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ABSTRACT
In decentralized finance (DeFi), lenders can offer flash loans to bor-

rowers, i.e., loans that are only valid within a blockchain transaction

and must be repaid with fees by the end of that transaction. Unlike

normal loans, flash loans allow borrowers to borrow large assets

without upfront collaterals deposits. Malicious adversaries use flash

loans to gather large assets to exploit vulnerable DeFi protocols.

In this paper, we introduce a new framework for automated syn-

thesis of adversarial transactions that exploit DeFi protocols using

flash loans. To bypass the complexity of a DeFi protocol, we propose

a new technique to approximate the DeFi protocol functional be-

haviors using numerical methods (polynomial approximation and

nearest-neighbor interpolation). We then construct an optimization

query using the approximated functions of the DeFi protocol to

find an adversarial attack constituted of a sequence of functions

invocations with optimal parameters that gives the maximum profit.

To improve the accuracy of the approximation, we propose a novel

counterexample driven approximation refinement technique. We

implement our framework in a tool named FlashSyn. We evaluate

FlashSyn on 16 DeFi protocols that were victims to flash loan at-

tacks and 2 DeFi protocols from Damn Vulnerable DeFi challenges.

FlashSyn automatically synthesizes an adversarial attack for 16

of the 18 benchmarks, demonstrating its effectiveness in finding

possible flash loan attacks.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
Blockchain technology enables the creation of decentralized, re-

silient, and programmable ledgers on a global scale. Smart con-

tracts, which can be deployed onto a blockchain, allow developers

to encode intricate transaction rules that govern the ledger. These

features have made blockchains and smart contracts essential in-

frastructure for a variety of decentralized financial services (DeFi).

As of April 1st, 2023, the Total Value Locked (TVL) in 1,417 DeFi

smart contracts had reached 50.15 billion [22].

However, security attacks are critical threats to smart contracts.

Attackers can exploit vulnerabilities in smart contracts by sending

malicious transactions, potentially stealing millions of dollars from

users. Particularly, a new type of security threat has emerged, ex-

ploiting design flaws in DeFi contracts by leveraging large amounts

of digital assets. These attacks, commonly referred to as flash loan
attacks [54, 67, 82], typically involve borrowing the required large

amount of assets from flash loan contracts. Among the top 200 costli-

est attacks recorded in Rekt Database, the financial loss caused by

36 flash loan attacks exceeds 418 million USD [54].

A typical flash loan attack transaction consists of a sequence

of actions, or function calls to smart contracts. The first action

involves borrowing a substantial amount of digital assets from a

flash loan contract, while the last action returns these borrowed

assets. The sequence of actions in the middle interacts with multiple

DeFi contracts, using the borrowed assets to exploit their design

flaws. When a DeFi contract fails to consider corner cases created

by the large volume of the borrowed assets, the attacker may ex-

tract prohibitive profits. For example, many flash loan attacks use

borrowed assets to temporarily manipulate asset prices in a DeFi

contract to trick the contract to make unfavorable trades with the

attacker [12, 59]. Although researchers have developed many auto-

mated program analysis and verification techniques [2, 36, 45, 56]

to detect and eliminate bugs in smart contracts, these techniques

cannot handle flash loan attack vulnerabilities. This is because such

vulnerabilities are design flaws rather than implementation bugs.

Moreover, these techniques typically operate with one contract at

a time, but flash loan attacks almost always involve multiple DeFi

contracts interacting with each other.

FlashSyn: We present FlashSyn, the first automated end-to-end

program synthesis tool for detecting flash loan attack vulnerabili-

ties. Given a set of smart contracts and candidate actions in these

contracts, FlashSyn automatically synthesizes an action sequence

along with all action parameters to interact with the contracts to

exploit potential flash loan vulnerabilities. Additionally, FlashSyn

https://doi.org/10.1145/3597503.3639190
https://doi.org/10.1145/3597503.3639190
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can analyze past blockchain transaction history, assisting users in

identifying candidate actions for synthesis.

The primary challenge FlashSyn faces is that the underlying

logic of DeFi actions is often too sophisticated for standard solvers

to handle. Even if the action sequence was already known, a naive

application of symbolic execution might not be able to find action

parameters because it may need to extract overly complicated sym-

bolic constraints causing the solvers to time out.Moreover, FlashSyn

synthesizes the action sequence and the action parameters together

and therefore faces an additional search space explosion challenge.

FlashSyn addresses these challenges with its novel synthesis-via-
approximation technique. Instead of attempting to extract accurate

symbolic expressions from smart contract code, FlashSyn collects

data points to approximate the effect of contract functions with

numerical methods. FlashSyn then uses the approximated expres-

sions to drive the synthesis. FlashSyn also incrementally improves

the approximation with its novel counterexample driven approxima-
tion refinement techniques, i.e., if the synthesis fails because of a
large deviation caused by the approximations, FlashSyn collects the

corresponding data points as counterexamples to iteratively refine

the approximations. The combination of these techniques allows

the underlying optimizer of FlashSyn to work with more tractable

expressions. It also decouples the two difficult tasks, finding the

action sequence and finding the action parameters. When working

with a set of coarse-grained approximated expressions, FlashSyn

can filter out unproductive action sequences with a small cost.

Experimental Results: We evaluate FlashSyn on 16 DeFi bench-

mark protocols that were victims to flash loan attacks and 2 DeFi

benchmark protocols from Damn Vulnerable DeFi challenges [19].

FlashSyn synthesizes adversarial attacks for 16 out of the 18 bench-

marks. For comparison, a baseline with manually crafted accurate

action summaries only synthesizes attacks for 7 out of the 18.

Contributions: This paper makes the following contributions:

• FlashSyn: The first automated end-to-end program synthesis

tool for detecting flash loan attack vulnerabilities. It enables

approximate attack synthesis without diving into sophisticated

logics of DeFi contracts.

• Synthesis-via-approximation: A novel synthesis-via-approxi-

mation technique to handle sophisticated logics of DeFi contracts.

• Counterexample Driven Approximation Refinement: A
novel counterexample driven approximation refinement tech-

nique to incrementally improve the approximation during the

synthesis process.

• Experimental Evaluation: We implemented FlashSyn in a tool

and evaluated it on 16 protocols that were victims to flash loan

attacks and 2 fictional flash loan attacks.

Our solution, FlashSyn has been adopted and further developed

by Quantstamp, a leading smart contract auditing company for the

detection of flash loan vulnerabilities in DeFi contracts [53, 60, 61].

2 BACKGROUND
Blockchain: Blockchain is a distributed ledger that broadcasts

and stores information of transactions across different parties. A

blockchain consists of a growing number of blocks and a consensus

algorithm determining block order. Each block is constituted of

transactions. Ethereum [11, 77] is the first blockchain to support,

store, and execute Turing complete programs, known as smart

contracts. Many new blockchains use the Ethereum virtual machine

(EVM) for execution due to its popularity among developers.

Smart Contracts: Each smart contract is associated with a unique

address, a persistent account’s storage trie, a balance of native

tokens, e.g., Ether in Ethereum, and bytecode (e.g., EVM byte-

code [11, 77]) that executes incoming transactions to change the

storage and balance. Users interact with a smart contract by issuing

transactions from their user accounts to the contract address. Smart

contracts can also interact with other smart contracts as function

calls. Currently, there are several human-readable high-level pro-

gramming languages, e.g., Solidity [37] and Vyper [38], to write

smart contracts that compile to the EVM bytecode.

Decentralized Finance (DeFi): DeFi is a peer-to-peer financial
ecosystem built on top of blockchains [78]. The building blocks of

DeFi are smart contracts that manage digital assets. A few DeFi pro-

tocols dominate the DeFi market and serve as references for other

decentralized applications: stable coins (e.g., USDC and USDT),

price oracles, decentralized exchanges, and lending and borrowing

platforms. In DeFi, a special type of loan called flash loan allows

lenders to offer loans to borrowers without upfront collaterals de-

posits. The loan is only valid within a single transaction and must

be repaid with fees before the completion of the transaction.

3 ILLUSTRATIVE EXAMPLE
We next present a motivating example to describe the complexity of

flash loan attacks and our proposed approach to synthesize them.

Background: On October 26th 2020, an attacker exploited the

USDC and USDT vaults of Harvest Finance, causing a financial

loss of about 33.8 million USD. In this section, we will focus on

the attack on the USDC vault. The attacker repeatedly executed

the same attack vector 17 times targeting the USDC vault. Fig. 1

summarizes the attack vector. The attack vector contains a sequence

of actions that interact with the following contracts:

• Uniswap: Uniswap is a protocol with flash loan services.

• Curve: Curve is an exchange protocol for stable coins like USDT,

USDC, and DAI, whose market prices are close to one USD. It

maintains pools of stable coins and users can interact with these

pools to exchange one kind of stable coins to another. For exam-

ple, Y Pool in Curve contains both USDC and USDT. Users can

put USDC into the pool to exchange USDT out. The exchange

rate fluctuates around one, which is determined by the current

ratio of USDC and USDT in the pool. Note that internally Y pool

automatically deposits USDT and USDC to Yearn,1 keeps yUSDT
and yUSDC tokens, and retrieves them back when the users

withdraw. We omit this complication for simplicity.

• Harvest:Harvest is an asset management protocol and the victim

contract of this attack. Users can deposit USDC and USDT into

Harvest and receive fUSDC and fUSDT tokens which users can

later use to retrieve their deposit back. Harvest will invest the

deposited USDC and USDT from users to other DeFi protocols to

generate profit. Note that the exchange rate between fUSDC and

USDC is also not fixed. It is determined by a vulnerable closed

1
Yearn is a DeFi protocol that generates yield on deposited assets. yTokens of Yearn

represent the liquidity provided in a Yearn product.
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Figure 1: Harvest USDC Vault Price Manipulation Attack.

source oracle contract, which ultimately uses Curve Y pool ratios

to calculate the exchange rate.

Attack Actions: The attack vector shown in Fig. 1 first flash loaned
18.3M USDT and 50M USDC, then called 4 methods (actions) to

exploit the design flaw in Harvest. The first action, action 1, swaps

17, 222, 012 USDT for 17, 216, 703 USDC via Curve.Fi Y Pool. Action 1

reduces the estimated value of USDT based on the ratio in Y pool as

the amounts of USDT in Y Pool considerably increases. This in turn

reduces Harvest Finance’s evaluation of its invested assets. Action

2 deposits 49, 977, 468 USDC into Harvest Finance USDC vault and
due to the reduced evaluation of the invested underlying assets,

the attacker receives 51, 456, 280 fUSDC back, which is abnormally

large. Similar to action 1, action 3 then swaps 17, 239, 234 USDC

back to 17, 230, 747 USDT via Curve.Fi Y Pool, which normalized the

manipulated USDT/USDC rate in the pool. It also brings Harvest

Finance’s evaluation of its invested underlying asset back to normal.

Finally, action 4 withdraws 50, 298, 684 USDC (using 51, 456, 280

fUSDC) from Harvest Finance USDC vault. Assuming 1 USDC = 1

USDT = 1 USD, the profit of the above attack vector is 307, 420 USD.

This attack is a typical case of oracle manipulation. The exploiter

manipulated the USDT/USDC rate in Curve.Fi Y Pool by swapping

a large amount between USDC and USDT back and forth, which

caused Harvest Finance protocol to incorrectly evaluate the value

of its asset, leaving large arbitrage space for the exploiter. The ac-

tions sequence and particularly the parameters are carefully chosen

by the attacker to yield best profit. There are multiple challenges

FlashSyn faces to synthesize this attack.

Challenge 1 - Sophisticated Interactions: The attack involves

several smart contracts that interact with each other and with other

contracts outside the attack vector. The state changes caused by

one action influence the behavior of other actions. This makes the

synthesis problem of finding an attack vector more complicated

as the effect of an action depends on its predecessor actions thus

actions cannot be treated separately.

Challenge 2 - Close Source: Some external smart contracts that

a DeFi protocol interacts with are not open-source. For instance,
the source code of the external smart contract PriceConverter2 of
Harvest Finance protocol is not available on Etherscan [34], and it

is called by actions 2 and 4 to determine the exchange rate between

fUSDC and USDC. This impedes the complete understanding of the

DeFi protocol implementation and to reason about its correctness

to anticipate attacks vectors.

Challenge 3 - Mathematical Complexity: DeFi contracts use
mathematical models that are too complex to reason about. For

2
Ethereum address: 0xfca4416d9def20ac5b6da8b8b322b6559770efbf.

1 function get_D(uint[] xp) returns (uint):
2 uint N_COINS = xp.length;
3 uint S = sum(xp);
4 // ...
5 uint D = S;
6 uint Ann = A * N_COINS; // A is a constant
7 for (uint i = 0; i < 255; i = i + 1) {
8 uint D_P = D;
9 for (uint j = 0; j < xp.length; j = j + 1) {
10 D_P = (D_P * D) / (xp[j] * N_COINS + 1);
11 }
12 uint Dprev = D;
13 D = ((Ann * S + D_P * N_COINS) * D) /
14 ((Ann - 1) * D + (N_COINS + 1) * D_P);
15 if (abs(D - Dprev) <= 1) break;
16 }
17 return D;

Figure 2: get_D Method to Compute D.

instance, actions 2 and 4 swap an amount of token 𝑖 to token 𝑗 ,

while maintaining the following StableSwap invariant [23]:
𝐴 · 𝑛𝑛 ∑𝑖 𝑥𝑖 + 𝐷 = 𝐴 · 𝑛𝑛 · 𝐷 + 𝐷𝑛+1

𝑛𝑛
∏

𝑖 𝑥𝑖
where 𝐴 is a constant, 𝑛

is number of token types in the pool(4 for Curve.Fi Y Pool),3 𝑥𝑖 is
token 𝑖’s liquidity, 𝐷 is the total amount of tokens at equal prices.

There does not exist a closed-form solution for 𝐷 as it requires

finding roots of a quintic equation. In the actual implementation,

𝐷 is calculated iteratively on the fly via Newton’s method (see

extended version [13] Appendix A).

To demonstrate the complexity of DeFi protocols, we run an ex-

periment with Manticore [56], a symbolic execution tool for smart

contracts, to execute the function get_D, for computing D as shown

in Fig. 2, with symbolic inputs and explore all possible reachable

states. Manticore fails and throws a solver-related exception to-

gether with an out of memory error. We then simplified get_D by

removing the outer for loop and bounding the length of xp to 2,

Manticore still fails and throws the same error.

3.1 Apply FlashSyn
We will now show how FlashSyn synthesizes the Harvest USDC

vault attack from the identified set of actions listed in Table 1.
4
The

first two input arguments to exchange specify the token types to

be swapped. The third argument specifies the quantity to swap.
5

Table 1 lists each action’s token flow, along with the number of data

points collected initially (without counterexamples) and the total

number of data points for polynomial and interpolation, respec-

tively. The amounts of tokens transferred in/out for each action are

calculated based on its contract’s member variables or read-only

functions. We refer these variables and functions as states of an
action. A prestate refers to the state before the execution of an

action. Executing an action will also alter states, which are denoted

as poststates. The states not altered by any action are ignored.

For example, exchange(USDT,USDC,v) leverages two states,

balances[USDC] and balances[USDT], to calculate the amounts

of token exchanges. Upon execution, this function also modifies

3
Ethereum address: 0x45f783cce6b7ff23b2ab2d70e416cdb7d6055f51.

4
In Section 6, we present FlashFind to automatically find the set of candidate actions

that are used here by FlashSyn to synthesize an attack vector.

5
Note that in the implementation the actual name of the exchange method is ex-
change_underlying, 1 and 2 are used to identify the tokens USDC and USDT, respec-

tively, and the method has a fourth argument to specify the minimal quantity expected

to receive from the swapping.
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Table 1: Actions in Harvest USDC Vault Attack. IDP and TDP
denotes the initial and total number of datapoints. USDT(-)
(resp., USDC(+)) denotes USDT (resp., USDC) tokens trans-
ferred out (reps., in).

Action Token Flow IDP TDP-Poly TDP-Inter

exchange

USDT(-), USDC(+)

2000 2238 2792

(USDT, USDC, v)

exchange

USDC(-), USDT(+)

2000 2148 2888

(USDC, USDT, v)

deposit(v) USDC(-), fUSDC(+) 2000 2162 2358

withdraw(v) fUSDC(-), USDC(+) 2000 2364 2876

these two states. Consequently, these two states act as both the

prestates and poststates of exchange(USDT,USDC,v).
Initial Approximation: To generate the initial approximation

of the state transition functions of each action, FlashSyn first

collects data points where each data point is an input-output
pair. The input is the action’s prestates and parameters, and the

output is its poststates and the outputted values. To collect data

points, FlashSyn executes the associated contracts on a private

blockchain (a forked blockchain environment) with different

parameters to reach input-output pairs with different prestates

and poststates. FlashSyn then uses the collected data points to

find the approximated state transition functions. We consider

two techniques to solve the above multivariate approximation

problem: linear regression based polynomial features and nearest-

neighbor interpolation [55, 64]. The following example is one of

exchange(USDT,USDC,v)’s state transition functions approximated

by polynomials: s′
1
= 0.73244455×s1−0.23655202×s2−0.85915531×

𝑣 + 27351279.416023515 where s1 and s′
1
are the prestate and

poststate balances[USDC], s2 is the prestate balances[USDT],
and 𝑣 is the third argument of the action exchange(USDT,USDC,v).
Enumerate and Filter Action Sequences: After capturing an

initial approximation of state transition functions, FlashSyn lever-

ages an enumeration-based top-down algorithm to synthesize

different action sequences. FlashSyn applies several pruning

heuristics to filter unpromising sequences. For each enumerated

action sequence, FlashSyn uses the approximated state transi-

tion functions to construct an optimization problem, consisting

of constraints and an objective function that represents profit.

FlashSyn then applies an off-the-shelf optimizer to obtain a

list of parameters that maximize the profit estimated using

approximated transition functions.

Counterexample Driven Refinement: After obtaining a list

of parameters that maximize the estimated profit of an action

sequence, FlashSyn proceeds to verify the synthesized attack

vectors by executing them on a private blockchain and check

their actual profits. If the difference between the actual profit

and the estimated profit of an attack vector is greater than 5%,

FlashSyn reports it as a counterexample, indicating inaccuracy of

our approximated transition functions. To correct this inaccuracy,

FlashSyn employs counterexample driven approximation refinement
technique. FlashSyn utilizes the reported counterexamples to

collect new data points and refine the approximations. The

revised approximations are subsequently used to search for

parameters in next loops. For example, FlashSyn with polynomial

approximations collects 238 additional data points for the action

exchange(USDT, USDC, v) throughout 7 refinement loops.

Synthesized Attack: In the Harvest USDC example, FlashSyn

successfully found the following attack vector that yields an

adjusted profit of 110051 USD using the interpolation technique

with the counterexample driven refinement loop.

exchange(USDT, USDC, 15192122) · deposit(45105321) ·
exchange(USDC, USDT, 11995404) · withdraw(46198643)

4 PRELIMINARY
Labeled Transition Systems (LTS). We use LTS to model behav-

iors of smart contracts. A LTS 𝐴 = (𝑄, Σ, q0, 𝛿) over the possibly-

infinite alphabet Σ is a possibly-infinite set 𝑄 of states with an

initial state q0 ∈ 𝑄 , and a transition relation 𝛿 ⊆ 𝑄 × Σ ×𝑄 .
Execution. An execution of 𝐴 is a sequence of states and

transition labels (actions) 𝜌 = q0, a0, q1 . . . a𝑘−1, q𝑘 for 𝑘 > 0 such

that 𝛿 (q𝑖 , a𝑖 , q𝑖+1) for each 0 ≤ 𝑖 < 𝑘 . We write q𝑖
a𝑖 ...a𝑗−1−−−−−−−→𝐴 q𝑗

to denote the subsequence q𝑖 , a𝑖 , ..., q𝑗−1, a𝑗−1, q𝑗 of 𝜌 .

Invocation Label. Formally, an invocation label adr.𝑚(®𝑢) con-
sists of a method name 𝑚 of a contract address adr, accompanied

by a vector ®𝑢 containing argument values.

Operation Label. An operation label ℓ := adr.𝑚(®𝑢) ⇒ (𝐼 , 𝑣) ∪ ⊥
is an invocation label adr.𝑚(®𝑢) along with a return value 𝑣 ,

and 𝐼 is a sequence of operation labels representing the “inter-

nal” calls made during the invocation of 𝑚. The distinguished

invocation outcome ⊥ is associated to invocations that revert.

Interface. The interface Σadr is the set of non-read-only op-

eration labels in the contract adr. We assume w.l.o.g. that the

preconditions are satisfied for all the operations in Σadr, other-
wise, the external invocation adr.𝑚(®𝑢) reverts. Σadr is a superset

of the set of action candidates of FlashSyn.

Smart Contract. A smart contract at an address adr is an LTS

𝐶adr = (𝑄adr, Σadr, q0, 𝛿adr) over the interface Σadr where 𝑄adr
is the set states and 𝛿adr is the transition relation.

Symbolic Actions Vector. We define the notion of a symbolic

actions vector S = ℓadr1 . . . ℓadr𝑛 s.t. ℓadr𝑖 ∈ Σ for 1 ≤ 𝑖 < 𝑛 as the

sequence of operation labels (possibly from different contracts)

associated with the execution 𝜌 , i.e., 𝜌 = q1, ℓadr1, q1 . . . ℓadr𝑛, q𝑛 .
Balance. We define the balance of address adr in a blockchain

state q as the mapping B : 𝑄 × A =⇒ V that maps the pair

(q, adr) ∈ 𝑄 × A to the weighted sum of tokens the address

adr holds at q, i.e., B(q, adr) = ∑
t∈TM(q, adr, t) · P(t), where

T represents tokens hold by adr, M(q, adr, t) represents the

amount of token t hold by adr at the blockchain state q, and
P(q, t) represents the price of token t at the blockchain state q.
Attack Vector. An attack vector by an adversary adr consists of

a symbolic actions vector S where the symbolic arguments are

replaced by concrete values (integer values) and S transforms

a blockchain state q to another state q′ such that B(q′, adr) −
B(q, adr) > 0, i.e., the adversary adr generates profit when the

sequence of actions S is executed with the concrete values.

Problem formulation. Given a specification 𝜑 (which con-

tains vulnerable contract addresses or action candidates) and

a blockchain state q, the objective is to find an attack vector

consisting of a concretization of the symbolic actions vector

S = ℓadr1 . . . ℓadr𝑛 s.t. ℓadr𝑖 ∈ Σ ∩ 𝜑 for 1 ≤ 𝑖 < 𝑛, transforming

the state q to a state q′, and that maximizes the profit of an

adversary adr, B(q′, adr) − B(q, adr).



ICSE 2024, April 2024, Lisbon, Portugal

5 FLASHSYN
Algorithm 1 gives the overall synthesis procedure of FlashSyn.

FlashSyn first collects initial data points to approximate the

actions in Act (line 3) where FlashSyn uses the state q as a

starting blockchain state. Then, using the sub-procedure Ap-

proximate FlashSyn generates the approximations ApproxAct
of the actions in Act using the collected data points (line 5).

FlashSyn uses the sub-procedure ActionsVectors to generate

all possible symbolic actions vectors of length less than len
(line 6). FlashSyn then iterates over the generated actions vec-

tors and uses some heuristics implemented in the sub-procedure

IsFeasible to prune actions vectors (line 8). For instance, an

actions vector containing two adjacent actions invoking the

same method can be pruned to an actions vector where the

two adjacent actions are merged. Afterwards, using the actions

vector and approximated transition functions, the sub-procedure

Construct constructs the optimization framework P for the

actions vector (line 9). Then, FlashSyn uses the optimization

sub-procedure Optimize (line 10) to find the optimal concrete

values to pass as input parameters to the methods in the actions

vector that satisfy the constraints of P. FlashSyn then validate

whether the attack vector generated by the optimizer indeed

generates the profit with the sub-procedure QueryOracle to

execute the generated attack vectors on the blockchain. If the

query is successful, i.e., the actual profit closely matches the

profit found by the optimizer, FlashSyn adds the attack vector

to the list of discovered attacks. Otherwise, FlashSyn consid-

ers the attack vector to be a counterexample, and uses it to

generate new data points to refine the approximation in the sub-

sequent iterations, within the sub-procedure CEGDC (referenced

in line 14 and introduced later in Section 5.3). FlashSyn repeats

the process until the number of iterations reaches n (line 4).

Algorithm 1: Attack vectors synthesis procedure. Its

inputs are actions Act, the maximum length len, a

blockchain state q, and a threshold number of itera-

tions n. Its outputs are attack vectors that yield profits.

1: procedure Synthesize(Act, len, P, q, n)
2: for each a ∈ Act
3: datapoints[a] ← DataCollect(q, a) ;
4: for each 𝑖 ∈ [0; n]
5: ApproxAct← Approximate(Act, datapoints) ;
6: wlist← ActionsVectors(ApproxAct, len) ;
7: for each p ∈ wlist
8: if IsFeasible(p)
9: P ← Construct(p,ApproxAct)
10: (p★, profit) ← Optimize(p, P) ;
11: if QueryOracle(q, p★, profit)
12: answerlist.add(p★, profit) ;
13: else
14: datapoints := datapoints ∪ CEGDC(p★, q) ;
15: return answerlist;

5.1 Pruning Symbolic Actions Vectors
The sub-procedure IsFeasible implements some heuristics to

prune undesired symbolic actions vectors.

Heuristic 1: no duplicate adjacent actions. Two successive

calls to the same method in a DeFi smart contract are usually

equivalent to a single call with larger parameters. Thus, we

discard actions vectors containing duplicate, successive actions.

Heuristic 2: limited usage of a single action. Using the ob-

servation that attack vectors do not contain repetitions, we

fix a maximum number of calls to a single method an attack

can contain and discard actions vectors that do not satisfy this

criterion, e.g., an actions vector of length 4 cannot contain more

than 2 calls to the same method.

Heuristic 3: necessary preconditions. Based on the observa-

tion that owning certain tokens is a necessary precondition

for invoking some actions, FlashSyn prunes symbolic actions

vectors that contain actions requiring tokens
6
not yet owned.

In Harvest USDC example, invoking withdraw method requires

users own some share tokens (fUSDC) beforehand. The only

action candidate that mints fUSDC for users is deposit; thus, this
heuristic mandates that deposit must be called before invoking

withdraw.

5.2 Optimization
Given a symbolic actions vector and their approximated transit

functions, the sub-procedure Construct constructs an opti-

mization framework to find optimal values for the parameters

for the actions. Recall that given a blockchain state q and an

address adr, the actions vector S transforms q to another state

q′. The objective function in the optimization problem targets

to increase the tokens values in the balance of the address adr,
i.e., 𝑦 = B(q′, adr) − B(q, adr). The optimization problem is ac-

companied by constraints on the symbolic values to be inferred.

For instance, the balance of any token t for any address adr′

must always be non-negative, i.e., the adversary and the smart

contracts cannot use more tokens than what they have in their

balances, otherwise the transaction reverts. In the following, we

give the definition of the optimization problem.

P :

{
max𝑝0,𝑝1,...,𝑝𝑛 𝑦 = B(q′, adr) − B(q, adr)
subject to: ∀ t ∈ T, adr′ ∈ A. M(q′, adr′, t) ≥ 0

5.3 Counterexample Guided Data Collection
The optimization sub-procedure might explore parts of the states

space not explored during the initial data points collection.

This might challenge the accuracy of the approximations and

result in mismatch between the estimated and the actual values.

Thus, it is necessary to collect new data points based on the

counterexamples that show the mismatch between the estimated

and the actual values, to refine the approximations. Therefore,

we propose counterexample guided data collection (CEGDC),

inspired of counterexample guided abstraction refinement [17],

to refine approximations when mismatches are identified.

We use C to denote the attack vector s.t. q
C−→ q′. q′𝑒 and

q′𝑎 denote the estimated value for the state q′ found by the

optimizer and the actual value obtained when executing C
on the actual protocol on the blockchain, respectively. P𝑒 (C) =
B(q′𝑒 , adr)−B(q, adr) and P𝑎 (C) = B(q′𝑎, adr)−B(q, adr) denote
the estimated profit and actual profit, respectively.

6
Note a token can be standard tokens (ERC20, BEP20), or any other forms of tokens

represented by integers such as asset tokens, debt tokens or share tokens.
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Definition 5.1. A counterexample is an attack vector C whose
estimated profit P𝑒 (C) is different from its actual profit P𝑎 (C). For-
mally, |P𝑒 (C) −P𝑎 (C) | ≥ 𝜀 · ( |P𝑒 (C) | + |P𝑎 (C) |), where 𝜀 is a small
constant representing accuracy tolerance.

Algorithm 2: Counterexample guided data collection

procedure. It takes a counterexample C and a state q,
and returns datapoints. 𝑘 ∈ [𝑛; 1] means that in the first

iteration 𝑘 = 𝑛 > 0.

1: procedure CEGDC(C, q)
2: datapoints← [ ];
3: for each 𝑘 ∈ [𝑙𝑒𝑛 (C) ; 1];
4: q′𝑒 ← Estimate(q,C, 𝑘 ) ;
5: q′𝑎 ← Execute(q,C, 𝑘 ) ;
6: if IsAccurate(q′𝑒 , q′𝑎 )
7: returns datapoints ;
8: else
9: (a, paras) ← C[𝑘 ];
10: datapoints[a] ← (q, paras, q′𝑎 ) ;
11: return datapoints;

In Algorithm 2, we present the sub-procedure CEGDC for

collecting new data points from a counterexample. CEGDC

takes as inputs a counterexample C which is known to have

an inaccurate profit estimation, and a blockchain state. The for

loop on line 3 is used to locate approximation errors backward

from the last action to the first action and collect new data

points accordingly. In a loop iteration 𝑘 , FlashSyn checks if

the estimated methods of the action at the index 𝑘 of C are

accurate. First, FlashSyn computes the estimated state q′𝑒 reached

by executing C until reaching the action indexed 𝑘 (line 4) using

the approximated transition functions. Second, FlashSyn fetches

the actual state q′𝑎 reached by executing C until reaching the

action indexed 𝑘 (line 5) on the actual smart contracts on the

blockchain. Then, FlashSyn compares the estimated and actual

execution results (line 6). If the estimation is accurate, this

indicates that the transition functions of the action at the index

𝑘 of C and its predecessors are accurate; so the procedure breaks

the loop and returns the data points computed in the previous

iterations (line 7). Otherwise, it indicates inaccurate transition

functions of this action or/and its predecessors. Thus, we add a

new data point associated with the action at the index 𝑘 of C
(lines 9 and 10) and proceed to the next iteration of the loop

to explore the action predecessors.

5.4 FlashFind: Action Candidates Identification
Flash loan attacks typically focus on victim contracts containing

functions capable of transferring tokens,
7
which can be invoked

by regular users. The attacker manipulates the transfer amount

under specific conditions to make profit.

We designed and built a tool FlashFind to assist users of

FlashSyn to select action candidates likely to be involved in an

attack vector. Given a set of target smart contracts, FlashFind

identifies action candidates in the following steps.

5.4.1 Selecting Action Candidates from Contract Application Binary
Interfaces (ABIs). The Application Binary Interface (ABI) serves as

an interpreter enabling communication with the EVM bytecode.

For all verified smart contracts, their ABIs are publicly available.

7
Here, tokens refer to various forms of DeFi tokens, including stable coins, debt tokens,

share tokens, liquidity tokens, asset tokens, etc.

An ABI typically comprises (public or external) function names,

argument names/types, function state mutability, and return

types. During the process of selecting action candidates, certain

functions can be safely ignored: (1) Functions with the view or

pure mutability can be excluded. (2) Functions that can only

be invoked by privileged users, such as transferOwnership and

changeAdmin, can also be disregarded since they are unlikely

to be accessed by regular users.
8
(3) Token permission man-

agement functions/parameters, such as the function approve or

parameter deadline, are excluded.
9
These functions/parameters

solely control whether a transaction will be reverted or not and

do not affect the behaviors of contracts.

5.4.2 Learning Special Parameters from Transaction History. After
selecting a set of action candidates from contracts’ ABIs, some

non-integer parameters(eg. bytes, string, address, array, enum)

can still be unknown. FlashFind collects past transactions of

the target contracts and extracts function level trace data from

these transactions, and utilizes the trace data to learn the special

parameters from previous function calls made to the contract.

5.4.3 Local Execution and Intra-dependency Analysis. After learn-

ing special parameters, each action candidate is executed at a

given block to verify its executability. An action candidate may

not be executable due to various reasons: (1) the function is

disabled by the owner or admin; (2) internal function calls to

other contracts are disabled by the owners or admins of those

contracts; (3) the function is not valid under current blockchain

states. The inexecutability due to these reasons cannot be identi-

fied by static analysis and can only be determined by executions.

All such inexecutable functions are filtered out.

FlashFind automatically collects storage read/write informa-

tion during the execution of these functions and infers the

Read-After-Write (RAW) dependencies
10

between different action

candidates. An action A has a RAW dependency (or equivalently,

is RAW dependent) on action B if the execution of action A

reads the storage written by action B.
11

From the RAW depen-

dencies, it is possible to observe that certain functions behave

independently, meaning they do not have any RAW depen-

dencies on other functions, and other functions do not have

any RAW dependencies on them either. Consequently, these

independent functions can be safely ignored.

After analyzing ABIs, transaction history, and local executions,

FlashFind generates a list of action candidates with only their

integer arguments left undetermined. These action candidates

are then input into FlashSyn for further synthesis.

6 IMPLEMENTATION
FlashSyn is implemented in Python. Figure 3 shows an overview

of our implementation. The components Runner , Synthesizer ,

8
Previous works [44, 50] have extensively researched access control vulnerabilities.

We exclude them from the scope of this work.

9
To simplify the search process of FlashSyn, these permissions are assumed to be

granted maximally.

10
This RAW dependency information is also employed in FlashSyn’s initial data col-

lection to expand the range of data points.

11
It is important to note that this step excludes any tx.origin/msg.sender-related storage

reads/writes, as such storage accesses do not alter the global state of the protocol and

are therefore unlikely to impact the functional behaviors of actions.
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Figure 3: An Overview of FlashSyn Implementation

Approximator , and Optimizer implement the FlashSyn synthesis

procedure presented in Algorithm 1. An optional component

FlashFind is used to automatically identify action candidates.

(1) Approximator. Approximator approximates the transition

functions using data points collected by Runner . The approxi-

mated transition functions are then given to Optimizer to con-

struct the optimization framework. In Approximator , all transition
functions of an action are approximated unless the transition

functions are straightforward assignment/addition/subtraction

(by simple inspection of smart contract codes), or the action

is very common (such as Uniswap that has been widely stud-

ied [59, 79, 81]). FlashSyn implements two numerical methods

using external libraries. FlashSyn-poly utilizes sklearn [10, 58],

and FlashSyn-inter employs scipy [71]. The choice of polynomial

and interpolation methods is motivated by several considera-

tions. First, FlashSyn requires fast evaluation of approximated

functions, as thousands of evaluations are performed in the opti-

mization process. Second, when provided with an input not seen

before, the approximation method needs to yield a reasonable

estimation based on the nearest points. Lastly, given that a typi-

cal FlashSyn process involves learning dozens of approximated

formulas, the approximation process for one formula should not

exceed a few seconds. Polynomial and interpolation methods

are the two most popular approximation approaches that meet

all of these criteria and there are off-the-shelf tools like sklearn

and scipy that are easy to intergate in FlashSyn.

(2) Optimizer. Optimizer automatically builds an optimization

problem using the approximated transition functions returned

by Approximator and the symbolic actions vectors enumerated

by Synthesizer and performs global optimization on it. The

obtained attack vector that yields a positive profit is then exe-

cuted by Runner to confirm the accuracy of the estimation. If

the estimation is inaccurate, the attack vector is treated as a

counterexample and is used to collect new data points by Run-
ner that are used by Approximator to refine the approximation.

We built Optimizer on top of an off-the-self global optimizer

scipy.optimize.shgo [24, 47, 72], which solves the simplicial

homology global optimization algorithm to find the optimal

parameters.
12

In FlashSyn-poly, we parallelized Optimizer com-

ponent using up to 18 processes where Optimizer is run over

multiple symbolic actions vectors in parallel.

12
Note that we were not able to use local optimizers in scipy.optimize library [71]

which require an initial guess of parameters. Under our settings, it is not feasible to

find an initial guess for every symbolic attack, as each attack behaves differently.

(3)Runner. Runner executes transactions on a forked blockchain.

It performs both initial and counterexample based data collection,

and validates results of Optimizer . We implemented Runner on

top of Foundry [39], a toolkit written in Rust for smart contracts

development that allow to interact with EVM based blockchains.

(4) Synthesizer. Synthesizer first enumerates and prunes sym-

bolic actions vectors using heuristics. Then, during counterexam-

ple guided loops, it employs priority scoring to gradually drop

actions vectors based on their scores. Synthesizer uses iterative

synthesis. Optimizer can be configured with different hyperpa-

rameters to perform different strengths of parameter search. We

designed 3 sets of hyperparameters which represent different

strengths of parameter search. Synthesizer first conducts a weak-

est parameter search on all enumerated symbolic actions vectors

using Optimizer . After Runner validates the results, Synthesizer
ranks symbolic actions vectors and drops the ones with low

priority scores. The actions vector with high priority score will

be searched with higher strengths. Specifically, if a symbolic

actions vector yields a positive profit P in iteration 𝑘 , its pri-

ority score of iteration 𝑘 + 1 is P. If a symbolic actions vector

does not yield a positive profit in iteration 𝑘 , it is given a small

priority score between 1 and 10 based on Optimizer results. An

actions vector will also be dropped when its priority score does

not increase between iterations. When all actions vectors are

dropped, the whole synthesis procedure stops, and FlashSyn

returns all the profitable attack vectors it found.

(5) FlashFind. We also implemented FlashFind as an optional

component. FlashFind uses TrueBlocks [65] and blockchain ex-

plorers [9, 34, 42] to collect past transactions of the target

contracts. FlashFind employs Phalcon [1] and Foundry [39] to

extract function level trace data from those transactions and

perform analysis on storage accesses. Our evaluation shows that

FlashFind is able to identify action candidates and helps FlashSyn

discovers alternative attack vectors (see RQ4 in Section 7).

FlashSyn does not require prior knowledge of a vulnerable

location or contract. Given a set of DeFi lego user interface

contracts, action candidates and their special parameters such

as strings are given by the users or automatically extracted

from transaction history using FlashFind. FlashSyn utilizes these

action candidates to synthesize attack vectors and search for

optimal numerical values. Note that these action candidates are

not necessarily the ones that contain the vulnerability. Rather,

they serve as user interfaces for interacting with the protocol.

The vulnerability may reside in any contract invoked through

nested calls originating from these action candidates. If FlashFind

is not utilized, users can consult the protocol documentation to

identify the appropriate user-interface contracts and functions

(action candidates), as well as how to select special parameters

for invoking these functions. Such information is essential for

any user interacting with the protocol, and is generally available

in the documentations of DeFi protocols.

7 EVALUATION
We aim to answer the following research questions:

RQ1: How effective is FlashSyn in synthesizing flash loan attack

vectors?
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Table 2: Benchmark of Attacks Used in the Evaluation.

Benchmark #C
+

LoC
∗

Vulnerability Type Tx

ETH

bZx1 6 4964 pump&arbitrage [25]

Harvest_USDT 6 6446 manipulate oracle [28]

Harvest_USDC 6 4095 manipulate oracle [29]

Eminence 2 489 design flaw
†

[27]

ValueDeFi 8 7043 manipulate oracle [31]

Cheesebank 12 1246 manipulate oracle [26]

Warp 11 13139 manipulate oracle [32]

Yearn 5 2200 forced investment [33]

inverseFi 7 5734 manipulate oracle [30]

BSC

bEarnFi 3 3007 asset mismatch [5]

AutoShark 6 8052 design flaw
†

[4]

ElevenFi 7 5613 design flaw
†

[6]

ApeRocket 7 1562 design flaw
†

[3]

WDoge 2 788 deflationary token [8]

Novo 4 7080 design flaw
†

[7]

FTM OneRing 14 5386 design flaw
†

[41]

DVD

Puppet 2 742 manipulate oracle [20]

PuppetV2 1 161 manipulate oracle [21]

Total Financial Loss in History 82.5 million USD

+: #C denotes number of the victim protocol’s contracts invoked in exploits.

∗: LoC denotes total number of lines of code in the contracts identified by

#C, excluding closed-source contracts.

†: The logic designs of one or more functions in the victim contracts is

flawed, with highly specific case-by-case vulnerabilities.

RQ2: How well does the synthesis-via-approximation technique

perform compared to precise baselines?

RQ3: How much does counterexample driven approximation

refinement improve FlashSyn’s results?

RQ4: How effective is the combination of FlashFind and Flash-

Syn to synthesize attack vectors end-to-end?

Scope: FlashSyn focuses on flash loan attacks that generate

positive profit by sequentially invoking functions within existing

DeFi contracts. Security attacks that require exploiting other vul-

nerabilities such as re-entrance or conducting social engineering

are outside the scope of FlashSyn and our evaluation. The goal

of FlashSyn is to prove the existence and the exploitability of

flash loan vulnerabilities. Consequently, activities such as getting

and repaying the flash loan are not part of our synthesis task.

Benchmarks: We investigated historical flash loan attacks

that span from 02/14/2020 to 06/16/2022 across Ethereum, Bi-

nance Smart Chain (BSC), and Fantom (FTM) and attempted to

reproduce each of them in our environment. In the end, we

reproduced 16 attacks that are within our scope and collected

them as our benchmark attacks. These attacks invoked 2-14

contracts of the victim protocol in the nested invocation tree

per attack, consisting of a total of 489 to 13, 139 lines of code,

reflecting the multifaceted nature of the DeFi protocols exploited

in real-world flash loan attacks. Also, protocols in our bench-

mark contain up to 15 action candidates from which FlashSyn

needs to find an attack vector. Altogether, the 16 historical flash

loan attacks in our benchmark have caused over 82.5 million

US dollars in losses and include widely-known cases such as

Harvest, bZx, and Eminence. Additionally, we include 2 fictional

attacks from the Damn Vulnerable DeFi (DVD) challenges [19].

Ground Truth: For historical flash loan attacks, we forked the

corresponding blockchain at one block prior to the attack trans-

action and replayed the attacker’s attack vector as the ground

truth. For DVD benchmarks, we select community solutions as

ground truth. Note that in a flash loan attack, if the same attack

vector is repeated multiple times, we remove the loop and only

consider the first attack vector as the ground truth.

Precise Baseline: To demonstrate the effectiveness of synthesis-

via-approximation techniques, we implemented a baseline syn-

thesizer that works with manual summaries of smart contract

actions. Specifically, we manually inspected all benchmarks

whose relevant smart contracts that are all open-source and

for each benchmark we allocated more than 4 manual analy-

sis hours to extract the precise mathematical summaries. The

baseline synthesizer then uses the manually extracted precise

summaries to drive the synthesis.

Environment Setup: We assume that the flash loan providers

are generally available, and we do not consider the borrow

and the return as the part of the synthesis task. To facilitate

FlashSyn experimentation, we manually annotated the prestates

and poststates for each action. The details of this annotation

process are described in the extended version [13] Appendix C.

Although this manual effort is required, it’s worth noting that

automation of this step is possible. Techniques such as dynamic

taint analysis and forward symbolic execution can be employed

to automatically identify which storage variables influence the

change in token balances, thereby streamlining the annotation of

prestates and poststates. The experiments are conducted on an

Ubuntu 22.04 server, with an AMD Ryzen Threadripper 2990WX

32-Core Processor and 128 GB RAM.

Experiment Overview. To answer RQ 1, we apply FlashSyn

to the 18 benchmarks with the same set of candidate actions

in ground truths. For each candidate action, the prestates and

poststates are annotated for FlashSyn to drive the approximated

formula for this action. We set a timeout of 3 hours for FlashSyn-

poly and 4 hours for FlashSyn-inter. FlashSyn does not know a

priori whether a benchmark has an attack vector with a positive

profit, and it does not set any bounds on the profit. It tries

iteratively to synthesize an attack vector with a maximum profit.

FlashSyn’s refinement loop is guided by intermediate results

and FlashSyn stops when it cannot improve the profit or the

above timeouts are reached. To answer RQ 2, we replace Approx-
imator component of FlashSyn with manually extracted precise

mathematical summaries, and conduct the same experiment with

4 hours timeout. To answer RQ 3, we evaluate FlashSyn with

different initial data points and with CEGDC enabled/disabled.

To answer RQ 4, we first use FlashFind to identify candidate

actions from given contract addresses which the hacker used

in history, manually annotate them as in RQ 1, and then apply

FlashSyn with this new set of candidate actions to synthesize

attack vectors under the same setting as in RQ 1. The results

for RQ 1+RQ 2, RQ 3, RQ 4 are summarized in Table 3, Table 4,

and Table 5, respectively.

RQ1: Effectiveness of FlashSyn. Table 3 summarizes the re-

sults of the experiment. The first five columns of Table 3 list

benchmark information including the number of actions to be

approximated and the length of the ground truths. The four
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Table 3: Summary of FlashSyn Results. AC denotes the number of action candidates. AP denotes the number of action candidates
to approximate. GL and GP denote the length and the profit of the ground truth attack vector, respectively. IDP and TDP denote
the initial and total number of collected of data points, respectively. Time denotes the time spent in seconds.

FlashSyn-poly FlashSyn-inter Precise
Benchmark AC AP GL GP IDP TDP Profit Time TDP Profit Time Profit
bZx1 3 3 2 1194 5192 5849 2392 422 6373 2302

†
441 cs

Harvest_USDT 4 4 4 338448 8000 9325 110139
†

670 10289 86798
†

7579 cs

Harvest_USDC 4 4 4 307416 8000 8912 59614
†

677 10914 110051
†

8349 cs

Eminence 4 4 5 1674278 8000 8780 1507174 1191 8104 / / 1606965

ValueDeFi 6 6 6 8618002 12000 19975 8378194
†
4691 15758 6428341

†
11089 cx

CheeseBank 8 3 8 3270347 2679 2937 1946291
†
4391 2715 1101547

†
10942 2816762

†

Warp 6 3 6 1693523 6000 6000 2773345
†
1164 6000 / / 2645640

†

bEarnFi 2 2 4 18077 4000 4854 13770 470 4652 12329 688 13832

AutoShark 8 3 8 1381 2753 2753 1372
†

5484 2753 / / cx

ElevenFi 5 2 5 129741 4000 4070 129658 409 4326 85811 898 cx

ApeRocket 7 3 6 1345 6000 6402 1333
†

733 6235 1037
†

3238 cs

Wdoge 5 1 5 78 2000 2001 75 272 2080 75 289 75

Novo 4 2 4 24857 4000 4164 20210 702 4031 23084 861 cx

OneRing 2 2 2 1534752 4000 4710 1814882 585 4218 1942188 367 cx

Puppet 3 3 2 89000 6000 6301 89000
†

1203 6452 87266
†

1238 89000
†

PuppetV2 4 3 3 953100 4491 4836 747799
†

2441 5061 362541
†

2835 647894
†

Solved:16/18 Avg. Time: 1594 Solved:13/18 Avg. Time: 3754
†: FlashSyn’s results include at least one attack vector that differs from the ground truth.

Table 4: Summary of FlashSyn Results under Different Settings (see extended version [13] Appendix F for detailed results). n+x:
n denotes the settings of initial number of data points and +x denotes whether FlashSyn uses counterexample driven loops.

FlashSyn-poly FlashSyn-inter
200 200+x 500 500+x 1000 1000+x 2000 2000+x 200 200+x 500 500+x 1000 1000+x 2000 2000+x

Avg. Time (s) 632 893 1120 1747 842 1397 982 1594 2601 3509 3180 3917 3022 3845 3200 3754

Avg. Data Points 584 1042 1432 2376 2795 3571 5445 6367 584 1338 1432 2450 2795 3656 5445 6248

Avg. Norm. Profit 0.793 0.829 0.846 0.922 0.762 0.786 0.717 0.945 0.539 0.555 0.630 0.634 0.535 0.580 0.594 0.641

Benchmarks Solved 15 15 15 16 15 15 15 16 13 13 14 14 13 13 13 13

columns under FlashSyn-poly list data concerning the synthe-

sis using polynomial approximations. The four columns under

FlashSyn-inter list data concerning the synthesis using interpo-

lation based approximation.

Our results show that FlashSyn can effectively synthesize

flash loan attack vectors. FlashSyn-poly (resp., FlashSyn-inter)

synthesizes profitable attack vectors for 16 (resp., 13) benchmarks

with an average normalized profit (w.r.t. the ground truth profit)

of 0.945 (resp., 0.641). For three cases (ApeRocket, ElevenFi,
and AutoShark) the profits found by FlashSyn-poly are within

99% of the profits in the original attacks vectors. Surprisingly

in another three cases (bZx1, Warp, and OneRing) the profits

found by FlashSyn are bigger than the profits in the original

attacks vectors. For instance, in the Warp case the profit is

roughly double the ground truth profit (see extended version [13]

Appendix B for Warp case study). On average, FlashSyn-poly is

×2 faster than FlashSyn-inter, because we used parallelism in

FlashSyn-poly which is not possible for FlashSyn-inter.

For 10 benchmarks, FlashSyn successfully discovers new prof-

itable symbolic actions vectors that are different from the ground

truths. These vectors either exploit the same vulnerability but

in a different order of actions, or represent arbitrage opportuni-

ties that were not exploited by the original attackers. For the

remaining 6 benchmarks, FlashSyn discovers exactly the same

symbolic actions vectors as the ground truths but with different

parameters. Note that FlashSyn is not able to solve Yearn and In-
verseFi which are not shown in Table 3. These two benchmarks

put high requirements on the precision of the approximation

and small miss-approximation errors caused FlashSyn to miss

finding attack vectors and accurate parameters.

To evaluate the efficacy of the pruning heuristics introduced in

Section 5.1, we conduct experiments comparing the search space

sizes when using FlashSyn with and without the application

of some of the heuristics. Our results indicate that Heuristic

1 leads to an average reduction of 57% in the search space

size. Subsequently, Heuristic 2 further reduces the remaining

search space by an additional 34%, and Heuristic 3 contributes

an additional reduction of 65% to the remaining search space.

To compare FlashSyn with existing static analyzers, we manu-

ally select contracts containing vulnerabilities in the benchmarks

and apply the popular smart contracts static analyzer Slither [35]

to them. In the experiments, we identify contracts that contain
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the root cause of the vulnerabilities as the target contracts

for Slither to analyze. Note that in practice, identifying target

contracts for Slither is much harder than that for FlashFind.

For FlashFind, the target contracts are simply user-interface

contracts. In contrast, identifying the contract with the actual

vulnerability, such as a contract invoked in a deeply nested call

chain, can be tedious. Slither fails to detect vulnerabilities for all

18 benchmarks, among them Slither fails to parse 2 benchmarks

(Novo and Yearn). The possible reasons include: (i) Slither’s

inability to reason across multi-contract interactions, common

in flash loan attacks; and (ii) its lack of context awareness, such

as not detecting Uniswap [70] when used as an oracle.

RQ2: Comparison with Precise Baseline. The last column

of Table 3 lists data when the approximation component of

FlashSyn is replaced with precise mathematical summaries for

actions. Note that 4 benchmarks are partially closed-source (cs),
and 5 benchmarks are too complicated (cx), thus we are not

able to extract mathematical precise summaries for them. For

others, we list the profit generated using the manually extracted

mathematical expressions in the synthesizer and optimizer.

Our results in Table 3 show that the synthesis-via-approxima-

tion approach performs well compared to precise baselines. For

the 9 cases that the precise baseline failed due to either close

source (cs) or complicated contract logics (cx), FlashSyn found

attack vectors that generate positive profits. On average, for the

7 cases that the precise baseline succeeds, the best profit from

FlashSyn is 0.97 of the profit returned by the precise baseline.

In particular, for Warp and PuppetV2 FlashSyn synthesizes an

attack vector with a profit higher than that obtained by the

precise approach. This is because the approximations used in

FlashSyn are simpler than the mathematical summaries used in

precise baseline. This enables the optimizer to converge faster

and find better parameter values within the fixed time budget.

RQ3: Counterexample Driven Approximation Refinement.
Table 4 summarizes the evaluation of FlashSyn under different

settings. In particular, we evaluated FlashSyn with 200, 500, 1000,

and 2000 initial data points threshold per action to be approxi-

mated without and with counterexample loop. The Avg. rows
in Table 4 are calculated based on the 16 benchmarks excluding

Yearn and InverseFi. The Avg. Norm. Profit is calculated as the

average of normalized profits, i.e., profit / ground truth profit.

For FlashSyn-poly, the results in Table 4 show that only with

counterexample loop we are able to solve the 16 benchmarks

(Columns 500+x and 2000+x). Also, the maximum average

of normalized profits is achieved with counterexample loop

(Column 2000+x) which improved from 0.717 (Column 2000)
without counterexample loop to 0.945 with counterexample loop.

For FlashSyn-inter, the maximum average of normalized profits is

also achieved with counterexample loop (Column 2000+x) which
improved from 0.594 (Column 2000) without counterexample

loop to 0.641 with counterexample loop.

RQ4: Effectiveness of FlashFind. In this experiment, we eval-

uate the combination of FlashFind and FlashSyn on the 14

benchmarks that FlashSyn was able to synthesize a profitable

attack vector in Table 3 excluding the two fictional DVD bench-

marks.
13

In particular, only contract addresses are provided to

FlashFind and FlashFind identifies candidate actions for FlashSyn

to synthesize attack vectors with the 2000 initial data points

threshold per action configuration. Table 5 presents the results.

FlashFind successfully identifies a reasonable number of action

candidates for 11 out of the 14 benchmarks from given contract

addresses. Among them, FlashFind identifies additional candidate

actions for 7 benchmarks. For instance, FlashFind identifies

6 additional candidate actions for OneRing. The remaining 3

benchmarks contains action candidates whose arguments are

non-primitive types, and FlashFind identifies an excessive and

impractical number of choices from transaction history.
14

Even with the extra candidate actions FlashSyn was able

to synthesize profitable attack vectors for all 11 benchmarks.

Surprisingly in 6 benchmarks, FlashSyn finds attack vectors that

contains new action candidates from FlashFind that are not in

the ground truth. There are two possibilities: First, the new

action candidates identified by FlashFind are functionally similar

to one action in ground truths (e.g, withdraw and withdrawSafe
for OneRing). Replacing old actions with new ones gives new

attack vectors. Second, the new action candidates represent

another way of draining assets which the attacker failed to

identify. For example, in the Warp benchmark, the attacker only

invoked borrowSC(USDC, v) and borrowSC(DAI, v) to drain USDC

and DAI [32, 63], however, FlashFind identifies borrowSC(USDT,
v) as another candidate action, which could have been used to

drain USDT as well in the same transaction.

Impact. One author of this paper collaborated with Quantstamp

for applying FlashSyn for 3 months. We discovered two zero-day

flash loan vulnerabilities in two protocols under audit.

Threats to Validity: The internal threat to validity mainly

lies in human mistakes in the study. Note that all authors

have extensive smart contract security analysis experience and

software engineering expertise in general. To further reduce

this threat, we manually check the balance changes for the

best results given by FlashSyn in each benchmark. We verify

that with the help of on-chain exchanges, these attack vectors

can generate a post-balance strictly larger than initial capital

(see extended version [13] Appendix E). The external threat to
validity mainly lies in the subjects used in our study. The flash

loan attacks we study might not be representative. We mitigate

this risk by using diverse and reputable data sources, including

academic papers [12, 59] and an industrial database [67].

Limitations: Like most synthesis tools, FlashSyn faces scalabil-

ity challenges. The search space grows exponentially with the

number of actions and attack vector length. A practical approach

is to assess protocols on a module by module basis. By focus-

ing only on inter-dependent actions within, we can maintain

both the number of actions and the attack vector length at

manageable levels, thereby mitigating the scaling issue.

13
DVD benchmarks do not have historical transactions that FlashFind can use.

14
In such cases, we believe experienced security analysts could manually identify

special parameters and further reduce the number of parameter choices.
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Table 5: Summary of Evaluation Results of Combining FlashSyn with FlashFind. AC is the number of action candidates. AP is
the number of action candidates to approximate. GL and GP are the length and the profit of the ground truth attack vector,
respectively. IDP and TDP are the initial and total number of collected of data points, respectively. Time is measured in seconds.

FlashFind + FlashSyn-poly FlashSyn-poly
Benchmark GL GP AC AP IDP TDP Profit Time AC AP IDP TDP Profit Time
bZx1 2 1194 3 3 5192 5849 2392 422 3 3 5192 5849 2392 422

Harvest_USDT 4 338448 15 15 30000 34052 85593
‡

5514 4 4 8000 9325 110139
†

670

Harvest_USDC 4 307416 15 15 30000 51726 33645
‡

3630 4 4 8000 8912 59614
†

677

Eminence 4 1674278 4 4 8000 8780 1507174 1191 4 4 8000 8780 1507174 1191

ValueDeFi 6 8618002 6 6 12000 19975 8378194
†
4691 6 6 12000 19975 8378194

†
4691

Warp 6 1693523 8 5 7772 7772 2776351
‡
3129 6 3 6000 6000 2776351

†
1164

bEarnFi 4 18077 2 2 4000 4854 13770 470 2 2 4000 4854 13770 470

ApeRocket 6 1345 11 5 10000 10706 1179
‡

3064 7 3 6000 6402 1333
†

733

Wdoge 5 78 7 2 4000 4107 75
‡

769 5 1 2000 2001 75 272

Novo 4 24857 6 2 4000 4172 15183 791 4 2 4000 4164 20210 702

OneRing 2 1534752 8 8 16000 16614 1814877
‡
1104 2 2 4000 4710 1814882 585

†: FlashSyn’s results include at least one attack vector that differs from the ground truth.

‡: FlashSyn’s results include at least one attack vector that contains an action not present in the ground truth.

8 RELATEDWORK
Parametric optimization: For some flash loan attack cases,

researchers [12, 59] manually extracted math formulas of func-

tion candidates, manually defined related parameter constraints,

and used an off-the-shelf optimizer to search for parameters

which yield the best profit. However, this technique requires

significant manual efforts and expert knowledge of the under-

lying DeFi protocols. Consequently, it becomes impractical for

checking a large number of potential attack vectors. Note that

our benchmark set contains significantly more flash loan attacks

than prior work [12, 59], i.e., 18 versus 2 in [59] and 9 in [12].

Static Analysis: Slither [35], Securify [69], Zeus [48], Park [83]

and SmartCheck [68] apply static analysis techniques to verify

smart contracts. There are also several works that use symbolic

execution [49] to explore the program states of a smart contract,

looking for an execution path that violates a user-defined invari-

ant, e.g., Mythril [18], Oyente [52], FairCon [51], ETHBMC [40],

SmartCopy [36], and Manticore [56]. These techniques tend

to operate with one contract at a time and therefore cannot

handle flash loan attacks that involve multiple contracts. These

techniques also may suffer from the complicated logics of the

DeFi contracts, and cause path explosion. FlashSyn uses its novel

synthesis-via-approximation techniques to avoid these issues.

Fuzzing: ContractFuzzer [46], sFuzz [57], ContraMaster [75],

SMARTIAN [16] and ItyFuzz [66] introduce novel fuzzing tech-

niques to discover vulnerabilities in smart contracts. However,

these techniques either only work on one contract or focus

on specific vulnerabilities like re-entrancy. Moreover, flash loan

attack vectors can contain up to 8 actions and 7 integer param-

eters, which is unlikely to be found by random fuzzing.

Flash Loan Attacks: Prior works [12, 59, 76] study specific

flash loan attacks and manually analyze the attack vectors. Some

tools [62, 73, 80] are designed to monitor flash loan attacks

after they happened. Some researchers investigate other usage

of flash loans including arbitrage [74] or wash trading [43].

To the best of our knowledge, FlashSyn is the first tool that

automatically synthesizes complicated flash loan attack traces. It

shows successes in real-world DeFi protocols under audit.

9 CONCLUSION
We have proposed an automated synthesis framework based

on numerical approximation to generate the flash loan attack

vectors on DeFi protocols. Our results of FlashSyn show that the

proposed framework is practical and FlashSyn can automatically

synthesize attack vectors for real world attacks. Our results also

highlight the effectiveness of the synthesis-via-approximation

approach. The approach helps FlashSyn to overcome the chal-

lenges posed by complicated functions in DeFi protocols and our

results demonstrate that using approximations of these functions

is sufficient to drive the synthesis process. FlashSyn has been

adopted by a top smart contract auditing company to detect

flash loan vulnerabilities. The paper also points out a new

promising direction, synthesis-via-approximation, for solving

trace synthesis problems when facing complicated functions.

10 DATA AVAILABILITY
The benchmarks, source code and experimental data of our

artifacts are publicly accessible on [14] and have been archived

on [15]. Additionally, additional materials of this research are

available at the extended version of this paper [13] and the

website https://sites.google.com/view/FlashSyn.
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