CSC2415 Winter 2013 Homework Assignment 1

- 1. To within a constant factor, what is the worst case length of the chain between α and γ in the proof of Theorem 2.9?
- 2. Prove Lemma 2.11. Carefully justify the steps of your proof.
- 3. For any positive integer k, the k-cas operation takes as input k different objects r_1, \ldots, r_k , and 2k values old_1, \ldots, old_k , and new_1, \ldots, new_k . If the value of r_i is old_i for all $i \in \{1, \ldots, k\}$ then it sets the value of r_i to new_i for all $i \in \{1, \ldots, k\}$. Otherwise, the values of r_1, \ldots, r_k remain unchanged. In either case, it returns the vector of values of r_1, \ldots, r_k immediately beforehand.

Prove that any synchronous, *n*-process algorithm for COLLECT that uses only *k*-cas and write requires $\Omega(\log_k n)$ rounds in the worst case.

- 4. Prove that any 3-process implementation of GetTS from registers that satisfies solo-termination requires at least 2 registers.
- 5. A resettable consensus object takes values from $\mathbb{N} \cup \{\bot\}$ and supports two operations:
 - reset, which sets the value of the object to \perp and returns ack, and
 - propose(v), which sets the value of the object to v, if the object has value \perp , and, otherwise, leaves the value of the object unchanged. In either case, it returns the (new) value of the object.

Prove that any implementation of a counter shared by n processes using only resettable consensus objects requires at least n-1 resettable consensus objects and, in the worst case, a READ takes at least n-1 steps.