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Abstract—With the emergence of decentralized finance, smart
contracts and their users become more and more susceptible to
expensive exploitations. This paper investigates the price gouging
transaction order dependency vulnerabilities in smart contracts.
A static analysis based approach is proposed to automatically
locate and rectify such vulnerabilities, and a prototype tool using
Slither, a static analyzer for Solidity, is also developed. All in all,
empirical results on a benchmark suite containing 51 Solidity
smart contracts show that the proposed methodology can be used
successfully to both detect such vulnerabilities and rectify them,
or to certify that a Solidity smart contract under question does
not contain such vulnerabilities.

Index Terms—Smart contracts, Vulnerabilities, Static analysis

I. INTRODUCTION

Blockchain is a cryptographically-secure distributed ledger
[1], [2]. Blockchain offers an innovative approach that allows
establishing trust in an open environment without the need
for a centralized authority (or “middle-man”) to do so. A
smart contract is a piece of program code stored on the
blockchain [2] that alters its permanent state. In detail, it is
constituted of a set of functions that manipulate this state.
Functions can be called either directly by users or indirectly
by other smart contracts, through transactions. Smart contracts
allow performing arbitrarily complex operations (e.g., escrow
and insurance) using cryptoassets. An important concept that
distinguishes smart contracts from traditional software is the
fact that they are immutable, that is, once they are deployed,
upgrading them is extremely difficult due to the inherent nature
of the blockchain itself.

Although smart contracts have received growing interest in
both academia and industry in recent years, the security of
smart contracts continues to be an epicenter of discussion. This
is because of various exploitations targeting smart contracts
that may cause excessive asset losses. For instance, two recent
cryptoasset exploitations, namely TheDAO and the Parity
wallet bugs, caused a combined loss of $240 million USD.
More recently, the fast expansion of decentralized finance
(DeFi) applications [3] that use smart contracts is accompanied
with many exploitations targeting DeFi smart contracts that
caused the additional loss of hundreds of millions USD.

Evidently, applying techniques from formal verification and
programming languages to audit smart contracts can help in
preventing costly exploitations. In particular, these auditing
procedures can provide developers/users with automated tools
to locate such vulnerabilities and repair them. Admittedly,
such tools can aid in preventing expensive exploitations; they
can allow developers to audit their smart contracts before
their deployment but also public users to audit potentially
malicious smart contracts before they use them. In this pa-
per, we investigate the problems of automated detection and
rectification of smart contracts vulnerabilities, namely this of
price gouging Transaction Order Dependency (TOD). This
vulnerability corresponds to the scenario where the reordering
of an honest transaction after an attacker transaction results in
changing the final output of the original transaction [4], [5].
Malicious miners can benefit from this by deploying smart
contracts that contain price gouging TOD vulnerabilities to
exploit public users.

In detail, we propose a static analysis approach to locate
and rectify price gouging TOD vulnerabilities. In particular,
we present an algorithm that extracts the data dependencies of
a smart contract to determine how a change in its state effects
the transaction outcome. For example, a currency exchange
transaction outcomes depend on an exchange rate that can be
manipulated by a concurrent transaction. We implement our
algorithm in a prototype tool using Slither [6], a static
analyzer for Solidity, to extract control and data dependencies
of smart contracts. We also evaluate our prototype tool on a
benchmark suite of 51 Solidity smart contracts.

In summary, this paper makes the following contributions:

• We study the problem of automated detection and recti-
fication of the price gouging TOD vulnerability.

• We build a prototype implementation of the proposed
approach.

• We develop a smart contract benchmark suite of 51 smart
contracts to evaluate the proposed methodology. The
results show that our approach rectifies the vulnerabilities
with just a few changes to the original smart contract.

The rest of the paper is organized as follows. In Section II,
we present an overview of price gouging TOD vulnerability.
Then in Section II, we describe the technical elements of
our proposed approach to automatically locate and rectify
this vulnerability. Section IV presents a prototype implemen-978-1-6654-9538-7/22/$31.00 ©2022 IEEE



tation of our approach for Solidity smart contracts and the
empirical results of evaluating the prototype using a smart
contract benchmark suite. Finally, we discuss related work and
conclusions in Sections V and VI.

II. BACKGROUND AND OVERVIEW

In this section, we illustrate the price gouging TOD vulner-
ability. We describe a general mechanism to locate and rectify
this vulnerability.

A. Price Gouging TOD Vulnerabilities

In price gouging TOD vulnerabilities, the attacker reorders
its transaction before an honest pending transaction which re-
sults in changing the final output of the honest transaction [5].
In particular, through its transaction the attacker changes the
state of the smart contract before the honest transaction is
verified. As a motivating example, on the left of Figure 1,
we give a market place smart contract written in Solidity
programming language [7]. Clients call the function buy to
purchase an amount of tokens that must be less than the
contract inventory, stored in the variable inventory. The
purchased amount of tokens is computed by dividing the
value of msg.value by the value of the contract variable
cost. However, the value of cost can be increased by the
contract owner, by calling the function increasePrice,
maliciously while an honest client transaction is pending
approval. Therefore, this will result in a loss to the client
where the obtained amount of tokens will be affected by
the increase cost of a single token. In the remaining paper,
for a given price gouging TOD vulnerability we assume that
the attacker can only execute a single function, i.e., a setter
function, to manipulate the contract’s state before the victim’s
transaction executes. Howver, a smart contract may contain
multiple setters functions which the attacker can call to exploit
different price gouging TOD vulnerabilities.

B. Locating Price Gouging TOD Vulnerabilities

In this work, we focus on locating price gouging TOD
vulnerabilities in smart contracts. Since changing the order
between the client transaction and attacker transaction affect
the final outcome of the latter, this means that the client
transaction outcome is dependent on a state variable that the
attacker transaction modifies. Thus, to locate price gouging
TOD vulnerabilities we find state variables that effect the out-
come of an honest transaction and that can be altered through
some setters functions that attacker can call to manipulate the
smart contract state. For instance, in the smart contract on
the left of Figure 1 the outcome of the transaction calling the
function buy is affected by the variable cost that can be
increased by the setter function increasePrice.

C. Rectifying Price Gouging TOD Vulnerabilities

A fix to a price gouging TOD vulnerabilty is to add a guard
statement to check whether the state of a smart contract is as
expected. In particular, this will allow clients to pass values
for the states variables that can be altered. Then, in the body of

Algorithm 1 A procedure for locating price gouging TOD
vulnerabilities.

1: procedure LISTDEPENDENCIES(F ,G)
2: output Q
3: Q ← {}
4: for each f ∈ F
5: for each p ∈ outputParams(f)
6: G′ = pointToAnalysis(f, p,G)
7: for each x ∈ G′
8: if findSetter(x,F) ̸=⊥
9: Q[f]← x ⊎Q[f]

10: end procedure

the called function, require statements are added to ensure
that the current values of the state variables correspond to
the expected values passed by the clients. We assume that
the clients can query the state variables 1 before issuing its
transaction. For instance, on the right of Figure 1, we give the
rectified version of the smart contract on the left of Figure 1.
Notice that in the final correct version we add an additional
parameter to the function buy, i.e., costExpected, that has
the same type as cost, i.e., uint. Then, in the body of buy,
we add a require statement as a guard to check whether
the current value of cost corresponds to the passed value of
costExpected.

III. ANALYSIS APPROACH

Now we present our methodology to automatically locate
and rectify price gouging TOD smart contract vulnerabilities.

A. Location Algorithm

Our proposed approach aims to locate the vulnerability in
a smart contract and transform the contract’s code to rectify
the vulnerability without changing the functionality of the
contract. We leverage alias and static code analysis to compute
relationships between the outcomes of public functions that
can be called by users and state variables that can
be manipulated through setter functions. In Algorithm 1, we
present our procedure to locate price gouging TOD vulner-
ability in smart contracts. Given the lists of public func-
tions F and state variables G extracted from the abstract
syntax tree (AST) of a smart contract, the procedure
ListDependencies computes for each function f in F the
set of state variables Q[f] ⊂ G that the outcome of f depends
on and that can be modified by setter functions. In particular,
ListDependencies computes for each output parameter
of f (i.e., outputParams(f)) the state variables that it
depends on, G′, using the procedure pointToAnalysis
that leverages existing alias and static code analysis tech-
niques2 [6], [8] to compute dependency relationships between
variables in the context of a given function. For each variable

1We assume that query functions return the proper values of the state
variables. Our approach can be extended to remove this assumption by using
static analysis to certify that query functions do not return fraudulent values.

2Our proposed algorithm can be complemented with any alias analysis with
a reasonable trade-off between precision and performance.
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1 contract MMarketPlace {
2 address owner;
3 uint private cost = 100;
4 uint private inventory = 20;
5

6 event Purchase(address _buyer, uint256 _amt);
7

8 function increasePrice(uint increaseCost) {
9 require( msg.sender == owner );

10 cost += increaseCost;
11 }
12

13 function buy() returns(uint) {
14

15 uint amt = msg.value / cost;
16 require( inventory > amt );
17 inventory -= amt;
18 emit Purchase(msg.sender, amt);
19 }
20 }

1 contract MMarketPlace {
2 address owner;
3 uint private cost = 100;
4 uint private inventory = 20;
5

6 event Purchase(address _buyer, uint _amt);
7

8 function increasePrice(uint increaseCost) {
9 require( msg.sender == owner );

10 cost += increaseCost;
11 }
12

13 function buy(uint costExpected) returns(uint) {
14 require(cost == costExpected);
15 uint amt = msg.value / cost;
16 require( inventory > amt );
17 inventory -= amt;
18 emit Purchase(msg.sender, amt);
19 }
20 }

Fig. 1: A smart contract with a price gouging TOD vulnerability (left) and its rectified version, without the vulnerability (right).

g in G′, we use the procedure findSetter to check whether
there exist a public setter function that modifies the value of g.
Our proposed algorithm leverages the precision of the above
procedures to find the optimal subset of state variables checks
for each function. We will call them dependency variables.

Once the dependency variables are identified for each public
function, our repair mechanism consists of inserting for each
dependency variable an input parameter that has the same type
in the corresponding public function signature. Following, in
the function’s body we insert a require statement as a guard
to check whether the current value of the dependency variable
corresponds to the value passed as parameter by the client’s
transaction that is calling the function. This will allow to check
that the state of the dependency variables has not changed
since the time when the client issued its transaction.

IV. EMPIRICAL EVALUATION

A. Implementation and Experimental Setup

1) Implementation: We develop a prototype tool imple-
menting the algorithm described in Section III that takes
as input a Solidity smart contract. This tool relies on the
Slither [6] static analyzer framework for Solidity to con-
struct control-flow graphs (CFGs) and dependency relation-
ships in a given Solidity smart contract. Note that in our
implementation we consider as public functions, functions
with singatures that contain either of the Solidity keywords
public and external. The open-source code for the im-
plementation is available at Github3 for the interested reader.

2) Experimental Setup: The experiments are run on an Intel
Core i3-4170 3.7GHz CPU, 8GB of DDR3 RAM, 256GB SSD
machine running Linux Ubuntu 20.04.3LTS operating system
in a local network environment.

B. DataSet Collection

For our experiments, we collect a benchmark suite of 51
Solidity smart contracts constituted of three data-sets. The
first data-set is constituted of 11 contracts obtained from
open-source GitHub repositories. It includes the reference

3https://github.com/Veneris-Group/TOD-Location-Rectification

smart contract used in [9] to evaluate static analysis tools
for locating TOD vulnerabilities. It also includes two smart
contracts extracted from Etherscan [10] that do not have price
gouging TOD vulnerabilities to test that the implementation
does not flag non-existing price gouging TOD vulnerabilities.
The second data-set is constituted of 20 contracts obtained
from the benchmark contracts used in [11]. The third data-set
is constituted of 20 contracts obtained from the benchmark
contracts [12]. The complete dataset can be found on the
Github repository with the implementation.

C. Results

We run our prototype tool with the benchmark suite of 51
Solidity smart contracts. In Table I, we report the results of
the experiment. The first three columns in Table I list some
characteristics of our benchmark suite, i.e., the contract name,
the number of lines of code, and the number of functions.
The last three columns in Table I list data concerning the
application of our tool. The column nTOD lists the number
of price gouging TOD vulnerabilities our tool locates in each
contract. Also, we list the number of lines in contract’s code
that were altered to rectify these vulnerabilities. We note that
the code transformation we apply to smart contracts to rectify
the located vulnerabilities is lightweight (column diff in
Table I). This code transformation, however, does not alter
the contracts’ behaviors.

The smart contract BitCash is the reference contract
that was used in [9] to test static analysis tools in locating
TOD vulnerabilities. Our tool is able to report the price
gouging TOD vulnerability in this contract and rectify it.
The two smart contracts Sale2 and Crowdsale do not
have price gouging TOD vulnerabilities and we use them
to test that our implementation does not give false nega-
tives. The two smart contracts Sale2-Vulnerable and
Crowdsale-Vulnerable are modified versions of Sale2
and Crowdsale contracts, respectively, where we inserted a
price gouging TOD vulnerability in each contract.
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TABLE I: Empirical results. Characteristics of contracts: lines
of code (loc) and number of functions (nof). Characteristics
after repair: number of repaired vulnerabilites (nTOD), lines
of code (loc’), and lines of code difference (diff).

Contract Name loc nof nTOD loc’ diff
BitCash 28 2 1 29 2
Sale 71 6 1 72 2
MMarketPlace 21 2 1 22 2
Purchase 31 3 1 32 2
YFT 79 7 2 81 4
TTC 78 7 2 80 4
PrivateSale 40 5 1 43 4
Sale2 125 10 0 125 0
Crowdsale 92 7 0 92 0
Sale2-Vulnerable 129 11 1 130 2
Crowdsale-Vulnerable 96 8 1 97 2
DSTContract 1268 39 9 1278 10
GenesMarket 1262 19 6 1265 3
F3DClick 1926 35 9 1935 9
KnowTokenCrowdSale 228 5 1 229 1
GrowToken 176 14 4 180 4
TrustZen 245 6 8 249 4
GetToken 81 5 2 82 1
Slotthereum 252 21 4 254 2
MyAdvancedToken7 125 12 6 128 3
Crowdsale2 69 10 2 70 1
SaleFix 692 63 2 693 1
Token 144 13 2 145 1
HQ 209 15 4 211 2
Oasis 290 14 7 297 7
SolidStamp 360 20 4 362 2
FairyFarmer 144 22 6 150 6
LISCTrade 399 34 2 400 1
InvestToken 936 92 4 940 4
FoMo3Dshort 1927 78 9 1936 9
DACMI 461 43 7 468 7
Lottery 45 6 1 46 1
kernelFun 118 6 3 121 3
Dickael 270 22 2 274 4
TetherToken 455 11 2 458 3
LinkToken 355 5 1 356 1
TokenSale 61 4 0 61 0
HuanCasino 151 8 1 153 2
MITxSubscriptionPayment 341 2 1 342 1
MultiPadLaunchApp 525 46 3 528 3
TokenUseV2 300 18 6 312 12
Sociol 92 12 1 93 1
Stableupgradeproxy 362 23 3 365 3
GravatarRegistry 67 4 1 68 1
NeoUsd 151 15 2 153 2
GAMCasino 188 13 2 190 2
FabricCrowdSale 105 9 1 106 1
PonziCoin 86 5 3 89 3
CliqStaking 358 28 4 362 4
Betting 225 15 1 226 1
LadaCoin 49 1 1 50 1

D. Limitations and Discussion

In the current setup, our implementation rectifies all de-
tected vulnerabilities, however, it might be the case that some
vulnerabilities are not exploitable and repairing them may not
be necessary. For instance, this can occur in the case where
public users trust a smart contract’s owner and they are assured
that the contract’s state will not be manipulated while their
transactions are pending approval.

Another limitation in our implementation is that the static

analysis tool Slither does not consider inlined assembly
statements within the smart contract code. Thus, our imple-
mentation might miss dependencies between a transaction’s
outcome and state variables that can be manipulated.

V. RELATED WORK

Analysis of Smart Contracts. A number of papers have
investigated the problem of automated detection of common
vulnerabilities in smart contracts. This prior research is either
based on symbolic execution engines, e.g. [13]–[17], static
analysis, e.g. [18]–[21], or dynamic analysis, e.g., [22]. The
past work based on symbolic execution and dynamic analysis
can only establish correctness for bounded executions of
smart contracts. On the other hand, the works based on static
analysis are designed to expose certain coding patterns that
are prone to critical vulnerabilities and do not establish full
functional correctness. The most closely related work to ours
is Securify [21] and Oyente [15], which investigate TOD
among the patterns of vulnerabilities they detect. However, it
was shown recently in [9], that those tools may produce false
positives and/or false negatives, which is not the case here.

Automated Repairs of Smart Contracts. There is not
much work on automated repairs of bugs in smart contracts.
In [23], the authors propose an approach to automatically
repair four different vulnerabilities in smart contracts, which
are intra-function reentrancy, cross-function reentrancy, arith-
metic, and tx.origin vulnerabilities. However, they do not
handle the TOD or the price gouging TOD vulnerabilities we
investigate in this paper.
Functional Verification of Smart Contracts. Several previ-
ous work has developed frameworks for checking full func-
tional correctness of smart contracts using proof assistants
such as Coq, F*, a nd Isabelle/HOL [24]–[28], automated
theorem provers (SMT solvers) [29], [30], or predicate ab-
straction [31]. These works rely on user-provided functional
specifications while our work focus on the specific TOD
vulnerability pattern, and makes it possible to locate and rec-
tify this vulnerability in smart contracts for which functional
specifications do not exist. On the other hand, our work cannot
establish the full functional correctness of smart contracts.

VI. CONCLUSION AND FUTURE WORK

An automated technique for detecting and repairing price
gouging TOD vulnerability in smart contracts is presented.
Using static analysis, we derive dependency relations between
public functions that can be called by any user and state
variables that can be manipulated by malicious users. We
implement our technique in a prototype tool using an existing
static analyzer for Solidity. We use the tool to detect and
repair price gouging TOD vulnerabilities in 51 Solidity smart
contracts demonstrating that it works well in practice. In the
future we might extend our work to different kinds of TOD
vulnerabilities and other classes of vulnerabilities that are
common in smart contracts.
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