
Securing Smart Contract with Runtime Validation

Ao Li
leo@cs.toronto.edu

University of Toronto
Canada

Jemin Andrew Choi
choi@cs.toronto.edu

University of Toronto
Canada

Fan Long
fanl@cs.toronto.edu

University of Toronto
Canada

Abstract

We present Solythesis, a source to source Solidity compiler
which takes a smart contract code and a user specified in-
variant as the input and produces an instrumented contract
that rejects all transactions that violate the invariant. The
design of Solythesis is driven by our observation that the
consensus protocol and the storage layer are the primary
and the secondary performance bottlenecks of Ethereum, re-
spectively. Solythesis operates with our novel delta update
and delta check techniques to minimize the overhead caused
by the instrumented storage access statements. Our experi-
mental results validate our hypothesis that the overhead of
runtime validation, which is often too expensive for other
domains, is in fact negligible for smart contracts. The CPU
overhead of Solythesis is only 0.1% on average for our 23
benchmark contracts.

CCS Concepts: · Software and its engineering→ Run-

time environments; · Security and privacy→Domain-

specific security and privacy architectures.

Keywords: runtime validation, smart contract, compiler

ACM Reference Format:

Ao Li, Jemin Andrew Choi, and Fan Long. 2020. Securing Smart

Contract with Runtime Validation. In Proceedings of the 41st ACM

SIGPLAN International Conference on Programming Language De-

sign and Implementation (PLDI ’20), June 15ś20, 2020, London, UK.

ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3385412.

3385982

1 Introduction

The capability of deploying smart contracts is one of the
most important features of many blockchain systems [65]. A
smart contract is a program that encodes a set of transaction
rules. Once deployed to a blockchain, its encoded rules are

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’20, June 15ś20, 2020, London, UK

© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00

https://doi.org/10.1145/3385412.3385982

enforced by all participants of the blockchain network, and
therefore it eliminates counterparty risks in sophisticated
transactions. People have applied smart contracts to a wide
range of domains such as finance, supply chain management,
and insurance.
Unfortunately, like other programs, smart contracts may

contain errors. Errors inside smart contracts are particularly
severe because 1) it is often impossible to change a smart
contract once deployed; 2) smart contracts often store and
manage critical information such as digital assets and identi-
ties; 3) errors are treated as intended behavior of the smart
contract and faithfully executed by blockchain systems. As a
result, errors inside smart contracts often lead to significant
financial losses in the real world [21, 27].

To make smart contracts secure and correct, one approach
is to build static analysis tools. But such static analysis tools
are often inaccurate and generate a large number of false
positives and/or false negatives [45, 61]. Another approach
is to formally verify the consistency between the implemen-
tation and specification of a smart contract [20, 32, 46, 53].
But automated verification tools relying on theorem provers
typically have narrow scopes and/or may fail to explore
the verification search space, while mechanical verification
techniques require human intervention and are often too
expensive to apply in practice.

1.1 Runtime Validation with Solythesis

In this paper, we argue that runtime validation is an effective
and efficient approach to secure smart contracts. With access
to runtime information, runtime validation techniques can
be fully automated and can typically achieve much higher
coverage than static analysis techniques. The downside of
runtime validation, for traditional programs, is its excessive
performance overhead. However, our observation is that the
Proof-of-Work consensus is the primary performance bottleneck

of existing blockchain systems. For example, the consensus
protocol of Ethereum can only process up to 38 transactions
per second1, while the execution engine of Parity [10], a pop-
ular efficient Ethereum implementation, can process more
than 700 transactions on an ordinary laptop with an SSD.
Therefore, we hypothesize that the overhead of runtime val-

idation, which is often too expensive for other domains, is in

fact negligible for smart contracts.

1We assume simple payment transactions only to derive this throughput

number. In practice, the average throughput of Ethereum is even lower.

438

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3385412.3385982
https://doi.org/10.1145/3385412.3385982
https://doi.org/10.1145/3385412.3385982

PLDI ’20, June 15ś20, 2020, London, UK Ao Li, Jemin Andrew Choi, and Fan Long

To validate our hypothesis, we design and implement
Solythesis, a novel runtime validation tool for Ethereum
smart contracts. Unlike static analysis and formal verification
techniques that attempt to detect errors in smart contracts
offline, Solythesis works as a source to source Solidity com-
piler and detects errors at runtime. Solythesis provides an
expressive language that includes quantifiers to allow users
to specify critical safety invariants of smart contracts. Tak-
ing a potentially insecure smart contract and the specified
invariants as inputs, Solythesis instruments the Solidity
code of the smart contract with runtime checks to enforce
the invariants. The instrumented contract is guaranteed to
nullify all transactions that cause the contract to violate the
specified invariants.
The design of Solythesis is driven by our observation

that the storage layer is the secondary performance bottleneck

of Ethereum after the consensus layer. Our program counter
profiling results show that the execution engine of Parity
spent over 67% of the running time on components that are
relevant to blockchain state load and store operations. Such
load and store operations are expensive because 1) it may
be amplified to multiple slow disk I/O operations, 2) it is
translated by the Solidity compiler into multiple instructions
(up to 11 EVM instructions), and 3) the Solidity compiler
uses expensive cryptographic hash functions to compute the
address of accessed state objects. We therefore design the
instrumentation algorithm of Solythesis to minimize the

number of blockchain state accesses.
One challenge Solythesis faces is how to efficiently en-

force invariants for ledger-like data structures in smart con-
tracts. Many contracts store critical data into ledger-like
structures that map Ethereum addresses to balance-like val-
ues. A meaningful invariant for such a ledger will typically
include quantifiers to specify constraints for all values in the
ledger (e.g., the sum of all balances in a token contract ledger
should equal to the total supply of the token). One naive
approach to enforce the invariant is to instrument the run-
time checks at the end of each transaction, but the runtime
checks may have to use loops to access many blockchain
state values, which will be extremely expensive.

To address this challenge, Solythesis instead uses a novel
combination of delta update and delta check techniques. It
statically analyzes the source code of each contract func-
tion to conservatively determine the set of state values that
could be modified and the set of sub-constraints that could be
violated during a transaction. It then instruments the instruc-
tions to maintain these potentially changed values and to
only check these potentially violated constraints. Our results
show that these techniques enable Solythesis to generate
secure contracts with negligible overhead on Ethereum. Even
if Ethereum or future blockchain systems adopt fast consen-
sus protocols [16, 30, 38, 43, 47, 54, 66], the instrumented
contracts will still have an acceptable overhead.

1.2 Experimental Results

We evaluate Solythesis with 23 smart contracts from
ERC20 [5], ERC721 [7], and ERC1202 [6] standards. ERC20
and ERC721 are two Ethereum smart contract standards for
fungible and non-fungible tokens. ERC1202 is a draft stan-
dard for a voting system which is the key process to many
blockchain applications. For each standard, we first com-
pose an invariant and then apply Solythesis to instrument
the smart contracts. Our experimental results show that
Solythesis prevents all vulnerable contracts from violating
the defined invariants. The results also validate our hypoth-
esis Ð the instrumentation overhead is negligible with only
0.1% CPU usage overhead and 3.2KB/s disk write overhead
on average. We believe our results encourage future explo-
rations on new languages, new analyses, and new virtual
machine designs that can further exploit rigorous runtime
validation to secure smart contracts (see Section 7).

Our results also highlight the effectiveness of our instru-
mentation algorithm. Even if we turn off the consensus layer
to simulate the case where the consensus protocol is no
longer the performance bottleneck, the Solythesis instru-
mentation only causes 24% overhead in transaction through-
put on average. In comparison, if we use the naive approach
that inserts runtime checks at the end of each transaction, the
transaction throughput would be two orders of magnitude
smaller. The naive approach can significantly slow down
the transaction execution engine, overtaking the consensus
layer to become the new performance bottleneck.

1.3 Contributions

This paper makes the following contributions:

• Solythesis: This paper presents Solythesis, the first
source to source runtime validation tool that can en-
force global invariants with quantifiers on smart con-
tracts with low overhead.
• Runtime Validation for Smart Contracts: This pa-
per presents the first systematic evaluation to show
that runtime validation for smart contracts can have
negligible overhead. Our results demonstrate that run-
time validation is an effective and efficient approach
to secure smart contracts.
• InstrumentationOptimizations:This paper presents
novel delta update and delta check techniques to opti-
mize runtime instrumentation for smart contracts. Our
results show that these optimization techniques can
improve the transaction processing throughput of the
instrumented contracts by two orders of magnitude.

The remaining paper is organized as follows. Section 2
presents our observations on the blockchain system perfor-
mance bottlenecks and discusses how it would influence
the way we secure smart contracts. Section 3 presents a
motivating example of Solythesis. Section 4 and Section 5
present the design and the implementation of Solythesis,

439

Securing Smart Contract with Runtime Validation PLDI ’20, June 15ś20, 2020, London, UK

ERC20 ERC721 ERC1202

Native 34 11 9

NoConsensus 2181 1184 1439

NoConsensus+Empty 3647 1869 2460

Figure 1.Number of transactions can be processed by Parity
client with different configurations.

respectively. We evaluate Solythesis in Section 6. Section 7
discusses future directions. In Section 8 we discuss related
work. We finally conclude in Section 9.

2 Observation

We next present our observations on Ethereum blockchain
performance. Ethereum uses a modified version of Nakamoto
consensus as its consensus protocol [50, 60, 65]. It stores
transactions in a chain of blocks. Participants solve proof-of-
work (PoW) problems to generate new blocks to extend the
chain.
Consensus Bottleneck: The chain structure of Nakamoto
consensus limits the performance of EthereumÐ it generates
a new block every 13 seconds and the sizes of the blocks are
limited by its gas mechanism, which measures the size and
the complexity of a transaction [65]. When we ran our exper-
iments, each Ethereum block had a gas limit of 8,000,000 [9].
A simple transaction that only transfers Ether consumes
21,000 gas, and the gas consumption for transactions calling
smart contract functions is higher.
To understand the impact of the consensus layer on the

overall performance of Ethereum, we run experiments with
representative transaction traces for the following contracts:
the BEC contract [2], an ERC-20 smart contract for managing
fungible BEC tokens, the DozDoll contract [4], an ERC-721
smart contract for managing non-fungible DOZ tokens, and
an example contract in the ERC-1202 contract standard [6],
which is designed for hosting voting on Ethereum. We use
Parity, the most efficient Ethereum client that is publicly
available, to start a private Ethereum network to process
these transactions. All experiments were performed on an
AWS EC2 m5.xlarge virtual machine, which has 4 cores and
16GB RAM.

Figure 1 presents the number of transactions that can be
processed per second for each contract. Note that we run
our experiments with three different configurations: 1) we
use the Ethereum state at the block height 5,052,259 as the
initial state and run PoW consensus to pack and process
transactions (corresponding to the group łNativež in Fig-
ure 1); 2) we remove the PoW consensus limit so that Parity
can process as many transactions as its transaction execution
engine allows (corresponding to the group łNoConsensusž
in Figure 1); 3) we remove the PoW limit and start Parity
with an empty genesis state instead (corresponding to the
group łNoConsensus+Emptyž in Figure 1).

Storage Verifier EVM Other

ERC20 67.0% 25.9% 3.9% 3.2%

ERC721 73.5% 18.3% 5.7% 2.5%

ERC1202 73.1% 20.5% 3.6% 2.8%

Figure 2. The performance counter results for different com-
ponents of Parity client.

The results in Figure 1 show that Parity only processes 9
to 34 transactions per second for the ERC-20, ERC-721, and
ERC-1202 contracts. If the consensus protocol is disabled,
Parity processes 1184 to 2181 transactions per second for
the same set of contracts. We therefore have the following
observation and hypothesis:

Observation 1: The consensus protocol is the primary
performance bottleneck of Ethereum clients.
Hypothesis: The overhead of runtime validation can be
negligible for smart contracts, because the transaction
execution engine is not the primary bottleneck.

Storage Bottleneck: The results in Figure 1 show that Par-
ity would run much faster with an empty initial state than
with an initial state corresponding to the real Ethereum net-
work at block 5,052,259. This is because all Ethereum clients,
including Parity, store the blockchain state as a Merkle Patri-
cia Tree (MPT) [65] on the disk. Each update on the blockchain
state will be amplified to multiple disk I/O operations de-
pending on the height of the MPT. When Parity starts with
an empty state, the MPT is simpler. Therefore, there will be
fewer I/O operations than starting with a complicated state.

To better understand the performance impact of the block-
chain state updates (i.e., load/store EVM instructions), we
profile Parity in our experimental runs to collect the per-
formance counters of different components in Parity. Fig-
ure 2 presents the profiling results. It classifies the perfor-
mance counters into four categories: 1) the modules for
the blockchain state updates, including the RocksDB stor-
age layer and the functions in the EVM interpreter for the
load/store Solidity statements; 2) the modules for verifying
signatures in transactions; 3) the modules for other EVM in-
structions except for loads/stores; 4) all remaining modules.

Our results show that the blockchain state updates account
for more than 67% of the performance counters for all exper-
imental runs of Parity when we turn off the consensus layer.
The load and store operations to the blockchain state are
particularly expensive because 1) these operations could trig-
ger one or more disk I/O operations, 2) the Solidity compiler
often generates expensive SHA3 EVM instructions to com-
pute the address operands of these operations [42, 53], and
3) the Solidity compiler often translates one state load/store
statement into multiple EVM instructions (up to eleven). We

440

PLDI ’20, June 15ś20, 2020, London, UK Ao Li, Jemin Andrew Choi, and Fan Long

1 contract ERC1202Example {

2 mapping(uint => uint[]) options;

3 mapping(uint => bool) internal isOpen;

4 mapping(uint => mapping(address => uint256)) public

weights;֒→

5 mapping(uint => mapping(uint => uint256)) public

weightedVoteCounts;֒→

6 mapping(uint => mapping(address => uint)) public

ballots;֒→

7 function createIssue(...) public { ... }

8 function winningOption(...) public returns (uint

option) { ... }֒→

9 function vote(uint issueId, uint option) public

returns (bool success) {֒→

10 require(isOpen[issueId]);

11 uint256 weight = weights[issueId][msg.sender];

12 // weightedVoteCounts[issueId]

[ballots[issueId][msg.sender]] -= weight;֒→

13 weightedVoteCounts[issueId][option] += weight;

14 // assert(weightedVoteCounts[issueId][option] >=

weight);֒→

15 ballots[issueId][msg.sender] = option;

16 emit OnVote(issueId, msg.sender, option);

17 return true;

18 }

19 }

Figure 3. Simplified source code from a voting contract.

therefore have the following observation and the implied
design decision:

Observation 2: The state storage layer is the secondary
performance bottleneck of Ethereum clients.
Design Decision: Runtime validation tools should mini-
mize the number of instrumented load/store statements
that access blockchain state.

3 Example

We next present a motivating example to illustrate the
design of Solythesis. Figure 3 shows a simplified source
code from the draft of ERC1202 [6], which is a technical
standard draft that defines a set of function interfaces to
implement a voting system. A voting system allows a user to
vote on different issues and returns the winning option. This
example is used for illustration purposes in the ERC1202
draft, but it contains a logic error.
In Figure 3, the vote() function (lines 9-18) updates the

vote of a transaction initiator given an option and an issue.
The contract implements vote() and other functions with
five state variables. options (line 2) stores the available op-
tions of each issue; isOpen (line 3) stores the current status
of the issue; weights (line 4) stores the weight of each voter
on each issue; weightedVoteCount (line 5) stores the total
weighted count of each option on each issue; ballots (line
6) stores the vote of each voter on each issue.

1 s = Map (a, c) Sum weights[a][b] Over (b) Where

ballots[a][b] == c;֒→

2 ForAll (x, y) Assert y == 0 || s[x][y] ==

weightedVoteCounts[x][y];֒→

Figure 4. Invariant for ERC1202.

In the implementation of the vote() function, it first
fetches the weight of the transaction initiator and updates
the weighted votes of the given option and issue (lines 11
and 13 in Figure 3). However, the implementation contains
two errors: 1) the original implementation fails to consider
the case where the transaction initiator votes multiple times
on the same issue; 2) an attacker may trigger an overflow
error at line 13 to illegally modify the weighted vote count.
Note the original implementation misses line 12 and line
14 which are necessary to fix these errors. We next apply
Solythesis to the contract and describe how Solythesis
instruments the contract to nullify these errors.
Specify Invariant: Note that both of these errors cause the
contract to potentially violate the ERC-1202 invariant where
the total weighted count of an option on an issue should
equal to the sum of all weights of voters who voted for the
option. To apply Solythesis, we first specify this invariant
shown as Figure 4. The first line in Figure 4 defines an inter-
mediate map s that corresponds to the sum of all weights
of the voters that voted for issue and option pairs. The free
variable a iterates over issues; b iterates over voters; c iter-
ates over options of an issue. For each map entry s[a][c],
it iterates over all voters to sum the weights of those voters
who voted for the option c on the issue a. The second line
defines a constraint with the ForAll quantifier to specify
that for all pairs of issues and options, the intermediate map
s should equal to the calculated weightedVoteCount in the
state. Note that in ERC-1202, zero is a special option id to
denote that a voter did not vote yet. Therefore our invariant
excludes the option id zero.
Figure 4 highlights the expressiveness of the invariant

language in Solythesis. A user can refer to any state vari-
able in the contract (e.g., weights, ballot, and weighted-

VoteCount in Figure 4), define intermediate values including
maps, and specify constraints on state variables and defined
intermediate values. Solythesis supports sophisticated op-
erations such as a conditional sum over values inside maps
(e.g., line 1 in Figure 4) and a ForAll quantifier to define a
group of constraints for multiple state values at once (e.g.,
line 2 in Figure 4).
Instrument the Contract: One naive approach to enforce
the invariant in Figure 4 is to instrument a brute force check
at the end of every transaction. This would cause prohib-
itive overhead because of the iterative sum operation and
the quantifier constraint. It would cost two or even three
nested loops to check the invariant for every transaction.

441

Securing Smart Contract with Runtime Validation PLDI ’20, June 15ś20, 2020, London, UK

1 contract ERC1202Example {

2 mapping (uint => mapping(uint => uint)) s;

3 uint256[] x_arr;

4 uint256[] y_arr;

5 ...

6 function vote (uint issueId, uint option) public

returns (bool success) {֒→

7 require(isOpen[issueId]);

8 uint256 weight = weights[issueId][msg.sender];

9

10 x_arr.push(issueId);

11 y_arr.push(option);

12 weightedVoteCounts[issueId][option] += weight;

13

14 x_arr.push(issueId);

15 y_arr.push(ballots[issueId][msg.sender]);

16 assert(s[issueId] [ballots[issueId][msg.sender]] >=

weights[issueId][msg.sender]);֒→

17 s[issueId] [ballots[issueId][msg.sender]] -=

weights[issueId][msg.sender];֒→

18 ballots[issueId][msg.sender] = option;

19 x_arr.push(issueId);

20 y_arr.push(ballots[issueId][msg.sender]);

21 s[issueId] [ballots[issueId][msg.sender]] +=

weights[issueId][msg.sender];֒→

22 assert(s[issueId] [ballots[issueId][msg.sender]] >=

weights[issueId][msg.sender]);֒→

23

24 emit OnVote(issueId, msg.sender, option);

25 for (uint256 index = 0; index < x_arr.length; index

+= 1)֒→

26 assert(y_arr[index] == 0 || s[

x_arr[index]][y_arr[index]] ==

weightedVoteCounts[x_arr[index]]

[y_arr[index]]);

֒→

֒→

֒→

27 x_arr.length = 0;

28 y_arr.length = 0;

29 return true;

30 }

31 ...

32 }

Figure 5. Instrumented voting contract.

Solythesis instead instruments code to perform delta up-

dates and delta checks to reduce the overhead. The intuition
is to maintain intermediate values such as s incrementally
and to instrument updates and checks only when necessary.
Figure 5 presents the instrumented contract code generated
by Solythesis for our example.
Instrument Delta Updates: For every intermediate value
such as s in Figure 4, Solythesis instruments the contract to
add it as a state variable. Then for every write operation to an
original state variable in the contract (e.g., line 18 in Figure 5),
Solythesis performs static analysis to determine whether
modifying the original variable may cause the intermediate
value to change. If so, Solythesis instruments code to update
the intermediate value conditionally (e.g., lines 17 and 21 in
Figure 5).

Compute Free Variable Bindings: For every state write
operation in the contract, Solythesis computes free

variable bindings against each rule in the invariant. For
example, for the write operation to ballots at line 18 in
Figure 5, Solythesis determines that the operation may
change the intermediate value defined in the first line
of the invariant. Solythesis also binds the free variable
a in the invariant to issueId, binds b to msg.sender,
and binds c to ballot[issueId][msg.sender].
These bindings indicate that the write to bal-

lot[issueId][msg.sender] may only change the interme-
diate value s[issueId][ballot[issueId][msg.sender]].
Therefore Solythesis instruments code at lines 17 and 21 to
only update this value.
Instrument Delta Check: For every state write operation,
Solythesis also checks it against Assert constraints in
the invariant. For example, for the write operation to bal-

lots at line 18 in Figure 5, Solythesis first runs its binding
analysis against the constraint at line 2 in Figure 4 which
contains a ForAll quantifier. This analysis determines that
the write operation may cause the contract to violate the
constraint when x binds to issueId and y binds to bal-

lot[issueId][msg.sender].
Solythesis defines additional arrays like x_arr and y_-

arr to collect such free variable combinations that may lead
to constraint violations lines 3 and 4 in Figure 5. Solythe-
sis then instruments statements at lines 14-15 and 19-20
to appropriately maintain these arrays. Solythesis finally
instruments a loop at the end of the transactions to only
check these potentially violated constraints (lines 25-26).
Note that Solythesis further optimizes the instrumentation
to use global volatile memory to hold x_arr and y_arr to
avoid blockchain state access (see Section 5.2). We omit this
implementation detail in Figure 5 for brevity.
Nullify Errors: Solythesis generates the instrumented pro-
gram as its output shown as Figure 5. This instrumented
program will enforce the invariant faithfully during runtime
and nullify any malicious transactions that cause the con-
tract to violate the invariant. In our example, we deploy the
instrumented contract to Ethereum and intentionally trigger
the error by sending transactions to vote for an issue mul-
tiple times. The instrumented assertion at line 22 catches
this error and aborts the offending transactions. Therefore
Solythesis successfully nullifies the error.

4 Design

We next formally present the design of Solythesis. In this
section, we use the notation s[X/Y] to denote replacing every
occurrence ofX in the statement s withY . To avoid confusion,
we will use łJKž instead of ł[]ž to denote the indexing of map
variables. We also use the notation #»x to denote a list of
variables x1, x2,

442

PLDI ’20, June 15ś20, 2020, London, UK Ao Li, Jemin Andrew Choi, and Fan Long

const ∈ Int x,y ∈ FreeVar v ∈ Var

e, e1, e2 ∈ Expr := const | v | vJx1KJx2KJ. . .K | e1 aop e2

c, c1, c2 ∈ CondExpr := e1 cop e2 | e1 == x | c1 ∧ c2

r ∈ Rule := v = Map x1, x2, . . . Sum e

Over y1,y2, . . . Where c; |

ForAll x1, x2, . . . Assert c; | r1r2

Figure 6. The invariant specification language.

4.1 Invariant and Contract Languages

Invariant Language: Figure 6 presents the syntax of our
invariant specification language with integers, variables,
arithmetic expressions, conditional expressions, interme-
diate value declarations, and constraints. There are three
types of variables: state variables, intermediate variables,
and free variables. State variables are variables declared in
smart contracts and stored in persistent storage. Intermedi-
ate variables correspond to the intermediate values defined
in the invariant rules of the form łv = Map . . .ž. Note that
in our language we do not distinguish these two kinds of
variables, because Solythesis instruments code to declare
intermediate variables as state variables. Free variables are
only used together with quantifiers in Map and ForAll rules.
They act as indexes for a defined intermediate map, as itera-
tors for a sum operation, or as quantifier variables to define
a group of constraints at once.

Expressions are built out of variables and integer constants.
łaopž represents an arbitrary binary arithmetic operator;
łcopž represents an arbitrary integer comparison operator.
There are three possible types for expressions, integers for
scalar values, maps that have integer keys, and booleans for
conditional expressions. All variables and expressions should
be well-typed. eJxK denotes accessing the map e at the index
x , where e must be an expression with a map type and x

must be a free variable with the integer type. It is possible
to have multi-dimensional maps. In the rest of this section,
the notation eJ #»x K is an abbreviation of eJx1KJx2KJ. . .K for
accessing such multi-dimensional maps.
The language has two kinds of rules: intermediate value

declaration rules and constraint declaration rules. An inter-
mediate value declaration can define a map value indexing
over a list of free variables and can conditionally and itera-
tively sum over state variable values to compute each map
entry. For a rule of the form łv =Map #»x Sum e Over #»y

Where cž, each entry of the intermediate map v is defined as
follows:

∀#»x vJ #»x K =
∑

#»y

{

e(#»x , #»y) if c(#»x , #»y) is True
0 otherwise

A constraint declaration rule of the form łForAll #»x Assert cž
checks all possible assignments of #»x to ensure that c(#»x) is

c ∈ Int v,v1 ∈ StateVar t, t1 ∈ TempVar

a,a1 ∈ Address := v | vJe1KJe2KJ. . .K

e, e1, e2 ∈ Exp := c | t | e1 op e2

s, s1, s2 ∈ Statement := t = e; | s1s2 | t = load a; |

store a, e; |if e {s1} |

for t1, t2, . . . in v {s1} |

assert e;

Figure 7. The core language for smart contracts.

always satisfied. Note that free variable lists after Map and
ForAll can be empty. Therefore, users can use these rules
to define scalar values and simple constraints as well. Also
note that free variables in invariants iterate over all defined
keys in maps where those variables are used as indexes. For
example, in łForAll #»x Assert mJxK > 0ž, x should iterate
over values that correspond to defined keys inm.
Smart Contract Language: Figure 7 presents the core lan-
guage of smart contracts that we use to illustrate Solythesis.
łopž denotes an arbitrary binary operator. We do not distin-
guish normal expressions and conditional expressions in our
contract language. There are two kinds of variables: state
variables that may be referred in the invariant and temporary
scalar variables that are local to the contract program.

łloadž and łstorež are statements for accessing blockchain
state variables. Similar to Solidity, state variables can be
either scalar values or maps. łfor t1, t2, . . . in v {s1}ž would
iterate over all possible assignment combinations of t1, t2, . . .
based on how t1, t2, . . . are used as indexing variables for the
mapv in s1. If any of these variables are not used as indexing
variables for v , this statement is undefined. Loop statements
in our language capture the most common usage of loops in
Solidity contracts, and its syntax simplifies the presentation
of our instrumentation algorithm. Note that in Solidity, every
state variable has to be declared before its use. We omit the
declaration syntax for brevity.

4.2 Instrumentation Algorithm

Figure 8 presents the Solythesis instrumentation algorithm.
Given a program P as a list of contract statements and an
invariantR as a list of rules, the algorithm produces an instru-
mented program P ′ that enforces the invariant dynamically.
The algorithm has two parts. Lines 2-12 handle the interme-
diate value declarations in R, while lines 13-24 handle the
quantifier constraint rules in R.
For every defined intermediate value v , the algorithm

instruments a fresh state variable declaration for the value
(line 4). The algorithm then inspects every store statement
s in P and instruments the contract to maintain v (lines 5-
12). The algorithm first computes possible bindings of free
variables in the definition of v (lines 6-7). A binding is a set

443

Securing Smart Contract with Runtime Validation PLDI ’20, June 15ś20, 2020, London, UK

Input :Program P as a list of statements and a list
of invariant rules R

Output :The instrumented program as a list of
statements

1 P ′← P

2 for r ∈ R do

3 if r = łv = Map #»x Sum e Over #»y Where c; ”

then

4 Assume v is fresh. Declare v in P ′.

5 for s = łstore a, _; ” ∈ P do

6 B ← BindExpr(a, e) ∪ BindExpr(a, c)

7 b ← BindCond(a, c)

8 pre← łif c { t = load vJ #»x K;

t ′ = t − e; store vJ #»x K, t ′; }”

9 pre← Rewrite(pre,B,b)

10 post ← łif c { t = load vJ #»x K;

t ′ = t + e; store vJ #»x K, t ′; }”

11 post ← Rewrite(post,B,b)

12 Insert pre before s and post after s into P ′

13 else if r = łForAll #»x Assert c; ” then
14 Declare a fresh map α in P ′ corresponding to r

15 for s = łstore a, _” ∈ P do

16 B ← BindExpr(a, c)

17 pre← łαJ #»x K = 1”

18 pre← Rewrite(pre,B, ⟨⊥,⊥⟩)

19 Insert pre before s in P ′

20 P ← P ′

21 for r = łForAll #»x Assert c; ” ∈ R do

22 α ← The defined map that corresponds to r

23 s ′← łfor #»x in α { assert c; } ”

24 Insert s ′ at the end of P ′

25 return P ′

Figure 8. Instrumentation algorithm.

of pairs of free variables in the definition and expressions in
the contract. The binding corresponds to possible entries of
v (if v is a map) that s may influence via state variable write
operations. The algorithm prepares statement templates for
updating v (lines 8 and 10), rewrites free variables in these
templates based on the computed bindings (lines 9 and 11),
and then instruments the rewritten statements into P ′ (line
12). The update strategy is to first subtract the old expression
value (e.g., pre in lines 8-9) before the execution of s , and
then add the new expression value (e.g., post in lines 10-11)
after the execution of s . See Section 4.3 for our binding and
rewrite algorithms.
For every quantifier constraint rule r , the algorithm also

instruments the declaration for a fresh state map variable

const ∈ Int

BindExpr(a, const) = ∅

a = v

BindExpr(a,v) = {∅}

a = v ′ v ′ , v

BindExpr(a,v) = ∅

a = v ′J. . .K e = vJ. . .K v ′ , v

BindExpr(a, e) = ∅

a = vJx1KJ. . .KJxk K e = vJe1KJ. . .KJek K

BindExpr(a, e) = {{⟨x1, e1⟩, . . . , ⟨xk , ek ⟩}}

e = e1 aop e2

BindExpr(a, e) = BindExpr(a, e1) ∪ BindExpr(a, e2)

c = e1 cop e2

BindExpr(a, c) = BindExpr(a, e1) ∪ BindExpr(a, e2)

BindCond(a, c) = ∅

c = łe1 == x” e1 contains x

BindExpr(a, c) = BindExpr(a, e1) BindCond(a, c) = ⟨⊥,⊥⟩

c = łe1 == x” e1 does not contain x

BindExpr(a, c) = BindExpr(a, e1) BindCond(a, c) = ⟨x, e1⟩

c = łc1 ∧ c2” BindCond(a, c1) , ⟨⊥,⊥⟩

BindExpr(a, c) = BindExpr(a, c1) ∪ BindExpr(a, c2)

BindCond(a, c) = BindCond(a, c1)

c = łc1 ∧ c2” BindCond(a, c1) = ⟨⊥,⊥⟩

BindExpr(a, c) = BindExpr(a, c1) ∪ BindExpr(a, c2)

BindCond(a, c) = BindCond(a, c2)

Figure 9. Binding algorithm.

α . Note that because of the ForAll quantifier, r may corre-
spond to multiple constraint instances. To handle this, the
algorithm inspects every store statement s in P and uses its
binding algorithm to determine whether the execution of
s may cause some previously satisfied constraint instance
of r to be violated again. If so, the algorithm sets the corre-
sponding entry in α (lines 16-19) to mark these instances.
The algorithm finally instruments a for loop iterating over α
at the end of the contract to check these potentially violated
constraints (lines 21-24).

4.3 Binding and Rewrite Algorithms

Free Variable Binding: Figure 9 presents our binding algo-
rithm. It defines two functions BindExpr() and BindCond()
that are used in our instrumentation algorithm (see Figure 8).
Given a modified address a in a contract store statement and
an expression e in an invariant rule, BindExpr(a, e) returns a
set of binding maps that maps free variables in e to indexing
expressions in a. To compute BindExpr(a, e), Solythesis re-
cursively traverses the structure of e and looks for the map

444

PLDI ’20, June 15ś20, 2020, London, UK Ao Li, Jemin Andrew Choi, and Fan Long

indexing expressions that match the state variable in a. The
fifth rule in Figure 9 creates a binding map for such matching
index expressions for the matching free variables.
Note that because e is an expression from the invariant,

it can have multiple instantiations with different free vari-
able assignments. Intuitively, a binding map corresponds to
possible free variable assignments for e that the state value
at the address a may influence. Because one free variable
may map to multiple indexing expressions in a binding map,
in our notation we represent the binding map as a set of
pairs of free variables and indexing expressions. For exam-
ple, BindExpr(a, e) = {{⟨x1, e1⟩, ⟨x2, e2⟩}} means that state
value changes at the address a may influence the evaluation
of the instantiations of e in which we replace x1 with e1 and
x2 with e2. If BindExpr(a, e) returns a set that contains mul-
tiple binding maps, it means that the state value changes at
a may influence instantiations that are represented by all of
these maps.

Given a modified address a and a condition expression c in
an invariant rule, BindCond(a, c) returns a tuple pair of a free
variable and an expression. The instrumentation algorithm
in Figure 8 uses BindCond() to handle intermediate value
declaration rules only. The computation of BindCond() scans
for the condition of the form e1 == x , where x is a free
variable. If an intermediate value declaration rule has such a
condition, Solythesis can directly infer that the free variable
x must equal to the expression e1 for all cases.
Free Variable Rewrite: Figure 10 presents the definition
of Rewrite(). Given a statement template s that may contain
free variables, a set of binding maps B extracted from ex-
pressions with BindExpr(), and a binding tuple b extracted
from conditions with BindCond(), Rewrite(s,B,b) produces
a new statement with all free variables being rewritten based
on the provided bindings.
The Rewrite algorithm iterates over binding maps in B

and generates one statement instantiation based on each
binding map. For each free variable in s , it detects whether
it has exactly one appearance in the binding map. If the
free variable appears multiple times, i.e., the free variable
maps to multiple indexing expressions, the algorithm instru-
ments additional if statement guards to ensure that all of
the matched indexing expressions have the same value (line
7). The algorithm then removes redundant tuples and only
keeps one of these indexing expressions (line 8).

If the free variable does not appear in the binding map, the
algorithm would conservatively wrap the statement with a
for loop to handle this unbounded free variable and add a tu-
ple that maps the unbounded variable to the iterator variable
of the loop (lines 10-13). Such a scenario is rare in practice
because it often corresponds to awkward less-common con-
straints for smart contracts. At line 14, the binding map B′

should map each free variable in s exactly to each expression.
The algorithm then replaces these free variables with their
corresponding expressions (lines 14-18).

Input :The original statement s , a set of binding
maps B extracted from expressions, and a
binding b extracted from conditions.

Output :The rewritten statement respecting the
bindings.

1 s ′← ∅

2 for B ∈ B do

3 s ′′← s

4 B′← B ∪ {b}

5 for x ∈ FreeVar,where x appears in s do

6 if x appears in B′ multiple times as

⟨x, e1⟩, . . . ⟨x, ek ⟩ then

7 s ′′← łif e1 == e2 ∧ . . . ∧ e1 == ek {s
′′}”

8 B′← B′ − {⟨x, e2⟩, . . . , ⟨x, ek ⟩}

9 else if x does not appear in B′ then

10 Create a fresh variable t

11 Find v in s , where x is used as its index

12 s ′′← łfor t in v {s ′′}”

13 B′← B′ ∪ {⟨x, t⟩}

14 if b = ⟨x ′, e ′⟩ ∧ x ′ , ⊥ then

15 s ′′← s ′′[x ′/e ′]

16 B′← B′ − {b}

17 for ⟨x, e⟩ ∈ B′ do

18 s ′′← s ′′[x/e]

19 s ′← s ′s ′′

20 return s ′

Figure 10. The definition of Rewrite().

5 Implementation

In our Solythesis implementation, we use Antlr [1] and the
Solidity parser [12] to parse standard specifications and So-
lidity programs. Solythesis extends the language described
in Section 4 to support all Solidity features including contract
function calls.

5.1 Function Calls

Because state variables are often updated sequentially in a
transaction and the invariant may be temporarily violated
during the middle of the transaction, Solythesis should
only check the constraints at the end of each transaction.
For function calls, simply inserting those checks at the end
of each function may cause those checks to be triggered
multiple times during a transaction and result in false pos-
itives. To this end, Solythesis uses a global state variable
(i.e., memory_loc in Figure 11) to track whether the current
function call is the execution entrance of a transaction. The
instrumented constraint checks will only execute if it is so.
Solythesis uses Surya [13] to build the call graph of the

smart contract. With the call graph information, Solythesis

445

Securing Smart Contract with Runtime Validation PLDI ’20, June 15ś20, 2020, London, UK

1 uint256 memory_loc;

2 function vote(...) {

3 bool is_entry_function = false;

4 uint[] memory x_arr;

5 if (memory_loc == 0) {

6 is_entry_function = true;

7 assembly {

8 let tmp := mload(0x40)

9 mstore(0x40, add(tmp, 640))

10 sstore(memory_loc_slot, tmp)

11 mstore(add(tmp, 0), 19)

12 }

13 }

14 assembly {

15 x_arr := add(sload(memory_loc_slot), 0)

16 }

17 ...

18 if (is_entry_function) {

19 memory_loc = 0;

20 }

21 }

Figure 11. Inline assembly to initialize or load a global array.

can obtain the set of functions that are reachable from an
entry function. Solythesis then prunes away the instru-
mented checks in functions whose entrance status will never
change (e.g., it is always an entrance function). Specially,
smart contracts in Ethereum can call functions defined in
other smart contracts. To guarantee correctness, Solythesis
overestimates that the inter-contract calls will call back any
function defined inside the contract when it builds the call
graph.

5.2 Global Memory

Solythesis uses global memory arrays to store free vari-
able bindings for ForAll constraint rules (lines 10-11, 14-15,
and 19-20 in Figure 5). It uses the global memory rather than
the intra-procedure volatile memory or the blockchain state
because 1) a transaction may contain multiple functions and
the instrumented code of these functions all need to access
these arrays and 2) accessing global memory is significantly
cheaper than accessing the blockchain state.
Since the global memory array is not natively supported

by Solidity, Solythesis uses inline EVM assembly to allocate
the in-memory array as well as assigning the start location
of the array to an array pointer. Figure 11 presents how
Solythesis implements the instrumented array x_arr in
Figure 5 as a global array pointer. Solythesis uses the state
variable memory_loc to store the starting location of the
Solythesis data section in the global memory. When it is
zero (i.e., uninitialized default value), it indicates that the cur-
rent function call is the execution entrance of a transaction.
Solythesis then allocates an array from the global memory
and sets x_arr to the start of the array (lines 6-12).

1 uint opt_13 = ballots[issueId][msg.sender];

2 uint256 opt_14 = weights[issueId][msg.sender];

3 assert(sum_votes[issueId][opt_13] >= opt_14);

4 x_arr.push(issueId);

5 y_arr.push(opt_13);

6 sum_votes[issueId][opt_13] -= opt_14;

7 opt_13 = option;

8 x_arr.push(issueId);

9 y_arr.push(opt_13);

10 sum_votes[issueId][opt_13] += opt_14;

11 assert(sum_votes[issueId][opt_13] >= opt_14);

12 ...

13 // Write back at the end of the function

14 ballots[issueId][msg.sender] = opt_13;

Figure 12. Vote function with state variable caches.

Note that Solidity compiler has the following conventions:
1) it allocates global memory consecutively; 2) it uses the
global memory location 0x40 to store the next available
global memory location; 3) the first location of an array
stores the length of the array. The code at lines 8-11 main-
tains these conventions. Once x_arr is initialized, Solythe-
sis uses mload and mstore instructions to load and store
data from/to it. The initial size of every allocated array is 19
and Solythesis will expand the array if necessary.

5.3 State Variable Caches

As an optimization, Solythesis uses stack or volatile mem-
ory in Solidity to cache state variable values. Our second
observation in Section 2 indicates that blockchain state
load/store operations are very expensive, involving disk I/O,
cryptographic computations, and multiple EVM instructions.
On the other hand, loading/storing values from/to stack or
memory only requires a single instruction.

Solythesis performs static analysis to determine whether
the same blockchain state value is accessed multiple times in
a function. For every such value, Solythesis creates a tempo-
rary variable to cache it. If multiple functions can access the
state value, Solythesis will create the temporary variable
in the global memory and will use the technique similar to
Section 5.2 to enable all functions to access it. Otherwise,
Solythesis creates the temporary variable in the stack. At
the end of the function, Solythesis instruments code to
write back cached values to the state variable. This enables
the optimized code to only execute one state load operation
and one state store operation for such a state value. Note that
the optimized code is equivalent to the original code because
in Ethereum, all transactions are executed sequentially, i.e.,
the blockchain state can only be read/written by a single
transaction at one time.
Figure 12 presents the code after the state variable

cache optimization of lines 14-21 from vote() in Figure 5.
Solythesis creates two cache variables opt_13 and opt_-

14 for state variable ballots[issueId][msg.sender] and

446

PLDI ’20, June 15ś20, 2020, London, UK Ao Li, Jemin Andrew Choi, and Fan Long

weights[issueId][msg.sender] (line 1-2). And the oper-
ations of those two state variables are replaced by cache
variables. Note that not all state variables can be cached.
For example, Solythesis does not cache the state variable
sum_votes[issueId][opt_13] in line 6 because opt_13 is
updated in line 7 and the state variable in line 10 represents a
different state variable. At the end of the function, Solythe-
sis stores opt_13 back to ballots[issueId][msg.sender].
It does not store opt_14 back because opt_14 is not updated.

6 Evaluation

We next evaluate Solythesis on three representative stan-
dards: ERC20 [5] for the fungible token standard, ERC721 [7]
for the non-fungible token standard, and ERC1202 [6] for the
voting standard. The goal of this evaluation is to measure
the overhead introduced by runtime validation and to under-
stand the effectiveness of the Solythesis instrumentation
optimizations. All experiments were performed on an AWS
EC2 m5.xlarge virtual machine, which has 4 cores and 16GB
RAM. We downloaded and modified Parity v2.6.0 [10] as the
Ethereum client to run our experiments. The source code of
Solythesis and all experiment contracts are available2.

6.1 Methodology

Benchmark Contracts:We have collected in total 23 smart
contracts in ERC20, ERC721, and ERC1202 standards. We
focus on these three standards because 1) they are widely
adopted, 2) contracts in these standards contain known vul-
nerabilities, and/or 3) they have sophisticated invariants
over map structures with quantifiers. Our benchmark set
includes BecToken (an ERC20 contract) and DozerDoll (an
ERC721 contract), two contracts that we successfully collect
their history transactions from Ethereum. Our benchmark
set also includes the ERC1202 example we described in Sec-
tion 3. Besides the above three contracts, we crawled the
top ten ERC-20 contracts and the top ten ERC-721 contracts
ranked by Etherscan [8] and included these contracts into
our benchmark set, because they correspond to most widely
used contracts that represent digital assets with monetary
values.

Note that BECToken implements a customized function,
batchTransfer, which has an integer overflow error and
violates the total supply invariant specified by ERC-20 stan-
dard. This error was exploited in 2018 and the market cap of
BECToken was evaporated in days [21]. The ERC1202 exam-
ple has vulnerabilities that we described in Section 3. In our
experiments, Solythesis successfully nullify errors in both
of these two contracts. We validate that the instrumented
contracts reject our crafted malicious transactions.
Standard Specifications:We specify invariants for ERC20,
ERC721, and ERC1202 respectively using the language de-
scribed in Section 4. ERC1202 is a smart contract standard for

2https://github.com/Leeleo3x/solythesis-artifact

1 sum_balance = Map () Sum balances[a] Over (a) Where true;

2 ForAll () Assert totalSupply == sum_balance;

Figure 13. Invariant for ERC20.

1 sum_tokenCount = Map () Sum _ownedTokensCount[a] Over

(a) Where a != 0;֒→

2 ForAll () Assert sum_tokenCount == _allTokens.length;

3 sum_ownersToken = Map (b) Sum 1 Over (a) Where

_tokenOwner[a]==b && _tokenOwner[a] != 0;֒→

4 ForAll (a) Assert _ownedTokensCount[a] ==

sum_ownersToken[a];֒→

Figure 14. Invariant for ERC721.

implementing a voting contract. The example in the ERC1202
standard draft unfortunately contains logic errors. See Sec-
tion 3 for details.
ERC20: ERC20 is an important smart contract standard that
defines the contract interface and specification for imple-
menting fungible digital assets. Figure 13 shows the invari-
ant for ERC20 standard. balances and totalSupply are two
state variables in BECToken that store the balance of each
address and the total supply of the token. The invariant
specifies that the sum of account balances is equal to total
supply.
ERC721: Similar to ERC20, ERC721 is a smart contract stan-
dard for implementing non-fungible digital assets. Figure 14
shows our invariant for the ERC721 standard. sum_token-
Count and sum_ownersToken are two intermediate variables
created by the invariant to track the state of the contract.
sum_tokenCount stores the number of minted tokens, which
is the number of tokens whose owner is not 0, and sum_own-
ersToken stores the number of tokens owned by each ad-
dress. The invariant specifies that sum_tokenCount equals to
the length of _allTokens, and the number of tokens owned
by each user equals to the values stored in _ownedToken-

sCount. _allTokens and _ownedTokensCount are two state
variables declared in ERC721 smart contracts.
Benchmark Trace Generation:We crawled the Ethereum
blockchain and collected the real transaction history of Bec-
Token and DozerDoll. We chose BecToken because its his-
tory contains attacks. We chose DozerDoll because it is an
ERC721 token, and it has a long transaction history for our
experiments. Note that the collected history transactions
depend on the blockchain state (e.g., the token balance of
accounts), so we cannot reproduce them directly. To address
this issue, we first create a mapping that maps real-world
addresses to local addresses that are managed by the Parity
client. For each transaction, we replaced the addresses of
the transaction sender and receiver, as well as addresses in
transaction data.

447

Securing Smart Contract with Runtime Validation PLDI ’20, June 15ś20, 2020, London, UK

For the remaining contracts, we developed a script to
generate random transaction traces that exercise core func-
tionalities of ERC20, ERC721, and ERC1202. For ERC20 and
ERC721, the generated trace containsmainly transfer trans-
actions. For ERC1202, the generated trace contains transac-
tions that call createIssue and vote functions repeatedly.
Each createIssue transaction is accompanied by five vote
transactions created by different voters respectively.
Contract Instrumentation: We apply Solythesis to in-
strument all of the 23 benchmark contracts. For comparison,
we also instrument the contracts naively without delta up-
date/checking techniques as the baseline, i.e., the instrumen-
tation iteratively checks invariants at the end of transactions.
For each contract, we manually inspected the two instru-
mented contracts and validated that they are functionally
equivalent.
Experiments with PoW Consensus:We apply Solythe-
sis to instrument all of the 23 benchmark contracts. We then
run Parity 2.6.0 to start a single node Ethereum network to
measure the overhead of instrumented contracts. For BecTo-
ken and DozerToken, we use the collected Ethereum history
trace. For the ERC1202 example contract and other contracts,
we use the generated trace. To run a contract on a transac-
tion trace, we initialize the network with the first 5,052,259
blocks downloaded from Ethereum main net. We then feed
the transactions in the trace into the network.

In this experiment, we deploy the same smart contract to
the blockchain multiple times and take the average results.
To address the randomness of the PoW consensus process, we
modified Parity client so that Parity generates new blocks
at a fixed speed of 1 block per ten seconds, which is the
generation speed upper bound Ethereum ever reaches with
its difficulty adjustment mechanism. Note the gas usage for
each transaction is set to the gas usage of executing the
original smart contract, which allows Parity to pack the
same number of transactions for both the instrumented and
the original smart contract.

We first set the block gas limit to 8,000,000 andmake Parity
to pack as many transactions as possible for the native con-
tract run. For the two instrumented runs, we make Parity to
pack the exactly same set of transactions per block ignoring
the gas limit. This is because we want to measure the run-
time overhead and we want to avoid the artificial bottleneck
of the gas limit. For each run, we monitor the CPU usage
and disk IOs of the Parity client for 400 blocks (~1.4 hours).
Because the consensus is the performance bottleneck, there
is no significant throughput difference between the original
contracts and the instrumented contracts for the native con-
tract run and the Solythesis instrumentation. We therefore
measure the resource consumption as the instrumentation
overhead in this set of experiments. For the baseline instru-
mentation, the runtime overhead grows as the contract state
grows with transactions. We also measure how many blocks

after which the baseline instrumentation overhead causes
Parity to slow down the block generation.
Experiments without PoWConsensus:Wemodified Par-
ity to remove the proof of work consensus, but preserved
all required computations and storage operations for the
transaction execution. To evaluate the potential overhead
of Solythesis when the consensus is no longer the perfor-
mance bottleneck, we run the Solythesis instrumented con-
tracts on the modified Parity client to measure the overhead.
To evaluate the Solythesis instrumentation optimizations,
we also run naively instrumented contracts for comparison.
Specifically, we compare the transaction throughput of the
original contracts and the instrumented contracts. Note that
in these experiments, we initialize the Parity client with the
first 5,052,259 blocks from the Ethereum main net.

6.2 Results with Consensus

Figure 15 shows the resources consumed by Parity for all
benchmark contracts. For each experiment, we measure the
performance of the Solythesis instrumented smart contract
(S), the baseline smart contract (B), and the original smart
contract (O) respectively. Rows 2-4 present the average CPU
usage of Parity. Rows 5-7 present the average data written
to the disk per second by Parity. For the original version
and the Solythesis instrumented version of each contract,
we run the Parity to pack 400 blocks of transactions in our
experiments.
Our results show that for all contracts, the transaction

execution consumes only a very small portion of the CPU
and disk resources. We observe that the CPU usage of Parity
is lower than 10% for 95% of the time and the average CPU
usage of Parity is lower than 4% for the Solythesis instru-
mented and original benchmarks. The overhead introduced
by Solythesis is negligible considering the current capac-
ity of CPU and disk storage devices and the cost of solving
proof-of-work. The results validate our previous observation
again that the transaction execution is not the bottleneck
of the Ethereum blockchain system. Thus, adding runtime
validation will not downgrade the performance of Ethereum,
but improves the security significantly.
On the other hand, our results show that the CPU and

disk overhead introduced by the baseline instrumentation is
significant. It increases over time as the contract state grows,
because it often iterates over an entire ledger map to check
the invariants. In our experiments, we observed that for some
contracts the baseline may cause the transaction execution
to overtake the consensus to become the new bottleneck, i.e.,
at a certain point it cannot process the packed transactions
in each block even in 10 seconds (i.e., the block generation
interval). Row 8 in Figure 15 presents the number of packed
blocks for the baseline instrumentation of each contract
before the transaction processing time of each block exceeds
10 seconds. For example, Parity cannot process one block

448

PLDI ’20, June 15ś20, 2020, London, UK Ao Li, Jemin Andrew Choi, and Fan Long

BEC USDT ZRX THETA INB HEDG DAI EKT XIN HOT SWP

CPU S 1.27 3.35 3.49 3.14 3.08 3.40 3.33 3.33 3.43 3.33 3.45
(%) B 4.15 23.2 19.6 19.5 19.2 18.8 23.3 19.8 18.6 19.2 19.4

O 1.19 3.40 3.33 2.92 2.90 3.40 3.27 3.32 3.28 3.86 3.27

Disk S 43.7 96.6 95.5 95.5 95.9 96.2 95.6 95.8 95.3 95.7 96.5
(KB/s) B 78.0 149.1 148.1 147.4 149.4 148.4 147.7 147.6 148.8 148.5 150.0

O 44.1 95.9 95.3 95.3 95.7 96.0 95.4 95.3 95.1 95.3 95.9

Blocks B 995 624 761 813 732 789 783 784 628 784 787

DOZ MCHH CC CLV LAND CARDS KB TRINK PACKS BKC EGG VOTE

CPU S 1.26 2.39 1.98 2.32 2.16 2.00 2.27 1.99 1.98 1.89 1.96 2.18
(%) B 2.20 8.01 7.68 7.98 7.96 7.97 8.20 7.55 8.17 7.96 7.53 6.77

O 1.29 2.01 2.16 2.25 2.09 2.30 2.25 2.14 1.82 1.82 1.69 2.19

Disk S 57.5 80.00 81.40 81.03 81.60 80.50 81.80 80.66 88.76 82.35 82.87 40.0
(KB/s) B 67.4 126.5 126.4 124.2 121.3 125.1 123.1 121.0 127.4 124.9 121.4 44.6

O 53.8 68.73 73.64 68.68 72.01 71.87 70.80 72.56 77.57 71.15 68.27 35.3

Blocks B 6536 359 359 359 359 359 359 359 359 359 322 240

Figure 15. Resource usage for Parity client. łSž corresponds to Solythesis results. łOž corresponds to original contract results.
"B" corresponds to baseline results.

BEC

2181

USDT

1235

ZRX

2636

THETA

2791

INB

2098

HEDG

2153

DAI

2260

EKT

2629

XIN

2745

HOT

2728

SWP

1762

0
20
40
60
80
100

%
o
f
o
ri
g
in
al
tx

Baseline Solythesis

DOZ

1184

MCHH

737

CC

1017

CLV

715

LAND

734

CARDS

755

KB

753

TRINK

1006

PACKS

888

BKC

1028

EGG

997

VOTE

1439

0
20
40
60
80
100

%
o
f
o
ri
g
in
al
tx

Baseline Solythesis

Figure 16. Overhead comparison with respect to the original contract for top ERC20, ERC721 and ERC1202 contracts.

within 10 seconds after 624 blocks for the USDT contract with

the baseline instrumentation. Note that we do not observe

such significant slowdowns in the Solythesis instrumented

contracts and the native contracts.

6.3 Results without Consensus

To understand the overhead of the Solythesis instrumen-

tation under fast consensus protocols, we run experiments

on Parity when we turn off the consensus layer. We also

compare the overhead of Solythesis with the baseline in-

strumentation algorithm (which naively performs iterative

checks at the end of each transaction call) to evaluate the

effectiveness of our optimizations.

Figure 16 presents our experimental results. The X axis

corresponds to different smart contracts. The labels in the X

axis include both the smart contract name and the TPS of the

original contract. The Y axis corresponds to the transaction

throughput in the number of transactions processed by Parity

per second (TPS). The Y axis is normalized to the TPS of the

original smart contracts. Red bars in Figure 16 correspond

to the throughput results of Solythesis, while blue bars

correspond to the results of the baseline algorithm.

Our results show that even in the extreme cases where the

consensus is no longer the performance bottleneck, the in-

strumentation overhead of Solythesis would still be accept-

able. The average TPS slowdown caused by the Solythesis

449

Securing Smart Contract with Runtime Validation PLDI ’20, June 15ś20, 2020, London, UK

instrumentation in this set of experiments is 24%. Our results

also highlight the importance of the delta update and delta

check techniques in Solythesis. Without those optimiza-

tions, the naive instrumentation slows down the transaction

throughput by two orders of magnitude. The Solythesis in-
strumentation is significantly faster because the delta update

and delta check techniques enable the runtime check to only

access a small fixed number of blockchain state entries per

transaction. As the contract state grows, the instrumentation

overhead of the baseline version grows linearly, while the

overhead of Solythesis remains stable.

7 Discussion and Future Directions

Our experimental results demonstrate that runtime valida-

tion is much more affordable in smart contracts than in many

other domains. Because of the performance bottlenecks at the

consensus layer and the storage layer, lightweight runtime

instrumentations can have small or even negligible overhead.

Our results reveal several future research directions on how

to improve the security of smart contracts and blockchain

platforms.

New Languages with Runtime Validation: To secure

smart contracts, people are designing new smart contract

languages that can eliminate certain classes of errors at the

compile time, at the cost of limiting language expressive-

ness [22, 26, 57]. Our results imply that making the difficult

trade-off between the correctness and the expressiveness

may not be necessary. One possible future direction is to de-

sign new languages that can better utilize rigorous runtime

validation to enforce correctness and security instead.

Static Analysis and Verification: Developing static anal-

ysis and verification techniques to secure smart contracts

is both an active research topic and an industrial trend [3,

11, 20, 32, 36, 39, 42, 45, 46, 48, 52, 61, 63]. Like similar tech-

niques in traditional programs, static analysis techniques

often have inaccurate results, while verification techniques

typically require human intervention. One possible future

direction is to combine runtime validation with these static

analysis and verification techniques. Because of the inexpen-

sive cost, runtime validation can act as a backup technique

to cover scenarios that static analysis techniques fail to fully

analyze or that verification techniques cannot fully prove.

Runtime Validation in Blockchain VM: Solythesis im-

plements runtime checks via Solidity source code instru-

mentation. It is possible to implement some of the runtime

checks in the blockchain virtual machine to further reduce

the overhead, but this would require a hard fork for existing

blockchains like Ethereum to adopt the technique.

New Gas Mechanism: Each EVM instruction charges gas

and the fee of an Ethereum smart contract transaction is

determined by the total gas the transaction consumes. In

our experiments, the average gas overhead of the instru-

mented contracts is 77.8%, which is significantly higher than

the actual resource consumption overhead (which is negli-

gible). One possible explanation is that the gas schedule in

Ethereum does not correctly reflect the execution cost of

each EVM instruction. The gas overhead would cause the

users of the instrumented contracts to pay additional trans-

action fees. In the light of our results, we believe Ethereum

and future blockchain systems should adopt a more flexible

gas mechanism to facilitate runtime validation techniques.

8 Related Work

Runtime Validation for Smart Contracts: Contract-

Larva [28] allows users to supply pre- and post-conditions

for smart contract transactions and enforces them at runtime.

Unlike Solythesis, it does not support quantifiers natively.
Note that quantifiers are important because many contracts

store critical data into ledgers that map each Ethereum ad-

dress to balance-like values. Without quantifiers, it is not

possible to write many meaningful global invariants (e.g.,

all evaluated invariants in our experiments) for such ledger

data structures. Users may write looped pre/post-conditions

instead to simulate such invariants in ContractLarva, but

that would be equivalent to the naive approach in our paper

and would cause very high overhead. The ContractLarva

paper evaluates the system on one sample ERC-20 contract

with no end-to-end runtime overhead result.

Sereum [55] is a new design and implementation of

Ethereum virtual machine which tracks the storage oper-

ations of each transaction to prevent re-entrancy attacks.

Modifying the EVM implementation to perform runtime

checks may further reduce the overhead, but it would re-

quire a blockchain hard-fork. On the other hand, Solythesis
inserts runtime checks at the Solidity level, which does not

require any modification of the existing blockchain system.

SODA [24] is an EVM online detection platform in which

users can develop monitor programs for deployed smart

contracts. It acts as a plugin to the full node of Ethereum to

fetch the states of smart contracts. The monitor programs

then run on the fetched states to detect errors and anomalies.

Unlike Solythesis which turns the offending transactions

into no-ops, SODA cannot mitigate the detected errors, i.e.,

the offending transactions will be processed by Ethereum

and the attacks will still succeed.

Static Analysis and Verification for Smart Contracts:

There is a rich body of work on detecting vulnerable smart

contracts with different techniques such as symbolic ex-

ecution [36, 39, 42, 45, 48, 51ś53, 63], fuzzing [31, 34],

domain-specific static analysis [61], and formal verifica-

tion [20, 25, 32, 46]. Oyente [45] detects transaction-order

dependency attacks, re-entrance attacks, and mishandled

exception attacks using symbolic execution. Verx [53] uses

delayed abstraction to detect and verify temporal safety prop-

erties automatically. He et al. present a new fuzzing tech-

nique that learns from symbolic execution traces to achieve

450

PLDI ’20, June 15ś20, 2020, London, UK Ao Li, Jemin Andrew Choi, and Fan Long

both high coverage and high speed [31]. Securify presents a

domain-specific formal verification technique that translates

Solidity smart contract into Datalog and verifies security

properties such as restricted storage writes and ether trans-

fers [61].

Solythesis differs from these previous static analysis,

fuzzing, and symbolic execution approaches in that it in-

serts runtime checks to enforce user-specified invariants.

Unlike these approaches, Solythesis does not suffer from
false positives and false negatives. Compared to most for-

mal verification approaches, Solythesis is fully automated

and does not require human intervention. Securify is an

automated verification tool using SMT solvers, but it may

not scale to complicated contracts due to the potential SMT

expression explosion problem. Also, unlike Solythesis, it
cannot support sophisticated constraints like quantifiers.

Runtime Validation in Other Domains: Runtime vali-

dation techniques have been used to enforce security con-

straints in other general-purpose languages [15, 17, 18, 35,

58]. Tracematches [15] and JavaMop [35] focus on the ex-

pressiveness of the specification language. QEA [17] and

DITTO [58] allow users to write potentially complicated

specifications while allowing for optimizations.

Runtime checks are also useful for detecting and mitigat-

ing memory errors in C/C++ applications [14, 19, 23, 33, 40,

49, 59]. Control-flow integrity is a runtime mechanism to

prevent attackers from hijacking the control flow of a pro-

gram [14, 29]. Simpson and Barua enforce both spatial and

temporal memory safety of C programs without introducing

high overhead by modelling temporal errors as spatial errors

and removing redundant checks [59]. Similarly, Frama-C

generates runtime memory monitors automatically to check

E-ACSL specifications [40]. Chandola et al. describe that

patterns in data that do not conform to expected behavior

can help the system detect intrusions, frauds and faults [23].

Berger and Zorn, for example, implement a runtime system

that executes multiple replicas of the same application si-

multaneously to detect memory errors [19]. RCV uses light-

weight binary instrumentations to enable applications to

safely recover from null-dereference and divide-by-zero er-

rors with negligible overhead [44]. Researchers have also

used runtime checks to detect side-channel attacks [64] and

isolate errors [62].

Comparing to other general-purpose languages, the

uniqueness of the smart contract setting is that blockchain

state access operations are significantly more expensive than

other types of operations, and they dominate the EVM exe-

cution as shown in Section 2. This phenomenon drives the

design of Solythesis. The delta update techniques in Solythe-

sis focuses onminimizing the usage of state access operations

as much as possible, while the runtime validation techniques

in other tools have a different design focus.

Blockchain Consensus: The consensus layer is the pri-

mary performance bottleneck for many existing blockchain

systems including Ethereum. Developing fast consensus pro-

tocols for blockchain is an active research topic. Several

new high-performance consensus protocols have been pro-

posed and implemented [16, 30, 38, 43, 47, 54, 66]. Many of

these new protocols can support hundreds to thousands of

transactions per second. Our experimental results show that

Solythesiswill have low overhead when applying on future

blockchain systems built on these fast consensus protocols.

New Language Design: Many new programming lan-

guages have been recently proposed to improve smart con-

tract security. Scilla [57] is a low-level smart contract lan-

guage with a refined type system that is easy to verify.

Move [22] introduces resource types and uses linear logic

to enforced access control policies for digital assets. Ob-

sidian [26] uses typestate and linear type to enforce static

checks. The trend of these new languages is to sacrifice

expressiveness (e.g., no longer Turing-complete) to gain cor-

rectness or security guarantees. Interestingly, our results

reveal an alternative path Ð one possible future direction

is to design new languages that can better utilize rigorous

runtime validation to enforce correctness and security.

K-framework is a rewrite-based semantic framework that

allows developers to specify semantics of a programming

language formally [56], which could be used to design and

implement such new languages that facilitate runtime val-

idation. KEVM [32] defines the semantic of EVM in K and

verifies the smart contract against user-defined specifica-

tions. IELE [37] presents a smart contract virtual machine

with a formal specification described in K which achieves

similar performance as the EVM and provides verifiability.

9 Conclusion

Runtime validation is an effective and efficient approach to

secure smart contracts. With the delta update and delta check

techniques, Solythesis can efficiently enforce powerful in-

variants with quantifiers for the state of a smart contract.

The experimental results of Solythesis validate our hypoth-
esis that because the transaction execution is not the per-

formance bottleneck in Ethereum, the overhead of runtime

validation, which is often too expensive for other domains,

is in fact negligible for smart contracts. In the light of our

results, we believe that new languages, new analyses, and

new virtual machine designs that can further exploit rigor-

ous runtime validation are promising future directions to

secure smart contracts.

Acknowledgments

We thank Ming Wu and the anonymous reviewers for their

insightful comments on the early draft of this paper. This

research was supported by Connaught Fund #507141 and Tri-

Council Bridge Funding from University of Toronto. Note

that an early version of this paper appears in arXiv [41].

451

Securing Smart Contract with Runtime Validation PLDI ’20, June 15ś20, 2020, London, UK

References
[1] [n. d.]. ANTLR: ANother Tool for Language Recognition. https:

//www.antlr.org/.

[2] [n. d.]. Beauty Chain: The world’s first blockchain platform dedicated

to the beauty ecosystem. http://www.beauty.io/.

[3] [n. d.]. Certik: World’s most advanced formal verification technology

for smart contracts. https://www.certik.org/.

[4] [n. d.]. CryptoDozer. https://cryptodozer.io/.

[5] [n. d.]. EIP 1202: Token Standard. https://eips.ethereum.org/EIPS/eip-

20.

[6] [n. d.]. EIP 1202: Voting Standard. https://eips.ethereum.org/EIPS/eip-

1202.

[7] [n. d.]. EIP 721: Non-Fungible Token Standard. https://eips.ethereum.

org/EIPS/eip-721.

[8] [n. d.]. Ethereum (ETH) Blockchain Explorer. https://etherscan.io/.

[9] [n. d.]. Ethereum Gas Limit History. https://etherscan.io/chart/

gaslimit.

[10] [n. d.]. Parity: The fastest and most advanced Ethereum client. https:

//www.parity.io/ethereum/.

[11] [n. d.]. Quantstamp: Leaders in blockchain security and solutions.

https://quantstamp.com/.

[12] [n. d.]. solidity-parser-antlr. https://github.com/federicobond/solidity-

parser-antlr.

[13] [n. d.]. Surya, The Sun God: A Solidity Inspector. https://github.com/

ConsenSys/surya.

[14] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005.

Control-flow Integrity. In Proceedings of the 12th ACM Conference on

Computer and Communications Security (CCS ’05). ACM, New York,

NY, USA, 340ś353. https://doi.org/10.1145/1102120.1102165

[15] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hen-

dren, Sascha Kuzins, Ondřej Lhoták, Oege de Moor, Damien Sereni,

Ganesh Sittampalam, and Julian Tibble. 2005. Adding Trace Match-

ing with Free Variables to AspectJ. SIGPLAN Not. 40, 10 (Oct. 2005),

345ś364. https://doi.org/10.1145/1103845.1094839

[16] Vivek Kumar Bagaria, Sreeram Kannan, David Tse, Giulia C. Fanti, and

Pramod Viswanath. 2018. Deconstructing the Blockchain to Approach

Physical Limits. CoRR abs/1810.08092 (2018). arXiv:1810.08092 http:

//arxiv.org/abs/1810.08092

[17] Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and

David Rydeheard. 2012. Quantified Event Automata: Towards Ex-

pressive and Efficient Runtime Monitors. In FM 2012: Formal Methods,

Dimitra Giannakopoulou and Dominique Méry (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 68ś84.

[18] David A. Basin, Matús Harvan, Felix Klaedtke, and Eugen Zalinescu.

2011. MONPOLY: Monitoring Usage-Control Policies. In RV.

[19] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: Proba-

bilistic Memory Safety for Unsafe Languages. In Proceedings of the

27th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’06). ACM, New York, NY, USA, 158ś168.

https://doi.org/10.1145/1133981.1134000

[20] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cedric Fournet,

Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kula-

tova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and Santi-

ago Zanella-Béguelin. 2016. Formal Verification of Smart Contracts:

Short Paper. In Proceedings of the 2016 ACMWorkshop on Programming

Languages and Analysis for Security (PLAS ’16). ACM, New York, NY,

USA, 91ś96. https://doi.org/10.1145/2993600.2993611

[21] John Biggs. 2018. Overflow error shuts down token trad-

ing. https://techcrunch.com/2018/04/25/overflow-error-shuts-down-

token-trading/.

[22] Sam Blackshear, Evan Chengand David L. Dill, Victor Gao, Ben

Maurer, Todd Nowacki, Alistair Pott, Shaz Qadeer, Rain, Dario

Russi, Stephane Sezer, Tim Zakian, and Runtian Zhou. 2019.

Move: A Language With Programmable Resources. Technical Re-

port. https://developers.libra.org/docs/assets/papers/libra-move-a-

language-with-programmable-resources.pdf

[23] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly

Detection: A Survey. ACM Comput. Surv. 41, 3, Article 15, 58 pages.

https://doi.org/10.1145/1541880.1541882

[24] Ting Chen, Rong Cao, Ting Li, Xiapu Luo, Guofei Gu, Yufei Zhang,

Zhou Liao, Hang Zhu, Gang Chen, Zheyuan He, Yuxing Tang, Xi-

aodong Lin, and Xiaosong Zhang. 2020. SODA: A Generic Online

Detection Framework for Smart Contracts. https://doi.org/10.14722/

ndss.2020.24449

[25] Xiaohong Chen, Daejun Park, and Grigore Roşu. 2018. A Language-

Independent Approach to Smart Contract Verification. In Leveraging

Applications of Formal Methods, Verification and Validation. Industrial

Practice, Tiziana Margaria and Bernhard Steffen (Eds.). Springer Inter-

national Publishing, Cham, 405ś413.

[26] Michael J. Coblenz, Reed Oei, Tyler Etzel, Paulette Koronkevich, Miles

Baker, Yannick Bloem, Brad A. Myers, Joshua Sunshine, and Jonathan

Aldrich. 2019. Obsidian: Typestate and Assets for Safer Blockchain

Programming. ArXiv abs/1909.03523 (2019).

[27] Phil Daian. 2016. Analysis of the DAO exploit. http://

hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/.

[28] J. Ellul and G. J. Pace. 2018. Runtime Verification of Ethereum Smart

Contracts. In 2018 14th European Dependable Computing Conference

(EDCC). 158ś163. https://doi.org/10.1109/EDCC.2018.00036

[29] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin

Rinard, Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control

Jujutsu: On the Weaknesses of Fine-Grained Control Flow Integrity. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-

munications Security (CCS ’15). Association for Computing Machinery,

New York, NY, USA, 901ś913. https://doi.org/10.1145/2810103.2813646

[30] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nick-

olai Zeldovich. 2017. Algorand: Scaling Byzantine Agreements for

Cryptocurrencies. In Proceedings of the 26th Symposium on Operating

Systems Principles (SOSP ’17). Association for Computing Machinery,

New York, NY, USA, 51ś68. https://doi.org/10.1145/3132747.3132757

[31] Jingxuan He, Mislav Balunović, Nodar Ambroladze, Petar Tsankov, and

Martin Vechev. 2019. Learning to Fuzz from Symbolic Execution with

Application to Smart Contracts. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security (CCS ’19). ACM,

New York, NY, USA, 531ś548. https://doi.org/10.1145/3319535.3363230

[32] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth, B.

Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu. 2018. KEVM: A

Complete Formal Semantics of the Ethereum Virtual Machine. In 2018

IEEE 31st Computer Security Foundations Symposium (CSF). 204ś217.

https://doi.org/10.1109/CSF.2018.00022

[33] Yuseok Jeon, Priyam Biswas, Scott Carr, Byoungyoung Lee, and Math-

ias Payer. 2017. HexType: Efficient Detection of Type Confusion Errors

for C++. In Proceedings of the 2017 ACM SIGSAC Conference on Com-

puter and Communications Security (CCS ’17). ACM, New York, NY,

USA, 2373ś2387. https://doi.org/10.1145/3133956.3134062

[34] Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: Fuzzing

Smart Contracts for Vulnerability Detection. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering

(ASE 2018). ACM, New York, NY, USA, 259ś269. https://doi.org/10.

1145/3238147.3238177

[35] Dongyun Jin, Patrick Meredith, Choonghwan Lee, and Grigore Roşu.

2012. JavaMOP: Efficient parametric runtime monitoring framework.

Proceedings - International Conference on Software Engineering (06

2012), 1427ś1430. https://doi.org/10.1109/ICSE.2012.6227231

[36] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018.

Zeus: Analyzing safety of smart contracts. NDSS.

[37] Theodoros Kasampalis, Dwight Guth, Brandon Moore, Traian Florin

S, erbănut,ă, Yi Zhang, Daniele Filaretti, Virgil S, erbănut,ă, Ralph Johnson,

452

https://www.antlr.org/
https://www.antlr.org/
http://www.beauty.io/
https://www.certik.org/
https://cryptodozer.io/
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-1202
https://eips.ethereum.org/EIPS/eip-1202
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://etherscan.io/
https://etherscan.io/chart/gaslimit
https://etherscan.io/chart/gaslimit
https://www.parity.io/ethereum/
https://www.parity.io/ethereum/
https://quantstamp.com/
https://github.com/federicobond/solidity-parser-antlr
https://github.com/federicobond/solidity-parser-antlr
https://github.com/ConsenSys/surya
https://github.com/ConsenSys/surya
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1103845.1094839
http://arxiv.org/abs/1810.08092
http://arxiv.org/abs/1810.08092
http://arxiv.org/abs/1810.08092
https://doi.org/10.1145/1133981.1134000
https://doi.org/10.1145/2993600.2993611
https://techcrunch.com/2018/04/25/overflow-error-shuts-down-token-trading/
https://techcrunch.com/2018/04/25/overflow-error-shuts-down-token-trading/
https://developers.libra.org/docs/assets/papers/libra-move-a-language-with-programmable-resources.pdf
https://developers.libra.org/docs/assets/papers/libra-move-a-language-with-programmable-resources.pdf
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.14722/ndss.2020.24449
https://doi.org/10.14722/ndss.2020.24449
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://doi.org/10.1109/EDCC.2018.00036
https://doi.org/10.1145/2810103.2813646
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1145/3133956.3134062
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.1109/ICSE.2012.6227231

PLDI ’20, June 15ś20, 2020, London, UK Ao Li, Jemin Andrew Choi, and Fan Long

and Grigore Roşu. 2019. IELE: A Rigorously Designed Language and

Tool Ecosystem for the Blockchain. In Formal Methods ś The Next 30

Years, Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira

(Eds.). Springer International Publishing, Cham, 593ś610.

[38] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B.

Ford. 2018. OmniLedger: A Secure, Scale-Out, Decentralized Ledger

via Sharding. In 2018 IEEE Symposium on Security and Privacy (SP).

583ś598. https://doi.org/10.1109/SP.2018.000-5

[39] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek

Saxena. 2018. Exploiting The Laws of Order in Smart Contracts. CoRR

abs/1810.11605 (2018). arXiv:1810.11605 http://arxiv.org/abs/1810.

11605

[40] Nikolai Kosmatov, Guillaume Petiot, and Julien Signoles. 2013. An

Optimized Memory Monitoring for Runtime Assertion Checking of C

Programs. In Runtime Verification, Axel Legay and Saddek Bensalem

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 167ś182.

[41] Ao Li, Jemin Andrew Choi, and Fan Long. 2019. Securing Smart

Contract On The Fly. arXiv:cs.PL/1911.12555

[42] Ao Li and Fan Long. 2018. Detecting Standard Violation Errors in

Smart Contracts. CoRR abs/1812.07702 (2018). arXiv:1812.07702 http:

//arxiv.org/abs/1812.07702

[43] Chenxing Li, Peilun Li, Wei Xu, Fan Long, and Andrew Chi-Chih Yao.

2018. Scaling Nakamoto Consensus to Thousands of Transactions

per Second. CoRR abs/1805.03870 (2018). arXiv:1805.03870 http:

//arxiv.org/abs/1805.03870

[44] Fan Long, Stelios Sidiroglou-Douskos, and Martin C. Rinard. 2014. Au-

tomatic runtime error repair and containment via recovery shepherd-

ing. In ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11,

2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 227ś238.

https://doi.org/10.1145/2594291.2594337

[45] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas

Hobor. 2016. Making Smart Contracts Smarter. In Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communica-

tions Security (CCS ’16). ACM, New York, NY, USA, 254ś269. https:

//doi.org/10.1145/2976749.2978309

[46] Anastasia Mavridou, Aron Laszka, Emmanouela Stachtiari, and Ab-

hishek Dubey. 2019. VeriSolid: Correct-by-Design Smart Contracts

for Ethereum. CoRR abs/1901.01292 (2019). arXiv:1901.01292 http:

//arxiv.org/abs/1901.01292

[47] Libra Association Members. 2019. An Introduction to Libra. Technical

Report. https://libra.org/en-US/wp-content/uploads/sites/23/2019/

06/LibraWhitePaper_en_US.pdf

[48] Bernhard Mueller. [n. d.]. Mythril Classic: Security analysis tool for

Ethereum smart contracts. https://github.com/ConsenSys/mythril-

classic.

[49] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2015.

Everything You Want to Know About Pointer-Based Checking. In 1st

Summit on Advances in Programming Languages (SNAPL 2015) (Leibniz

International Proceedings in Informatics (LIPIcs)), Thomas Ball, Rastislav

Bodik, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett

(Eds.), Vol. 32. Schloss DagstuhlśLeibniz-Zentrum fuer Informatik,

Dagstuhl, Germany, 190ś208. https://doi.org/10.4230/LIPIcs.SNAPL.

2015.190

[50] Satoshi Nakamoto. [n. d.]. Bitcoin: A peer-to-peer electronic cash

system,ž http://bitcoin.org/bitcoin.pdf.

[51] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, andAquinas

Hobor. 2018. Finding The Greedy, Prodigal, and Suicidal Contracts at

Scale. CoRR abs/1802.06038 (2018). arXiv:1802.06038 http://arxiv.org/

abs/1802.06038

[52] Trail of Bits. [n. d.]. Manticore: Symbolic Execution for Humans.

https://github.com/trailofbits/manticore.

[53] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-

Cohen, and Martin Vechev. [n. d.]. VerX: Safety Verification of Smart

Contracts. ([n. d.]).

[54] Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse,

and Emin Gun Sirer. 2019. Scalable and Probabilistic Leaderless

BFT Consensus through Metastability. CoRR abs/1906.08936 (2019).

arXiv:1906.08936 http://arxiv.org/abs/1906.08936

[55] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. 2018.

Sereum: Protecting Existing Smart Contracts Against Re-Entrancy

Attacks. arXiv:cs.CR/1812.05934

[56] G. Rosu. 2017. K: A semantic framework for programming languages

and formal analysis tools. 186ś206. https://doi.org/10.3233/978-1-

61499-810-5-186

[57] Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar,

Anton Trunov, and Ken Chan Guan Hao. 2019. Safer Smart Contract

Programming with Scilla. Proc. ACM Program. Lang. 3, OOPSLA,

Article 185 (Oct. 2019), 30 pages. https://doi.org/10.1145/3360611

[58] Ajeet Shankar and Rastislav Bodik. 2007. DITTO: Automatic Incremen-

talization of Data Structure Invariant Checks (in Java). SIGPLAN Not.

42, 6 (June 2007), 310ś319. https://doi.org/10.1145/1273442.1250770

[59] M. S. Simpson and R. K. Barua. 2010. MemSafe: Ensuring the Spatial

and Temporal Memory Safety of C at Runtime. In 2010 10th IEEE

Working Conference on Source Code Analysis and Manipulation. 199ś

208. https://doi.org/10.1109/SCAM.2010.15

[60] Yonatan Sompolinsky and Aviv Zohar. 2015. Secure High-Rate Trans-

action Processing in Bitcoin. In Financial Cryptography and Data Se-

curity, Rainer Böhme and Tatsuaki Okamoto (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 507ś527.

[61] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,

Florian Bunzli, and Martin Vechev. 2018. Securify: Practical Security

Analysis of Smart Contracts. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security (CCS ’18). ACM,

New York, NY, USA, 67ś82. https://doi.org/10.1145/3243734.3243780

[62] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Gra-

ham. 1993. Efficient Software-based Fault Isolation. SIGOPS Oper. Syst.

Rev. 27, 5 (Dec. 1993), 203ś216. https://doi.org/10.1145/173668.168635

[63] Shuai Wang, Chengyu Zhang, and Zhendong Su. 2019. Detecting

Nondeterministic Payment Bugs in Ethereum Smart Contracts. Proc.

ACM Program. Lang. 3, OOPSLA, Article 189 (Oct. 2019), 29 pages.

https://doi.org/10.1145/3360615

[64] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian

Stefan. 2019. CT-wasm: Type-driven Secure Cryptography for the

Web Ecosystem. Proc. ACM Program. Lang. 3, POPL, Article 77 (Jan.

2019), 29 pages. https://doi.org/10.1145/3290390

[65] Gavin Wood. 2014. Ethereum: A secure decentralised generalised

transaction ledger. Ethereum project yellow paper 151 (2014), 1ś32.

[66] Haifeng Yu, Ivica Nikolic, Ruomu Hou, and Prateek Saxena. 2018.

OHIE: Blockchain Scaling Made Simple. CoRR abs/1811.12628 (2018).

arXiv:1811.12628 http://arxiv.org/abs/1811.12628

453

https://doi.org/10.1109/SP.2018.000-5
http://arxiv.org/abs/1810.11605
http://arxiv.org/abs/1810.11605
http://arxiv.org/abs/1810.11605
http://arxiv.org/abs/cs.PL/1911.12555
http://arxiv.org/abs/1812.07702
http://arxiv.org/abs/1812.07702
http://arxiv.org/abs/1812.07702
http://arxiv.org/abs/1805.03870
http://arxiv.org/abs/1805.03870
http://arxiv.org/abs/1805.03870
https://doi.org/10.1145/2594291.2594337
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
http://arxiv.org/abs/1901.01292
http://arxiv.org/abs/1901.01292
http://arxiv.org/abs/1901.01292
https://libra.org/en-US/wp-content/uploads/sites/23/2019/06/LibraWhitePaper_en_US.pdf
https://libra.org/en-US/wp-content/uploads/sites/23/2019/06/LibraWhitePaper_en_US.pdf
https://github.com/ConsenSys/mythril-classic
https://github.com/ConsenSys/mythril-classic
https://doi.org/10.4230/LIPIcs.SNAPL.2015.190
https://doi.org/10.4230/LIPIcs.SNAPL.2015.190
http://arxiv.org/abs/1802.06038
http://arxiv.org/abs/1802.06038
http://arxiv.org/abs/1802.06038
https://github.com/trailofbits/manticore
http://arxiv.org/abs/1906.08936
http://arxiv.org/abs/1906.08936
http://arxiv.org/abs/cs.CR/1812.05934
https://doi.org/10.3233/978-1-61499-810-5-186
https://doi.org/10.3233/978-1-61499-810-5-186
https://doi.org/10.1145/3360611
https://doi.org/10.1145/1273442.1250770
https://doi.org/10.1109/SCAM.2010.15
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/173668.168635
https://doi.org/10.1145/3360615
https://doi.org/10.1145/3290390
http://arxiv.org/abs/1811.12628
http://arxiv.org/abs/1811.12628

	Abstract
	1 Introduction
	1.1 Runtime Validation with Solythesis
	1.2 Experimental Results
	1.3 Contributions

	2 Observation
	3 Example
	4 Design
	4.1 Invariant and Contract Languages
	4.2 Instrumentation Algorithm
	4.3 Binding and Rewrite Algorithms

	5 Implementation
	5.1 Function Calls
	5.2 Global Memory
	5.3 State Variable Caches

	6 Evaluation
	6.1 Methodology
	6.2 Results with Consensus
	6.3 Results without Consensus

	7 Discussion and Future Directions
	8 Related Work
	9 Conclusion
	References

