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Software development in application domains where model-based techniques are em-

ployed faces challenges related to managing sets of inter-dependent models of various

types. In such settings, capturing the semantic structure of sets of models, as well as

being able to check the validity of relationships between models that constitute this struc-

ture, can be of significant importance. Additionally, as inconsistencies can arise between

models that are not obviously related, the ability to infer implicit relationships between

models can help to further enforce the semantic cohesiveness of sets of related models.

To this end, we propose an approach to model management centered around the

declaration and definition of relation types. We describe how hierarchies of such relation

types can be created to express their purpose, application scenarios and well-formedness

rules. Such hierarchies consist of abstract relation types via which the purpose for relating

models can be expressed. Concrete relation types for specific application scenarios can

then be created by extending the abstract ones. Such concrete relationships are tied to

particular metamodels, constrained by well-formedness rules, which can be used to verify

the proper application of relation types.

We showcase our approach by applying it to the domain of automotive software engi-

neering, a domain where model-based techniques are becoming increasingly prominent,

to demonstrate how typed relationships can be employed in multi-model environments

to check for consistency between models and to compose relationships to infer new ones.
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Chapter 1

Introduction

1.1 Problem area

The ever increasing complexity of the technical and the relevant socio-technical systems

that are involved in the lifecycle of software artifacts poses a variety of difficult problems.

These problems stem from the appearance of accidental complexity in a range of settings

in the overall creation process and lifecycle of software. Model Driven Engineering (MDE)

has been proposed as an approach to tackle those, based on the usage of models to help

raise the level of abstraction, highlight various perspectives of systems and reduce effort

by supporting transformation, model analysis and code generation [22].

In development settings where model based techniques are involved, development

is bound to include large numbers of models. Such models can originate from diverse

sources and can be dependent in a variety of ways. The need to comprehend, represent,

analyze and manipulate such sets of interdependent models has given rise to the discipline

of model management. Various model management techniques have been developed in

an attempt to tackle the complexities of handling sets of interdependent models, such as

[12], [16], [15] and [40].

As any approach to model management is concerned with the interdependencies be-
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Chapter 1. Introduction 2

tween models, the issue of handling relationships among models that express such de-

pendencies is fundamental. Related models can be heterogeneous, as it is possible that

they are defined using diverse tools and notations. Moreover, there are various kinds of

dependencies that can exist between models, which reflect the various ways models can

constrain one another [40]. The creation of mappings between models often relies on

human intervention or heuristics [15]. Similar issues are of concern in the area of schema

integration, where efforts are made to raise the level of abstraction and create tools to

facilitate human designers in creating and managing mappings [13].

1.2 Summary of problem statement and approach

In this research context, i.e., of facilitating the management of relationships between

models, we aim to create a conceptual infrastructure by which human designers engaged

in managing models can be able to do so with a better understanding of their semantics,

as proposed in [13]. We therefore focus on the issue of managing the various ways that

models can be related.

Therefore, in this thesis we propose an approach to managing models in multi-model

environments that is centered around the declaration and definition of hierarchies of

relation types that can convey the purpose for establishing dependencies between models

in various application scenarios. We argue that employing such an approach can enable

developers to semantically structure sets of heterogeneous models, as well as check them

to ensure that such a semantic structure is valid.

Moreover, by using relation types to organize the various dependencies between mod-

els, we can create support for various MDE tasks in multi-model environments, such as

composing relationships to infer new ones, thus exposing implicit knowledge and possibly

non-evident inconsistencies between models that are non obviously related.

We demonstrate this approach by applying it to the domain of automotive software
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engineering, an area where model-based techniques are becoming increasingly prominent.

This is evident by industry-wide collaborations to create model-based standards, such

as AUTOSAR [3], to address issues of the domain, as well as by the various practical

model-based approaches to automotive software development that have been presented,

such as [10], [9] and others. The various challenges facing the domain of automotive

software engineering have lead to calls from software researchers in the field to tackle

the particular challenges in the automotive software domain, including issues related to

integrated, seamless model-driven approaches [18], [36].

The domain of automotive software engineering is therefore a good example of a do-

main where our approach to model management can be employed with tangible benefits.

By demonstrating its application in such a domain we hope to showcase how our approach

attempts to tackle issues pertaining to the wider model management research area and

therefore to the application of model based techniques in software engineering in general.

1.3 Organization of the thesis

In Chapter 2, we give an overview of some basic principles of the domain of automotive

software engineering, along with its basic model types and establish a running example,

which we use throughout the thesis to demonstrate our relation-centric approach.

In Chapter 3, we present the theoretical background for our approach, which is then

presented in Chapter 4. We outline the basic mechanics of our approach, describing how

hierarchies of relation types can be defined, from abstract relations to concrete ones, tied

to particular application scenarios.

In Chapter 5, we present two applications of our approach to practical problems from

the area of model management, in particular, consistency checking and relationship infer-

ence. Chapter 6 contains a description of how the Model Management Tool Framework

(MMTF) can provide tool support for our approach.
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Chapter 7 presents a brief overview of related work, and the thesis concludes in

Chapter 8 with an assessment of our approach and future steps.



Chapter 2

Motivating example: the

Automotive Domain

The emergence of automotive software has been an evolutionary, bottom-up process [18].

This, along with the inherent constraints of the domain have contributed to a number of

domain-specific characteristics. In the following we present a brief overview of some basic

principles and kinds of models of the automotive software engineering domain, along with

establishing a motivating example which we use in the following chapters to demonstrate

the concepts relevant to our approach. Our view of the automotive domain has been

shaped by literature such as [10], [37], [36] and [18] and discussions with domain experts.

2.1 Principles

2.1.1 Physical architecture

Historically, automotive software systems have comprised of software embedded in dedi-

cated controllers (Electronic Control Units, ECUs). ECUs can be dedicated to particular

functions, however applications can also be distributed among several communicating

ECUs.

5
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This points to a degree of coupling between application software and physical ECU

networking architecture. The various software components that are being built are ulti-

mately assigned to particular (possibly sets of) ECUs, and configured accordingly. More-

over, issues pertaining to networked, parallel software components, such as communica-

tion, synchronization and data integrity, need to also be addressed.

2.1.2 Reactive systems

While nowadays software in vehicles can be found even in secondary application domains

such as entertainment, the majority of automotive software components are reactive sys-

tems. That is, the functionality of the embedded software controllers can be summarized

in an infinite loop consisting of a step reading input from sensors and a step of triggering

actuators according to the input [8].

This points to a set of issues related to scheduling controllers, as well as calibrat-

ing data access mechanisms, such as polling or data pulling/pushing. Issues related to

networking and parallelism are also relevant. Moreover, the sensor/controller/actuator

schema is pervasive in the domain and often defines the architectural alignment of soft-

ware components.

2.1.3 Signal-based communication

The reactive nature of the controllers and the coupling with physical architecture also

impact the ways with which physical as well as logical components can communicate. This

is further exacerbated by the sensor/controller/actuator schema of automotive software

systems.

Stemming from long-standing control engineering traditions by practitioners in the

field, automotive software systems tend to be designed in a componentized fashion, where

information is passed around by means of software signals. Data calibration is of signifi-

cance with this regard, as well as the data access mechanisms mentioned earlier.
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2.1.4 Variability and reusability

The area of automotive software engineering faces much of the same issues that the

general automotive engineering domain has to deal with, such as rapid development

cycles, changing requirements and needs for suppression of costs. Therefore, issues of

building software in such a manner as to be able to support functional variability, as well

as being able to achieve a high degree of reusability are of significant importance.

This often results in designing software components in a very minimalistic manner

with regard to their functionality and interfaces. This enables building bundles of existing

subcomponents to create components implementing a desired feature set.

2.1.5 Code generation

Model-based techniques are widely employed by the automotive industry [18] [10], as they

allow high level design and code generation, while supporting more formal approaches to

evaluating and ensuring software quality. Therefore, domain-specific modeling languages

are employed in order to create highly stylized models that are suitable for code genera-

tion. The use of custom code generators further allows for flexibility in the process, while

achieving a degree of correctness and robustness.

2.2 Motivating example

We now present a motivating example which we use in the following in order to demon-

strate the various kinds of modeling artifacts that occur in the domain.

We assume the scenario (henceforth referred to as WipersStory) where an automotive

company outsources the creation of a windshield wiper subsystem for a vehicle to a

supplier, who is tasked with producing the hardware and software for the controller of

the system. The automotive company needs to produce a specification of the wipers

subsystem and describe how it fits with the larger architecture of the vehicle. The
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Figure 2.1: Illustration of the motivating example (WipersStory).

supplier must then refine the specification to a design, making critical implementation

decisions.

The specification produced by the automotive company describes the behavior of

the system, as well as how it fits into the larger architecture of the vehicle. To keep

things simple in the context of this thesis, we assume that the behavior is described in

English, while the architecture is given by a UML Component Diagram such as the one

in Figure 2.2.

In the diagram, the automotive company defines that the windshield wiper subsystem

software controller, seen as a black box, should provide a set of interfaces by which its

functionality can be invoked by other software subsystems of the vehicle. In particular,

the controller should expose interfaces for activating and deactivating the windshield

wipers, for setting their speed level (normal, fast and intermediate) and for activating

the temporary windshield cleaning mode.

WiperStory takes place in a development environment where model-based techniques

are employed. So, the supplier creates a set of models detailing the various views (archi-
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Figure 2.2: UML Component Diagram created by the automotive company.

tectural, behavioral and others) of the system. These models are then used by specialized

code-generators to create the actual software system.

Figure 2.1 shows a top level view of WipersStory (the various modeling artifacts

produced by the supplier is explained in the following.)

2.3 Modeling artifacts

The principles described in Section 2.1 shape the development process and the produced

artifacts for automotive software systems. The overall process can be viewed as refine-

ment in the MDE sense. In this vein, software modeling techniques can be employed to

capture the produced artifacts as models of various kinds, such as class diagrams, state

machines and others. In the following we present some basic kinds of such models.

In the following, we occasionally employ terminology borrowed from Object Oriented

Programming (OOP) for naming some of the domain-specific artifacts. While these

artifacts play similar roles as their generic OOP counterparts, they are highly stylized

and often have additional characteristics and limitations, stemming from their domain

specificity.

The metamodel for these models can be found in the Appendix.
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Figure 2.3: Algorithm Block Diagram for WipersStory.

2.3.1 Logical architecture

Any particular automotive software application is organized as a collection of algorithmic

artifacts, termed Algorithm Blocks, the domain-specific counterpart of Classes. Each of

them represents one basic functional aspect of the system and roughly corresponds to a

particular element in the sensor/controller/actuator schema described in Section 2.1.2.

Algorithm Blocks also represent the basic schedulable elements of the system and contain

information for calibrating various relevant data storage items.

We refer to a model that depicts the logical architecture of an automotive system as

an Algorithm Block Diagram. The Algorithm Block Diagram for WipersStory can be seen

in Figure 2.3. In the diagram, the Supplier decomposes the overall software subsystem

into three logical parts, represented by three Algorithm Blocks, and defines the interfaces

by which these communicate amongst themselves and with their wider environment.

In particular, the MainWiperController block represents the logical part of the archi-

tecture that contains the business logic for controlling the various actuators of the wipers

subsystem. The MainWiperActuator and WaterSprinkler blocks represent the logical

part of the architecture that manages the actuators that animate the physical parts of

the wipers subsystem. Communication between the actuators and the controller is done

via three internal interfaces which are required by the controller block and provided by
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Figure 2.4: Signals Diagram for WipersStory.

the actuator blocks. The main controller also provides the interfaces which are required

by the automotive company to be exposed to other software subsystems of the vehicle.

The metamodel for Algorithm Block Diagrams can be found in the Appendix (Fig-

ure A.1).

2.3.2 Communication architecture

Algorithm Blocks exchange information via Signals, accessed via domain-specific Inter-

faces. An Interface contains methods for sending and receiving one particular Signal, as

described in Section 2.1.3. Therefore, for a Class to be able to send or receive a number of

Signals, it needs to implement or require an equal number of Interfaces. (This limitation

arises from the need for reusability discussed in Section 2.1.4.)

We refer to a model that depicts the communication architecture of an automotive

system as a Signals Diagram. The Signals Diagram for WipersStory can be seen in

Figure 2.4. In the diagram, the Supplier creates declarations for all the Signals present in

the subsystem. These include both the signals that are needed for internal communication

among the various Algorithm Blocks defined in Figure 2.3, and the signals that will be
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passed to other software subsystems in the vehicle via the interfaces that the automotive

company has specified to be exposed by the component. Each of the signals contains a

corresponding Interface declaration. These interface declarations are referenced by the

various ports which are declared by relevant Algorithm Blocks.

The metamodel for Signals Diagrams can be found in the Appendix (Figure A.2).

2.3.3 Behavioral definition

As was described above, every Class represents a particular functional aspect of the sys-

tem. Therefore, every Class is associated with a particular domain-specific Statemachine

which captures its behavior. As such Statemachines can ultimately be employed for code

generation, various constraints are in place in order to simplify them for code generation

per Section 2.1.5 and improve their maintainability.

For instance, in order to ensure that the state transitions are deterministic, Statema-

chines are constrained in that only one outgoing transition exists from every state. This

in turn implies heavy usage of nested states, with priorities of the transitions of the

various super/sub-states being used to ensure determinism.

The Statemachine for the MainWiperController Algorithm Block in WipersStory

can be seen in Figure 2.5. In order to satisfy the requirement that for each state there

is only one outgoing transition, additional states have been introduced. These follow a

pattern of distinguishing between on/off modes. This is evident in the diagram in the

case of the general On/Off pair of states for the entire wiper system, as well as for more

detailed behavior such as turning the cleaning system on and off and alternating between

the intermediate speed mode being on as opposed to the other two speed modes.

Whenever the states are entered or exited, the statemachine produces relevant sig-

nals which were defined for internal communication within the component (see previous

section). For example, whenever any of the two states named Cleaning is entered,

the SSprinklerActivation signal is broadcasted to the WaterSprinkler algorithm
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Figure 2.5: Statemachine for the MainWiperController Algorithm Block in WipersStory.

block, to trigger sprinkling of the windshield with water. Similar signals are sent to

the MainWiperActuator algorithm block to trigger wiping at the appropriate speed, and

a similar set of signals is broadcasted when exiting the Cleaning states.

The metamodel for these domain specific Statemachines can be found in the Appendix

(Figure A.3).

2.3.4 System architecture

The various diagrams can be bundled together in Component diagrams, which are used

to capture the allocation of the various algorithmic entities to the sets of ECUs on the

physical networked system. In the same sense, Component diagrams can be employed

to represent the interconnections among various application components, eg. between

a particular component and a larger subsystem architecture. For the purposes of this

thesis, we do not go into detail about these models, and we represent them as UML
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Figure 2.6: Some possible dependencies in WipersStory.

Component Diagrams, conforming to the basic Component Diagram metamodel taken

from the UML specification[35], as shown in Figure A.4 of the Appendix.

2.4 Towards an approach for model management of

Automotive software

It is evident that the various modeling artifacts created at various stages in WipersStory

are related in a variety of ways.

1. On a basic level, the various models are related as parts of a whole. This means

that various dependencies exist between them. For example:

• The interface declarations at the Signals Diagram must be consistent with the

interfaces employed in the Algorithm Block Diagram.

• A state machine must be declared for each algorithm block in the Algorithm

Block Diagram.

• The triggers in the transitions of state machines must correspond to the de-

clared interfaces of their respective algorithm block.
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2. In a larger context, which can potentially take into account the software lifecycle,

requirements modeling etc, it becomes evident that some way of managing these

sets of models is imperative. The ability to make explicit the various ways that the

models are related offers a means to accomplish meaningful management and anal-

ysis. A first step towards such capabilities is ensuring that the various dependencies

between the models are properly captured.

3. If relationships between modeling artifacts are explicitly captured, further relation-

ships can be inferred. For example, if the consistency relationship between the

Component Diagram specification and the Algorithm Block Diagram is explicit, a

relationship can be inferred to trace the invocations of high level interfaces to low

level statemachine triggers and state transitions. Such a trace relationship could

be used for troubleshooting and diagnostics.

These examples point us to the direction of further studying how we can effectively

employ model management techniques in the automotive domain. From the above dis-

cussion, we infer that in order to be able to facilitate model management in the domain,

an approach is needed that should have the following characteristics:

1. It should enable developers to reason about how a set of modeling artifacts is

semantically structured.

2. It should provide the infrastructure for validating this structure to expose potential

inconsistencies.

3. It should facilitate the inference of implicit knowledge about the ways that models

are dependent in non-evident ways.

In the following chapters we present an approach to model management based on

declaring and defining relation types.



Chapter 3

Background

3.1 Models and model types

Models are traditionally employed in Software Engineering to abstractly describe existing

or hypothetical software-related artifacts for a variety of purposes [31]. In the context of

Model Driven Engineering (MDE), models are first class items and are used to such ends

as design, documentation, code generation and others.

While models are usually employed to describe actual systems, they can also be used

to describe other models. This notion is called metamodeling. A metamodel that is

constructed with respect to concepts related to a particular application domain, along

with a (usually graphical) notation, can be used to describe a domain specific modeling

language (DSML). In Chapter 2, a high level description of an automotive DSML is

presented.

Following the definition in [11], we consider a model to be “a set of objects, each of

which has properties, has-a relationships and associations”. Every model must conform

to a respective metamodel.

A widely adopted approach to metamodeling is the Meta Object Facility (MOF) [32].

As is described in [17], in the context of MOF, a model m is a collection containing typed

16
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data elements e. Each element e is of a type T , denoted as e : T . We say that a model m

conforms to a metamodel M for which we adopt the following definition, based on [40]:

Definition 1. A metamodel is the tuple 〈Σ, Φ〉, where Σ is the set of metamodel element

types and Φ is the set of metamodel well-formedness constraints. These constraints are

either structural, i.e. imposed by the various forms of association between the element

types, or constraints attached to the metamodel as a whole. We refer to the former as

“structural constraints”, symbolized as Φs and to the latter as “metamodel constraints”,

symbolized as C. Obviously, Φ = Φs ∪ C.

While the notions of a metamodel and a model type can be conflated [41], in the

context of this thesis we consider a model type to be associated with a metamodel as

follows.

The MOF diagram1 M of a given metamodel consists of its set of element types Σ

and its set of structural constraints Φs. Its metamodel constraints C are expressed in a

language such as OCL [33] and are attached to the metamodel diagram M . In view of

the above, we adopt the following definition of model types:

Definition 2. We consider a model type TM to be a tuple 〈M, C〉, where M is a meta-

model diagram and C a (possibly empty) set of constraints associated with it.

We say that a model m is of type TM , and write m : TM if the model conforms to the

type’s associated metamodel and constraints.

We adopt the following subtyping approach:

Definition 3. Given a model type TM ≡ 〈M, C〉 where M is a metamodel and C a

(possibly empty) set of constraints, we consider the type T ′

M
≡ 〈M ′, C ′〉 to be its subtype

if M ′ = M and C ⊂ C ′.

In other words, the subtype of a model type has the same metamodel diagram as

the supertype and its associated set of constraints is a superset of the supertype’s set

1The notation for MOF diagrams is a simplified version of UML class diagrams.
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of constraints, augmented with constraints particular to the subtype. In this vein, we

consider the model type TM ≡ 〈M, ∅〉 to be the supertype of all the model types that

are defined by constraining the metamodel M . This notion of subtyping allows subtype

substitutability, in the sense that it allows using a model of some type in a place where

a model of one of its supertypes is expected.

3.2 Macromodeling

Macromodeling is an approach to model management which aims to represent the various

ways by which models are related, therefore allowing developers to perform various model

management tasks, such as model matching, mapping composition, model differencing,

model generation, model merging and others [11]. In the following we briefly present the

key points.

As presented in depth in [40], macromodeling is a rich approach, however we limit

the discussion to aspects that are of particular use to our relation-centric approach as

presented in Chapter 4. In this vein, we do not go into the details of the formalism and

we do not discuss additional features described in [40], such as support for unrealized

models, macrorelations and others.

3.2.1 Model mappings

Fundamental to macromodeling is the idea of relating models. As described in [11], “two

models are related when the possible interpretations of one model constrain the possible

interpretations of the other model”. In the following we use the term “mapping” to refer

to the abstract concept of relating two models, while later in the paper we will use the

term “relation” to refer to a mapping conceived with a particular intention or purpose

in mind.

Below we present a formal foundation of what it means for two models to be related.
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Figure 3.1: Example of using the metamodel morphisms pSM and pSD to create a relator

metamodel.

The formalism can be extended for more than two models. We introduce the concept of

metamodel morphisms, based on institution theory [23], as described in [40]:

Definition 4. For two metamodels A and B, a metamodel morphism: f : 〈ΣA, ΦA〉 →

〈ΣB, ΦB〉 is a homomorphism of the signatures fΣ : ΣA → ΣB such that ΦB � f(ΦA).

The function f is one that translates sentences over ΣA to ones over ΣB according to the

mapping fΣ : ΣA → ΣB.

For each couple of model types that need to be mapped, a mapping type associated

with a relator metamodel is defined. Every mapping is itself a model and for a given

pair of model types, their mapping model must conform to the relevant relator meta-

model. Metamodel morphisms from them to the relator metamodel are used to ensure the

well-formedness of their projections in the mapping metamodel. Figure 3.1 presents an

example of using metamodel morphisms to create a relator metamodel from two (simpler

versions of) model types defined in Chapter 2.

In particular, the Signals-to-StateMachine relator metamodel contains projections

of the (simplified) StateMachine and SignalsDiagram metamodels. The metamodel
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morphisms pSM and pSD ensure that the correct projection of the two metamodels in

the relator metamodel. Apart from metamodel projections from the endpoint model

types, the relator metamodel can be injected with additional elements. In this case, the

relator metamodel additionally contains the association triggers between the Signal

element of the signals diagram metamodel projection to the Transition element of the

state machine metamodel projection, to signify that a transition in state machines can

be triggered by signals defined in a signals diagram model.

Metamodel morphisms ensure that relator metamodels represent correctly the mapped

model types. Relator metamodels can provide additional semantic constraints relevant

to the particular intent which the mapping type attempts to address. For a mapping

between metamodels A ≡ 〈ΣA, ΦA〉 and B ≡ 〈ΣB, ΦB〉, and metamodel morphisms pA

and pB, the relator metamodel is defined as:

〈ΣA ∪ ΣB, pA(ΦA) ∪ pB(ΦB) ∪ ΦRC〉

In other words, the relator metamodel’s set of elements contains all the element types

of the endpoint metamodels A and B. The relator metamodel’s set of well-formedness

constraints consists of the constraints of the endpoint metamodels as translated by the

metamodel morphisms pA and pB. The set of well-formedness constraints of the rela-

tor metamodel can be augmented by the set of relator constraints ΦRC which express

semantics particular to the of the relator metamodel itself.

In view of the above, we can describe the relator metamodel shown in Figure 3.1 as

follows.

We represent the StateMachine metamodel as 〈ΣSM , ΦSM〉 and the SignalsDiagram

metamodel as 〈ΣSD, ΦSD〉. The Σ factors represent the set of elements in each metamodel.

For the state machine metamodel this set consists of the elements State and Transition

and for the signals diagram metamodel this set consists of the elements Signal, Port and

Interface. The Φ factors represent the well-formedness rules of the two metamodels.

For state machines, these rules are that a transition has a start and end state and for
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signals diagram that a signal contains an interface and is associated with a port. Any

additional metamodel constraints for these, such as OCL constraints would be added to

these sets.

The Signals-to-StateMachine relator metamodel would then be represented as:

〈ΣSM ∪ ΣSD, pSM(ΦSM) ∪ pSD(ΦSD) ∪ ΦRC〉.

The above indicates that the relator metamodel contains all elements contained in the

endpoint metamodels and all their well-formedness constraints, as translated by the

metamodel morphisms pSM and pSD. The set of relator constraints ΦRC contains well-

formedness rules that are particular to this metamodel, in our example, the triggers

syntactic element.

In general, additional constraints can be injected to a relator metamodel by appending

them to its set of relator constraints ΦRC . For example, we could require that all tran-

sitions should be triggered by some signal. Such a new rule can be incorporated to the

relator metamodel as an OCL constraint added to the its set of relator constraints ΦRC .

We employ this method to define the semantics of concrete relation types in Section 4.3.1.

3.2.2 Macromodels

A macromodel is a kind of model that provides a way to capture how various models are

related at a high level of abstraction. As defined in [40]:

Definition 5. “A macromodel (is a model that) consists of elements denoting models

and links denoting intended relationships between these models with their internal details

abstracted away.”

Being a model itself, a macromodel must conform to a metamodel, and therefore the

notion of macromodel type can be defined. A macromodel type is characterized with

respect to the model and mapping types it allows instances of it to contain.



Chapter 3. Background 22

Figure 3.2: Abstract syntax and well-formedness constraints of macromodels [40].

With regard to syntax, the constituent models of a macromodel are represented by

typed model elements, while relations between them are represented by typed association

links. The metamodel and well-formedness constraints for macromodels are presented in

Figure 3.2.

As can be seen in the metamodel, macromodels can contain models, as well as other

macromodels. This feature enables the creation of a hierarchical structure of macro-

models to represent various levels of abstraction of a modeled system. Additionally,

macromodels can also contain relationships, which are themselves models, conforming to

relator metamodels that are particular to the endpoint model types that they connect, as

discussed in Section 3.2.1. In addition, relationships are labeled with a particular role. In

Chapter 4 we present an approach to model management that is based on an expansion

of this feature, to create full fledged relation types.

The focus of this work being on relation types, we frequently discuss declaring models

and then establishing relationships between them. This is always thought in the context

of macromodelling. In this respect, whenever we refer to two or more models being

related, we assume that there exists a macromodel containing these models as elements.

Similarly, creation of relationships between these models is also considered in the same

setting.
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Relation-centric Approach

As was discussed in Section 2.4, there exists a need for managing sets of models in the

automotive and other domains. We propose an approach for model management, which

focuses on explicating dependencies between models as relationships that conform to an

explicit relation type, in the context of a macromodeling framework. Relator models

conforming to appropriate relation types can be created and employed to capture infor-

mation about the meaning and the intent of the relationship between models. Moreover,

these relator models demonstrate how the related models are dependent upon each other,

by using the syntactic structure of model mappings, along with the semantics provided

by their respective relation type.

In other words, by focusing on the relationships between models, we can capture why

and how they are related. Additionally, relation types enable checking and enforcing that

artifacts are properly related.

Making this meta-information readily available in a macromodeling context enables us

to devise relation-centric techniques for accomplishing model management tasks. On the

one hand, integrating the intentional aspect of relating models into model management

we can achieve better clarity and expressiveness, facilitating comprehension and analysis.

On the other hand, by making explicit the ways that artifacts are related, and associating

23
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this to a specific relation type metamodel, we facilitate the validation of consistency and

the ensuring of robustness for model-based development processes.

In this chapter, we present the key points and the basic mechanics of the approach.

In Chapter 5, we look more closely at how our approach can be employed to facilitate

model management with a focus on the automotive domain.

4.1 Relations between models

In Section 3.2.1 we presented how mappings between models are defined in a macromod-

eling setting. We use the term “mapping” to refer to the generic concept of relating two

models, while in this context we use the term “relation” to refer to a mapping conceived

with respect to a particular intent.

As is the case for mapping models, relationship models must also conform to a relation

type. The definition of a relation type corresponds to the acknowledgment of the role

that it is supposed to play in the development process. More specifically, a relation type

is characterized by:

1. a purpose, i.e. what the relation is about

2. its meaningful applications, i.e. to what kinds of models it can be applied

3. a set of rules for determining the well-formedness of relationship models

With these in mind we introduce a metamodel for defining relation types. The meta-

model consists of the diagram shown in Figure 4.1, along with the additional OCL con-

straints shown in Figure 4.2. Relation types which have the aforementioned characteris-

tics can be defined as instances of this metamodel.

As indicated by the metamodel and its first associated constraint, we differentiate

between abstract and concrete (non-abstract) relation types. Abstract relation types

are explicitly not associated with any endpoint model types and relator metamodels,
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Figure 4.1: Metamodel for defining relation types.

context RelationType inv:

(self.isAbstract = true implies

(self.end−>isEmpty() and self.relatorMetamodel−>isEmpty()))

and

(self.isAbstract = false implies

(self.end−>notEmpty() and self.relatorMetamodel−>notEmpty()))

context Morphism inv:

self.source = self.relationTypeEnd.modelType.metamodel

and

self.target = self.relationTypeEnd.relationType.relatorMetamodel

Figure 4.2: Correctness constraints for defining relation types.
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while concrete ones are required to be associated with at least one endpoint model type

and some relator metamodel. This is enforced by the first OCL invariant. Abstract

types serve as the declaration of an intention for relating models; concrete subtypes for

specific application scenarios can be defined by specializing them to create a relation type

hierarchy.

Concrete relation types are associated with one or more endpoint model types. The

various application scenarios for an abstract relation type are thus made concrete by

creating concrete subtypes of it which are tied to specific endpoint model types. A

concrete relation type is associated with a relator metamodel, where the endpoint model

types are represented via metamodel morphisms, as described in Section 3.2.1. The

second OCL invariant ensures that Morphism elements are associated with the correct

source and target metamodels. The rules necessary to specify the correctness criteria for

the concrete relation type are expressed as RelationTypeConstraints associated with

the type’s relator metamodel.

The concepts discussed above are described in more detail in the following sections.

4.2 Abstract relation types

As we described earlier, we introduce the notion of abstract relation types, to represent the

first characteristic of relation types described in Section 4.1, i.e., that relations represent a

purpose. For example, we can declare the abstract relation type Refinement (Figure 4.3),

to represent the situation where a model captures more concrete design decisions than

some other model [29].

We declare the abstract relation type Refinement as a specialization of the most

generic relation type, which we name Relation, that represents the abstract situation

where any number of models of any kind are somehow related.

Refinement itself is not tied to any particular arity, model type, metamodel or se-
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Figure 4.3: Defining the abstract relation type Refinement.

mantic constraints. In essence, the abstract relation type defines a family of relation

types, all of which correspond to the notion of a model capturing more concrete design

decisions than some other model. Each of the relation types in that family inherits this

semantic definition from it, adding the details needed for particular scenarios, e.g. for

refinement relationships between state machines.

Abstract relation types therefore provide us with a generic way to group together

relation types that have the same purpose. This way, we can differentiate between the

various ways that two models can be related. For example, two state machines can be

related in various ways, such as refinement, evolution, naming consistency etc. Moreover,

model transformations can also be represented as a relationship between the input and

output models. Using abstract relation types for each of these cases we can treat each of

them accordingly.

4.3 Concrete relation types

To represent a particular application scenario for some relation type, we need to specialize

the relevant abstract relation type for it. This way we realize the second characteristic

of relation types discussed in Section 4.1, i.e. that there are particular model types with

which a relation type can be used.

In our example, we create the concrete relation type RefinementSM-SM to capture

the situation where a state machine refines another state machine. To do this we need
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Figure 4.4: Defining the concrete relation type RefinementSM-SM.

to reference the relevant metamodels and create the appropriate metamodel morphisms

(see Section 3.2.1). The result can be seen in Figure 4.4.

As can be seen in the diagram, the concrete relation type RefinementSM-SM specializes

the abstract Refinement relation type, described in the previous section. While the latter

is not associated with any endpoint model types, the former is explicitly associated with

the StateMachine model type for both relation endpoints. In particular, we explicitly

associate the RefinementSM-SM relation type with the SM2SM relator metamodel, shown in

Figure 4.5, and we declare morphisms between SM2SM and the StateMachine metamodel

(see Appendix, Figure A.3).

In our example, the model type of both relation type endpoints is the same, i.e., the

state machine model type. Relation types with different model type endpoints can be

defined in the same way (examples of that can be found in Chapter 5).
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Figure 4.5: The relator metamodel SM2SM, shown with the morphisms relating it to the

State Machine metamodel.

It is evident that to create definitions for other members of the Refinement rela-

tion type family, we only need to create concrete subtypes of it by declaring all the

necessary elements. For example, to create the refinement relation type between UML

Component Diagrams and Algorithm Block Diagrams, one would need to declare the

RefinementCD-ABD concrete relation type, along with the appropriate morphisms from

the Component and Algorithm Block to the CD2ABD relator metamodel.

4.3.1 Constrained mappings

Concrete relation types are tied to a specific relator metamodel. In our example, the

SM2SM metamodel, shown in Figure 4.5, is the relator metamodel for generic mappings

between State Machines. It is generic in the sense that it carries no particular semantics
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context Link inv:

self.linkStart.name = self.linkEnd.name and

self.linkStart.subMachine−>isEmpty() and self.linkEnd.subMachine−>notEmpty()

Figure 4.6: Constraint over SM2SM for the RefinementSM-SM relation type.

other than describing there can exist links from the elements of one snapshot of the

StateMachine metamodel to elements of another.1

As was described in Section 4.1, the third characteristic of relation types is that they

are associated with a set of well-formedness rules. One way to realize this is by creating

constraints over the relator metamodel. The idea here is to base the definition of relation

types on extending the generic mapping model types described in Section 3.2.1 by means

of constraining their metamodels. The additional constraints that are added to generic

mapping types correspond to the semantics of the role that any particular relation type

plays in the development process.

With regard to any set of model types that can be related in any way, we can construct

a generic mapping in the form of a relator metamodel. For each particular relation type

that we want to implement, we can create specific constraints over their generic mapping

type, by elaborating the set of relator constraints ΦRC of the relator metamodel, defined

in Section 3.2.1.

In the case of our example, we implement a very simplistic notion of refinement of

state machines, where we consider a simple state in the source model to be refined by

a state in the target model if the latter is a complex state, i.e. the superstate of a

more specific state machine, and thus “captures more concrete design decisions”. The

relation type is not a refinement transformation but rather a declarative means to define

correspondences between models that are part of the same refinement process. The OCL

1We have kept the metamodel shown in Figure 4.5 very simple in that we allow for links to only be

declared between State elements. This is done purely for simplicity and demonstration purposes: in

reality, these generic relator metamodels can allow links to be created between arbitrary elements.
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constraint for this semantics is presented in Figure 4.6.

The OCL invariant is built around the Link element type of the relator metamodel.

For each link, the invariant requires that the name of the refined state is preserved.

Moreover, for each link the constraint specifies that its source element is a simple state

by demanding that its subMachine association (see the relator metamodel, Figure 4.5)

is empty. Simultaneously, the constraint requires that the link’s target element is a

composite state by demanding that the same association is not empty.

A developer declaring a refinement relationship between two state machines by creat-

ing a relation model as an instance of this type, is required to create links from the states

in the source model that are refined to complex states in the target model. The type’s

correctness rule enforces the semantics of our naive refinement by imposing a constraint

on the these links that ensures that simple states get refined to complex ones. Perform-

ing validation of the relationship model with respect to its type enables the developer to

determine whether the target model is indeed a proper refinement of the source model.

We describe a similar validation scenario in more detail in Section 5.1.3.

4.4 Relation types revisited

The above discussion can also be viewed from a different perspective. The three charac-

teristics we listed in Section 4.1 can be understood to define a plane. On the one axis

lie the various purposes for which we conceive that models can be related (1st charac-

teristic). On this axis we can put the various abstract relation types. On an orthogonal

axis lie the various mappings that can exist between model types (2nd characteristic).

On this axis we can put the various generic mapping types. At the points of the plane

where the two meet, we have concrete relation types, which must be defined with respect

to some well-formedness rules over the respective mapping type (3rd characteristic).

We can visualize such a grid of relation type hierarchies and mapping types, as shown
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Figure 4.7: Relation types and mapping types (the ordering carries no meaning).

in Figure 4.7. Relation type hierarchies start from an abstract relation type, not associ-

ated with any particular application scenario. Mapping types can be created for any set

of models that can be related in any arbitrary way. At the intersection of these two, we

can create concrete relation types, i.e. relation types with respect to particular models,

by adding relation type-specific constraints to the generic mappings.

We can even envision hierarchies of mapping types, which can include mappings

between abstract model types, in which case relation types can be thought of as having

a polymorphic character.

4.5 Model management with relation types

The mechanism for declaring relation types that we described so far can be employed

in a macromodeling environment to achieve various model management tasks. Making

the intended role of relations between particular types of models explicit in such an

environment can enhance our ability for managing models in a variety of ways.

From one point of view, macromodels built with the typed relationships that we

described in this chapter convey rich semantics. This semantic weight, along with the

structuring potency of macromodeling can improve our ability to capture and comprehend

how a set of models constitutes a system (or why it does not).

At the same time, by employing the relation types’ semantics, which have been de-
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Figure 4.8: Declaring a refinement relationship (instance of the RefinementSM-SM rela-

tion type) for the WipersStory state machine shown in Figure 2.5.

fined in terms of metamodel constraints, we can do consistency checking of macromod-

els. Relationships can be verified as instances of their relation types, and the result of

this verification can be used to draw conclusions regarding whether the related models

are properly defined, revealing potential inconsistencies and so on. Drawing from the

WipersStory scenario, we could for example use the RefinementSM-SM relation type to

verify that two versions of the controller statemachine constitute a valid refinement.

As shown in Figure 4.8, an instance of the relation type RefinementSM-SM is declared

for two state machines. Simple states of the source model of the relationship, representing

the earlier version, are mapped to composite states of the target model which represents

a subsequent version of the statemachine. This mapping is achieved by appropriate Link

elements.

Verifying the relationship model in Figure 4.8 entails checking it for conformance to

the SM2SM relator metamodel and the relevant relation type correctness constraints. In

the case of this instance of the relation type, the check for conformance to the relator
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metamodel succeeds as both constituent models are valid state machines, and all Link

elements are between State elements, as specified by the relator metamodel. Addition-

ally, validation of the relation type OCL constraint (see Figure 4.6) also succeeds as for

both Link elements the source State elements are simple states while the target State

elements are composite states.

In general, apart from checking consistency, relation types can be used to achieve

greater versatility of expression. As relationship models are typed, we can create sig-

natures for operators that act upon them to create new relationship models. In this

manner, new relationships can be inferred, which can represent non-evident relationships

between previously unrelated aspects of the overall system. The types of the input and

output relationship models can be used to define the signature of such operators, effec-

tively opening the space for creating an algebra of operators. Additionally, the declared

type of the output can be used to verify it, and the result can reveal possibly hidden

inconsistencies.

Furthermore, this conceptual framework can be employed as a development guide for

the software system at hand. Relations between existing and planned or imagined models

can be employed to capture the structure-to-be, while at the same time, as demonstrated

in [40], certain models can be automatically inferred using model finders such as Kodkod.

In the following chapter we attempt to demonstrate some of these use cases.
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Analysis

Relationship types, when employed in a macromodelling context, can facilitate the carry-

ing out of various model management tasks. In the following we present two cases where

relationships can be used to guide such tasks.

In particular, in Section 5.1 we demonstrate how our relation-centric approach can be

employed in order to check the consistency of sets of models, showing this with examples

from the WipersStory example, described in Section 2.2. Additionally, in Section 5.2, we

discuss composition operators and and demonstrate the composition of typed relation

models, again with an example from WipersStory.

For simplicity, we limit ourselves to examples of relationships between (at most)

two models, however, the same approach can be generalized to higher arities. Also for

compactness of presentation, some diagrams in this chapter are presented in a simplified

form, with obvious elements such as labels omitted.

5.1 Consistency checking

In a development process that involves a significant amount of models, as is the case

in the automotive domain, it is imperative to ensure that the various models are con-

sistent with each other. Inconsistencies can arise from a variety of sources, as models

35
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Figure 5.1: Declaring the unary consistency relation type for state machines.

are produced in a variety of stages in the development process, in different versions and

to represent a system from different perspectives. By employing the relation-based ap-

proach we described in Chapter 4, developers can explicitly describe why and how various

model types can be related. Consistency checking is therefore achieved by verifying that

the relation type semantic rules are satisfied for the relationship between the models of

interest.

The first step is to define an abstract relation type Consistency as a specialization

of the generic Relation type, as was done with the Refinement abstract relation type,

shown in Figure 4.3. This abstract relation type is therefore conceived as defining the

family of relation types which represent the situation where some models are declared as

being related with the intent of saying that they are supposed to be consistent with each

other.

5.1.1 Unary consistency

In order to demonstrate the expressiveness of our approach, we begin at a simple level

where we consider the unary consistency relation type. The semantics of this relation type

is that a model is consistent with its declared type. Verifying a relationship conforming
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to this type is equivalent to checking a model’s conformity to its metamodel.

For a given model type, e.g., for state machines, the relator metamodel of the relation

type ConsistencySM coincides with the metamodel of the model type. Figure 5.1 shows

the declaration of ConsistencySM, following the same rationale as that of Figure 4.4,

only in this case there exists only one RelationTypeEnd element.

More specialized unary consistency relation types can be used to verify that a model

is in fact conformant to a subtype of a model type. As discussed in Section 3.1, for

a given model type, subtypes are constructed by injecting additional constraints to its

metamodel. In view of our relation-centric approach, unary consistency relation types

can be used to verify whether models conform to desired subtypes, if they are defined

with correctness type constraints corresponding to the subtypes’ constraints.

Considering the case of state machines, we assume the general state machine type,

associated with the metamodel given in the Appendix Figure A.3, without the OCL

invariant limiting the number of outgoing transitions, shown in the same figure. The

automotive domain-specific statemachine type, which was discussed in Section 2.3.3, is

a subtype of this generic state machine type, with the addition of the OCL invariant.

In order to enable checking whether a particular state machine conforms to the auto-

motive domain-specific subtype, we define the unary relation type ConsistencyAutoSM

by injecting the OCL invariant of Appendix Figure A.3 into the relator metamodel of

the ConsistencySM relation type. Checking if an arbitrary state machine conforms to

the automotive domain state machine type is accomplished by creating an instance of

the ConsistencyAutoSM type and validating it, as discussed in Section 5.1.3.

5.1.2 Consistency between pairs of models

Moving to less simple cases, we look into consistency relationships between two (or more)

models. We note that various kinds of consistency can exist between models. This

reflects the fact that, when checking the consistency of a set of models, we are usually
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Figure 5.2: Metamodel for SMmm macromodels.

doing so with a particular intent in mind. Reflecting the 1st characteristic of relation

types discussed in Section 4.1, we are inclined to organize these more subtle intentional

approaches by further elaborating the Consistency relation type hierarchy with abstract

relation types, extending the root Consistency abstract relation type.

For example, in WipersStory, we can examine the case where we are interested in

making sure that Interfaces from the Signal Diagram (see Section 2.3.2) are used consis-

tently across models. We therefore define the abstract relation type IConsistency, i.e.,

“interface consistency”. A different kind of consistency is making sure that whenever an

artifact needs to be elaborated by another model, that model exists. We therefore define

the abstract relation type DConsistency, i.e., “declaration consistency”.

We proceed to create concrete relation types from these abstract ones. In particular,

we define relation type IConsistencySD-ABD, to capture interface consistency relations

between signals and algorithm block diagrams. The relation type is directional, in the

sense that its semantics indicate that all interfaces in the signals diagram are employed

in the algorithm block diagram. The opposite relation type IConsistencyABD-SD, which

indicates that all interfaces in an algorithm block diagram have been declared in a signals

diagram, can be defined by reversing the start and end association links of the relator

metamodel Link class and similarly reversing the semantic constraints.

We also define the type DConsistencyABD-SMmm to capture declaration consistency

relations between algorithm block diagrams and sets of state machines. We can represent

sets of state machines by using macromodels (see Section 3.2.2), and in particular the
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Figure 5.3: Declarations of the various consistency relation types.
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context l : Link inv:

AlgorithmBlock.allInstances()−>forAll(

a | StateMachineModel.allInstances()−>exists(

s | a.name=s.name and l.start=a and l.end=b ))

Figure 5.4: DConsistencyABD-SMmm relator metamodel and relation type constraints.

macromodel model type SMmm, seen in Figure 5.2, which is simply a model whose elements

represent individual state machines. The overall picture for all relation type definitions

can be seen in Figure 5.3, where each relation type is shown at its respective place in the

relation type hierarchy, associated with its endpoint model types.

For each of the two relation types that we defined, we also explicate the necessary

well-formedness rules, as OCL constraints over their relator metamodels.

In particular, the relator metamodel for the IConsistencySD-ABD relation type, seen

in Figure 5.5, consists of copies of the signals diagram and algorithm block diagram meta-

models. As algorithm block diagrams only allow the declaration of ports, we indirectly

link interfaces by linking their respective ports. Thus the relator metamodel specifies

that links can be established between AlgorithmPort elements.

To explicate the semantics of the interface consistency relation type, we take advan-

tage of the fact that for a signal to be employed in the algorithm block diagram, at least

one port must be declared as associated with it in the signals diagram. Therefore, the
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accompanying OCL constraint requires that in relator models conforming to this relation

type, every interface in the signals diagram must be associated with at least one port,

to reflect the requirement that all declared interfaces are utilized in the algorithm block

diagram. Additionally, for every port defined in the signals diagram the OCL invariant

requires that there exists a port of the same name in the algorithm block diagram that

is associated with it via a Link element.

Similarly, the relator metamodel for the DConsistencyABD-SMmm, seen in Figure 5.4,

consists of copies of the metamodels for the algorithm block diagram and state machine

macromodel model types. Links can be established between algorithm block and statema-

chine elements of the two models. The OCL invariant requires that for every algorithm

block element in the algorithm block diagram there exists a state machine of the same

name, associated to it via a Link element. (Note that the invariant does not preclude

two algorithm blocks from being linked to the same state machine.)

5.1.3 Application

Having defined the various relationships, we can now apply them on our WipersStory

example. A relator model conforming to the DConsistencyABD-SMmm relation type can

be instantiated for the algorithm diagram and the set of state machines created by the

subcontractor for the wipers system. The diagram seen in Figure 5.6 represents this

relator model. As can be seen in the diagram, the algorithm blocks of the WipersStory

algorithm block diagram are linked with state machine model elements of the macromodel

containing the set of all state machines created by the subcontractor company of our

example.

Similarly, a relator model conforming to the IConsistencySD-ABD relation type, can

be instantiated for the signals and algorithm diagrams created by the subcontractor in

WipersStory. The diagram seen in Figure 5.7 represents this relator model. As can

be seen in the diagram, the port declarations from the signals diagram are linked with
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context l : Link inv:

SD!SignalInterface.allInstances()−>forAll(

s | s−>count(port) >= 1 and

ABD!AlgorithmPort.allInstances()−>exists(

a | a.name=s.port.name and l.start=a and l.end=s

))

Figure 5.5: IConsistencySD-ABD relator metamodel and relation type constraints.
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Figure 5.6: Instance of the DConsistencyABD-SMmm relation in WipersStory.

ports in the algorithm block diagram. For signal declarations corresponding to signal

communications internal to the component, there exist pairs of ports, which are linked

with corresponding port elements in the algorithm block diagrams. Conversely, for signal

declarations that refer to communications external to the component, there exist single

port declarations which are linked to ports of the algorithm block diagram at the points

where the relevant interfaces are exposed.

In order to check the kinds of consistency that were discussed above between these

models, we need to validate these two relator models as instances of their respective

concrete relation type metamodels and constraints. This can be accomplished with an

appropriate tool that supports the validation of models, and therefore relator models,

with respect to their declared type (see also Chapter 6).

In our example the validation of the declaration consistency relationship produces an

error as there exists a naming inconsistency between the MainWiperController algo-

rithm block and its corresponding state machine, named wiperController. A similar

error would have been produced if for some of the algorithm blocks there wasn’t a link
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Figure 5.7: Instance of the IConsistencySD-ABD relation in WipersStory.
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to a state machine in the macromodel. If this inconsistency is corrected, subsequent

validation attempts will be successful, as all algorithm blocks will be linked with a corre-

sponding state machine of a proper name, and therefore the purpose of the relating the

two models with a declaration consistency relationship type will have been achieved.

Similarly, validation of the interface consistency relator model will produce no errors.

This will happen because, one the one hand, all interface declarations are associated

with at least one port declaration. On the other hand, for all ports defined in the signals

diagram there exists a link to a port declaration in the algorithm block diagram with

the appropriate name.1 Hence, the purpose of relating the two models with an interface

consistency relationship will also have been achieved.

5.2 Composition

Another application of the relation-centric approach is to use composition of relationships

to create new ones. The utility of such an application can be twofold. On the one hand,

we can compose relationships in an exploratory manner, to investigate whether models

are related in a particular way. On the other hand, we can compose relationships in

order to infer implicit knowledge about non-evident relationships between models to

potentially uncover previously unseen underlying inconsistencies. Moreover, composition

of relationships can be used to automate the task of structuring a set of models, in the

sense of explicating only necessary relationships and inferring the rest.

The discourse on consistency presented in the previous section is therefore of partic-

ular interest. By composing relationships to infer new ones, we can, for example, verify

that a particular chain of relationships indicates a desired property, or that a particular

sequence of transformations has a desired result. This perspective can be important in

view of the software lifecycle, where a change occurs in some model and the need arises

1In the algorithm block diagram, the ports are labeled with the name of their respective interface,

not their actual instance name.
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for each link1 : Link ∈ firstRelatorModel

do for each link2 : Link ∈ secondRelatorModel

do if link1.linkEnd = link2.linkStart

then



































new link3 : Link

link3.linkStart := link1.linkStart

link3.linkEnd := link2.linkEnd

outputRelatorModel.add(link3)

Figure 5.8: Generic composition algorithm.

to verify whether relationships that held for its previous version still apply for the new

version.

Our approach of explicating relation types provides grounding to start developing a

theory of composition operators (and operators on model relationships in general). In

parallel with the relation type hierarchy, various composition operators can be defined,

each with its own signature. We can envision a composition operator hierarchy, with a

generic composition operator with the signature

Composition : Relation × Relation → Relation (5.1)

as the root element.

Such a generic composition operator can employ the simple algorithm presented in

Figure 5.8. In particular, the composition algorithm follows each pair of links in the two

related models for which the target element of the first link coincides with the source

element of the second, and creates a new link from the source of the first link to the

target of the second link in the new relator model.

We can create more specific composition operators for more particular relation types,

that could potentially employ different algorithms. Such algorithms could take into

account the particular types of the input and output models. The idea of creating relation

type hierarchies, can be particularly useful in such cases, since the explicit definition of
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relation types and their structuring in hierarchies provide the grounds to quickly identify

the requirements for creating such composition algorithms. Type hierarchies additionally

allow for flexible definition of composition operator signatures by taking advantage of

subtype substitutability.

In general, each composition operator has a signature consisting of input relation types

and a desired return relation type. The result of any relationship composition operator is

always a relator model. This relator model must conform to the relator metamodel and

type constraints of the relation type designated by the operator’s signature. Successful

validation of this output relator model indicates that it properly relates the endpoint

models.

However, unless otherwise proven for the particular composition operator signature,

it is not guaranteed that the output relator model will conform to the designated relation

type with respect to models that it connects. In other words, the set of relation models

conformant to relation types is not closed under composition operators, in the algebraic

sense. This allows us to use the potential success or failure of the validation of the inferred

relationship to draw conclusions about the consistency of the set of models under scrutiny.

5.2.1 Application

We demonstrate the composition operator framework with a simple example from WipersStory.

As discussed in Section 2.2, the automotive company creates a UML Component Dia-

gram specifying the windshield wipers component as a black box with interfaces. The

subcontractor creates a signals diagram, an algorithm block diagram and a set of state

machines.

Assuming that the evident relationship between the component diagram and the in-

terface declarations in the signals diagram has been explicated, we look into the scenario

where the automotive company is interested in establishing that all of the specified in-

terfaces are also declared and implemented in the subcontractor’s implementation.
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Figure 5.9: Overview of the WipersStory IConsistency composition scenario.

As seen in Figure 5.9, the appropriate concrete relation types need to be defined. In

particular, apart from the IConsistencySD-ABD relation type, that was defined earlier

(see Figure 5.5), the relation types IConsistencyCD-SD and IConsistencyCD-ABD are

defined as sub-types of the IConsistency abstract relation type. Their relator metamod-

els can be found in the Appendix (Figures A.5 and A.6 respectively). The metamodels

for these relation type follow the same logic as that for the IConsistencySD-ABD relation

type, allowing the creation of Link elements between the elements in the endpoint meta-

models representing interfaces, and requiring that all interfaces in the source endpoint

model exist in the target endpoint model and are linked with Link elements.

For the particular scenario, the relator models r1 conforming to IConsistecyCD-SD

and r2 conforming to IConsistencySD-ABD have also been instantiated. The diagram for

r1 can be seen in Figure 5.10. In the diagram, the interface elements in the component

diagram are linked with the ports that correspond to interfaces with the same name in

the signals diagram. The diagram for r2 is depicted in Figure 5.7 and is discussed in

Section 5.1.3.

The generic composition operator (5.1) can be directly used with the arguments be-

ing subtypes of the abstract relation type Relation, due to subtype substitutability.

However, for demonstration purposes, we proceed to define a consistency composition

operator, by specializing its arguments to create the new signature
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Figure 5.10: The r1 relator model, an instance of IConsistencyCD-SD.



Chapter 5. Analysis 50

Consistency × Consistency → Consistency

This can be further specialized for specific use of the interface consistency abstract rela-

tion subtype:

IConsistency × IConsistency → IConsistency

If a complete, detailed, specialization of the composition operator is desirable, we can

create a signature particularly for the desired types, to create the ICompositionCD−SD−ABD

operator, with the signature:

IConsistecyCD-SD × IConsistencySD-ABD → IConsistencyCD-ABD

This specialized operator could have an algorithm different than the generic composition

algorithm shown in Figure 5.8, that synthesize the new relator model by referring to

particular elements of the input relator metamodels, instead of generic Link elements.

For our example, however, the generic composition operator and its simple algorithm

is sufficient. By executing the composition algorithm shown in Figure 5.8, we can com-

pose the relator models r1 and r2. The resulting relator model r3, shown in Figure 5.11,

contains links from the interface elements in the component diagram to their correspond-

ing ports in the algorithm block diagram.

As discussed earlier, it is not guaranteed that the resulting relator model of a compo-

sition operator will conform to the relation type designated in the composition operator’s

signature. Therefore, an additional step is required, in which the output relator model

must be validated against the designated output relation type. In our example, r3 must

be validated against the metamodel of the IConsistencyCD-ABD relation type (see Ap-

pendix, Figure A.6).

Validating the r3 relator model against its relation type be accomplished with relevant

tooling, as discussed in Chapter 6. In the particular case at hand, validation would not

produce any errors as all interfaces in the component diagram are linked to correspond-

ing interface ports in the algorithm diagram of the appropriate name. It can therefore

be safely said that for this particular composition the resulting model conforms to the
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Figure 5.11: The inferred relator model r3, an instance of IConsistencyCD-ABD.

designated IConsistencyCD-ABD relation type.

This result of the validation can be used by the automotive company to verify that

the subcontractor’s solution at least exposes all the necessary interfaces designated in the

original specification. Moreover, by inspecting the resulting relator model, the automotive

company can trace where the functionality for each interface is located in the algorithm

block diagram.

In the case where the validation would produce errors, that would indicate either that

some interface is missing from the set of interfaces exposed by the component or that

there exits a naming inconsistency. Bug fixes could then be applied in the algorithm

block diagram based on this error report in order to bring the related models in such

a state that the various consistency relationships, including IConsistencyCD-ABD, hold

between the various models of the wipers subsystem.
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Tool support

In Chapter 5, we demonstrated how our relation-centric approach can be employed in

a macromodelling context to tackle various model management tasks, such as consis-

tency checking, inferring implicit knowledge and automating the creation of composed

relationships between models, whereas other applications of it can be envisioned, as was

discussed in Section 4.5.

A software platform for practically applying the approach would have to fulfill a

number of requirements. On a basic level, it should support macromodelling and be

generic enough to be able to be deployed for various domains. For each particular domain,

such as the automotive domain, it should provide the infrastructure to define model types,

create structured collections of models conforming to these types and check the individual

models against their type.

More particularly to our approach, it should provide for the definition of relation

types, creation of instances of them for particular models and checking of the relationships

against their types. And, with respect to Section 5.2, the framework should provide the

infrastructure to define and run operators such as composition on relationships and enable

the validation of the outputs.

With these in mind, we employed the Model Management Tool Framework (MMTF),
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Figure 6.1: Overview of MMTF architecture.

introduced in [39]. MMTF is a macromodelling tool framework based on the Eclipse

platform technologies[5], whose feature set satisfies the list of requirements discussed

above.

More specifically, MMTF is a generic framework for macromodelling. It supports

the creation of macromodels in the form of Model Interconnection Diagrams (MIDs).

Moreover, it allows users to create particular deployments to cater to domain specific

needs, by adding model type, relation type and operator plugins. In this vein we have

created an automotive domain-specific deployment of MMTF, called AutoMMTF which

contains plugins for the model types described in Section 2.3.

For the various model and relation types, MMTF can accept editor plugins created

with the Eclipse Graphical Modeling Framework (GMF)[7]. This in turn means that

all models and metamodels in MMTF are based on the Eclipse Modeling Framework

(EMF)[4] technologies and therefore employ Ecore as their meta-metamodel.

MMTF supports creating subtypes of the model types for which full-fledged GMF

plugins have been registered to it, by attaching to them constraints written in the Object

Constraint Language (OCL)[33]. Models conforming both to full-fledged types, as well
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as their to constrained subtypes can be verified using the EMF Validation framework.

MMTF allows for validation of individual models, as well as for MIDs. In the case of

MIDs, validation occurs recursively: the MID is considered valid if all its constituent

element models (which can be themselves MIDs) and relationships are valid with respect

to their particular type.

With respect to the specifics of our approach, MMTF supports creating relationships

between models in the form of mappings. A generic mapping type, CommonMapping,

is provided. Concrete relation types, as described in Section 4.1, can be implemented

by creating constrained subtypes of CommonMapping, in the manner described in the

previous paragraph.

Instances of the relation types, can be created in the MID Editor component of

MMTF. The MID Editor allows users to create macromodels, by adding various typed

models and creating mappings between them. A screenshot can be seen in Figure 6.2.

Such relationship models, can in turn be verified with respect to their relation type, using

MMTF’s validation support.

Additionally, MMTF provides an infrastructure for declaring and running operators

in the MID Editor. A composition operator, implementing the algorithm presented in

Figure 5.8 is provided, alongside operators for a variety of uses, such as for name match-

ing, inverting mappings etc. In MMTF, operators can be generic or tailored for specific

model types. For example, for merging models, MMTF provides a generic structural

merge operator alongside an operator specifically for the behavioral merge of state ma-

chines. Similarly, model type-specific composition operators, as discussed in Section 5.2,

can be created. Additional composition operators, and operators in general, can be added

to the framework via its plugin mechanism.

Tools comparable in purpose and functionality to MMTF can mainly be found in the

context of the Epsilon [6] and AMMA [1] projects. As discussed in more detail in Chap-

ter 7, these toolkits provide well-grounded support for a variety of model management
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Figure 6.2: WipersStory in MMTF’s Model Interconnection Diagram editor.

tasks, including good support for defining mappings between models, via the ATLAS

Model Weaver(AMW) [2] in AMMA and the various languages built around EOL [28] in

Epsilon.

However, there is no support defining explicit intention-specific relation types to which

relationship models are required to conform. Moreover, to our best knowledge, other

than sequential execution of transformations (which can be viewed as an implicit form of

composition) these toolkits do not provide any support for composition of relationships.

These tasks are made possible by MMTF via its mechanism that allows subtyping with

constraints and its operator infrastructure.
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Related Work

Our work is in part inspired by the calls made by researchers in the domain of automotive

software engineering, an area where model-based techniques are becoming increasingly

significant, for integrated, seamless model-driven approaches [18]. We approach the prob-

lem from a model management perspective, and thus work related to what we presented

here comes mainly from that research area.

In the context of model management, our work is closely related to research on multi-

model systems. In this context, we can identify two major schools of thought: the Epsilon

project [6] and the Atlas Model Management Architecture [1]. Epsilon aims to build a

family of task-specific languages centered around the Epsilon Object Language (EOL) [28]

with the aim to manage models independently of their metamodel. The approach of the

AMMA project on the other hand is centered around the concept of “megamodels”, an

environment that considers models, metamodels, tools, services and other related entities

as a whole [15].

In the context of the Epsilon project, the different kinds of relationships between

models are treated with regard to the particular task at hand. The Epsilon Comparison

Language (ECL) is employed to automate the process of identifying matches between

models for purposes such as differencing, versioning and others [26]. The Epsilon Trans-
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formation Language (ETL) provides support for model transformations [30] which can be

considered a class of model relation types, while the Epsilon Merging Language (EML)

provides support for model merging [27]. Additionally, the Epsilon Validation Language

(EVL) provides the capability to manage inconsistencies between models. In the same

research context of detecting inconsistencies across models, Kolovos et al. have also iden-

tified some conceptual relation types, akin to our line of thought of identifying relation

types with regard to their purpose. This work, also has the added benefit of tackling not

only the problem of detecting inconsistencies, but also the issue of repairing them [29].

In the context of the AMMA project, transformations are the main focus in relating

models. The Atlas Transformation Language (ATL) [25] is implemented as a realization of

the Object Management Group’s Query-View-Transformation (QVT) specification [34],

a language for specifying transformations and relations between models. The AMMA

platform further includes the Atlas Model Weaver (AMW), with which users can specify

typed links between model elements [21]. In the context of AMW, models are related

by creating weaving models conforming to weaving metamodels created for particular

application domains. Work on managing consistency under the umbrella of AMMA

has been conducted by using ATL to transform the models under scrutiny to “problem

models” [14].

Compared to these approaches, our approach attempts to capture the various kinds

of relations at a higher level of abstraction. Our conceptual framework is allows for

the handling of relationships in an abstract and generic manner which can be extended

to represent arbitrary kinds of relation types. In this sense, our approach can provide a

platform for integrating the various perspectives present in these lines of work. Moreover,

our approach to conceptualizing relationships as conforming to relation types, opens up

the space to adopt type theoretic approaches to various problems, thus achieving a degree

of formalism at a high level of abstraction.

More generally, the problem of consistency checking has been studied extensively.
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Some indicative literature includes [38] where two models are merged into one which

is then checked against consistency constraints, [24] which looks into the problem from

the perspective of traceability, [19] which focuses on extracting constraints from model

transformations, and many others. Finally, regarding the issue of composition of com-

position of model mappings, related literature includes a study of model operators in

[11], while in a wider context, which includes model transformation, related work has

been done with chains of ATL transformations [20]. As discussed earlier, our approach

can facilitate bringing such particular model management application tasks on a unifying

platform, which can encompass these as well as other tasks in an integrated way.



Chapter 8

Conclusion

8.1 Discussion and evaluation

We presented an approach to model management based on the notion of defining and

explicating relation types and then using them in a macromodeling context. We demon-

strated the approach with examples from the automotive domain, an area where the use

of model-based techniques is increasingly emerging as an industry norm, and is therefore

faced with significant model management problems.

Our approach entails the formation of relation type hierarchies, by declaring abstract

types that capture the intent for a particular way to relate models. By additionally

specifying particular application scenarios and correctness for these scenarios, we can

create concrete relation types that specialize the abstract ones for particular model types.

In Section 2.4, we listed the following requirements for an approach to model man-

agement:

1. It should enable developers to reason about how a set of modeling artifacts is

semantically structured.

2. It should provide the infrastructure for validating this structure to expose potential

inconsistencies.
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3. It should facilitate the inference of implicit knowledge about the ways that models

are dependent in non-evident ways.

With respect to the first requirement, in Section 4.2 we define relation types as tied

to particular intentions and in Section 4.3.1 we require that the semantics of concrete

relation types are explicated in the form of relation type constraints. In a macromodeling

context, this enables developers to create typed macromodels containing typed models

and typed relationships among them. This creates a semantic structure that captures the

interdependencies among the various models. Furthermore, as discussed in Section 3.2.2,

macromodels can be nested. Applying the same principles, relationships can be estab-

lished between macromodels, and therefore it is possible to create semantically structured

hierarchies of models, where the semantics are captured by the types of models and the

types of relationships between them.

What our approach does not address is the issue of macro-relationships, that is,

nesting relationships between models from different metamodels in a relationship bundle

at a higher level of abstraction. Such a feature would enable developers to express

complex relationships between collections of models, as opposed to between individual

models.

Regarding the second requirement, we discuss in Section 4.5 how the well-formedness

constraints attached to any concrete relation type can be used to validate the proper

application of the relation type. As discussed above, the semantic structure of a set of

models is constructed by creating macromodels containing typed models and relationships

between them. All relationships between models are concrete relationships which are tied

to specific semantic constraints as defined in Section 4.3.1. Validation of the semantic

structure of a set of models is therefore a matter of recursively validating the macromodel

which captures it with respect to the model and relation types of the elements that it

contains. Additionally, in Section 5.1, we define relation types specifically to capture

checkable consistency dependencies between models. Consistency relation types are a
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additional powerful means to verify the consistency between models in a structured set,

as they provide a way to explicitly specify which models should be consistent and how.

A potential shortcoming of our approach with respect to this requirement is that as

validation is based on examining OCL constraints on model elements, the input to the

user could be too low level, compared to the high level of abstraction to which we aim.

Additionally, our approach does not address the issue of proposing potential fixes for any

inconsistencies uncovered by the validation process.

With respect to the third requirement, we describe in Section 5.2 how typed relation-

ships can be employed to define composition operators. Such operators can in turn be

used for the composition of relationships that have already been explicated in a macro-

modeling context, to automatically infer new relationships. Such inferred relationships

expose implicit knowledge about non-evident dependencies between models. Checking

such a relationship model against the relation type specified by the signature of the

composition operator enables uncovering potential inconsistencies between the related

models.

An issue with this approach to uncovering implicit inconsistencies is that it can only

uncover expected inconsistencies, i.e., inconsitencies checkable by constraints already ex-

plicated for the relation type designated as the output of a composition operator. Our

approach does not tackle the issue of composing the constraints of the input relation

types of a composition to infer those of its output relation type. Such a technique could

potentially uncover non-evident types of inconsistencies, that cannot be detected by our

approach so far.

8.2 Future work

On a basic level, our approach to declaring and defining relation types opens up the space

for approaching model management in a more systematic manner. We have presented
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a few applications of such an approach, but we can envision a much larger application

domain. As sets of models are structured around a particular purpose, defining rela-

tion types to capture their semantic structuring can facilitate greater comprehension of

sets complex sets, in a context that can potentially encompass the whole of the software

lifecycle, from requirements to code generation and deployment. We intend to further

investigate such uses including creating traceability links, defining transformations, man-

aging variability and deferred design decisions, guiding development and representing

evolution.

At the same time, we find that it might be cumbersome for developers to need to create

concrete relation types for all possible models that they encounter. For each concrete

relation type, relator metamodels need to be created and the particular semantics for

it must be expressed as constraints on it. An issue that therefore could be useful to

investigate more would be to see how to integrate our work with a more generic approach,

possibly through a mechanism such as the notion of generics found in Java, or templates

in C++. Such an approach could potentially allow developers to automate part of the

process by capturing the abstract semantics at a higher level of abstraction.

Moreover, as abstract relation types are intended to convey an intent or purpose,

it may make much sense to create taxonomies of such abstract relation types. This

would entail the identification of specific properties and criteria, whose variance cross-

cuts among the various relation types. These could then be used as building blocks for

defining relation types, irrespective of the particular underlying model types. Combined

with the ideas discussed in the previous paragraph, this could prove to be a powerful

mechanism for quickly deriving concrete relation types.

Finally, as described in Section 5.2, composition operators can be declared with spe-

cific signatures. In the same section, we discussed how the output of such operators is

not guaranteed to conform the the designated output relation type, and that the result

of validating against its type can be used to draw conclusions e.g. with respect to con-
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sistency. At the same time however, we feel that, at least for some input types, it could

be possible to prove that the output will always conform to its designated type. Such a

potential opens up the space for automating many model management tasks, and should

therefore be further investigated.
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[14] J. Bézivin and F. Jouault. “Using ATL for checking models”. In Proceedings of the

International Workshop on Graph and Model Transformation, pages 69 – 81, 2006.
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[19] J. Cabot, R. Clarisó, E. Guerra, and J. de Lara. “Verification and validation of

declarative model-to-model transformations through invariants”. Journal of Systems

and Software, 83(2):283–302, 2010.
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Algorithm Blocks are the basic elements for creating logical architectures of compo-

nents. They can be decomposed internally in Block elements to describe distinct parts

of behavior. They can also be organized in Simulation Frames, that contain scheduling

information. Additionally, they can have a number of Ports for accessing Interfaces to

Signals (see Figure A.2). Port links can be used to create connections between blocks’

ports, following the required/provided pattern for interfaces.

Figure A.1: Metamodel for Algorithm Block Diagrams, discussed in Section 2.3.1.
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For each Signal, defined as a hardware or data signal, an Interface element must be

declared. Signal Interfaces are utilized by Algorithm Blocks (see Figure A.1) via required

and provided port elements. Interfaces can also be bundled in Frame ports.

Figure A.2: Metamodel for Signals Diagrams, discussed in Section 2.3.2.
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context Machine inv:

self−> count(outgoing) <= 1

In general, a state machine consists of states and transitions. States can be simple or

composite, and there exist initial and final states. For the domain specific state machines

of the automotive domain, only one outgoing transition is allowed for each state.

Figure A.3: Metamodel for State Machines, discussed in Section 2.3.3.
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On a basic level, UML Component Diagrams contain component elements which possibly

expose a number of provided and required interfaces.

Figure A.4: Basic metamodel for UML Component Diagrams, as discussed in Sec-

tion 2.3.4. Source: UML Specification[35], Figure 8.2.
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context l : Link inv:

CD!Interface.allInstances()−>forAll( i | SD!SignalInterface.allInstances()−>exists(

s | i.name=s.name and l.start=i and s.end=s ))

In this interface consistency concrete relation type, for every Interface element in the

Component Diagram there must exist a SignalInterface element in the Signals Diagram,

and they must be connected via a Link element.

Figure A.5: IConsistecyCD-SD relator metamodel, discussed in Section 5.2.1.
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context l : Link inv:

CD!Interface.allInstances()−>forAll( i | ABD!AlgorithmPort.allInstances()−>exists(

a | i.name=a.name and l.start=i and l.end=i ))

In this interface consistency concrete relation type, for every Interface element in the

Component Diagram there must exist a Port element in the Algorithm Block Diagram,

and they must be connected via a Link element.

Figure A.6: IConsistencyCD-ABD relator metamodel, discussed in Section 5.2.1.
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