer, an in-
teractive visualization tool for computational linguists to visually ex-
plore, compare, evaluate, and annotate automatically generated dis-
course structures with the aim of improving the underlying parsing
algorithms (Figure 1).

In order to develop robust discourse parsers, researchers typically
rely on a corpus—a large collection of human labeled documents—
as a reference (called a gold standard) for training and evaluating al-
gorithms. Several techniques have been proposed to make discourse
parsers under a widely accepted framework, Rhetorical Structure The-
ory (RST) [18], which represents the organization of text as a tree
structure after dividing it into non-overlapping text chunks (Figure 2a).
While such an abstracted representation offers an helpful support for
analysis, there are no adequate visual exploration tools to assist NLP
researchers in discourse studies: in practice, researchers display or
print out static representations of the discourse tree structures in the
form of indented text chunks (Figure 2b). This makes the exploration
and comparison process tedious, and particularly inefficient for the
task of comparing the outputs of several variations of an algorithm.

Our visualization system, DAViewer is designed as an interactive
tool to augment the manual analysis process, supporting the verifi-
cation of hypotheses and discovery of insights about existing parsers
in order to inspire the development of improved parsing algorithms.
We developed DAViewer using a user-centered process, starting by
the identification of the particular domain problems and challenges
from which we derived design requirements for the visualization tool.
In close collaboration with computational lingusitics experts at every
stage of the development, we implemented and iteratively refined a
functional prototype to address our target users’ needs. The result-

Author manuscript, published in IEEE Transactions on Visualization and Computer Graphics, 18(12), pp. 2639-2648, Dec 2012.
DOI: 10.1109/TVCG.2012.226

http://dx.doi.org/10.1109/TVCG.2012.226


Elaboration

Elaboration Attribution

Elaboration

Enablement

Attribution

Attribution

Attribution

JointTelxon Corp
said
(1)

The marker of
hand-held

computers and
computer

systems said
(4)

The company
said
(7)

it hasn’t
named a

successor to 
Ronald Button,

the vice
president

(8)

who resigned
(9)

Its Houston
work force

now totals 230.
(10)

to improve the
efficiency of its
manufacturing

operation.
(6)

the personnel
changes were

needed
(5)

and its
Houston work

force has
been trimmed
by 40 people,
or about 15 %.

(3)

its vice
president for

manufacturing
resigned

(2)

(Elaboration[N][S]
 (Elaboration[N][S]
  (Attribution[S][N]
   ‘Telxon Corp. said’
   (Joint[N][N]
    ‘its vice president for manufacturing resigned’
    ‘and its Houston work force has been trimmed by 40 people, or about 15%.’))
   (Attribution[S][N]
    ‘The maker of hand-held computers and computer systems said’
    (Enablement[N][S]
     ‘the personnel changes were needed’
     ‘to improve the efficiency of its manufacturing operation.’)))
   (Attribution[S][N]
    ‘The company said’
    (Elaboration[N][S]
     “it hasn’t named a successor to Ronald Bufton, the vice president”
     (Attribution[S][N]
      ‘who resigned.’
      ‘Its Houston work force now totals 230.’))))

a b

Fig. 2. Example of a typical discourse tree structure: (a) node-link representation of the hierarchical binary tree and (b) indented text format.

ing interface is built around a table of discourse tree visualizations,
interactively coordinated with other visualization components includ-
ing the texts under analysis and detailed information about selected
objects. DAViewer is designed in such a way that computational lin-
guistics researchers can actively integrate the visual exploration of in-
termediate results into their research process and use these results to
further develop and refine robust algorithms in discourse studies. We
conducted a formative study with a domain expert over a period of four
weeks and found that our tool dramatically sped up some comparison
and analysis tasks which were otherwise difficult to carry out. We also
collected use case scenarios thus far unsupported using the traditional
workflow. Several months after our study, our expert is still regularly
using the tool for her research.

The contributions of this research are fourfold. First, we contribute
design requirements for discourse analysis visualization, which were
obtained incrementally through an iterative, four-stage user-centered
design process. Second, we present an iteratively refined implemen-
tation of DAViewer with interactions and visualizations particularly
tailored for NLP researchers in discourse analysis. Third, our tool
introduces two new tree representations that can be applied to other
domains—compact dendrograms in column or row views and a den-
drogram version of icicle plots. Finally, we contribute the results of an
informal formative study in a real work setting with a domain expert.

2 BACKGROUND

2.1 Discourse Analysis
Discourse analysis in the NLP community is mostly driven by the RST
framework [18]. In RST, the discourse structure is a binary tree1 built
from non-overlapping text chunks called elementary discourse units
(EDUs). The EDUs are segmented from the text document, and serve
as the leaves of the discourse tree. Then the discourse parsing algo-
rithm successively combines EDUs to create internal nodes, each of
which corresponds to a rhetorical relation between its branches (e.g.,
Attribution, Cause, etc.). Hernault et al. describe the 18 relations
which are used in the parsers tested in this research, and widely used
by the discourse analysis community [15]. Under each relation, the
children can be either nucleus or satellite. With respect to the parent
relation, the text associated with a nucleus branch is considered more
prominent or important than the text associated with a satellite branch.

There are two ways to combine the segmentation and parsing al-
gorithms. They can be coupled, so that the segmentation of the text
into EDUs and the creation of the parse tree are interdependent and
co-optimized. Or, the segmentation can take place in a separate, initial
step, and the parsing algorithm is then forced to build the tree from
these EDUs. The second (decoupled) method is more common and is
used in this work. By forcing the EDUs to be the same across pars-
ing algorithms, it allows for easier structural comparison of the trees
generated by different parsers.

1While the original tree is not necessarily binary, a widely accepted practice
in discourse analysis consists of converting an n-ary tree into a binary tree [15].

A popular corpus used in this area of research is the RST Discourse
Treebank (RST-DT) [4], which consists of 385 documents transcribed
from the Wall Street Journal and annotated under the RST framework.
Figure 2a shows a typical rendering of a discourse tree, generated over
the text of an article, with rhetorical relations shown in gray-filled
boxes, and EDUs depicted with white boxes labeled with sequence
numbers (i.e. the EDU’s position as it appears in the text). Solid or
dashed lines indicate whether the branch (or EDU) is nucleus or satel-
lite respectively.

Several attempts have been made to develop discourse parsers using
the RST framework. Many discourse parsers rely on a bottom-up ap-
proach for the tree building, i.e., linking EDUs and internal nodes with
a parent relation, level by level until encountering the single top root
node. The HILDA discourse parser [11], further improved by Feng
et al. [12], is an instantiation of this approach to parsing, and is used
in this work. Our external expert is working to improve parsing built
with the HILDA parser as a starting point.

Despite the efforts of computational linguists, the generation of
highly accurate discourse structures over a text document remains an
open research question in NLP. In order to get a better understanding
of the flaws and strengths of existing and newly created algorithms,
the common practice consists of a close analysis of the discourse trees
generated by different parsers: the comparison of a generated tree with
the gold standard reveals how the obtained result differs from the op-
timal solution; and the comparison between generated trees helps ana-
lysts to identify the impact of tuned parameters of the same algorithm,
or differing performances of multiple algorithms. In particular, lin-
guists are interested in answering the following questions:

Q1 At a given intermediate level in the discourse tree, is the text sep-
arated into meaningful groups (chunks)? Do the nucleus branches
capture the prominent content of the text?

Q2 Where are the errors in the generated discourse tree? Do errors at
low levels propagate to upper levels of the tree structure?

Q3 What are the structural differences between branches generated
by two parsing algorithms over the same EDUs?

Q4 Does the algorithm generate common parsing structures (or er-
rors) across all the documents in the corpus?

Q5 How consistently does each algorithm perform across documents
in the corpus? Which types of documents are more problematic?

With the lack of efficient visualization systems to address their
needs, linguists struggle to answer such questions effectively, as they
are currently working with a collection of indented text encoding the
tree structure, as shown in Figure 2b.

2.2 Visualization and Computational Linguistics
There is a growing body of research in the area of text visualization,
with most efforts aimed at content analysis—revealing keywords in a
document, topics in a corpus, and changes in streaming text data. In
this work, we are interested in a specific subset of language-related vi-
sualizations: those works whose aim is to improve our understanding
of linguistic phenomena or computational linguistic algorithms.



Visualization has been used to answer fundamental questions in
linguistics. For example, the Dichronlex diagram is used to reveal
changes in language constructs over time [28]. Pilz et al. [23] use
multidimensional scaling to plot the similarities of spelling variants to
understand the propagation of spelling changes through time and ge-
ography. Structured Parallel Coordinates can be used to understand
common patterns in corpus linguistics [9]. Finally, Constellation is
a graph-based visualization targeted at helping refine algorithms that
determine semantic networks [21].

More relevant to this work are visualizations designed to better un-
derstand, and even to improve, computational linguistic algorithms.
The DerivTool is designed for computational linguistic researchers to
interactively correct problems in a translation system by directly edit-
ing the translation model learned from training data [10]. The lattice
visualization of Collins et al. [7] and the Chinese Room visualiza-
tion of Albrecht et al. [1] both use visualization to reveal a collection
of closely ranked translation hypotheses considered by an automated
translation algorithm, and allow a user to select the most reasonable al-
ternative. Finally, the Bubble Sets visualization was designed to sup-
port machine translation researchers, using a participatory approach
similar to the one we adopted here [8]. Bubble Sets are overlays on
parse trees to improve their usefulness in the task of diagnosing trans-
lation errors in order to improve translation algorithms. Similarly, the
discourse tree visualizations of DAViewer are designed to support the
discovery of errors in discourse trees in order to inspire improvements
to discourse parsing algorithms.

2.3 Visualization of Tree Structures
A breadth of techniques have been proposed for the visual comparison
of trees, that can be classified under three main categories: side-by-
side views [2, 6, 22], merged views [29, 30] and animation [27]. For
an exhaustive review see the survey by Graham et al. [13].

Side-by-side views can be based on visual cues to convey the re-
lationships. Explicit links can be drawn between the matched nodes,
and the alpha channel of the links tuned to indicate the similarity mea-
sure between the corresponding branches, as for example in the syntax
trees by Chevalier et al. [6]. However, such an explicit linking can
lead to a cluttered view due to the numerous lines. Side-by-side views
can leverage interaction through dynamic queries: for instance, Tree-
Juxtaposer [22] allows the user to interactively visualize similar sub-
tree structures by highlighting a query pattern. A system particularly
related to our work was developed by Bremm et al. [2] for the com-
parison of phylogenic trees. In that work, several visualization tech-
niques are combined as coordinated views, including a tabular view of
the trees of interest and a similarity matrix view indicating similarity
scores between the trees of the dataset.

An alternative to side-by-side views is to use merged views in which
two trees are combined in a single visualization that encodes the dif-
ferences. Similarity matrices fall into this category. The nodes of the
trees to compare correspond to rows and columns, and the cells of the
matrix indicate the similarity between the nodes. Van Ham [30] uses
such an approach for software analysis. These techniques constitute
a powerful and space-efficient way for comparing the different nodes
with one another. This is, however, to the detriment of making the
hierarchical structure apparent. Union Tree [29], which integrates two
trees into a single treemap visualization based on a structural match,
and colour-codes the differences between the nodes are another exam-
ple of merged views. Similarly, Candid Tree [17] visualizes structural
differences between two trees by merging them into a single, colour-
coded, node-link representation. While such approaches make differ-
ences salient, they are limited to the comparison of two trees at a time.

Finally, a third approach is to use animations to convey changes
between two different trees [27]. However, users may lose track of the
overall difference since the positions of many nodes are varying during
the animation [13]. In addition, while animations can help keep track
of changes while smoothly transitioning between trees, only one of the
trees is visible at any given time, making comparison difficult.

3 ITERATIVE USER-CENTERED DESIGN

We used a user-centered approach over the course of four months.
Here, we describe our methodology and the design requirements.

3.1 Methodology
We followed a standard user-centered design process as described
in [20], involving two experts: an expert in both computational linguis-
tics and visual design, and a co-author of this paper; and an external
researcher, from a university computational linguistics group whose
focus is discourse analysis. While both were engaged in the iterative
design stages of the prototype, only the external expert was involved
in the formative study.

Through regular consultations with our experts, we gathered and
refined a list of requirements, and built a series of prototypes: over
the course of four months, we maintained a weekly meeting with the
experts, during which they were presented with the latest prototypes
for feedback on further requirements using several methods includ-
ing interviews, meetings, observations, exchanging emails, and phone
calls. A series of prototypes were deployed, including sketches, paper
prototypes, an initial implementation running on a small dataset, a re-
fined high-fidelity prototype with full functionality, and a deployable
system. Details of the four stages of our design process follow.

Problem identification and quick prototyping. The first step was
aimed at identifying the problems and challenges faced by the target
users, along with the exploration of possible design alternatives to ad-
dress their needs. Through a series of interviews focusing on the frus-
trations and issues NLP analysts encounter in daily research life with
their current workflow, we derived a set of basic functionalities and de-
sign requirements for a visual exploration tool (Q1-5 and Section 3.2).
Several design alternatives where then explored, critiqued, and refined
with the help of the experts using sketches and paper prototypes.

Initial implementation with core functionality. After agreeing
on a general design concept and priorities, the second phase consisted
of implementing, iteratively testing, and refining an initial interactive
prototype that included a number of key functions. We conducted this
iterative process over a period of six weeks, using a small sample of
the whole data provided by the external expert for testing: the an-
notated gold standard and the results of the HILDA parser over six
documents. During this phase, several design problems were identi-
fied regarding the colour coding of discourse trees, improper visual
cues and interaction issues preventing a fluid exploration. Our experts
also requested additional functions such as filtering and querying the
tree structures and displaying summary statistical information about
the discourse trees.

Refined prototype. At this stage, a full version of the tool with a
refined interface and complete set of functions was be released to the
expert for use in her real work setting, using a journaling technique
to record usage and potential areas for improvement. Only the exter-
nal expert was involved in this two-week long testing phase, which
allowed us to identify a number of minor bugs. More importantly, our
expert reported that she sometimes felt that the visualizations failed
at providing adequate information about how the text was separated
into groups under a level of the tree (Q1). In response, we designed
and added an alternative representation of the tree structure based on
the icicle plot [16]. Because icicle plots are space-filling, the extent of
EDUs under the nodes at each level is readily apparent.

System release and field test. This final phase served as a field
formative study: a final system, including logging instrumentation of
user actions for reliable quantitative usage analysis, was deployed to
the expert user for a longer time period (several weeks). We report on
this last phase in more detail in Section 6.

3.2 Design Requirements
Through the iterative process with our expert users, we learned a lot
about the process of research to improve discourse analysis. Gath-
ered from and validated by our observations, and in response to the
questions enumerated in Section 2.1, we defined the following specific
design requirements for analytic tools to support discourse analysis:



R1 Discourse tree representation. While several approaches for rep-
resenting the discourse trees could be considered, our experts ex-
plicitly requested that the core visualization resemble the repre-
sentation they currently use for analysis of the parsing structure
(see Figure 2a). In particular, immutable constraints are the pre-
sentation of leaf nodes in the same order as the associated text
chunks appear in the document, and the explicit visual encoding of
nodes’ type (satellite or nucleus) and relation. More importantly,
the visualization should facilitate the identification of clusters at
any level of the tree, a flaw of the node-link diagram currently
used in practice. Finally, our users mentioned that it was naturally
preferable that the different trees that share the same set of EDUs
are aligned to facilitate structure comparison (Q3).

R2 Errors, distributions and statistical information. In order to
gain better intuitions for designing new algorithms, linguists must
discover the pros and cons of different parsers. Statistical infor-
mation, such as the distribution of relationship types appearing
in a tree or the similarity scores assigned to branches of the tree
should be readily available, as they provide an important overview
of the discourse structure and performance of the parsers (Q2).

R3 Article views and textual contexts. In order to observe whether
the parsing algorithm groups EDUs into meaningful units when
building the discourse tree, it is important to be able to see how
EDUs are grouped under a relation (Q1). At any level of a dis-
course tree, the tool should support separating the source text into
proper chunks (groups of EDUs) according to the branching pat-
tern. It is also important to be able to view the text of individual
EDUs in isolation. Finally, to support close reading of the doc-
uments under analysis, a standard paragraph-based layout of the
document should be supported.

While the above requirements are described in the context of the
specific NLP application domain, we note that the general ideas behind
(R1) and (R2) are not exclusive to linguists. Indeed, representing the
tree structure and node details in a similar fashion to that traditionally
used by the target users is likely to be valid in other domains involv-
ing tree comparison. Similarly, the analysis of distributions, statistical
information and errors are recurrent themes for systems that operate
under uncertainty. However, the general tree visualizations tools that
could support these requirements would still need to be adapted to ef-
fectively satisfy the specific domain constraints. To best support R1-3,
we propose a highly tuned design for representing the discourse tree
structures, the core visualization component of the DAViewer system,
that we describe in Section 4.

In addition to the above requirements, the visual exploration tool
should support general requirements including dynamic queries such
as filtering and querying, to allow for a focused attention on specific
types of relations or structural patterns (R4), and which effect should
instantaneously be reflected in all of the coordinated views to guar-
antee visual consistency across the different visualization components
for a fluid and effective exploration (R5); flexible data management, to
assist researchers to do long-term progressive research during which
the datasets may expand (R6); and finally, annotation, to support doc-
umentation of the findings for future reference (R7).

4 DISCOURSE TREE REPRESENTATIONS

4.1 Expanded views
We designed two main types of representations to visualize the dis-
course trees: an adapted version of the icicle plot [16] (Figure 3a), and
a dendrogram—a branching node-link diagram particularly suited to
reflect relationships (Figure 3b), that resembles the traditional repre-
sentation as used by our target users (Figure 2a).

Tree structure and node details. In both representations, the
nodes are colour-coded according to the assigned relation label from
the 18 described by Hernault et al. [15]. The specific hues were
selected from 18 of the 22 most distinguishable colours in Green-
Armytage’s colour alphabet [14]. The hue of the links between the
nodes and their parent relation indicates the nuclearity of the children

Fig. 3. Discourse tree representations: (a) icicle plot view, (b) dendro-
gram view, (c) vertical compact view, and (d) horizontal compact view.

nodes in the node-link dendrogram: black indicates a nucleus (the
most prominent nodes), and grey indicates a satellite. In the icicle-
dendrogram, the colour of the outline of the children node indicates
this property. These representations are interactively linked to the text
panel which displays the content of the document (see Section 5.2.2),
thus allowing for easy access of the text chunks associated to the nodes
of current focus (R3).

Representing the clusters. We added the icicle-based plot after our
experts reported that it was difficult to see the clustering of the EDUs
at a specific level of the tree (Q1). With the node-link dendrogram,
one has to follow the lines to accurately rebuild the different group-
ings. This can be challenging with large or high trees. While it is
well accepted that the dendrogram eases the readability of hierarchical
structures when the leaves must be aligned, the traditional icicle plot
is generally better than node-link diagrams for the task of identifying
clusters [16]. Our icicle visualization is a hybrid representation: we
display nodes in the form of rectangles as in the traditional icicle, to
make the embedding relation apparent. However, our layout mimics
the dendrogram in that we align all the leaves at the same rightmost
level, and we expand each rectangle’s width up to the level where the
corresponding node is grouped in turn. In this way, when looking at
the icicle-dendrogram in columns, one can clearly see the clustering of
EDUs at each intermediary stage of the bottom-up grouping process.

Showing the errors. In order to inspire the development of im-
proved parsing algorithms, it is essential for linguists to develop a
good understanding of the specific flaws of the existing algorithms
compared to the gold standard. In particular, our experts are interested
in identifying precisely which step(s) of the greedy bottom-up process
fail, and to what extent such errors have an impact on the steps that fol-
low (Q2). To facilitate such analysis, we build an icicle-dendrogram
where nodes are colour-coded according to the similarity scores of the
internal nodes using a yellow-to-green palette. This dendrogram is
used as a background on top of which the node-link dendrogram is
overlaid (Figure 3b), thus serving as a heatmap where errors are made
more salient because of the darker colour.

4.2 Compact views
When many trees have to be compared, as it is the case for our users,
space limitation can become an issue. We designed two new com-
pact representations of the discourse trees. In a method similar to
how Table Lens [25] allows for compact graphical representations of
symbolic data for space efficiency, we propose compacted rows and
columns, while providing a vertical (Figure 3c) or horizontal (Fig-
ure 3d) informative representation that summarizes important charac-
teristics of the compacted discourse trees (R2).

Vertical compact view. In this view, each bin corresponds to a
leaf node, i.e., an EDU. The width of a bin encodes the depth of its
associated leaf in the tree, i.e., the number of intermediate clusters
the EDU belongs to on the path to the root. The colour of a bin is
mapped to the average similarity score of its corresponding leaf node



Fig. 4. The DAViewer interface is comprised of: (a) an overview which displays the overall performance of all the parsers over all the documents
in the dataset, (b) a detail panel which visualizes the discourse tree structures of the focused algorithms and documents as node-link or icicle
dendrograms, (c) a status panel which provides the basic properties of the currently selected items as well as an interactive legend for filtering
operations, (d) an annotation panel which allows users to edit notes, (e) a text panel which shows the content of the active document as parsed by
the focused algorithm, and (f) a search window which for querying based on keyword and structure over the data in the detail panel.

and all nodes on the path from the leaf to the root. Hence, the compact
representation conveys the average error an EDU contributes across
the levels. For example, a wide dark bin indicates an early grouped
EDU whose initial error strongly impacts all its upper levels.

Horizontal compact view. In this view, each bin corresponds to a
level of the compacted tree. The height of a bin encodes the number
of nodes at the associated level. The colour is mapped to the average
similarity score of the set of nodes. Hence, the compact representation
allows a viewer to identify at which stage of the clustering process
the algorithm starts to fail and whether such errors propagate to upper
levels or not. We also use the vertical axis to represent the centroid
vertical position of the nodes belonging to the level, and center the
bins accordingly. A horizontal black mark in the center of the bin is
used as a visual cue of the centroid location. This gives an indication
of whether the EDUs are clustered evenly across the document (re-
flected by a mark close the center), or if the groups of EDUs are more
concentrated on one or the other side (the higher the bin, the more
independent clusters at the beginning of the document).

The two compact representations shown in Figure 3c,d can be
viewed as two marginal perspectives of the node link view shown in
Figure 3b along the vertical and horizontal dimensions. While they
have initially been designed to help answer question Q2 through the
presentation of trees at different levels of abstraction, the proposed
compact representations, as a design concept, can be generalized for
hierarchical tree structures in general, as we later discuss in Section 7.

5 THE DAVIEWER INTERFACE

We developed DAViewer, a complete interactive visualization tool for
computational linguists to explore, compare, evaluate, and annotate
the results of parsers in discourse studies. We designed DAViewer
around the core discourse tree visualizations introduced above, and re-
fined the interface through the four discrete stages of the user-centered
design methodology as described in Section 3.1.

The DAViewer interface is composed of five interactively coordi-
nated views (Figure 4) including (a) an overview panel of the entire
dataset, (b) a detail panel, (c) a status panel, (d) an annotation panel,
(e) an article panel, and (f) a search window. Dynamic brushing and
linking techniques are applied for interactively coordinating informa-
tion displayed in the different panels (R5).

5.1 Overview: See the Whole Dataset
The overview panel (Figure 4a) consists of a matrix view representing
the entire available dataset—a collection of discourse trees, each tree
resulting from the computation of a given parsing algorithm (columns
in the matrix) applied to a given document (rows in the matrix).

The overview is useful to determine at a glance how the different al-
gorithms perform on the same document—which amounts to compar-
ing the results along a row of the matrix, and how the same algorithm
performs across a set of documents—which amounts to comparing the
results along a column of the matrix (Q5), as compared to the ref-
erence algorithm (i.e., the gold standard, or otherwise user-defined).
One column is set as the reference and shown in grey. In Figure 4a,
the leftmost column serves as the reference. Each non-reference cell
is colour-coded according to a similarity score between the tree in that
cell, and the current reference tree in that row (i.e., we compare trees
for the same document). The numeric scores are displayed in each cell,
and also mapped to a yellow-to-green scale [3]. Therefore, the matrix
plays the role of a heatmap, that the user can use to quickly identify the
trees that differ the most from the current referent, and thus requiring
deeper investigation to identify the problems.

In our current implementation, the similarity measure relies on the
element-based measure proposed by Bremm et al. [2], but other simi-
larity measures could be considered. The overview displays the scores
associated with the root nodes, conveying the similarity scores be-
tween the whole tree structures. Low similarity scores generally in-
dicate parsing errors. For example, one can easily tell from Figure 4a,
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Fig. 5. Different text display formats: (a) in the discourse tree, the cur-
rently active level is indicated by a dark brown ribbon. In the text panel,
the content display can be set to (b) hybrid, to reveal the EDUs grouping
at that level, (c) separated, to show individual EDUs, or (d) continuous
to present the text as a single paragraph.

that the last document (last row) is generally problematic, and that the
third algorithm (third column) under performs the others on this spe-
cific document.

In practice, as the research goes, linguists develop several refined
versions of the same algorithm or propose new algorithms. They may
also decide to extend their gold standard by adding more annotated
documents. In order to support the progressive research process of our
users, DAViewer provides convenient ways of adding and/or removing
entries to workspace (R6).

5.2 Drill Down: Further Explore a Set of Trees
When the user has identified problematic algorithms and documents,
she can drill down into the data and access an expanded view of a set
of trees, as described in Section 4.

5.2.1 Choose the Trees of Interest
In order to preserve a consistent tabular representation across the views
and maintain the alignment of EDUs across algorithms (R1), the se-
lection is algorithm- and document-based, in that the user selects the
set of trees of interest by checking row (document) and column (al-
gorithm) headers in the overview. All the cells at the intersection of
the selected rows and columns are loaded in the detail panel, as shown
in Figure 4b. The currently selected cells are outlined in blue in the
matrix overview.

Depending on her current task, the user can interactively choose
between the icicle plot view, the dendrogram view, or decide to reduce
some trees to their compact representations to devote more space to
the algorithms and documents of immediate interest.

5.2.2 Explore the Discourse Trees
To facilitate the visual exploration, DAViewer provides fluid interac-
tions for visual exploration of discourse trees. The user can select
a node to access detailed information of the node and its subtree in
the status panel (Figure 4c). This also triggers the emphasis of the
node and the branch under it, using thicker edges. In other trees in
the same row, the branches corresponding to the same EDUs (leaf
nodes) are also emphasized (see middle row, Figure 4b) so as to fa-
cilitate the comparison of internal structures (Q4). The associated text
of the EDUs under the selected node is loaded into the text panel (Fig-
ure 4e), and emphasized in several ways (R3): (1) we apply a bold
font to the selected node’s content, (2) the text of the first child node is
underlined, and (3) the background is coloured according to the main
relation’s hue, with a dark or light tone whether the text belongs to a
nucleus or a satellite branch respectively (Figure 5).

As the user moves the cursor in the active table cell, a semi-
transparent brown ribbon indicates the tree level where the cursor re-
sides, as an aid to identify the nodes on the same tree level (Figure 5a).
There are three ways the text can be formatted. First, clicking on an
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Fig. 6. Filtering operations of interactive legends: (a) filtering out nodes
above score 0.8 and (b) filtering out nodes with the Elaboration relation.

empty space within a level (as opposed to a node) selects that level,
which rearranges the text into a layout we call hybrid display: the
text is split into paragraphs according to the EDUs branching at that
level (Figure 5b). This text display is particularly useful when the
user wants to analyze the intermediate stages of the relation grouping
(Q1, R1). The second text layout is the separated display (Figure 5c)
which presents each EDU as a separate paragraph. Finally the contin-
uous display (Figure 5d) displays the article as a single paragraph. The
separated display is suited to the matching EDUs to leaves in the tree,
as the EDUs remains clearly separated, while the continuous display
aims to offer a more comfortable way of reading text in a continuous
flow. The separated display is equivalent to choosing the leaf level in
the hybrid display; the continuous display is equivalent to selecting the
root level in the hybrid display.

DAViewer also supports traditional tree operations such as branch
collapsing when the user double clicks on a node. It is also possible
to collapse branches through batch operations using a context menu
(e.g., collapse all branches under a node with similarity score below a
certain threshold, or all branches up to a specific tree level).

The rich interactions in DAViewer allows for a flexible exploration
of the trees. This is particularly useful for a close analysis of the re-
lations and the text associated to a problematic node, that can help
identify the causes of a mislabeled relation (e.g., a keyword causing
ambiguity). When comparing how a set of EDUs are clustered across
several algorithms, the user can also explore in details of parsing dif-
ferences, allowing her to infer hypotheses on the impact of parameter
settings on the correct identification of specific relations, as illustrated
in Section 6.4.

5.3 Filter and Query: Reveal the Important
The status panel acts as an interactive legend for filtering opera-
tions (R4), including the similarity score legend (Figure 6a), to fil-
ter out nodes with specific similarity scores, the relation legend (Fig-
ure 6b), where each label is a modal button for dynamic filtering [26].
DAViewer also incorporates querying functions for node and branch
searching (R4), including keyword search, structure-based querying,
and the combination of the two (i.e., all branches that satisfy both
queries) through a separate dialog (Figure 4f). Keywords can be en-
tered in the text area, triggering the highlighting of all the nodes which
descendant EDUs contain such a keyword. To perform a structural
search, the user builds her pattern of interest either from scratch, or by
editing a structure copied from the detailed view. The user can specify
or omit the relation and nuclearity types associated to the nodes of the
query pattern. When no value is specified, the engine searches for any
value of such nodes. All the structures that match the query are high-
lighted in the detail panel with a blue halo. The structure-based query
function has been explicitly requested by our users as a critical func-
tion to locate recurrent error patterns, as this task is extremely difficult
to perform with their current analysis method (Q4).



5.4 Annotate: Write a Research Journal
The analysis of parsing results is a continuous and progressive process
as the research progresses. To allow NLP researchers to record in-
sights and exploration notes, DAViewer supports annotations on trees
or nodes, and groups of trees or nodes through the panel as shown in
Figure 4d (R7). Notes are presented as a collapsible list of items ti-
tled with the timestamp of the last addition and can be saved together
with the workspace status. The note panel is fully coordinated with the
other views, implying that when a note is selected, all the correspond-
ing items in the overview and detailed view are visually emphasized.

6 FORMATIVE STUDY

We conducted an informal formative study with our external expert
to evaluate DAViewer in a realistic work environment. This section
describes the methodology, summarizes the findings, and presents two
example use case scenarios.

6.1 Methodology
DAViewer is designed to be tailored to the needs of computational
linguists in their research process. Our research process depends on
many factors including the user’s motivation, previous knowledge and
particular work settings, which are not easy to evaluate in a laboratory
study. To better understand the strengths and flaws of our tool in a
realistic work environment, we adopted a formative study approach
with our external expert user over a three week period.

The goal of the study was threefold. First, we wanted to evaluate
the overall acceptance and usability of DAViewer as an analytical tool
assisting computational linguists in their research process. Second, we
were interested in investigating the patterns of use of the different in-
teraction and visualization components, as a valuable guide for future
improvements of our system. Third, we were hoping DAViewer would
allow our user to discover new insights, and were therefore interested
in collecting use case scenarios.

We released DAViewer to our external user, who was free to use
the tool at will on her personal computer. Since DAViewer supports
the standard file formats used by linguists, our user did not encounter
any difficulty generating and loading the additional datasets to her
workspace. For the study, we added a logging mechanism to col-
lect occurrences of a set of 39 operations (e.g., select a node, set ici-
cle view, etc.) that we classified into 8 higher level categories (e.g.,
dataset management, detail view manipulation, querying, etc.). Op-
erations and categories are detailed in Figure 7b. Each operation was
recorded alongside its time stamp. We also requested our user to keep
an analysis diary, and maintained regular contact via email and several
short informal interviews at regular intervals during the study. At the
conclusion, we also conducted an additional interview to collect her
feedback after the evaluation period.

In addition to the interview notes, user’s diary and emails, we col-
lected 17 log files (449 minutes in total), from which we discarded 5
log files that corresponded to sessions of less than 5 minutes long. The
remaining logs corresponded to use of 432 minutes, in session ranging
from 15 to 56 minutes long (µ = 36,σ = 13). Altogether, the remain-
ing log files contain a total of 3048 operations, with a minimum of 55
and a maximum of 456 operations per session (µ = 254,σ = 124). In
addition, our user described several use case scenarios of the insights
she had discovered while using DAViewer.

6.2 Usability and Satisfaction
During the final interview concluding the formative study, our expert
user reported that the visualizations offered significant benefits for an-
alyzing the outputs of discourse parsing algorithms: “It is great to
have all the [discourse] trees available and see them visually. I can
print [trees] in text files and look at them all day long, but never found
it could be that clear and easy with the visual representations.” She
added that “The collapsed views are very handy, because sometimes
I just want an overall comparison, not the deep deep details,” and re-
ported to be highly satified with the GUI design and interactions that
she found to be “handy and straightforward”.

DAViewer proved to be very efficient to our user as it greatly in-
creased her productivity: “I used to draw trees by hand according to
the output text files, so I could only compare 2 or 3 trees at the time and
they are basically simple trees around 5 levels. With DAViewer I can
compare many large trees efficiently. All trees are nicely aligned and
the interactions allow me to focus on subtrees easily.” The user em-
phasized that her past experience of drawing trees of about 20 EDUs
was “awful” (each tree taking her more than 10min to draw) and highly
error-prone due to the manual process. Then she mentioned: “For the
same data, now I can spot the [tree structure] differences in 2 sec-
onds by observing the [similarity] score heatmap.” For comparing
very large trees, which was almost impossible to do in the past, the
expert also found the row and column compact tree views very useful
for identifying the parts to focus on first.

The visual representations of discourse trees were favoured by the
user because they were efficient in showing the parsing process and
comparing tree structures, though they were slightly different from the
manually produced graphs. The user said, “I know I want the tree
levels aligned from the bottom, but I can’t draw such layout from the
output file in one round since the tree nodes are indented in the depth-
first order.” Moreover, she commented that the data visualization was
flexible because the separation of text and tree structure allowed her
to focus on different aspects of the dataset and the interactions such as
tooltips and highlights of text provided the connections conveniently.

Other valuable functions for our user were the searching and filter-
ing capabilities, especially the structure-based query. She said, “I used
to insert debug code inside the parsers, for a verbose output, but it is
tedious and almost impossible to find patterns. Now, I can do it visu-
ally by just creating what I need and clicking a button.” She indicated
that a further improvement of the querying function with boolean op-
erations would greatly enhance the tool.

In summary, our expert was enthusiastic about DAViewer, as re-
flected by the numerous extended sessions she conducted during the
evaluation. She would like to continue using the tool in her research.

6.3 Patterns of Usage
Figure 7 summarizes the results of the operations logging during the
formative study, including (a) a colour-coded time diagram of a typical
working session, (b) the classification of the operations into categories,
and (c) the overall distribution for each category use.

Not surprisingly, the user spent most of her time on tree exploration,
of which node selections were predominant (92% of tree exploration
operations). We found out in the final interview that collapsing nodes
was not desirable, as it does not preserve alignment of the EDUs and
it disturbs the global “mental representation of the tree.” A design
implication is that future versions should support synchronized node
collapsing and coupled panning to preserve EDU alignments.

Since the detail panel was her main focus, the user naturally spent
a fair amount of time adjusting the treeset shown in this panel. Nearly
one third of the operations consisted of compacting and uncompacting
rows and columns. The expert commented that she preferred to look
at the trees first in these compact views to get a general idea about the
performance of the parsers, especially when the structure was large.
This reveals that our design of compact views was useful for analysis,
in addition to saving screen real-estate.

The dendrogram was largely preferred over the icicle plot (79%).
Our user explained that for most of the time her purposes were to
identify structural differences among trees, that is easier to do with
the dendrogram. However, she said that the icicle plot was more use-
ful and more salient when observing the behaviors of parsers, i.e., how
nodes are merged from bottom to top and how the whole article is par-
titioned at each tree level of processing.

The user also performed a large amount of queries (299 in total)
and filtering operation (177 in total). Among the querying operations,
18% were keyword searches, 55% were structure-based and 27% were
both, confirming the importance of structural queries in our domain
of application. Moreover, the expert mentioned that this significantly
increased the efficiency of spotting desired structural dissimilarities by
interactively combining operations of both querying and filtering.



dataset management (0.5%)

overview and tree subset (9.2%)

detail panel manipulation (14.8%)

tree exploration (53.2%)

text display (0.3%)

annotation (6.4%)

querying (9.8%)

interactive legend �ltering (5.8%)

dataset management
open treeset in plain text format, import a tree or a treeset, save
all workspace, load a workspace, remove row/column from the
dataset, append row/column to the dataset

overview and tree subset

detail panel manipulation

tree exploration

text display
annotation

querying

interactive legend �ltering

change reference column, load selected trees in the detail panel,
add trees to the detail panel, remove trees from the detail panel

select a row in the detail panel, select a column in the detail panel, 
select a tree cell, compact a tree cell, uncompact a tree cell

set dendrogram view, set icicle view, collapse branches up to a 
level, collapse branches above a score, expand all nodes, expand 
a branch, collapse/expand a branch (double click), select a node

set continuous display, set separated display, set hybrid display
add a tree-level note, add a node-level note, delete a note
add a note to a pattern, select a node in the pattern, edit pattern,
search keywords, search structure, search both

activate/deactivate a relation, change score �lter threshold
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Fig. 7. Results of the logging gathered during the formative study: (a) shows the break up of a typical session of DAViewer into categories of
operation as detailed in (b), and (c) summarizes the overall usage of the different types of operations.

a b
Fig. 8. Comparing HILDA with the gold standard: (a) the compact ver-
tical views allow for the localization of the error in HILDA: (b) the incor-
rectly grouped nodes are shown in red outlines, (c) the red arrow points
at the correct Cause relation.

Surprisingly, the user rarely changed the text display format, al-
though it was an important functional requirement. In the end, the
user explained that her most favoured display format, the hybrid dis-
play, was flexible enough to easily access both other displays by sim-
ply selecting the root or the leaves levels. She however did choose to
keep the display fixed in rare occasions.

Finally, we analyzed individual log files to gain knowledge of the
user’s exploration flow when using DAViewer. We plotted each session
as a colour-coded time diagram. An example in Figure 7a represents a
typical working session. We observed a recurrent pattern across all the
sessions: after loading the dataset, the user adjusts the documents and
algorithms of interest in the overview. Then a long period of time is
dedicated to detailed exploration: tree manipulations, interleaved with
querying and filtering, and eventually the creation of a note about in-
sights. This pattern is then repeated several times on the same treeset,
until the user decides to adjust the latter for a new investigation on dif-
ferent trees. This usage exhibits a typical visual exploration process
for hypothesis verification and discovery, that DAViewer successfully
supports with its coherent coordination between the panels presenting
the data at different levels of abstraction.

6.4 Use Case Scenarios
We present two use case scenarios based on our user’s diaries. The
dataset she used as a gold standard was a set of 20 annotated docu-
ments from the RST-DT set [4]. The parsing algorithms included the
HILDA discourse parser [15] and several algorithms of her own.

6.4.1 The HILDA Parser versus the Gold Standard
In this scenario, the user wants to investigate the flaws of the HILDA
parser, a popular algorithm in the domain. She starts by glancing at the
overview which presents the similarity scores, and finds that overall,
the parser is performing fairly well. She identifies the two documents
with the highest (0.86 and 0.83) and lowest (0.52 and 0.54) scores and
selects them for deeper analysis. The gold standard, and the HILDA
output for these four documents are loaded in the detail panel.

The user immediately finds out that the documents causing errors
are much longer than the other ones, which is reasonable, as typically,
the more content, the more challenging the parsing. Likewise, the dis-
course trees are large and difficult to read as a whole structure. In order
to get an overall idea of where the algorithm fails, the user reduces the
trees to their compact representations to observe the distribution of
scores, groups and so forth. From the vertical compact view, she ob-
serves that while the distribution of nodes into groups is similar to the
gold standard, the scores of HILDA are very low (Figure 8a). Next
she expands the tree views, and at the same time compacts the short
documents since they are not the focus a the moment.

With the help of the heatmap background of the dendrogram, the
user identifies where the error first occurs: HILDA groups EDUs 16
and 17 as early as the second level whereas the gold standard keeps the
branches separated up to level 17 (Figure 8b). Thus she found that this
first error, which propagates to the root node, is a major problem that
strongly affects the overall parsing. By looking at the text, she finds
that the EDU 17 says “individual prosperity inevitably would result”
where the keyword “result” is a critical indicator of the Cause relation.
Yet, the HILDA parser groups this node under an Elaboration relation.

To get some context, the user switches to the continuous text dis-
play to comfortably read the sentence with the problematic EDU. She
finds that EDUs 7-16 as a whole are the summary of previous content,
that should be grouped together in a branch under the Cause relation,
with EDU 17, as indicated by the gold standard. The user thus selects
the group of nodes and comments on her finding on the annotation
panel. Meanwhile, she wonders if such errors happen elsewhere. She
adds more trees with low scores to the detail panel, and through the
query panel, looks for other Causal relation structures with branches
containing the keywords “because” and “as a result”. A close exami-
nation of the results reveals that HILDA incorrectly groups the nodes
or mislabels the relation (Elaboration or Explanation) and adds notes
each time she finds such error in the dataset for further consultation.
Indeed, the above findings provide hints for improving parsers, by tak-
ing more careful consideration of the content under a Cause relation.

6.4.2 Comparison of the performance of different algorithms
After identifying several issues in the HILDA parser, the user wants
to investigate if and how tuning different parameters affects the out-
puts of her own parsers. She appends the result of three variations of
her algorithm to the overview matrix (referred to as algorithms A1,
A2 and A3). In this scenario, she sets HILDA as the reference col-
umn, since she wants to compare where the algorithms differ in perfor-
mance. Adopting a similar approach as that of the previous scenario,
she first glances at the overview and finds out that the fourth column
(A2, corresponding to the condition “no N-grams feature”) provides
the most differing results, and that the rightmost column (A3, condi-
tion “no syntactic prefix and suffix”) provides a very similar parsing
as that of HILDA (Figure 9a). She selects a subset of four rows (two
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Fig. 9. Comparing different algorithms: (a) HILDA parser is set as the
reference; (b) after filtering out Elaboration and Same Unit relations,
the tree of algorithm 2 (left) is almost all faded out. A keyword search
for “but” is applied (blue highlighted nodes). When compared with the
tree of algorithm 3 (right) algorithm 2 cannot detect Contrast relations
containing “but” whereas algorithm 3 does (red arrows).

documents with the most similar and most differing results) and three
columns (HILDA, A2 and A3) for further analysis in the detail panel.

By looking at the different tree representations (i.e., compact views,
dendrogram and icicle), the user discovers that the trees generated by
A2 usually contain many more levels and are more skewed, indicating
that the classifier cannot find clear grouping pivots. To make the dif-
ferences more visible, the user decides to fade out the branches similar
to those of HILDA by filtering them out through the use of the interac-
tive similarity score legend, and switches to the icicle view to analyze
the relation types. She observes that most of the remaining nodes are
labeled with Elaboration or Same Unit by A2, which is unsurprising,
since the two relations are the most common ones in that specific cor-
pus. After deactivating the latter in the relation legend, she clearly
observes that A2 hardly identifies any other relations, indicating that
the N-grams feature, which was deactivated in A2, is essential for the
relation classifier.

Our user wants next to compare the performance of a particular rela-
tion: Contrast. She looks for phrases indicative of this relation: “but,”
“on the contrast,” etc., coupled with a structure-based query around
the Contrast relation. She observes that A2 fails at identifying such
relations, while it is usually well labeled by discourse parsers (Fig-
ure 9b). She further comments on her findings by adding a note that
considering a certain number of EDUs as a whole (as N-grams does)
is a good parser feature for identifying the real rhetorical relations.

7 DISCUSSION

The core visualization component of DAViewer is the tabular tree de-
tail panel (Figure 4b) with its icicle-dendrogram and compact repre-
sentations of discourse trees which were revealed to be an important
contribution of this paper (Figure 3). The icicle-dendrogram, when
visually browsed vertically, reveals key features of hierarchical clus-
tering as the traditional icicle plot does, which in our case reflects the
greedy process of merging of text chunks from the original EDUs.
Taking the benefits of dendrogram, nodes that remain unmerged across
many levels, are shown saliently as rectangles with larger horizontal
widths, making it easier to identify the nodes that reside on the lev-
els covered by the width of a specific node, than when using a tradi-
tional dendrogram. In some studies of clustering algorithms such as
classifiers in machine learning applications, this is useful for checking
why a specific node is not combined with others in the algorithm as
well as spotting the anomalies. In addition, when an icicle plot encod-
ing the similarity score is displayed as the background of the dendro-
gram representation (Figure 3b), the analyst can more easily locate the
structural differences, as large color-coded areas are easy to spot at a

glance. Our expert user extensively relied on this background heatmap
to quickly find the very first merging anomaly propagated to the top
levels when comparing parsers. This visualization, as a combination
of two representations of the same tree, is general enough to be ap-
plied to any other hierarchical structure, whether it is for comparison
purposes, e.g., studying the difference of evolutionary relationships
between organisms in phylogenetic trees, or to simply augment a den-
drogram with the visualization of an additional attribute associated to
the nodes, e.g., displaying the space that files and folders take on the
hard drive on the background of a file system browser.

The row and column compact representations of trees, on the other
hand, offer a legible summary of both the structural information of
the tree and aggregate attributes of contained nodes. While these vi-
sualizations were designed for discourse analysis, the concept is also
generalizable to exploration of other types of hierarchical structure,
and their new ways of abstracting tree structures could be useful for
common tasks in other domains, of which finding structural change
and identifying co-evolutions in phylogenetic trees are an example. In
particular, when projected to the vertical axis, the view compresses the
tree along its leaves by showing the depths similar to the icicle-plot,
which indicates how species generally evolve and which branches are
most active; and when projected to the horizontal axis, the view com-
presses the tree along its levels by showing its skewness, which shows
the trends of the evolution to a common ancestor.

It is worth recalling that in our study, the trees corresponding to the
same document are built from an identical set of EDUs, which is mo-
tivated by the unique features of discourse analysis. Yet, the tool pro-
posed in this paper, and all its respective components, can be extended
to the comparison of trees with different leaf nodes. In our specific
application domain, this means that the similarity measure needs to
be adjusted accordingly. The synchronized selection would also have
to be adapted, by looking into the contents of the selected text, rather
than EDU identifier numbers, as is done in our current implementa-
tion. In this more general case, the alignment of EDUs in trees within
the same row of our detail view would not be meaningful anymore, as
the EDU contents could differ.

8 CONCLUSIONS AND FUTURE WORK

This paper introduced DAViewer, an interactive visualization tool to
assist computational linguists in developing insights and intuitions in
the specific subfield of discourse analysis. DAViewer has been iter-
atively refined in a four stages user-centered approach with domain
experts, based on incremental collection of user feedback and refine-
ment of design requirements. Our system consists of coordinated com-
ponents aiming to facilitate the analytic workflow in discourse analy-
sis. DAViewer integrates novel visualizations such as the dendrogram
icicle, and vertical and horizontal compact representations, which are
generalizable to other application domains. A formative study was
conducted to evaluate the system in real work settings and the results
showed that DAViewer was useful in the research of a domain expert.

While a formative study was performed, we aim to distribute the
system to the computational linguistics community, to evaluate the ac-
ceptance of DAViewer, as well as to gather more feedback for further
enhancing the system. We also plan to empower the querying capa-
bilities with boolean operations, as requested by our user. According
to the results of the evaluation, we plan to implement new interaction
techniques to facilitate tree exploration, including synchronized node
collapsing, zooming, and panning of trees in the same row. We aim
to augment DAViewer into a more complete working environment by
adding functions such as live monitoring of the parsing progress and
on-the-fly modifications of parser codes in a unified interface. Also,
we will work on a generalization of our novel visualization techniques,
and further explore their application to other domains.
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