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Abstract—We present a novel technique, automatic input
rectification, and a prototype implementation, SOAP. SOAP
learns a set of constraints characterizing typical inputs that an
application is highly likely to process correctly. When given
an atypical input that does not satisfy these constraints, SOAP
automatically rectifies the input (i.e., changes the input so that
it satisfies the learned constraints). The goal is to automatically
convert potentially dangerous inputs into typical inputs that the
program is highly likely to process correctly.

Our experimental results show that, for a set of bench-
mark applications (Google Picasa, ImageMagick, VLC, Swfdec,
and Dillo), this approach effectively converts malicious inputs
(which successfully exploit vulnerabilities in the application)
into benign inputs that the application processes correctly.
Moreover, a manual code analysis shows that, if an input does
satisfy the learned constraints, it is incapable of exploiting these
vulnerabilities.

We also present the results of a user study designed to eval-
uate the subjective perceptual quality of outputs from benign
but atypical inputs that have been automatically rectified by
SOAP to conform to the learned constraints. Specifically, we
obtained benign inputs that violate learned constraints, used
our input rectifier to obtain rectified inputs, then paid Amazon
Mechanical Turk users to provide their subjective qualitative
perception of the difference between the outputs from the orig-
inal and rectified inputs. The results indicate that rectification
can often preserve much, and in many cases all, of the desirable
data in the original input.

I. INTRODUCTION

Errors and security vulnerabilities in software often occur
in infrequently executed program paths triggered by atypical
inputs. A standard way to ameliorate this problem is to use an
anomaly detector that filters out such atypical inputs. The goal
is to ensure that the program is only presented with typical
inputs that it is highly likely to process without errors. A
drawback of this technique is that it can filter out desirable,
benign, but atypical inputs along with the malicious atypical
inputs, thereby denying the user access to desirable inputs.

A. Input Rectification

We propose a new technique, automatic input rectification.
Instead of rejecting atypical inputs, the input rectifier modifies
the input so that it is typical, then presents the input to the
application, which then processes the input. We have three
goals: a) present typical inputs (which the application is highly
likely to process correctly) to the application unchanged,
b) render any malicious inputs harmless by eliminating any
atypical input features that may trigger errors or security

vulnerabilities, while c¢) preserving most, if not all, of the
desirable behavior for atypical benign inputs. A key empirical
observation that motivates our technique is the following:

Production software is usually tested on a large number of
inputs. Standard testing processes ensure that the software
performs acceptably on such inputs. We refer to such inputs
as typical inputs and the space of such typical inputs as the
comfort zone [33] of the application. On the other hand, inputs
designed to exploit security vulnerabilities (i.e., malicious
inputs) often lie outside the comfort zone. If the rectifier is
able to automatically detect inputs that lie outside the comfort
zone and map these inputs to corresponding meaningfully close
inputs within the comfort zone, then it is possible to a) prevent
attackers from exploiting the vulnerability in the software,
while at the same time b) preserving desirable data in atypical
inputs (either benign or malicious) for the user.

We present SOAP (Sanitization Of Anomalous inPuts),
an automatic input rectification system designed to prevent
overflow vulnerabilities. SOAP first learns a set of constraints
over typical inputs that characterize a comfort zone for the
application that processes those inputs. It then takes the
constraints and automatically generates a rectifier that, when
provided with an input, automatically produces another input
that satisfies the constraints. Inputs that already satisfy the
constraints are passed through unchanged; inputs that do not
satisfy the constraints are modified so that they do.

B. Potential Advantages of Automatic Input Rectification

Input rectification has several potential advantages over
simply rejecting malicious or atypical inputs that lie outside
the comfort zone:

« Desirable Data in Atypical Benign Inputs: Anomaly
detectors filter out atypical inputs even if they are benign.
The result is that the user is completely denied access
to data in atypical inputs. Rectification, on the other
hand, passes the rectified input to the application for
presentation to the user. Rectification may therefore
deliver much or even all of the desirable data present
in the original atypical input to the user.

o Desirable Data in Malicious Inputs: Even a malicious
input may contain data that is desirable to the user.
Common examples include web pages with embedded
malicious content. Rectification may eliminate the ex-
ploits while preserving most desirable input from the
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Figure 1. A JPEG image truncated by the rectification.

original input. In this case the rectifier enables the user
to safely access the desirable data in the malicious input.

o Error Nullification: Even if they are not malicious,
atypical inputs may expose errors that prevent the ap-
plication from processing them successfully. In this case
rectification may nullify the errors so that the application
can deliver most if not all of the desirable data in the
atypical input to the user.

C. The Input Rectification Technique

SOAP operates on the parse tree of an input, which
divides the input into a collection of potentially nested fields.
The hierarchical structure of the parse tree reflects nesting
relationships between input fields. Each field may contain
an integer value, a string, or unparsed raw data bytes. SOAP
infers and enforces 1) upper bound constraints on the values of
integer fields, 2) sign constraints that capture whether or not an
integer field must be non-negative, 3) upper bound constraints
on the lengths of string or raw data byte fields, and 4) correlated
constraints that capture relationships between the values of
integer fields and the lengths of (potentially nested) string or
raw data fields.

The taint analysis [12], [29] engine of SOAP first identifies
input fields that are related to critical operations during the
execution of the application (i.e., memory allocations and
memory writes). The learning engine of SOAP then automati-
cally infers constraints on these fields based on a set of training
inputs. When presented with an atypical input that violates
these constraints, the SOAP rectifier automatically modifies
input fields iteratively until all constraints are satisfied.

D. Nested Fields in Input Files

One of the key challenges in input rectification is the need to
deal with nested fields. In general, input formats may contain
arbitrarily nested fields, which make inferring correlated
constraints hard. Our algorithm must consider relationships
between multiple fields at different levels in the tree.

Nested input fields also complicate the rectification. Chang-
ing one field may cause the file to violate constraints associated
with enclosing fields. To produce a consistent rectified input,
the rectifier must therefore apply a cascading sequence of
modifications to correlated fields as its constraint enforcement
actions propagate up or down the tree of nested fields.

E. Key Questions

We identify several key questions that are critical to the
success of the input rectification technique:

« Learning: Is it possible to automatically learn an effec-
tive set of constraints from a set of typical benign inputs?

« Rectification Percentage: Given a set of learned con-
straints, what percentage of previously unseen benign
inputs fail to satisfy the constraints and will therefore
be modified by the rectifier?

« Rectification Quality: What is the overall quality of the
outputs that the application produces when given benign
inputs that SOAP has modified to enforce the constraints?

« Security: Does SOAP effectively protect the application
against inputs that exploit errors and vulnerabilities?

We investigate these questions by applying SOAP to rectify
inputs for five large software applications. The input formats
of these applications include three image types (PNG, TIFF,
JPEG), wave sound (WAV) and Shockwave flash video (SWF).
We evaluate the effectiveness of our rectifier by performing the
following experiments:

« Benign Input Acquisition: For each application, we
acquire a set of inputs from the Internet. We run each
application on each input in its set and filter out any inputs
that cause the application to crash. The resulting set of
inputs is the benign inputs. Because all of our applications
are able to process all of the inputs without errors, the set
of benign inputs is the same as the original set.

« Training and Test Inputs: We next randomly divide the
collected benign inputs into two sets: the training set and
the test set.

« Potentially Malicious Inputs: We search the CVE
security database [2] and previous security papers to
obtain malicious inputs designed to trigger errors and/or
exploit vulnerabilities in the applications.

« Learning: We use the training set to automatically learn
the set of constraints that characterize the comfort zone.

« Atypical Benign Inputs: For each application, we next
compute the percentage of the benign inputs that violate
at least one of the learned constraints. We call such
inputs atypical benign inputs. In our experiments, the
percentage of atypical benign inputs is less than 1.57%.
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Figure 2. A JPEG image twisted by the rectification

(b) The rectified image

(a) The original image

Figure 3. A TIFF image whose color is changed by the rectification.

o Quality of Rectified Atypical Inputs: We evaluate the
quality of the rectified atypical inputs by paying people on
Amazon Mechanical Turk [1] to evaluate their perception
of the difference between 1) the output that the application
produces when given the original input and 2) the output
that the application produces when given the rectified
version of the original input. Specifically, we paid people
to rank the difference on a scale from 0 to 3, with 0
indicating completely different outputs and 3 indicating
no perceived difference. The mean scores for over 75%
of the atypical inputs are greater than 2.5, indicating that
Mechanical Turk workers perceive the outputs for the
original and rectified inputs to be very close.

o Security Evaluation: We verified that the rectified
versions of malicious inputs for each of these applications
were processed correctly by the application.

o Manual Code Analysis: For each of the malicious in-
puts, we identified the root cause of the vulnerability that
the input exploited. We examined the learned constraints
and verified that if an input satisfies the constraints, then
it will not be able to exploit the vulnerabilities.

F. Understanding Rectification Effects

We examined the original and rectified images or videos for
all test inputs that SOAP rectified. These files are available at:

http://groups.csail.mit.edu/pac/input_rectification/

For the majority of rectified inputs (83 out of 110 inputs),
the original and rectified images or videos appear identical.
The mean Mechanical Turk scores for such images or videos
was between 2.5 and 3.0. We attribute this to the fact that the
rectifier often modifies fields (such as the name of the author
of the file) that are not relevant to the core functionality of the
application and therefore do not visibly change the image or
video presented to the user. The application must nevertheless

parse and process these fields to obtain the desirable data in the
input file. Furthermore, since these fields are often viewed as
tangential to the primary purpose of the application, the code
that handles them may be less extensively tested and therefore
more likely to contain errors.

Figures 1,2 and 3 present examples of images that are visibly
changed by rectification. For some of the rectified images (8
of 53 inputs), the rectifier truncates part of the image, leaving
a strip along the bottom of the picture (see Figure 1). For the
remaining inputs (19 of 110), the rectifier changes fields that
control various aspects of core application functionality, for
example, the alignment between pixels and the image size (see
Figure 2), the image color (see Figure 3), or interactive aspects
of videos. The mean Mechanical Turk scores for such images
or videos vary depending on the severity of the effect. In all
cases the application was able to process the rectified inputs
without error to present the remaining data to the user.

G. Contributions
We make the following contributions:

« Basic Concept: We propose a novel technique for
dealing with atypical or malicious inputs, automatic input
rectification, and a prototype implementation, SOAP,
which demonstrates the effectiveness of the technique.

« Constraint Inference: We show how to use dynamic
taint analysis and a constraint inference algorithm to
automatically infer safety constraints. This inference al-
gorithm operates correctly to infer correlated constraints
for hierarchically structured input files with nested fields.

« Rectification Algorithm: We present an input recti-
fication algorithm that systematically enforces safety
constraints on inputs while preserving as much of the
benign part of the input as possible. Because it is
capable of enforcing correlated constraints associated
with nested input fields, this algorithm is capable of
rectifying hierarchically structured input files.

« Experimental Methodology: We present a new exper-
imental methodology for evaluating the significance of
changes to program inputs and/or outputs. Specifically,
We use Amazon Mechanical Turk [1] to evaluate the
subjective perceptual quality of the outputs for rectified
inputs. We present effective mechanisms to ensure the
quality of the collected responses, which is a primary
challenge of utilizing such crowdsourcing workforce.

« Experimental Results: Our results indicate that, for our
set of benchmark applications and inputs, Mechanical



Turk workers perceive rectified images and videos to be,
in most cases, close or even identical to the original im-
ages and videos (Section V). These results are consistent
with our own quantitative (Section IV) and qualitative
(Section V) evaluation of the differences between the
original and rectified images and videos.

« Explanation: We explain (Sections I-F and V) why
rectification often preserves much or even all of the
desirable data in rectified files.

We organize the rest of the paper as follows. Section II
presents an example that illustrates how SOAP works. We
describe the technical design of SOAP in Section III. We
present a quantitative evaluation of SOAP in Section IV and a
subjective human evaluation of SOAP in Section V. Section VI
discusses related work. We conclude in Section VII.

II. MOTIVATING EXAMPLE

Figure 4 presents source code from Dillo 2.1, a lightweight
open source web browser. Dillo uses libpng to process PNG
files. When Dillo starts to load a PNG file, it calls the
libpng callback function Png_datainfo_callback() shown in
Figure 4. The function contains an integer overflow vulnera-
bility at line 20, where the multiplication calculates the size
of the image buffer allocated for future callbacks. Because
png—rowbytes is proportional to the image width, arithmetic
integer overflow will occur when opening a PNG image with
maliciously large width and height values. This error causes
Dillo to allocate a significantly smaller buffer than required.
Dillo eventually writes beyond the end of the buffer.

Dillo developers are well aware of the potential for overflow
errors. In fact, the code contains a check of the image size at
lines 10-11 to block large images. Unfortunately, the bounds
check has a similar integer overflow problem. Specific large
width and height values can also cause an overflow at line 10
and thus bypass the check.

SOAP can nullify this error without prior knowledge of the
vulnerability itself. To use SOAP, an application developer or
system administrator first provides SOAP with a set of typical
benign inputs to the application. To nullify the above Dillo
error, SOAP performs following steps:

o Understand Input Format: SOAP provides a declar-
ative input specification interface that enables users to
specify the input format. SOAP then uses this specifica-
tion to automatically generate a parser, which transforms
each PNG input into a collection of potentially nested
input fields. Along with the other fields of a typical PNG
file, the parser will identify the locations — specifically the
byte offsets — of the image width and height fields.

o Identify Critical Fields: SOAP monitors the execution
of Dillo on training PNG inputs and determines that
values in the image width and height fields influence a
critical operation, the memory allocation at line 19-20.
Thus SOAP marks width and height in PNG images as
critical fields which may cause dangerous overflow.

1 //Dillo’s libpng callback

2 static void

3 Png_datainfo_callback(png_structp png_ptr, ...)
4

5

DilloPng *png;
7 png = png_get_progressive_ptr(png_ptr);
9 }.*.check max image size */

10 if (abs(png— width*png— height) >
1 IMAGE_MAX_W * IMAGE_MAX_H) {

13 .F.’.ng_error_handling(png_ptr, "Aborting...”);

14

15 }

16

17 png—rowbytes = png_get_rowbytes(png_ptr, info_ptr);
18

19 png—image_data = (uchar_t *) dMalloc(

20 png—rowbytes * png— height);

21

2}

Figure 4. The code snippet of Dillo libpng callback (png.c). The boldfaced
code is the root cause of the overflow vulnerability.

o Infer Constraints: SOAP next infers constraints over
the critical fields, including the height and width fields.
Specifically, for each of these fields, SOAP infers an
upper bound constraint by recording the largest value that
appears in that field for all PNG training inputs.

« Rectify Atypical Inputs: SOAP performs the above
three steps offline. Once SOAP generates constraints for
the PNG format, it can be deployed to parse and rectify
new PNG inputs. When SOAP encounters an atypical
PNG input whose width or height fields are larger than
the inferred bound, it enforces the bound by changing the
field to the bound. Note that such changes may, in turn,
cause other correlated constraints (such as the length of
another field involved in a correlated relation with the
modified field) to be violated. SOAP therefore rectifies
violated constraints iteratively until all of the learned
constraints are satisfied.

III. DESIGN

SOAP has four components: the input parser, the execution
monitor, the learning engine, and the input rectifier. The
components work together cooperatively to enable automatic
input rectification (see Figure 5). The execution monitor and
the learning engine together generate safety constraints offline
before the input rectifier is deployed:

« Input parser: The input parser understands input for-
mats. It transforms raw input files into syntactic parse
trees for the remaining components to process.

« Execution Monitor: The execution monitor uses taint
tracing to analyze the execution of an application. It
identifies critical input fields that influence critical
operations (i.e., memory allocations and memory writes).

« Learning Engine: The learning engine starts with a set
of benign training inputs and the list of identified critical
fields. It infers safety constraints based on the field
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Figure 5. The architecture of the SOAP automatic input rectification system.

values in these training inputs. Safety constraints define
the comfort zone of the application.

« Input Rectifier: The input rectifier rectifies atypical in-
puts to enforce safety constraints. The algorithm modifies
the input iteratively until it satisfies all of the constraints.

A. Input Parser

As shown in Figure 5, the input parser transforms an
arbitrary input into a general syntactic parse tree that can
be easily consumed by the remaining components. In the
syntactic parse tree, only leaf fields are directly associated
with input data. The hierarchical tree structure reflects nesting
relationships between input fields. Each leaf field has a type,
which can be integer, string or raw bytes, while each non-
leaf field is a composite field with several child fields nested
inside it. The parse tree also contains low-level specification
information (e.g., endianness). The input rectifier uses this
low-level information when modifying input fields.

B. Execution Monitor

The execution monitor identifies the critical input fields that
should be involved in the learned constraints. Because large
data fields may trigger memory buffer overflows, the execution
monitor treats all variable-length data fields as critical. Integer
fields present a more complicated scenario. Integer fields that
influence the addresses of memory writes or the values used at
memory allocation sites (e.g., calls to malloc() and calloc())
are relevant for our target set of errors. Other integer fields (for
example, control bits or checksums) may not affect relevant
program actions.

The execution monitor uses dynamic taint analysis [12],
[29] to compute the set of critical integer fields. Specifically,
SOAP considers an integer field to be critical if the dynamic
taint analysis indicates that the value of the field may influence
the address of memory writes or values used at memory
allocation sites. The execution monitor uses an automated
greedy algorithm to select a subset of the training inputs for
the runs that determine the critical integer fields. The goal is to
select a small set of inputs that 1) minimize the execution time
required to find the integer fields and 2) together cover all of
the integer fields that may appear in the input files.

The execution monitor currently tracks data dependences
only. This approach works well for our set of benchmark
applications, eliminating 58.3%-88.7% of integer fields from

1 /header/width <= 1920

2 /header/width >= 0

3 sizebits (/text/text) <= 21112

4 /text/size x 8 == sizebits (/text/keyword)
5 + sizebits (/text/text)

Figure 6. A subset of constraints generated by SOAP for PNG image files.

consideration. It would be possible to use a taint system that
tracks control dependences [10] as well.

C. Learning Engine

The learning engine works with the parse trees of the
training inputs and the list of critical fields as identified by
the execution monitor. It infers safety constraints over critical
fields (see offline training box in Figure 5).

Safety Constraints: Overflow vulnerabilities are typically
exploited by large data fields, extreme values, negative entries
or inconsistencies involving multiple fields. Figure 6 presents
several examples of constraints that SOAP infers for PNG
image files. Specifically, SOAP infers upper bound constraints
of integer fields (line 1 in Figure 6), sign constraints of integer
fields (line 2), upper bound constraints of data field lengths
(line 3), and correlated constraints between values and lengths
of parse tree fields (lines 4-5).

These kinds of constraints enable the rectification system
to eliminate extreme values in integer fields, overly long data
fields, and inconsistencies between the specified and actual
lengths of data fields in the input. When properly inferred and
enforced, these constraints enable the rectifier to nullify the
target set of errors and vulnerabilities in our benchmark.

Note that once SOAP infers a set of safety constraints for
one input format, it may use these constraints to rectify inputs
for any application that reads inputs in that format. This is
useful when different applications are vulnerable to the same
exploit. For example, both Picasa [6] and ImageMagick [5] are
vulnerable to the same overflow exploit (see Section IV). A
single set of inferred constraints enables SOAP to nullify the
vulnerability for both applications.

Inferring Bound Constraints: SOAP infers three kinds of
bound constraints: upper bound constraints of integer fields,
sign constraints of integer fields, and upper bound constraints
of data field lengths. SOAP learns the maximum value of an
integer field in training inputs as the upper bound of its value.
SOAP learns an integer field to be non-negative if it is never
negative in all training inputs. SOAP also learns the maximum
length of a data field that appeared in training inputs as the



upper bound of its length. SOAP infers all these constraints
with a single pass over all the parse trees of the training inputs.

Inferring Correlated Constraints: SOAP infers corre-
lated constraints in which an integer field f indicates the total
length of consecutive children of the parent field of f. Lines
4-5 in Figure 6 present an example. The constraint states that
the value of the field “/text/size” is the total length in bytes of
the field ““/text/keyword” and the field “/text/text”, which
are two consecutive nested fields inside the field “/text”.

The SOAP learning algorithm first enumerates all possible
field combinations for correlated constraints initially assuming
that all of these constraints are true. When processing each
training input, the algorithm eliminates constraints that do
not hold in the input. Our technical report [24] contains more
details and peudo-code for our learning algorithm.

D. Input Rectifier

Given safety constraints generated by the learning engine
and a new input, the input rectifier rectifies the input if it vio-
lates the safety constraints (see Figure 5). The main challenge
in designing the input rectifier is enforcing safety constraints
while preserving as much desirable data as possible.

Our algorithm is designed around two principles: 1) It
enforces constraints only by modifying integer fields or trun-
cating data fields—it does not change the parse tree structure
of the input. 2) At each step, it attempts to minimize the
value difference of the modified integer field or the amount of
truncated data. It finds a single violated constraint and applies a
minimum modification or truncation to enforce the constraint.

Nested input fields further complicate rectification, because
changing one field may cause the file to violate correlated
constraints associated with enclosing or enclosed fields at
other levels. Our algorithm therefore iteratively continues
the rectification process until there are no more violated
constraints. In our experiments, SOAP enforces as many as
79 correlated constraints on some rectified input files.

Our algorithm has a main loop that iteratively checks the
input against learned constraints. The loop exits when the input
no longer violates any constraint. At each iteration, it applies a
rectification action depending on the violated constraint:

« Upper bounds of integer fields: If the input violates the
upper bound constraint of an integer field, our algorithm
changes the value of the field to the learned upper bound.

« Sign Constraints of integer fields: If the input violates
the sign constraint of an integer field, our algorithm
changes the value of the field to zero.

« Upper bounds of data field lengths: If the input
violates the upper bound constraint of the length of a data
field, our algorithm truncates the data field to its length
upper bound.

o Correlated constraints: If the value of a length indicator
field is greater than the actual length of corresponding
data fields, our algorithm changes the value to the actual
length. If the total length of a set of data fields is longer

than the length indicated by a corresponding integer
field, our algorithm truncates one or more data fields to
ensure that the input satisfies the constraint. Note that
correlated constraints may be violated due to previous
enforcements of other constraints. To avoid violating
previously enforced constraints, our algorithm does not
increase the value of the length indicator field or increase
the field length, which may roll back previous changes.

Note that, because the absolute values of integer fields and
the lengths of data fields always decrease at each iteration,
this algorithm will always terminate. Our technical report [24]
contains more details and pseudo-code for the algorithm.

Checksum: SOAP appropriately updates checksums after
the rectification. SOAP currently relies on the input parser to
identify the fields that store checksums and the method used to
compute checksums. After the rectification algorithm termi-
nates, SOAP calculates the new checksums and appropriately
updates checksum fields. SOAP could use the checksum repair
technique in TaintScope [37] to further automate this step.

E. Implementation

The SOAP learning engine and input rectifier are imple-
mented in Python. The execution monitor is implemented in
C based on Valgrind [27], a dynamic binary instrumentation
framework. The input parser is implemented with Hachoir [4],
a manually maintained Python library for parsing binary
streams in various formats. SOAP is able to process any file
format that Hachoir supports. Because SOAP implements an
extensible framework, it can work with additional parser com-
ponents implemented in the declarative specification interface
of Hachoir to support other input formats.

IV. QUANTITATIVE EVALUATION

We next present a quantitative evaluation of SOAP using
five popular media applications. Specifically, the following
questions drive our evaluation:

1) Is SOAP effective in nullifying errors?

2) How much desirable data does rectification preserve?

3) How does the amount of training data affect SOAP’s
ability to preserve desirable data?

Applications and Errors: We use SOAP to rectify inputs
for five applications: Swfdec 0.5.5 (a shockwave player) [7],
Dillo 2.1 (a browser) [3], ImageMagick 6.5.2-8 (an image
processing toolbox) [5], Google Picasa 3.5 (a photo managing
application) [6], and VLC 0.8.6h (a media player) [8].

Figure 7 presents a description of each error in each
application. These applications consume inputs that (if crafted)
may cause the applications to incorrectly allocate memory or
perform an invalid memory access. The input formats for these
errors are the SWF Shockwave Flash format; the PNG, JPEG,
and TIF image formats; and the WAV sound format.

Malicious inputs: We obtained six malicious input files
from the CVE database [2], the Buzzfuzz project [19] and the



Application Source Fault Format Position Related constraints
Swidec Buzzfuzz X11 crash SWF | XCreatePixMap /rect/xmax < 57600
/rect/ymax < 51000

Swifdec Buzzfuzz | overflow/crash SWF jpeg.c:192 /sub jpeg/.../width < 6020

/sub jpeg/.../height < 2351

Dillo | CVE-2009-2294 | overflow/crash PNG png.c:142 /header/width < 1920
png.c:203 /header/height < 1080

ImageMagick | CVE-2009-1882 | overflow/crash | JPEG,TIFF | xwindow.c:5619 /ifd[..]/img_width/value < 14764
/ifd[..]/img_height/value < 24576

Picasa TaintScope | overflow/crash | JPEG,TIFF N/A | /start_frame/content/width < 15941
/start_frame/content/height < 29803

VLC | CVE-2008-2430 | overflow/crash WAV wav.c: 147 /format/size < 150

Figure 7. The six errors used in our experiments. SOAP successfully nullifies all of these errors (see Section IV-A). “Source” presents the source where we
collected this vulnerability. “Fault” and “Format” present the fault type and the format of malicious inputs that can trigger this error. “Position” presents the source
code file and/or line positions that are related to the root cause. “Related constraints” presents constraints generated by SOAP that nullify the vulnerability.

Rectification Statistics Running Time
Input | Application | Train | Test | Field (Distinct) Rectified | Enforced | Pioss Mean Parse | Rect. | Per field
SWF Swfdec | 3620 | 3620 | 5550.2(98.17) | 57 (1.57%) | (8.61,86) N/A || 531ms | 443ms | 88ms | 0.096ms
PNG Dillo | 1496 | 1497 306.8 (32.3) 0(0%) (0,0) 0% 23ms 19ms 4ms | 0.075ms
JPEG | IMK, Picasa | 3025 | 3024 298.2(75.5) | 42(1.39%) (2.55,8) | 0.08% 24ms | 2lms 3ms | 0.080ms
TIFF | IMK, Picasa 870 | 872 333.5(84.5) | 11(1.26%) (1.36,2) | 0.50% 3Ims | 26ms 5ms | 0.093ms
WAV VLC | 5488 | 5488 17.1(16.8) | 11(0.20%) (1.09,2) 0% 1.5ms | 1.3ms | 0.2ms | 0.088ms

Figure 8. Benchmarks and numerical results for our experiments. The “Input” column presents the input file format. The “Application” column presents the
application name (here “IMK?” is an abbreviation of ImageMagick). The “Train” column presents the number of training inputs. The “Test” column presents the
number of test inputs. The “Field (Distinct)”” column has entries of the form X(Y), where X is the mean number of fields in each test input of each format and Y
is the mean number of semantically distinct fields (i.e., fields that have different names) in each test input. The “Rectified” column has entries of the form X(Y),
where X is the number of test inputs that the rectifier modified and Y is the corresponding percentage of modified test inputs. The “Enforced” column has entries
of the form (X,Y), where X is the mean number of constraints that SOAP enforced for each rectified test input and Y is the maximum number of constraints that
SOAP enforced over all rectified test inputs of that format. The “P;,4s” column presents the mean data loss percentage over all test inputs of each format (see
Section IV-B). The “Mean” column presents the mean running time for each test input including both parsing and rectification. The “Parse” column presents the
mean parsing time for each input. The “Rect.” column presents the mean rectification time for each input. The “Per field”” column presents the mean running time

divided by the number of input fields.

TaintScope project [37]. Each input targets a distinct error (see
Figure 7) in at least one of the examined applications.

Benign inputs: We implemented a web crawler to collect
input files for each format (see Figure 8 for the number of
collected inputs for each input format). Our web crawler uses
Google’s search interface to acquire a list of pages that contain
at least one link to a file of a specified format (e.g., SWEF,
JPEG, or WAV). The crawler then downloads each file linked
within each page. We verified that all of these inputs are benign,
i.e., the corresponding applications successfully process these
inputs. For each format, we randomly partitioned these inputs
into two sets, the training set and the test set (see Figure 8).

A. Nullifying Vulnerabilities

We next evaluate the effectiveness of SOAP in nullifying six
vulnerabilities in our benchmark (see Figure 7). We applied the
rectifier to the obtained malicious inputs. The rectifier detected
that all of these inputs violated at least one constraint. It
enforced all constraints to produce six corresponding rectified
inputs. We verified that the applications processed the rectified
inputs without error and that none of the rectified inputs
exploited the vulnerabilities. We next discuss the interactions
between the inputs and the root cause of each vulnerability.

Flash video: The root cause of the X11 crash error in
Swifdec is a failure to check for large Swfdec viewing window
sizes as specified in the input file. If this window size is very
large, the X11 library will allocate an extremely large buffer for
the window and Swfdec will eventually crash. SOAP nullifies
this error by enforcing the constraints /rect/xmax < 57600
and /rect/ymax < 51000, which limit the window to a size
that Swfdec can handle. In this way, SOAP ensures that no
rectified input will be able to exploit this error in Swfdec.

The integer overflow vulnerabilities in Swfdec occurs when
Swifdec calculates the required size of the memory buffer for
JPEG images embedded within the SWF file. If the SWF input
file contains a JPEG image with abnormally large specified
width and height values, this calculation will overflow and
Swifdec will allocate a buffer significantly smaller than the
required size. When SOAP enforces the learned constraints, it
nullifies the error by limiting the size of the embedded image.
No rectified input will be able to exploit this error.

Image: Errors in Dillo, ImageMagick and Picasa have
similar root causes. A large PNG image with crafted width and
height can exploit the integer overflow vulnerability in Dillo
(see Section II). The same malicious JPEG and TIFF images
can exploit vulnerabilities in both ImageMagick (running on



Linux) and Picasa Photo Viewer (running on Windows). Im-
ageMagick does not check the size of images when allocating
an image buffer for display at magick/xwindow.c:5619 in
function XMakelmage(). Picasa Photo Viewer also mishan-
dles large image files [37]. By enforcing the safety constraints,
SOAP limits the size of input images and nullifies these
vulnerabilities (across applications and operating systems).

Sound: VLC has an overflow vulnerability when processing
the format chunk of a WAV file. The integer field /format /size
specifies the size of the format chunk (which is less than 150 in
typical WAV files). VLC allocates a memory buffer to hold the
format chunk with the size of the buffer equal to the value of
the field /format /size plus two. A malicious input with a large
value (such as Oxfffffffe) in this field can exploit this overflow
vulnerability. By enforcing the constraint /format/size <
150, SOAP limits the size of the format chunk in WAV files
and nullifies this vulnerability.

These results indicate that SOAP effectively nullifies all
six vulnerabilities. Our code inspection proves that the learned
constraints nullify the root causes of all of the vulnerabilities so
that no input, after rectification, can exploit the vulnerabilities.

B. Data Loss

We next compute a quantitative measure of the rectification
effect on data loss. For each format, we first apply the rectifier
to the test inputs. We report the mean data loss percentage of
all test inputs for each format. We use the following formula to
compute the data loss percentage of a rectified input ¢:

Pl = —loss
loss D%ot
D, measures the amount of desirable data before rectification
and Dj . measures the amount of desirable data lost in the
rectification process. For JPEG, TIFF and PNG files, D:, is
the number of pixels in the image and D;, __ is the number of
pixels that change after rectification. For WAV files, D? , is
the number of frames in the sound file and Dj,, is the number
of frames that change after rectification. Because SWF files
typically contain interactive content such as animations and
dynamic objects that respond to user inputs, we did not attempt
to develop a corresponding metric. We instead rely solely on
our human evaluation in Section V for SWF files.

Result Interpretation: Figure 8 presents rectification re-
sults from the test inputs of each input format. First, note that
more than 98% of the test inputs satisfy all constraints and are
therefore left unchanged by the rectifier. Note also that both
PNG and WAV have zero desirable data loss — PNG because
the rectifier did not modify any test inputs, WAV because the
modifications did not affect the desirable data. For JPEG and
TIFF, the mean desirable data loss is less than 0.5%.

One of the reasons that the desirable data loss numbers are
so small is that rectifications often change fields (such as the
name of the author of the data file or the software package that

created the data file) that do not affect the output presented to
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Figure 9. The mean data loss percentage curves under different sizes of
training input sets for JPEG, TIFF, WAV and PNG (see Section IV-C). X-axis
indicates the size of training input sets. Y-axis indicates the mean data loss
percentage.

the user. The application must nevertheless parse and process
these fields to obtain the desirable data in the input file.

C. Size of Training Input Set

We next investigate how the size of the training input set
affects the rectification result. Intuitively, we expect that using
fewer training inputs will produce more restrictive constraints
which, in turn, will cause more data loss in the rectification. For
each format, we incrementally increase the size of the training
input set and record the data loss percentage on the test inputs.
At each step, we increase the number of training inputs by
200. Figure 9 presents curves which plot the mean data loss
percentage of the different input formats as a function of the
size of the training input set.

As expected, the curves initially drop rapidly, then approach
a limit as the training set sizes become large. Note that the
PNG and WAV curves converge more rapidly than the TIFF
and JPEG curves. We attribute this to the fact that the PNG and
WAV formats are simpler than the TIFF and JPEG formats (see
Figure 8 for the number of semantically distinct fields).

D. Overhead

We next evaluate the rectification overhead that SOAP
introduces. Figure 8 presents the mean running time of the
SOAP rrectifier for processing the test inputs of each file format.
All times are measured on an Intel 3.33GHz 6-core machine
with SOAP running on only one core.

The results show that the majority of the execution time
is incurred in the Hachoir parsing library, with the execution
time per field roughly constant across the input formats (so
SWEF files take longer to parse because they have more fields
than other kinds of files). We expect that users will find these
rectification overheads negligible during interactive use.

V. MECHANICAL TURK-BASED EVALUATION

Amazon Mechanical Turk [1] is a Web-based crowdsourc-
ing labor market. Requesters post Human Intelligence Tasks
(HITs); workers solve those HITs in return for a small
payment. We organized the experiment as follows:

« Input Files: We collected all of the TIFF, JPEG, and SWF
testinput files that the rectifier modified (we exclude PNG



and WAV files because the original and rectified files have
no differences that are visible to the user).

o HIT Organization: Together, the TIFF and JPEG files
comprise the image files. The SWF files comprise a
separate pool of video files. We partition the image files
into groups, with four files per group. There is one HIT
for each group; the HIT presents the original and rectified
versions of the files in the group to the worker for rating.
The HIT also contains a control pair. With probability
0.5 the control pair consists of identical images; with
probability 0.5 the control pair consists of two completely
different images. We similarly create HITs for the videos.

« HIT Copies: We post 100 copies of each HIT on Mechan-
ical Turk. Each Mechanical Turk worker rates each pair
in the HIT on a scale from O to 3. A score of 3 indicates
no visible difference between the images (or videos), 2
indicates only minor visible differences, 1 indicates a
substantial visible difference, and O indicates that the two
images (or videos) appear completely different.

As with all marketplaces that involve the exchange of
currency, Amazon’s Mechanical Turk contains misbehaving
users. For example, some workers attempt to game the system
by using automated bots to perform the HITs or simply by
providing arbitrary answers to HITs without attempting to
perform the evaluation [22]. We used three mechanisms to
recognize and discard results from such workers:

« Approval Rating: Amazon rates each Mechanical Turk
worker and provides this information to HIT requestors.
This rating indicates what percentage of that worker’s
previously performed HITs were accepted by other
requestors as valid. We required that prospective Mechan-
ical Turk workers have an acceptance rate of at least 95%.
Using an approval rating filter provides an initial quality
filter but cannot guarantee future worker performance.

o Control Pairs: Each HIT contains five pairs, one of
which was a control pair. Half of the control pairs
contained identical images or videos, while the other half
contained completely different images or videos (one of
the images or videos was simply null). If a worker did
not correctly evaluate the control pair, we discarded the
results from that worker. This technique can effectively
detect bots and misbehaving workers but requires control
pairs that are difficult to misinterpret.

o Descriptions: For each HIT, we require workers to
provide a short description of the perceived differences
(if any) between image or video pairs. By forcing users
to provide a textual description, we help users transition
from performing motor control actions (e.g., clicking on
images) to cognitive executive functions. This technique
helps improve the performance of legitimate workers and
enables the detection of misbehaving users by monitoring
for empty or nonsensical descriptions.

Format | Undetectable Minor Substantial | Complete
SWF 43 (1.19%) | 7(0.19%) | 7(0.19%) 0
JPEG 37(1.22%) | 3(0.10%) 1(0.03%) | 1(0.03%)
TIFF 3(0.34%) 5(0.57%) 2(0.23%) | 1(0.11%)

Figure 10. Results of Mechanical Turk experiment. “Undetectable”, “Minor”
, “Substantial” and “Complete” correspond, respectively, to rectified files
whose mean scores are in [2.5, 3], [1.5, 2.5), [0.5, 1.5) and [0, 0.5).

Whenever we discarded a result from a worker , we reposted

a copy of the HIT to ensure that we obtained results for all 100
copies of each HIT.
Results: For each HIT h, we computed the mean scores over
all the scores given by the workers assigned to i. We then used
the mean scores to classify the files in h into four categories:
undetectable difference (score in [2.5, 3]), minor difference
(scorein [1.5,2.5)), substantial difference (score in [0.5, 1.5)),
and complete difference (score in [0,0.5)).

Figure 10 presents, for each combination of input file format
and classification, an entry of the form X(Y), where X is the
number of files in that classification and Y is the corresponding
percentage out of all test inputs. Note that, out of 110
rectified inputs, only two exhibit a complete difference after
rectification. Only 12 exhibit more than a minor difference.

To compare the Mechanical Turk results with the quan-
titative data loss percentage results on image files (see
Section IV-B), we compute the correlation coefficient be-
tween these two sets of data. The correlation coefficient is
-0.84, which indicates that they are significantly correlated
(p < 0.01). For complex rectification effects, we find
that Mechanical Turk workers can provide a more intuitive
evaluation than the than quantitative data loss percentage
provides. For example, only the image color in Figure 3
changes (Mechanical Turk score 1.42), but the quantitative
data loss percentage reports simply that all pixels change.
Causes of Rectification Effects: When we compare the
original and rectified JPEG files, we observe essentially three
outcomes: 1) The rectification changes fields that do not affect
the image presented to the user — the original and rectified
images appear identical (37 out of 42 inputs with Turk scores
in [2.5,3.0]). 2) The rectification truncates part of the picture,
removing a strip along the bottom of the picture (3 out of 42
inputs with Turk scores in [2.0,2.3], see Figure 1). 3) The
rectification changes the metadata fields of the picture, the
pixels wrap around, and the rectified image may have similar
colors as the original but with the detail destroyed by the pixel
wrap (2 out of 42 inputs with Turk scores in [0, 1), see Figure 2).

For TIFF files, we observed essentially four outcomes: 1)
The rectification changes fields that do not affect the image
presented to the user — the original and rectified images appear
identical (3 out of 11 inputs with Turk scores in [2.5, 3.0]). 2)
The rectification truncates the image, removing a strip along
the bottom of the picture (5 out of 11 inputs with Turk scores in
[1.0,2.5]). 3) The rectification changes the color palette fields



so that only the image color changes (2 out of 11 inputs with
Turk scores in [1.5,2.0], see Figure 3). 4) The rectification
changes metadata fields and all data is lost (1 out of 11 inputs
with Turk score 0.2).

For SWF files, we observed essentially three outcomes: 1)
The rectification changes fields that do not affect the video
(43 out of 57 inputs with Turk scores in [2.5,3.0]). 2) The
rectification changes fields that only affect a single visual
object in the flash video such as an embedded image or the
background sound, leaving the SWF functionality largely
or partially intact (3 out of 57 inputs with Turk scores in
[1.5,2.5]). 3) The rectification changes fields that affect the
program logic of the flash video so that the rectified flash fails
to respond to interactive events from users (11 out of 57 inputs
with Turk scores in [0.5, 2.6] depending on how important the
affected events are to the users).

VI. RELATED WORK

Input Rectification: Applying input rectification to im-
prove software reliability and availability was first introduced
by Rinard [33], who presented the implementation of a
manually crafted input rectifier for the Pine email client. SOAP
improves upon the basic concept by automating the fundamen-
tal components of the approach: learning and rectification.

Data Diversity: Ammann and Knight [9] propose to im-
prove software reliability using data diversity. Given an input
that triggers an error, the goal is to retry with a reexpressed
input that avoids the error but generates an equivalent result.
Input rectification, in contrast, may change the input (and
therefore change the output). The freedom to change the
input semantics enables input rectification to nullify a broader
class of errors in a broader class of applications (specifically,
applications for which equivalent inputs may not be available).

Anomaly Detection: Anomaly detection research has pro-
duced a variety of techniques for detecting malicious in-
puts [34], [23], [35], [26], [20], [30], [36]. Web-based anomaly
detection [34], [23] uses input features (e.g. request length
and character distributions) from attack-free HTTP traffic to
model normal behaviors. HTTP requests that contain features
that violate the model are flagged as anomalous and dropped.
Similarly, Valeur et al [35] propose a learning-based approach
for detecting SQL-injection attacks. Wang et al [36] propose a
technique that detects network-based intrusions by examining
the character distribution in payloads. Perdisci et al [30]
propose a clustering-based anomaly detection technique that
learns features from malicious traces (as opposed to benign
traces). SOAP differs from anomaly detection techniques in
its aim to rectify inputs and to preserve desirable data in
inputs, while anomaly detection techniques simply recognize
and drop potentially malicious inputs.

Signature Generation: Vigilante [14], Bouncer [13], Pack-
etVaccine [38], VSEF [28], and ShieldGen [15] generate vul-
nerability signatures from known exploits. SOAP differs from
such systems in its ability to nullify unknown vulnerabilities

and to enable users to access desirable data in potentially
malicious inputs (rather than discarding such inputs).

Critical Input, Code, and Data Inference: Snap [11] can
automatically learn which input fields, code, and program
data are critical to the acceptability of the output that a given
application produces. Other fields, code, and data can sustain
significant perturbations without changing the acceptability
of the output. SOAP could use this criticality information to
minimize or even eliminate changes to critical input fields in
the rectification process.

Directed Fuzzing: SOAP uses taint analysis to track input
fields that may trigger overflow errors. BuzzFuzz also uses
taint tracing to track disparate input bytes that simultaneously
reach security critical operations [19]. BuzzFuzz uses this
information to perform directed fuzzing on inputs that have
complex structures. Like BuzzFuzz, SOAP learns which bytes
reach security critical operations. Unlike BuzzFuzz, SOAP
also learns and enforces safety constraints over these bytes.

Automatic Patch: Like SOAP, ClearView [31] enforces
learned invariants to eliminate errors and vulnerabilities.
Specifically, ClearView learns invariants over registers and
memory locations, detects critical invariants that are violated
when an adversary attempts to exploit a security vulnerability,
then generates and installs patches that eliminate the vulnera-
bility by modifying the program state to enforce the invariants.

Rectification Algorithm: The SOAP rectification algo-
rithm is inspired by automated data structure repair [17], [21],
[18], which iteratively modifies a data structure to enforce data
consistency defined in an abstract model. It is also possible
to use data structure repair to enforce learned data structure
consistency properties [16].

Evaluation with Mechanical Turk: By enabling a large-
scale, low-cost human workforce, Mechanical Turk has be-
come a viable option for a variety of experimental tasks
such as training data annotation [25], computation result
evaluation [22], and behavior research [32].

VII. CONCLUSION

Our results indicate that input rectification can effectively
nullify errors in applications while preserving much, and in
many cases, all, of the desirable data in complex input files.
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