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Abstract—We present automatic horizontal fusion, a novel
optimization technique that complements the standard kernel
fusion techniques for GPU programs. Unlike the standard
fusion, whose goal is to eliminate intermediate data round trips,
our horizontal fusion technique aims to increase the thread-
level parallelism to hide instruction latencies. We also present
HFUSE, a new source to source CUDA compiler that implements
automatic horizontal fusion. Our experimental results show that
the horizontal fusion can speed up the running time by 2.5%-
60.8%. Our results reveal that the horizontal fusion is especially
beneficial for fusing kernels with instructions that require different
kinds of GPU resources (e.g., a memory-intensive kernel and a
compute-intensive kernel).

Index Terms—GPGPU, Code Generation, Performance, Opti-
mization

I. INTRODUCTION

Graphics Processing Units (GPUs) are widely used to

speed up deep learning tasks, scientific computation, and

even cryptocurrency mining. Each GPU comes with dozens to

hundreds of processing cores enabling thousands of threads

running in parallel to achieve much higher computational

throughput than a normal CPU [1]. Despite of the rapid

advancement of the GPU hardware, the applications running on

GPUs are always hunger for more performance. For example,

training state-of-the-art deep learning models like ResNet-50

can take 2 hours on 8 Tesla V100 GPUs [2].

To speed up computational tasks running on GPUs, especially

for deep learning, people have developed many optimization

techniques at the software level [3–8]. Among these techniques,

Kernel fusion is a popular and effective one [9–14] and it is

adopted by almost all deep learning frameworks [4–8, 15, 16].

In GPU programs, a large computational task (e.g., training a

neural network) is broken down into multiple kernels, each of

which corresponds to a small parallelizable sub-task that will

be dispatched to GPUs to execute. The idea of kernel fusion is

to combine two or more kernels into one large but equivalent

kernel to potentially improve the overall performance.

The standard kernel fusion technique in the deep learning

frameworks combines kernels vertically. The fused kernel

will have the same number of threads as the two original

kernels. Each thread of the fused kernel sequentially combines

the instructions of the corresponding threads of the original

kernels [4–7, 16]. The potential performance advantage is

from reducing expensive data round trips to the GPU memory

§The work was done when Ao was a Master’s student at the University of
Toronto.

— without the fusion the first original kernel needs to write

its output to the memory for the second kernel to read.1

Therefore the standard fusion application is typically limited

to neighboring kernels in the data dependency graph, i.e., the

output of one kernel is the input of another.

Horizontal Fusion: We present a novel optimization technique,

automatic horizontal fusion. Unlike the standard fusion that

aims to eliminate intermediate data round trip, our horizontal

kernel fusion enables the fused kernel to better utilize GPU

resources and to better hide instruction latencies. The hori-

zontal fusion complements the standard vertical fusion in its

application scenarios — horizontally fusing two kernels is

beneficial if the two kernels contain instructions that require

different types of GPU resources (e.g., a memory-intensive

kernel and a compute-intensive kernel).

We also present HFUSE, a source to source CUDA compiler

that implements our automatic horizontal fusion technique.

Given the CUDA source code of two kernels, HFUSE au-

tomatically produces the horizontally fused kernel that is

functionally equivalent to the two but runs potentially faster.

In the horizontally fused kernel, the threads are partitioned

into two intervals based on their thread ids. Each interval

corresponds to threads for the computation of one original

kernel. The fused kernel combines the instructions of the

original kernels with branch statements. The branch conditions

checks the current thread id to dispatch the execution to the path

of the corresponding kernel. Because threads of two original

kernels coexist in parallel during the execution, the horizontal

fusion exploits the thread-level parallelism. It enables the thread

scheduling hardware (e.g., warp schedulers in NVIDIA GPUs)

to automatically interleave instructions from different kernels

to hide instruction latencies.

One challenge of implementing the automatic horizontal

fusion is to handle synchronization barriers. A typical CUDA

barrier stalls the execution of all threads in a thread block of a

kernel until all of the threads reach the barrier. Because a fused

kernel contains threads derived from both of the original kernels,

such barriers from one of the original kernels will impact the

thread execution of another. To address this challenge, HFUSE

combines inline PTX assembly instructions with instrumented

branch conditions to implement special barriers for the thread

sets that correspond to original kernels.

1For tiny kernels, both vertical and horizontal kernel fusion also reduces
kernel launch overhead.
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Another challenge HFUSE faces is to identify the best way

to partition the thread space of a fused kernel, which is shared

by the instructions of the two original kernels. Because the

partition scheme determines how the execution of the original

kernels co-exists in GPU, it may significantly impact the

performance of the fused kernel. To address this challenge,

HFUSE operates with an automatic profiling technique. Given

the expected input sizes of two original kernels, HFUSE will

automatically search the best thread space partition.

Experimental Results: We evaluate HFUSE with 5 deep

learning computational kernels extracted from PyTorch [16]

and 4 cryptography computational kernels collected from open

source cryptocurrency mining programs [17, 18]. In total, we

apply HFUSE to fuse 16 pairs of kernels. We compare the

running time of the HFUSE fused kernel with the native kernels

launched in parallel and the kernels fused in the standard

vertical way. Our results show that the HFUSE fused kernels

run up to 60.8% faster than the native kernels; for 7 out of the

16 pairs on 1080Ti GPU and 6 out of the 16 pairs on V100

GPU, the HFUSE fused kernels outperform both the vertically

fused kernels and the native kernels.

Our results reveal that the speed up of the horizontally

fused kernels comes from interleaving different kernel com-

putations to hide instruction latencies. Although modern GPU

architecture provides hardware solutions to launch multiple

kernels on one GPU in parallel, these solutions typically

only interleave kernel computations at a coarse granularity.

For example, NVIDIA GPUs can schedule parallel kernels

to different Stream Multi-Processors (SMP), but they never

schedule thread blocks of two different kernels to one SMP

at the same time. Each SMP will only execute instructions

from one kernel at any time and therefore will only be able to

interleave instructions inside one kernel. In contrast, HFUSE

enables the fused kernel to interleave instructions from different

kernels to execute on the SMP. It can therefore allow GPU to

better utilize hardware resources in each SMP to to potentially

hide instruction latencies.

Our results also reveal the trade-off between the thread-level

and the block-level parallelism for kernel fusion. On one hand,

the horizontal fusion enables the thread scheduler to interleave

instructions with the improved thread-level parallelism. On

the other hand, the fused kernel will require more registers

and shared memory resources than individual kernels. If such

additional requirement exceeds a breakpoint, it may cause less

thread blocks being scheduled to each core to reduce the block-

level parallelism. One could view HFUSE as a tool to navigate

this trade-off. See Section IV-C.

Contribution: We make the following contributions:

• Automatic Horizontal Fusion: This paper presents auto-

matic horizontal fusion, a novel optimization technique

that is orthogonal to the standard vertical kernel fusion.

The horizontal fusion can enable the GPU hardware to

effectively interleave instructions from two original kernels

to hide instruction latencies.

• HFUSE: This paper presents the design and implementa-

tion of HFUSE, a novel source to source CUDA compiler

that implements automatic horizontal fusion.

• Optimization Scenarios: This paper identifies the sce-

narios for applying the horizontal fusion technique. Our

results show that horizontal fusion is mostly beneficial

when fusing kernels with instructions that have long

latencies and that require different GPU resources.

II. OVERVIEW

This section presents background information of GPU

architectures and an overview of kernel fusion techniques.

In this paper we use the terminology of NVIDIA CUDA

platform [1] and the architecture parameters of NVIDIA

Pascal [19] and Volta [20] GPUs. Most of the concepts are

generally applicable to other GPU platforms and architectures.

A. Background

Kernels, Blocks, and Threads: Kernels are standalone

computational routines that the CUDA runtime will dispatch

to NVIDIA GPUs to execute in parallel. They are C-like

programs that utilize GPU resources including registers, local

shared caches, and the global GPU memory. GPUs are SIMD

processors, so each kernel launch will start multiple blocks in

parallel and each block contains multiple threads. The grid

dimension (i.e., the number of blocks) and the block dimension

(i.e., the number of threads) are typically tunable constants. It

is a common practice in GPU programming to develop kernels

that can work with different block dimension parameters. This

means that changing block dimensions of the kernels often only

influences performance. A kernel program can access its own

block id (e.g., blockIdx.x) and thread id (e.g., threadIdx.x)

at the runtime to enable its different threads to potentially

process different data.

Stream Multiprocessor and Occupancy: When the CUDA

runtime dispatches a kernel to a GPU, the GPU eventually

dispatches the blocks of the kernel to Stream Multiprocessors

(SMs) to execute. Each GPU has multiple SMs depending on

its hardware specification. In the Pascal and Volta architectures,

each SM has 64K registers and 96K shared memory cache; each

SM can host a maximum of 2048 different threads at the same

time; each SM also has multiple CUDA cores for arithmetic

operations and multiple memory controllers for accessing the

global GPU memory.

Because each SM has the fixed amount of resources, it can

execute only a limited amount of blocks in parallel, depending

on the kernel resource requirement. This is called the occupancy

of a kernel. Generally speaking, higher occupancy is usually

better because it enables the kernel to exploit the block-level

parallelism. For example, if a kernel block that uses 24K shared

memory, 512 threads, and 64 registers per thread, a SM can

only execute two blocks in parallel and the registers become

the bottleneck. If the developer optimized the kernel block to

use only 32 registers per thread, then the SM could execute

four blocks and the occupancy is doubled.
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void K1(…) {
  … // part A
  __syncthreads();
  … // part B }

void K2(…) {
  … // part A
  __syncthreads();
  … // part B }

K1 A

K1 barrier 

K2 barrier

K1 B

K2 A

K2 B

K1 A

barrier 

K2 A

K1 B K2 B

Vertically 
Fused 

Horizontally 
Fused 

Original 
Kernels 

Fig. 1: Vertical and horizontal kernel fusion.

Warps, Warp Scheduler, and Instruction Latency: In SMs,

each 32 consecutive threads form a warp. Threads inside a

warp always execute together in a lock-step fashion and warps

are minimum scheduling units in SMs.2 The warp scheduler

in a SM will select eligible warps to execute — an warp is

eligible if 1) all data required for its next instruction is ready, 2)

there are idle hardware resources to execute its next instruction

(e.g., idle memory controllers for memory access instructions),

and 3) it is not stalled by barriers.

Because each SM typically has tens of warps executing in

parallel, the warp scheduler can hide instruction latencies. If

there is a time-consuming instruction in one warp blocking its

execution, warp scheduler can switch the SM to execute other

eligible warps while waiting for the results of the instruction.

Therefore having instructions requesting different hardware

resources in a kernel is beneficial because it tends to increase

the number of eligible warps for the scheduler. It reduces

the chance that the SM execution is completely stalled by

instruction latencies.

Synchronization Barriers: The built-in function __sync-

threads() in CUDA corresponds to block-wide barriers. It is

the main way for threads inside a kernel block to coordinate

with each other. An SM will stall the thread execution inside

a block at a block-wide barrier until all threads in the block

reaches the barrier. Note that barriers may significantly limit

the capability of warp schedulers in SMs of hiding instruction

latencies, because the schedulers cannot interleave instructions

across the barriers.

B. Kernel Fusion

Vertical Kernel Fusion: The standard kernel fusion in deep

learning frameworks fuses kernels vertically shown as Figure 1.

Suppose we have two kernels K1() and K2() and both of the

kernels have the grid dimension of 512 and the block dimension

of 512. The code of the vertically fused kernel will combine

the source code of K1() and K2() in order. Therefore the fused

kernel will also has the same gird and block dimensions, but

one thread in the fused kernel will execute the instructions of

two original threads, one in K1() and one in K2(). The middle

2In the Volta and Turing architectures, warps do not restrictively execute in
the lock-step fashion but warps are still the minimum scheduling units

part of Figure 1 shows the execution flow of one thread in the

vertically fused kernel.

The major potential performance advantage of the vertical

fusion comes from eliminating global memory accesses for

intermediate results. In this example, the instructions from K2()

may directly access the output of K1() without using expensive

global memory read instructions. If some output of K1() is only

used by K2(), the fused kernel can even eliminate associated

global memory write instructions. Therefore deep learning

frameworks typically apply vertical fusion on neighboring

kernels in data dependency graphs.

Note that the vertical fusion may sometime facilitate the

instruction interleaving to hide latency, but such effect is

typically minimum due to the presence of synchronization

barriers. The vertically fused kernel will have as many barriers

as the two original kernels and the warp scheduler cannot

interleave instructions across these barriers.

Horizontal Kernel Fusion: Unlike the standard kernel fusion,

our horizontal fusion technique creates separate threads for

instructions of different kernels. The right part of Figure 1

presents the execution flow of the horizontally fused kernel.

The fused kernel has the grid dimension of 512 and the block

dimension of 1024. The first 512 threads correspond to threads

for instructions of K1() and the remaining threads correspond

to K2(). The fused kernel uses branch statements to check

the current thread id to dispatch the thread to execute the

corresponding instructions.

Note that it is possible to partition the thread space of a block

unevenly in the fused kernel, e.g., assigning one kernel 768

threads and another 256 threads. If the block dimensions of the

two original kernels are tunable, there will be multiple ways

to fuse the two kernels with different thread space partition

schemes. Which one runs fastest typically depends on the

workload of the original two kernels.

Hypothesis of Horizontal Fusion: Our hypothesis of the

horizontal fusion is that its thread-level parallelism will enable

the warp scheduler to interleave instructions from different

kernels to hide instruction latencies. It may increase the average

eligible warps on SMs to improve the overall performance.

If our hypothesis is true, then the horizontal fusion will

be mostly beneficial for fusing kernels that use different

kinds of instructions and kernels that are memory intensive

(because memory instructions have long latencies). Our results

in Section IV validate our hypothesis.

C. Motivating Example

We next present an example of using HFUSE to horizontally

fuse two deep learning kernels. Figure 2 shows the simpli-

fied code snippet of batch_norm_collect_statistics(), a

CUDA kernel that computes the mean and variance of an

input tensor for normalization. We extracted this kernel source

code from the PyTorch framework [16] and this kernel is

used by ResNet [21]. The kernel in Figure 2 uses intra-warp

shuffles [22] to speed up its computation. It can operate with a

tunable block dimension size as long as the size is a multiple

of 32. Each thread first computes the partial results of the
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1 void batch_norm_collect_statistics(input, isize, output) {

2 __shared__ int shared_n[2 * 2 * WARP_SIZE + WARP_SIZE];

3 ... // Local variable declerations

4

5 // PART A: Compute the mean and varience across (batch, x)

6 // It uses shuffles to partially aggregate the results

7 shared_avg_var = (float*) &shared_n[WARP_SIZE];

8 plane = blockIdx.x; N = isize[0] * isize[2];

9 tid = threadIdx.x + threadIdx.y * blockDim.x;

10 avg = 0; var_n = 0; n = 0;

11 for (int batch = threadIdx.y; batch < isize[0]; batch +=

blockDim.y) {→֒

12 for (int x = threadIdx.x; x < isize[2]; x += blockDim.x) {

13 float v = input[batch][plane][x];

14 float d1 = v - avg;

15 n++; avg += d1 / n; var_n += d1 * (v - avg); } }

16 for (int i = 0; i < getMSB(WARP_SIZE); ++i) {

17 float o_avg = WARP_SHFL_XOR(avg, 1 << i, WARP_SIZE);

18 int o_n = WARP_SHFL_XOR(n, 1 << i, WARP_SIZE);

19 float factor = 1.0 / fmaxf(1.0, n+o_n);

20 var_n += WARP_SHFL_XOR(var_n, 1 << i, WARP_SIZE) +

21 (avg - o_avg) * (avg - o_avg) * n * o_n * factor;

22 avg = (n * avg + o_n * o_avg) * factor; n += o_n; }

23 __syncthreads();

24

25 // PART B: Write partially aggregated results to shared mem

26 if (tid % WARP_SIZE == 0) {

27 shared_n[tid / WARP_SIZE] = n;

28 shared_avg_var[tid / WARP_SIZE * 2] = avg;

29 shared_avg_var[tid / WARP_SIZE * 2 + 1] = var_n; }

30 __syncthreads();

31

32 // PART C: Another round of suffles to finalize the results

33 if (tid < WARP_SIZE) {

34 n = (tid < blockDim.x * blockDim.y / WARP_SIZE ?

shared_n[tid] : 0);→֒

35 avg = (tid < blockDim.x * blockDim.y / WARP_SIZE ?

shared_avg_var[2 * tid] : float(0));→֒

36 var_n = (tid < blockDim.x * blockDim.y / WARP_SIZE ?

shared_avg_var[2 * tid + 1] : float(0)); }→֒

37 for (int i = 0; i < getMSB(WARP_SIZE); ++i) {

38 float o_avg = WARP_SHFL_XOR(avg, 1 << i, WARP_SIZE);

39 int o_n = WARP_SHFL_XOR(n, 1 << i, WARP_SIZE);

40 float factor = 1.0 / fmaxf(1.0, n+o_n);

41 var_n += WARP_SHFL_XOR(var_n, 1 << i, WARP_SIZE) +

42 (avg - o_avg) * (avg - o_avg) * n * o_n * factor;

43 avg = (n * avg + o_n * o_avg) * factor; n += o_n; }

44 if (tid == 0) {

45 ... // Write results to output

46 } }

Fig. 2: Normalization kernel.

mean and the variance from the corresponding entries of the

tensor with the loop at lines 10-15. The kernel then uses

intra-warp operations to aggregate the partial results of each

warp (consecutive 32 threads) at lines 16-22. It then writes

the partially aggregated results of the 16 warps to the shared

memory at lines 26-29 and further aggregates these partial

results to produce the output at lines 33-46.

Figure 3 shows the simplified code snippet of kernelHis-

togram1D(), a tensor analysis kernel in PyTorch to generate

histograms over values in an input tensor. Because investigating

tensor value distributions at hidden layers is a common practice

for developers to tune model parameters, this kernel could be

invoked during the training of the ResNet model together with

the kernel in Figure 2. kernelHistogram1D() uses the shared

memory array my_smem at lines 2-3 to count the appearances

of tensor values in different ranges. This kernel also operates a

1 __global__ void kernelHistogram1D(TensorInfo a, TensorInfo b,

nbins, minvalue, maxvalue, totalElements, getOp) {→֒

2 extern __shared__ unsigned char my_smem[];

3 output_t* smem;

4

5 // PART A: Initialize shared memory counters

6 smem = reinterpret_cast<output_t*>(my_smem);

7 for (int i = threadIdx.x; i < a.sizes[0];

8 i += blockDim.x) { smem[i] = 0; }

9 __syncthreads();

10

11 // PART B: Go over the input b to increment shared counters

12 FOR_KERNEL_LOOP(linearIndex, totalElements) {

13 const int bOffset = IndexToOffset::get(linearIndex, b);

14 const input_t bVal = b.data[bOffset];

15 if (bVal >= minvalue && bVal <= maxvalue) {

16 const int bin = getBin(bVal, minvalue, maxvalue, nbins);

17 atomicAdd(&smem[bin], getOp(linearIndex)); } }

18 __syncthreads();

19

20 // PART C: Increment the output a with the shared counters

21 for (int i = threadIdx.x; i < a.sizes[0]; i += blockDim.x){

22 const IndexType aOffset =

23 IndexToOffset<output_t, IndexType, ADims>::get(i, a);

24 atomicAdd(&a.data[aOffset], smem[i]);

25 } }

Fig. 3: Histogram kernel.

tunable block dimension size. It initializes the shared counters

at lines 6-9. It then iterates the tensor values to atomically

increment the shared counters at lines 12-17 and finally merges

the shared counter results with the global counter output at

lines 21-25.

Given the two kernels in Figures 2 and 3 as the input, HFUSE

horizontally combines them to generate a faster fused kernel

shown as Figure 4 with the following steps.

Generate Prologue: HFUSE first generates the prologue for the

fused kernel shown as lines 2-23 in Figure 4. The fused kernel

has 1024 threads per block. The first 896 threads correspond

to the first input kernel (e.g., batch_norm_collect_statis-

tics()), while the remaining 128 threads correspond to

the second input kernel (e.g., kernelHistogram1D()). The

prologue checks the current thread id and maps it back to

the thread ids of the original kernels, storing them into the

variables threadIdx_x, threadIdx_y, and threadIdx_z. It

also sets variables like blockDim_x to the original input kernel

dimensions. The prologue will include all variable declarations

from the two input kernels and properly renames these local

variables to make sure each of them has a fresh name.

Transform Original Kernels: HFUSE then transforms the

original two kernels. Lines 37-40 in Figure 4 present the

translated code of the first part of kernelHistogram1D().

HFUSE replaces the built-in special values with the correspond-

ing defined variables in the prologue (e.g., replaces threa-

dIdx.x with threadIdx_x and blockDim.x with blockDim_x).

HFUSE then add additional branch statements to check the

current thread id at lines 25 and 36. The branches will skip

the execution of the statements of one kernel if the current

thread is in the thread range of the other kernel.

Replace Synchronization Barriers: __syncthreads() will

break the original kernel semantics in the fused kernel,

because it will attempt to synchronize all threads in the fused

17



1 void fused_kernel(...) {

2 // Prologue of the fused kernel

3 int global_tid = threadIdx.x + threadIdx.y * blockDim.x +

threadIdx.z * BlockDim.x * blockDim.y;→֒

4 int threadIdx_x, threadIdx_y, threadIdx_z;

5 int blockDim_x, blockDim_y, blockDim_z;

6 if (global_tid < 896) {

7 blockDim_x = 896 / 16;

8 blockDim_y = 16; blockDim_z = 1;

9 threadIdx_x = global_tid % blockDim_x;

10 threadIdx_y = global_tid / blockDim_x % blockDim_y;

11 threadIdx_z = 1;

12 } else {

13 blockDim_x = 128;

14 blockDim_y = 1; blockDim_z = 1;

15 threadIdx_x = (global_tid - 896) % blockDim_x;

16 threadIdx_y = 1; threadIdx_z = 1;

17 }

18 // Variable decls for batch_norm_collect_statistics()

19 __shared__ int shared_n[2 * 2 * WARP_SIZE + WARP_SIZE];

20 ...

21 // Variable decls for kernelHistogram1D()

22 extern __shared__ unsigned char my_smem[];

23 output_t* smem;

24

25 if (!(global_tid < 896)) goto K1_end;

26 // batch_norm_collect_statistics() PART A

27 ...

28 // A PTX assembly to only sync 896 threads.

29 asm("bar.sync 1, 896;");

30 // batch_norm_collect_statistics() PART B

31 ...

32 asm("bar.sync 1, 896;");

33 // batch_norm_collect_statistics() PART C

34 ...

35 K1_end:

36 if (global_tid < 896) goto K2_end;

37 // kernelHistogram1D() PART A

38 smem = reinterpret_cast<output_t*>(my_smem);

39 for (int i = threadIdx_x; i < a.sizes[0];

40 i += blockDim_x) { smem[i] = 0; }

41 // A PTX assembly to only sync 128 threads.

42 asm("bar.sync 2, 128;");

43 // kernelHistogram1D() PART B

44 ...

45 asm("bar.sync 2, 128;");

46 // kernelHistogram1D() PART C

47 ...

48 K2_end:

49 }

Fig. 4: HFUSE fused kernel.

kernel, which include threads for both of the original kernels.

To preserve the original kernel semantics, HFUSE replaces

synchronization barriers in the original kernels with inlined

PTX assembly bar.sync instructions at lines 29, 32, 42, and

45 in Figure 4.

The second parameter of bar.sync denotes the number of

threads participating the barrier [23]. HFUSE passes 896 for

this parameter at lines 29 and 32 and passes 128 at lines 42

and 45. Combining with the inserted branch statements at

lines 25 and 36, these bar.sync instructions will create the

desired partial barriers that only synchronize threads wihtin

the corresponding thread ranges of each original kernel.

Profile Different Configurations: Because both of the two

original kernels support tunable block dimensions, there are

multiple ways to partition the thread space of the fused kernel.

Additionally, the fused kernel will use more registers than any

Input :K1 and K2 are two input kernels. d1 and d2
are the block dimensions of K1 and K2.

Output : A fused kernel F

1 function Generate(K1,K2, d1, d2) :
2 Initialize F with local variable declarations from K1

and K2 and extract non declaration statements as S1

and S2.

3 Append “tid=threadIdx.x; tid_1=threadIdx.x;

tid_2=threadIdx.x-d1; size_1=d1; size_2=d2;” to F

4 Replace “threadIdx.x” and “blockDim.x" in S1 and S2

with “tid_1” and “size_1" or “tid_2" and “size_2"

accordingly.

5 Replace “__syncthreads()” in S1 with the inlined PTX

“bar.sync 1, d1;"

6 Replace “__syncthreads()” in S2 with the inlined PTX

“bar.sync 2, d2;"

7 Append “if (threadIdx.x >= d1) goto l1;” to F

8 Mark the end of S1 with the label l1
9 Append S1 to F

10 Append “if (threadIdx.x < d1) goto l2;” to F

11 Mark the end of S2 with the label l2
12 Append S2 to F

13 return F

Fig. 5: Fused kernel generation algorithm.

of the two input kernels and high register usage may lower the

occupancy. Enforcing a register bound in CUDA may improve

the performance of the fused kernel.

HFUSE automatically profiles possible configuration combi-

nations. For Pascal 1080Ti GPU and the default workload of

these two original kernels in our experiments, HFUSE outputs

the kernel in Figure 4 as the fastest fused kernel and restricts

the register usage to 32 per thread. The kernel in Figure 4

runs 53.4% faster than individually executing two kernels in

Figures 2 and 3 on 1080Ti. For Volta V100 GPU, the fastest

fused kernel partitions the thread space differently. It assigns

768 threads instead of 896 threads for the first kernel and the

remaining 256 threads to the second. It runs 15.8% faster than

individually executing two kernels on V100.

III. DESIGN

We next present the design of HFUSE. In this section, we

represent a kernel as a list of CUDA statements. Macros are

preprocessed, function calls are all inlined, and local variable

declarations are lifted to the top of the function3. In pseudo-

codes, we use double quotations to denote CUDA statements.

For simplicity, in this section we assume that the CUDA

kernels have only one block sub-dimension, i.e., blockDim.y

and blockDim.z are one. It is straightforward to extend our

algorithm to more than one block sub-dimensions.

A. Generate Fused Kernel

Figure 5 presents the pseudo-code of Generate(). Given

two kernels K1 and K2 together with their block dimensions

3The variable declaration lifting is not required but it simplifies the imple-
mentation, because goto statements cannot jump over variable declarations.
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d1 and d2, Generate() returns the horizontally fused kernel

F .

Generate Prologue: The pseudo-code in Figure 5 first copies

the local variable declarations from the two input kernels to

the fused kernels at line 2. It properly renames them to make

sure that the local variables do not have conflict names. At

line 3 the pseudo-code defines and initializes a set of special

variables, tid_1 and tid_2 for storing the original thread id

of the two input kernels as well as size_1 and size_2 for

storing the original block dimension of the two kernels.

Replace Built-in Variables: The pseudo-code at lines 4

then replaces “threadIdx.x” and “blockDim.x" with the

corresponding defined variables in the prologue. This is because

in the fused kernel, these built-in values will refer to the fused

kernel not the original kernels. This replacement preserves the

statement semantics in the original kernels.

Replace Synchronization Barriers: __syncthreads() in

CUDA implements a barrier for all threads in a block. In the

fused kernel, the instructions from the two input kernels are

running concurrently in different threads of a block, so HFUSE

needs to replace __syncthreads() with partial barriers only

for the threads of the corresponding kernel.

Fortunately, the inlined PTX instruction bar.sync can

support partial barrier [23]. The first parameter of bar.sync

is a constant from 0 to 15 denoting the barrier id. The second

parameter of bar.sync is a constant denoting the number of

threads participating the barrier. Internally, the GPU hardware

maintains a counter to track how many threads have reached

the barrier. When sufficient threads have reached the barrier,

they are allowed to progress. The pseudo-code at lines 5-6

replaces __syncthreads() with bar.sync PTX instructions.

These instructions pass the barrier id one for barriers in the first

original kernel and two for barriers in the second kernel. They

also pass the original block dimension as the second parameter

to implement the desired partial barriers. When combined with

the branch guards inserted at lines 7 and 10, these bar.sync

instructions will only wait for threads from their own original

kernels instead of for all threads. The fused kernel therefore has

synchronization barriers at equivalent places for the equivalent

sets of threads as the original two kernels.

Append Guarded Statements: The pseudo-code finally ap-

pends the translated statements of two input kernels into the

fused kernel at lines 7-12. Before appending the statements of

each kernel, HFUSE will insert an if statement to check the

current thread index at lines 7 and 10. In the fused kernel, the

threads in the index range of [0, d1) correspond to the first input

kernel, while the threads in the index range of [d1, d1 + d2)
correspond to the second input kernel. If the index is outside

the range of the corresponding input kernel, it will skip the

statements from the kernel.

B. Search Fusion Configuration

Figure 6 presents the pseudo-code of our main algorithm

to search for the best fusion configuration. Given statements

from two kernels S1 and S2 and the desired block dimension

Input :K1 and K2 are two different kernels. d0 is the

desired block dimension of the fused kernel.

Output : A fused kernel F∗ and the register bound r∗
for launching the kernel.

1 function Main(K1,K2, d0) :
2 〈t∗, F ∗, r∗〉 ← 〈∞, ∅,⊥〉
3 d1 ← 128
4 while d1 < d0 do

5 F ← Generate(K1,K2, d1, d0 − d1)
6 t← Profile the running time of F

7 if t < t∗ then

8 〈t∗, F ∗, r∗〉 ← 〈t, F,⊥〉

9 b1 ←
SMNRegs

d1∗NRegs(S1)

10 b2 ←
SMNRegs

d2∗NRegs(S2)

11 b0 ← min(min(b1, b2),
SMShMem
ShMem(F ) ,

SMNThreads
d0

)

12 r0 ←
SMNRegs

b0∗d0

13 t← Profile F with the register bound r0
14 if t < t∗ then

15 〈t∗, F ∗, r∗〉 ← 〈t, F, r0〉

16 d1 ← d1 + 128

17 return F ∗, r∗

Fig. 6: Configuration search algorithm.

of the fused kernel d0, the algorithm produces a horizontally

fused kernel kernel F ∗ as its output.

Thread Space Partition: The pseudo-code uses a loop at lines

4-16 to search for the best thread space partition. At each

iteration, it tries a different block dimension for the first kernel

(i.e., d1), generates the fused kernel at line 5, and profiles

the running time of the fused kernel twice, once without any

register bound at line 8 and once with a calculated register

bound at line 12. At lines 8 and 15, the pseudo-code records the

fastest fused kernel together with its configuration. Note that

HFUSE searches the block dimension of the first kernel at a

granularity of 128, because using an irregular block dimension

often breaks memory access patterns and causes CUDA kernels

to run slower.

Limit Register Usage for Occupancy: The fused kernel may

require more registers than each of the original two kernels.

This additional register requirement may lower the occupancy,

each SM will be able to execute less blocks concurrently due

to the available total registers per SM. In practice, the CUDA

compiler can enforce a bound to limit the number of registers

used in a compiled kernel. Excessive registers will be spilled

into the global GPU memory. It is therefore possible to recover

the occupancy loss at the cost of introducing expensive memory

instructions.

The pseudo-code in Figure 6 automatically explores this

trade-off with profiling. For each different thread space partition,

HFUSE will attempt to compile the fused kernel twice with

different configurations, one without the register bound and

one with it. When the algorithm sets the bound, it computes the

bound r0 at lines 9-12. Note that SMNRegs is the number of
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registers per SM (64K for Pascal and Volta GPUs), SMShMem
is the shared memory size per SM (96K for Pascal and Volta

GPUs), SMNThreads is the maximum number of concurrent

threads per SM (2048 for Pascal and Volta GPUs), b1 and b2
are the numbers of concurrent active block while launching

the original two kernels, ShMem() denotes the used shared

memory size of a kernel, and NRegs() denotes the number of

used registers of a kernel. Note that HFUSE obtains the shared

memory size and the number of used registers of a kernel from

the output of NVIDIA CUDA compilers. The intuition is to

make the fused kernel to run as many blocks per SM as the

two input kernels, unless the occupancy is otherwise bounded

by the number of threads or the shared memory usage.

C. Implementation

We implemented HFUSE
4 based on the front-end CUDA

parser of the LLVM Clang framework [24]. For each input

kernel file, our implementation uses Clang to pre-process all

macros and included headers. We use clang-expand [25], an

open-sourced tool built on Clang for source code refactoring, to

inline function calls in the input kernel functions. Additionally,

HFUSE traverses the AST of the input kernel to locate all local

variable declarations. It renames each local variable to make

sure that they will not cause name conflicts in the fused kernel.

It also lifts their declarations to the start of the kernel.

IV. EXPERIMENTAL RESULTS

We next evaluate HFUSE with five deep learning compu-

tational kernels and four cryptography kernels. The goal of

this evaluation is to answer the following questions: 1) How

effective is HFUSE? 2) Why do the horizontal fused kernels

run faster? 3) What is the right scenario to apply the horizontal

fusion? 4) How much improvement does the automatic profiling

technique have on fusing kernels with barriers?

A. Methodology

Benchmark Kernels: We collect nine GPU kernels including

five deep learning computational kernels and four cryptography

computational kernels: Maxpool applies a 2D maxpooling

over an input matrix; Batchnorm collects the batch mean

and variance a 2D input matrix, which will then be used

for normalization; Upsample applies a 2D bilinear upsampling

over a input matrix; Im2Col rearranges the input image blocks

into columns; Hist computes the histogram of an input matrix.

These kernels have been widely used in AI models such as

ResNet [21], BigGAN [26], and UVC [27]. Ethash is a memory

intensive hash function used by Ethereum [28] for its proof

of work mining. SHA256, Blake256, and Blake2B are three

computational intensive hash functions used for the proof-of-

work of several cryptocurrencies.

All deep learning computational kernels are extracted from

PyTorch [16]. Ethash is extracted from ethminer [17], and the

rest three cryptography kernels are collected from ccminer [18].

To minimize the bias, we evaluated HFUSE on all pairs of

kernels we collected in the deep learning and cryptography

4https://github.com/aoli-al/HFuse

domains. The five deep learning kernels form ten possible

benchmark pairs, while the four crypto kernels form six possible

benchmark pairs. All deep learning kernels support tunable

block dimensions while crypto kernels do not.

Apply HFUSE: For each benchmark pair, we apply HFUSE

to horizontally fuse the two kernels. We run the fused kernel

and measure its running time. For comparison, we measure the

running time of launching the original kernels individually via

parallel CUDA streams. We implement the standard vertical

fusion and compares its running time with HFUSE as well. To

evaluate the effect of our profiling techniques, we also run a

version of HFUSE that evenly partition the thread space for two

kernels without profiling. Note that because crypto kernels do

not support tunable block dimensions, HFUSE always evenly

partition the space instead. We use nvprof, a profiling tool

provided by CUDA toolkit, to collect the performance data

of each kernel. In all experiments we take into account two

generations of NVIDIA GPU cards: GeForce GTX 1080 Ti

graphic card based on Pascal, and Tesla V100 graphic card

based on Volta. We run our experiments with CUDA Toolkit

version 10.02 and LLVM toolchain version 9.0.0.

Run Different Workload: All benchmark kernels can operate

with variable workload. Deep learning kernels can process

inputs with different sizes, while cryptography kernels can run

iterations to compute multiple hashes. The speed up of any

fusion technique depends on the execution time ratio of two

input kernels, i.e., fusing two kernels with similar execution

time will be typically more beneficial. To understand how

horizontal fusion works in different workload ratio, we run our

experiments with different input sizes for each kernel. For each

benchmark pair, we will report the speed up under different

execution time ratios of the two original kernels.

Execution Time Measurement: Since it may take a while

for the GPU performance to stabilize, we launch a dummy

kernel on the GPU for about 500 millisecond before launching

any experimental kernels. For each pair of kernels, we record

elapsed time after the first kernel launches and before the

second kernel finishes with nvprof as the native execution

time.

Performance Analysis: For each benchmark kernel, we select

a representative input size so that the execution time ratios of

the ten benchmark pairs are close to one. We use nvprof to

collect three metrics besides its execution time:

• Issue Slot Utilization: Percentage of issue slots that issued

at least one instruction. The streaming multiprocessor is

stalled because of instruction latencies.

• MemInst Stall: Percentage of stalls caused by waiting

for memory instructions.

• Occupancy: Ratio of the average active wraps per active

cycle to the theoretically number of warps supported on

a multiprocessor.

B. Performance Results

Figure 7 shows the kernel execution time speedup with

respect to the native execution of 16 pairs of kenels. In each

subplot, the x-axis represents the ratios of execution time of
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Fig. 7: Kernel execution time speedup.

two kernels; the y-axis represents the speedup of the fused

kernel with resepct to the native execution. Each subplot

has four kinds of markers which represent standard fusion

(VFuse) and horizontal fusion (HFuse) on two different GPU

generations (1080Ti and V100). For deep learning kernels,

we also include two additional kinds of markers to represent

horizontal fusion without thread space profiling (Naive) on the

two GPU generations.

For each benchmark pair, we change the input size of

one benchmark kernel (marked with “*” in the pair name

in Figure 7) to obtain results on different execution time ratios

of the two kernels. Different marks of the same kind correspond

to experimental results of different input sizes. Each subplot in

Figure 7 also draws four horizontal lines in the corresponding

color to represent the average speedup of the fused kernel across

different execution ratio data points. Note that the execution

time of Batchnorm changes non-continuously as its input size

changes, so the marks in the four pairs involving Batchnorm

appear in clusters.

Our results highlight the effectiveness of our automatic

horizontal fusion technique across two different domains. For

five out of the ten deep learning cases (*Batchnorm*+Hist,

*Batchnorm*+Maxpool, Hist+*Maxpool*, Hist+*Upsample*,

and Maxpool+*Upsample*) and for three out of the six crypto

cases (pairs with Ethash), the HFUSE fused kernel outperforms

the native execution across different execution time ratios on

both 1080Ti and V100. For these cases, the HFUSE marks are

almost always on the positive side of the y-axis. The average

speedup of HFUSE over different execution time ratios on these

nine cases are 12.4%-55.1% on 1080Ti and 2.5%-60.8% on

V100. For eight cases on 1080Ti and five cases on V100 (out

of the total 16 cases), the HFUSE fused kernel on average over

different execution time ratios outperforms both the standard

fusion and the native execution.
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TABLE I: Metrics of individual kernels.

Kernel Execution Time (ms) Issue Slot Utilization (%) MemInst Stall (%) Occupancy (%)

Im2Col 1.92 / 1.69 87.18 / 63.81 27.5 / 38.2 48.0 / 48.1

Maxpool 1.93 / 1.97 7.99 / 8.55 95.2 / 97.2 89.5 / 92.2

Upsample 1.72 / 2.41 34.32 / 23.29 77.8 / 81.3 48.3 / 49.7

Hist 1.70 / 1.90 14.46 / 50.70 1.4 / 7.3 99.0 / 74.3

Batchnorm 2.15 / 1.90 61.83 / 63.27 52.2 / 60.3 96.2 / 98.1

Blake256 38.43 / 37.33 91.01 / 53.22 1.3 / 0.0 48.9 / 48.9

Blake2B 39.20 / 39.40 90.15 / 52.44 1.7 / 0.0 49.1 / 48.9

SHA256 42.88 / 39.69 65.62 / 49.07 0.0 / 0.0 30.6 / 24.6

Ethash 46.01 / 37.23 10.88 / 4.17 96.1 / 96.6 36.7 / 18.2

We observe that the HFUSE fused kernels have more

significant speedup on those cases where one of the original

kernels is memory intensive. This is because the horizontal

fusion interleaves memory instructions of such a kernel with

other instructions to hide latencies of these expensive memory

instructions. Note that both kernel fusion techniques perform

badly on *Blake256*+Blake2B, *Blake256*+SHA256, and

*Blake2B*+SHA256, because those cryptography computa-

tional kernels require similar computational resources and

fusing such kernels together will bring little benefits but harm

the occupancies.

Our results also show the importance of the thread space

partition. The automatic profiling technique enables HFUSE to

better fuse kernels that have different execution times. For all

deep learning cases except *Batchnorm*+Im2Col, the thread

space profiling technique is able to find a thread space partition

scheme that performs better than the naive approach for some

execution time ratio. Better partitioning the thread space will

make threads for the two original kernels to co-exist longer so

that the warp scheduler can better interleave their instructions.

Volta vs. Pascal: HFUSE performs better on Pascal (i.e.,

1080Ti) than on Volta (i.e., V100). One reason is that Volta

handles instruction latencies better. Volta architecture reduced

the execution latency of math operations to four cycles

according to the documentation [29]. Another reason is that

none of our benchmark kernels utilize the new tensor core

functionalities of Volta. We expect the results will be different

with tensor core computations because tensor core instructions

have much higher performance than regular floating-point

instructions. They will push the bottleneck toward memory

latencies which HFUSE can address with horizontal fusion.

Fusing More Than Two Kernels: It is straightforward to

extend HFUSE to fuse more than two kernels. We implemented

a prototype of HFUSE that is capable of fusing three kernels.

For our benchmark kernels, fusing three kernels does not

provide better performance than fusing just two out of the

three. One possible explanation is that the horizontal fusion

is most beneficial when fusing a compute-intensive kernel

together with a memory-intensive kernel. Fusing one additional

kernel often reduces the occupancy with little latency benefit.

C. Kernel Metrics Results

To understand in what scenario HFUSE performs best, we

collect the performance metrics of the original kernels and the

HFUSE fused kernel variants under a representative workload

in which the execution time of benchmark kernels is close

to each other. Table I shows the results of individual kernels.

In Appendix, Table II shows the results of the fused kernels.

Each row corresponds to the metrics of one kernel. Note that

the issue slot utilization denotes the percentage of GPU cycles

that at least one warp is active for a kernel (that SMs are

not stalled due to instruction latencies). Typical reasons of the

stalls are memory instructions and/or insufficient occupancies

of the kernels.

Issue Slot Utilization: Our results indicate that HFUSE is

effective because horizontal fusion interleaves instructions to

hide the instruction latencies. For all cases, a fused kernel runs

faster than the native execution if the fused kernel has a higher

issue slot utilization. On one hand, the fused kernel will have

a much better performance if two kernels use two different

computational resources. For example, Ethash is a memory

intensive kernel and Blake256 is a compute intensive kernel.

As shown in Table I and Table II, the percentage of stalls

caused by waiting for memory instructions of Ethash is 96.1%

on 1080Ti GPU. The percentage of Blake256 is only 1.3%.

Therefore, the issue slot utilization of the fused kernel of Ethash

and Blake256 is 23.9% higher than the native execution. The

fused kernel hides high latency of the memory instructions in

Ethash by interleaving computation instructions from Blake256.

On the other hand, fusing two compute-intensive kernels

is not very beneficial, as shown by the Blake256+Blake2B,

Blake256+SHA256, and Blake2B+SHA256 cases.

Thread-level v.s. Block-level Parallelism: The horizontal

fusion may lower the occupancy, which is another key factor

that influence the performance. Occupancy indicates the ratio

of the average active wraps per active cycle to the theoretically

number of wraps supported on a Stream Multiprocessor (SM).

If the number of blocks which can execute concurrently on

an SM is low, the occupancy of the kernel will also be low

because there are not enough eligible warps to be launched.

The horizontal fusion may increase the number of registers

per thread of the fused kernel, which may limit the maximum

number of active blocks on an SM.

Therefore one could view the horizontal fusion as a technique

to navigate the inherent trade-off between the thread-level

parallelism of interleaving instructions from more threads and

the block-level parallelism of running more blocks per SM.

Our results show that it is often beneficial to apply horizontal

fusion to gain thread-level parallelism even at the cost of block-
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level parallelism. For cases including Batchnorm+Maxpool and

Hist+Maxpool, the fused kernels have lower occupancies on

1080Ti and V100 GPUs than both of the corresponding original

kernels but they run faster.

Register Bound: The register bound may recover the oc-

cupancy loss at the cost of additional memory instructions

for spilled registers. Our results show that the fused kernel

with the register bound may perform better than the kernel

without it. As shown in Table II, Hist+Upsample only achieves

38.5% occupancy without a bound, but it achieves 77.6%

occupancy with the bound on 1080Ti GPU. Because of the

large improvement of the occupancy, for this case the version

with the register bound runs significantly faster. We also noticed

that the register bound may cause register spilling and increase

the percentage of stalls caused by memory instructions. The

MemInst Stall of Im2Col+Upsample is 43.0% on 1080Ti

without a bound, and the number increases to 73.6% when

the kernel is launched with the bound. Because of the cost of

spilled registers, for this case the version without the register

bound runs faster. Fortunately, HFUSE automatically profiles

two different versions to decide whether to set the bound.

V. RELATED WORK

Kernel Fusion: Wang et al. proposed three different strategies

to fusion including concatenating the computation of two ker-

nels similar to the standard vertical fusion, and the distribution

of the computation among different threads similar to horizontal

fusion [11]. However, their proposed technique cannot handle

barriers and it is not automated. Due to these limitations, their

results show that distributing computation among different

threads is the worst fusion strategy out of the three proposed

fusion strategies. In contrast, our technique do not have these

limitations. Our results show that the horizontal fusion, after

appropriately handling barriers and automatically profiling

the best thread space partition scheme, often outperforms the

vertical fusion.

Rammer adopts a different fusion policy that attempts to fit

instructions of input kernels into different blocks of the fused

kernel [30]. It exploits block-level parallelism, while HFUSE

exploits thread-level parallelism. One limitation of the fusion

policy of Rammer is that it may require heavy rewriting of the

existing operators so that all operators have the same block

dimension and the execution time of each fused operator is

roughly the same. For example, in Rammer, the authors use

32x32 as the tile size for their GPU matrix multiplication,

whereas 128x128 is commonly considered to be the optimal.

In contrast, HFuse automatically fuses existing GPU kernels

directly without any manual modification and the execution

time of the two original kernels can be different.

Wen and O’Boyle implemented a JIT compiler which is

able to fuse two OpenCL kernels automatically and uses a

model based approach to generate fusion configurations auto-

matically [31]. In contrast, HFUSE works on NVIDIA CUDA

programs instead of OpenCL. HFUSE uses a deterministic

algorithm to find the best fusion configuration for the fused

kernels. Another difference is that HFUSE is able to handle

barriers but the approach of Wen and O’Boyle cannot. Many

machine learning kernels have barriers and we believe HFUSE

is more applicable to the machine learning domain.

There is a rich set of previous work that targets automatic

vertical fusion. Fousek et al. presents a searching technique that

finds a linearized kernel with lowest memory requirement [12].

Wahib and Maruyama proposes to formalize kernel fusion

as an optimization problem [13]. Springer et al. proposes a

new language, called Ikra, for efficient GPU programming

that allows a programmer to implement GPU programs of

multiple reusable parallel sections [32]. Ikra then fuses those

parallel sections into a small number of GPU kernels. Filipovič

et al. present a source-to-source compiler that is able to

automatically fuse kernels that can be expressed in the form

of map and reduce calls [14]. TASO [4] is a deep neural

network computation graph optimizer that fuses different matrix

operators using graph substitution. All these prior works only

consider vertical fusion, rather than the horizontal fusion

proposed in our work.

Warp Specialization: Singe [33] and CudaDMA [34] use

warp specialization techniques to speed up domain-specific

applications (e.g., chemistry for Singe and direct memory

access library for CudaDMA). Similar to horizontal fusion,

the idea of warp specialization is to allow warps in a block

to perform different tasks in parallel. Comparing to HFUSE,

Singe and CudaDMA have more significant speed up but can

only apply to specific domains.

Multi-Application Concurrency: Previous work also proposes

techniques to enable better multi-application concurrency [35–

38]. These systems modify the GPU runtime and may introduce

overhead. Pai et al. proposed a kernel rewrite method, which

decouples logical thread block ands physical thread blocks to

minimize the leftover thread block resources. KernelMerge [38]

modifies the OpenCL runtime to launch and execute two kernels

concurrently, which is similar to CUDA stream parallelization.

Similarly, Ausavarungnirun et al. suggests to redesign the GPU

memory virtualization to mitigate address transaction overhead

while supporting multi-application concurrency [39].

VI. CONCLUSION

Automatic horizontal fusion is an effective optimization

technique that complements the standard vertical kernel fusion

and it can speedup GPU programs in domains like deep learning

and cryptocurrency mining. Our experimental results show that

the horizontal fusion can enable warp schedulers in NVIDIA

GPUs to interleave instructions from different kernels to hide

instruction latencies. It is especially beneficial to apply this

technique to fuse kernels with instructions that require different

kinds of hardware resources.
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APPENDIX

Our research artifact provides the source code and data set

of HFUSE to reproduce the experiment results. It is publicly

available on github5. The artifact includes a docker image that

contains all dependencies and data set to run HFUSE
6.

HFUSE dependens on Clang-10 and LLVM-10 and CUDA

library. An NVIDIA GPU card is required to run fused kernels

generated by HFUSE. Note that, HFUSE is only tested on 1080

Ti and V100, you may have different experiment results on

different GPU cards. There are also library dependencies for

benchamrk kernels. Specifically, fusing deep learning kernels

depends on PyTorch library and fusing crypto kernels depends

on ethminer library.

A. How to Use

Download: To reproduce our experimental results, down-

load the pre-configured docker image: docker run –rm –

privileged –gpus all -it leeleo3x/hfuse:latest bash

Note that the –privileged flag allows nvprof to collect

performance information of kernels. The source code of HFUSE

locates in the /root/HFuse folder. The docker image has pre-

built the project. The program takes the configuration of fusion,

the configuration of kernels, and the source directory that

contains the source code of kernels as input. It generates fused

kernels in current directory.

Fuse Benchmark Kernels: Run the following commands to

fuse deep learning benchmark kernels:

• cd /root

• mkdir fused-torch

• HFUSE_PARALLEL=1 ../HFuse/build/tools/llvm-

smart-fuser/llvm-smart-fuser

../HFuse/configs/ml_fusion.yaml

../HFuse/configs/ml_kernels.yaml ../TorchK-

ernel/fused/

Then run the following commands to fuse cryptography

benchmark kernels:

• cd /root

• mkdir fused-crypto

• HFUSE_PARALLE=0 ../HFuse/build/tools/llvm-

smart-fuser/llvm-smart-fuser

../HFuse/configs/crypto_fusion.yaml

../HFuse/configs/crypto_kernels.yaml

../ethminer/libethash-cuda

Note that HFUSE_PARALLEL is a flag to enable parallel fusing to

speed up the experimental process. It can only be enabled while

fusing deep learning kernels. Fusing all benchmark kernels

takes around 30 minutesi.

Inspect Fused Kernels: After running all commands,

the fused deep learning kernels are stored in

/root/TorchKernel/fused and the fused crypto kernels

are stored in /root/ethminer/libethash-cuda/four.cu.

Each fused kernel is named as {kernel1}_{kernel2}.inc.

HFUSE automatically generates kernels with different thread

5https://github.com/aoli-al/HFuse
6https://hub.docker.com/r/leeleo3x/hfuse

space partition and launch bounds, which are distinguished

by kernel name. {kernel1}_{kernel2_hfuse_lb_idxI}

are kernels fused horizontally with register bounds.

{kernel1}_{kernel2_hfuse_idxI} are kernels fused

horizontally without register bounds. The I-th kernel

allocates (I + 1) ∗ 128 threads to the first input kernel and

allocates the rest threads to the second one. HFUSE also

generates kernels that use traditional vertical fusion e.g.

{kernel1}_{kernel2_vfuse_idx0}.

Run Fused Kernels: To run the fused kernels, first move the

fused kernels to the directory that contains kernel drivers.

• mv /root/fused-torch/* /root/TorchKernel/fused

• mv /root/fused-crypto/* /root/ethminer/-

libethash-cuda

Next, compile the kernel driver. Note that we only tested the

kernel drivers on 1080Ti and V100 GPUs. The compiler may

fail to compile the driver if you use different GPUs. The

compilation takes roughly 30 minutes.

• cd /root/TorchKernel

• ./build.sh

• cd /root/ethminer

• mkdir build

• cd build

• cmake ..

• make fuser -j4

Collect Performance Metrics: To collect performance metrics,

first run nvprof to get the execution profile data of each kernel.

For deep learning kernels, run the following commands and the

result is stored in /root/TorchKernel/performance.csv:

• cd /root/TorchKernel

• /usr/local/cuda-11.5/bin/nvprof --csv --log-

file performance.csv python3 ./call_{arch}.py

And replace {arch} with the GPU you use (1080 or v100).

For cryptography kernels, run the following commands and

the result is stored in /root/ethminer/performance.csv:

• cd /root/ethminer

• /usr/local/cuda-11.5/bin/nvprof --csv --log-

file performance.csv ./build/fuse/fuser

Then to collect the metrics of deep learning kernels,

run the following commands and the result is stored in

/root/TorchKernel/metrics.csv:

• cd /root/TorchKernel

• /usr/local/cuda-11.5/nvprof --csv --log-file

metrics.csv --events "elapsed_cycles_pm" --

metrics "issue_slot_utilization,achieved_occu-

pancy,stall_memory_dependency" python3 call_-

{arch}.py

To collect the metrics of cryptography kernels, run

the following commands and the result is stored in

/root/ethminer/metrics.csv:

• cd /root/ethminer

• /usr/local/cuda-11.5/nvprof --csv --log-file

metrics.csv --events "elapsed_cycles_pm"
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TABLE II: Metrics of HFUSE fused kernels.

Pairs Type Speedup (%)
Issue Slot Utilization (%) MemInst

Occupancy (%)
HFUSE Native Stall (%)

Batchnorm+Upsample
N-RegCap -35.0 / -37.4 32.05 / 25.93

52.29 / 41.69
67.2 / 76.1 42.9 / 42.9

RegCap -23.4 / -28.9 38.35 / 29.73 75.0 / 80.7 87.1 / 83.2

Batchnorm+Hist
N-RegCap 51.2 / -28.5 55.89 / 33.43

40.55 / 57.22
45.6 / 49.7 90.7 / 43.0

RegCap 53.4 / 15.8 56.74 / 53.33 46.1 / 56.3 91.1 / 96.0

Batchnorm+Im2Col
N-RegCap -31.1 / -42.8 44.43 / 31.55

73.65 / 64.81
50.8 / 67.6 37.3 / 42.0

RegCap -12.7 / -31.1 58.13 / 41.55 63.4 / 74.5 92.0 / 85.3

Batchnorm+Maxpool
N-RegCap 7.8 / 3.4 32.58 / 28.41

35.73 / 35.28
67.3 / 78.2 64.1 / 72.7

RegCap 7.8 / 3.4 32.58 / 32.20 67.5 / 78.2 64.0 / 72.7

Hist+Im2Col
N-RegCap 12.2 / -17.3 60.34 / 40.69

51.90 / 58.03
20.0 / 31.6 38.1 / 37.4

RegCap 11.3 / -0.1 60.09 / 51.32 19.8 / 46.1 38.3 / 78.6

Hist+Maxpool
N-RegCap 52.5 / 56.6 19.07 / 36.25

11.05 / 28.58
26.7 / 43.5 67.5 / 59.0

RegCap 53.4 / 57.1 19.10 / 39.07 25.0 / 43.0 67.7 / 57.5

Hist+Upsample
N-RegCap 4.4 / -5.7 30.17 / 35.01

26.87 / 35.70
40.8 / 41.2 38.5 / 43.5

RegCap 51.4 / 5.7 41.20 / 36.37 48.0 / 57.0 77.6 / 82.6

Im2Col+Maxpool
N-RegCap 7.0 / -12.0 51.52 / 30.47

45.95 / 34.05
54.7 / 69.3 32.6 / 32.5

RegCap 25.3 / -7.5 57.87 / 33.87 62.5 / 74.4 63.5 / 58.4

Im2Col+Upsample
N-RegCap 5.4 / -10.8 71.92 / 36.72

64.76 / 41.11
43.0 / 72.2 42.7 / 44.9

RegCap -24.1 / -45.5 49.50 / 24.24 73.6 / 78.9 73.7 / 74.0

Maxpool+Upsample
N-RegCap -1.6 / -3.4 23.39 / 16.18

22.47 / 17.00
79.3 / 86.4 30.0 / 33.1

RegCap 29.4 / 1.1 30.32 / 17.97 81.0 / 88.3 60.9 / 62.3

Blake2B+Ethash
N-RegCap 15.9 / 30.1 58.93 / 36.73

47.39 / 28.29
22.8 / 25.5 15.8 / 8.6

RegCap 42.9 / 65.8 70.08 / 46.85 19.8 / 23.9 29.0 / 29.2

Blake256+Ethash
N-RegCap 17.0 / 30.3 57.89 / 37.05

47.49 / 28.46
19.5 / 26.5 16.1 / 8.6

RegCap 47.4 / 64.7 71.41 / 46.79 17.6 / 24.7 29.3 / 29.3

Ethash+SHA256
N-RegCap 8.8 / 37.0 39.25 / 36.62

36.97 / 26.81
10.3 / 26.8 15.7 / 8.8

RegCap 35.1 / 44.1 50.51 / 39.37 18.4 / 16.5 28.8 / 28.8

Blake256+Blake2B
N-RegCap -26.5 / -2.7 66.08 / 51.34

90.58 / 52.82
2.3 / 0.0 37.5 / 36.8

RegCap -96.5 / -96.1 3.60 / 3.31 72.0 / 62.4 98.4 / 96.0

Blake256+SHA256
N-RegCap -44.3 / -1.0 41.13 / 50.22

77.81 / 51.11
0.9 / 0.0 22.7 / 24.4

RegCap -51.2 / -37.4 42.57 / 34.32 43.0 / 7.7 56.2 / 51.6

Blake2B+SHA256
N-RegCap -42.9 / 2.8 41.40 / 50.26

77.49 / 50.74
0.8 / 0.0 22.7 / 24.5

RegCap -50.9 / -31.7 38.27 / 35.30 48.0 / 7.6 54.9 / 50.6

--metrics "issue_slot_utilization,achieved_-

occupancy,stall_memory_dependency"

./build/fuse/fuser

B. Expected Results

The artifact will reproduce our experimental results in

Figure 7, Table I, and II with 1080Ti and V100 GPUs. Note

that Similar to Table I, each entry of Table II is of the form

“X / Y", where X is the result for 1080Ti GPU and Y is

the result for V100 GPU. In order to understand some key

factors that influence the performance of the fused kernels. We

collect metrics for kernels both with register bound (RegCap)

and without register bound (N-RegCap). The third column in

Table II shows the speedup of the fused kernel against the

native execution. The fourth column presents the instruction

issue slot utilization for the fused kernels and the fifth column

presents the average instruction issue slot utilization computed

from the metrics of two individual kernels (from Table I).

C. Experiment Customization

It is possible to use HFUSE in the artifact to fuse fuse

other kernels. To do so, an user need to provide the kernel

specification, the fusion specification, and the source code of

kernels. The kernel specification includes kernel dimension,

number of register required by the kernel, and whether

the kernel has barriers. You can set the ExecTime of the

kernel to 1 since this field is not used. An example kernel

specification can be found in /root/HFuse/configs/ml_-

kernels.yaml, i.e., specification for deep learning kernels.

The fusion specification includes the source file name of

original kernels and the function name of two kernels to

be fused. An example fusion specification can be found in

/root/HFuse/configs/ml_fusion.yaml. HFUSE depends on

the compile_commands.json file to specify how to compile

the source code of input kernels. One example of the file can

be found in /root/TorchKernel/compile_commands.json.
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