
CHAPTER 1
Introduction

1.1 Unsolvability Results and Lower Bounds

This book studies computation in distributed systems, specifically unsolvability results,

which show that certain problems cannot be solved, and lower bound results, which

show that certain problems cannot be computed when insufficient resources are avail-

able. In general, such impossibility results depend on assumptions about the system,

for example, how processes communicate with one another or what kinds of failures

can occur. They also depend on the types of algorithm allowed, for example, whether

randomization can be used.

For solvable problems, we study their complexity under a number of different mea-

sures, most notably, time, number of messages and their size, number of shared vari-

ables, their type and size, and contention. Our goal is to find lower bounds on one or

more of these resources or tradeoffs among them.

Note that, unlike the situation when we study algorithms, bigger lower bounds are

better. Impossibility results for weaker problems are better because they automat-

ically imply the same results for stronger problems. Similarly, it is better to prove

impossibility results for stronger models, for example, with more powerful primitives,

more synchrony, a source of randomness, or less faulty behaviour.

1.2 Why Study Impossibility Results?

Lower bounds and unsolvability results help us understand the nature of distributed

computing:

• What makes certain problems hard? What parts of the problem requirements

cause the difficulty? How do two different problems relate to one another?

• What makes certain systems powerful? What are the crucial limitations of real

systems? How do two different systems (or, more precisely, formal models of

those systems) relate to one another?

Lower bounds also tell us when to stop looking for better solutions, namely, when they

match an existing upper bound. (Unfortunately, this does not happen very often.)

5

1. Introduction

Impossibility results that assume restricted types of algorithms, for example, deter-

ministic algorithms or algorithms that do not distinguish between different processes,

indicate which approaches will not work.

If a problem needs to be solved despite an unsolvability result, the proof may in-

dicate how to adjust either the problem statement (making it weaker) or the system

model (making it stronger). In this manner, lower bounds have influenced real systems,

by showing the system must satisfy certain assumptions, if important problems must

be solved. For example, the unsolvability of consensus in asynchronous shared mem-

ory systems where processes communicate through registers has led to manufacturers

including more powerful primitives such as compare&swap into their architectures.

Trying to prove a lower bound can suggest new and different algorithmic approaches

for solving a problem. It can be fruitful to alternately work on getting a lower bound

and getting a better algorithm, using the difficulties encountered in one to provide

insight for the other.

Finally, lower bounds are fun to prove!

1.3 Structure of the Book

This book considers a variety of problems and models for distributed systems, em-

phasizing techniques, rather than results. After explaining a technique, we present

several applications of it, going from simpler ones to more complicated ones. We have

not always chosen the most important or most complicated results. Instead, we prefer

proofs that expose the really important aspects of the techniques.

For each result, we begin by carefully specifying the model and the problem. We

assume the reader is familiar with standard models of distributed computing, for ex-

ample, as defined in Hagit Attiya and Jennifer Welch’s book Distributed Computing,

second edition, Wiley, 2004. Throughout the book, we use p0, . . . , pn−1 to denote the

processes of the model in which we are working. To distinguish operations we are

trying to implement from those that we are using for an implementation, we denote

the former with upper case letters, for example, WRITE, we denote the latter using

bold lower case letters, for example, write, and we call the latter primitives.

6

CHAPTER 2
Indistinguishability

Most impossibility results in distributed computing follow from a lack of knowledge or

uncertainty about the system. At any point in time, the state of a process, including

the value of its input variables, is the knowledge the process has about the system.

To solve many distributed computing problems, processes need to learn information

about the states of other processes. Proofs of unsolvability results show that this

knowledge cannot be obtained; proofs of lower bounds show that this knowledge cannot

be obtained with limited resources.

Lack of knowledge stems from uncertainty about many aspects of the system, in-

cluding the inputs of other processes (since different processes get different inputs),

asynchrony (how many steps other processes have taken, what messages have been

sent and received), and failures (crashes, omissions, and malicious processes). How

do we say that a process doesn’t know something? If its local knowledge is compat-

ible with two different executions, then it doesn’t know which of the two executions

has occurred. A key method for capturing lack of knowledge is by arguing about the

indistinguishability of certain executions or configurations.

A configuration describes the system at some point in time. It consists of the states

of all processes and the state of the environment (for example, the values of all shared

variables, or the contents of all message channels). Two configurations, C and C ′, are

indistinguishable to a process pi, if it has the same state in both configurations. In

other words, pi does not know whether it is in C or C ′. This is denoted C
pi
∼ C ′. If P

is a set of processes and C
pi
∼ C ′ for all pi ∈ P , we write C

P
∼ C ′. Note that, in some

of the distributed computing literature, the definition of C
pi
∼ C ′ also requires that the

state of the environment is the same in C and C ′. We prefer to address the state of the

environment separately, because we often consider configurations that differ in parts

of the environment that will not affect pi.

At any configuration, there is a fixed set of events that can occur, each of which

affects one process. Some examples of events are message m is delivered to process

pi on channel c, process pi writes value v to register r, and process pi reads value v

from register r. An execution is a sequence of alternating configurations and events,

starting with a configuration, such that each event can occur at the configuration which

precedes it and which results in the configuration that follows it. If an execution is

7

2. Indistinguishability

finite, it ends with a configuration. A solo execution is an execution in which every

event is by the same process.

The history associated with an execution is its sequence of events. A sequence of

events σ can occur starting at a configuration C if there is an execution that begins

with C whose history is σ. If σ is finite, we use Cσ to denote the last configuration in

this execution. We often partition a history into a set of n local histories, one for each

process, consisting of the events which affect that process.

Whether σ can occur starting at C depends on the state of the environment in

C. Specifically, in shared memory systems, it depends on the values of the shared

objects accessed by σ and, in message passing systems, it depends on the contents of

the message channels on which messages are delivered in σ.

Two executions, α and α′, starting from configurations C and C ′, respectively, are

indistinguishable to a set of processes P if C
P
∼ C ′ and each process pi ∈ P has the

same local history in both executions. This is denoted α
P
∼ α′.

If two configurations, C and C ′, are indistinguishable to a set of processes and the

same finite sequence of events, σ, can occur starting at each, then the two resulting

configurations, Cσ and C ′σ will also be indistinguishable to these processes. The

following lemma and its corollary are useful for identifying such situations. They are

straightforward to prove by induction.

Lemma 2.1. Let σ be a sequence of events by some set of processes P that can occur

starting from configuration C. If C
P
∼ C ′ and the part of the environment accessed by

σ has the same value in C and C ′, then σ can occur starting from C ′ and, if σ is finite,

Cσ
P
∼ C ′σ.

Corollary 2.2. Let α be an execution starting from some configuration C, all of whose

events are by processes in some set P . If C
P
∼ C ′ and the part of the environment

accessed by α has the same value in C and C ′, then there is an execution α′ starting

from C ′ such that α
P
∼ α′.

If some process cannot distinguish between two executions of an algorithm, but it

must produce different outputs in each, then the algorithm is incorrect. It is often

useful to think of these bad executions as being produced by an adversary, which

controls, depending on the circumstances, the inputs processes receive, the order in

which they take steps, when to deliver messages and the way failures occur (i.e., what

kind of failures, by what processes, and when). The adversary tries to limit the amount

of knowledge processes have, either forever, or for as long as possible, by keeping

the execution indistinguishable from other executions in which the results should be

different.

An algorithm is wait-free if each process that doesn’t fail completes its task after

taking some finite number of steps, no matter how the adversary does its scheduling.

A weaker condition is solo termination, also known as obstruction freedom, in which a

process completes its task, provided it is given sufficiently many consecutive steps by

the adversary. Thus, lower bounds assuming solo termination also apply to wait-free

algorithms.

In the remainder of this chapter, we present three fairly simple proofs of impossi-

bility results that rely on indistinguishability, followed by two which are more involved.

8

2.1. A Tradeoff Between Read and Write

Section 2.1 gives a lower bound on the tradeoff between the worst case time to perform

a read and the worst case time to perform a write in any implementation of a register

in a message passing system. In Section 2.2, we present a lower bound on the size

of shared memory necessary for first-come first-served mutual exclusion. Section 2.3

contains a lower bound on the worst-case step complexity of approximate agreement.

A lower bound on the number of rounds to solve consensus, as a function of the number

of process failures that might occur, is presented in Section 2.4. Finally, in Section 2.5,

we prove that wait-free set consensus is impossible in an asynchronous system using

only single-writer registers.

2.1 A Tradeoff Between Read and Write Times in the

Implementation of a Register

Consider the problem of implementing a register in a message passing system. A

solution to this problem allows one to convert algorithms designed for a shared memory

system to be used in a message passing system. Understanding the complexity of this

problem tells us how much overhead is incurred in doing so. It also allows us to transfer

lower bounds proved in a message passing system to shared memory.

A solution consists of two algorithms, READ and WRITE(v), for each process pi.

The input parameter v may have any value that can be stored in the register. A very

weak requirement for such an implementation is the following: In any execution in

which no WRITE overlaps any other operation, each READ must return the last value

written before it began.

We consider a message passing model in which processes communicate by sending

messages directly to one another through a complete network. We assume that the

system is semisynchronous: each step by a process can take up to 1 unit of time to be

executed and messages can take up to d units of time to be delivered. We can assume

that no processes fail and communication is reliable.

For any implementation, let R denote the worst case time to perform a READ and

let W denote the worst case time to perform a WRITE. We use an indistinguishability

argument to prove the following tradeoff.

Theorem 2.3. R+W ≥ d.

Proof. Suppose not. Consider an execution α1 in which process p1 performs WRITE(1)

starting at time 0, process p0 performs READ starting at time W , and all messages

sent have delay d. Then, by time W + R < d, process p0 has returned its response,

but it has not received any messages.

Let α2 be the execution that is the same as α1, except that p1 performs WRITE(2)

instead of WRITE(1). These two executions are indistinguishable to p0 during the first

W+R units of time, so it must return the same result for its READ in both executions.

Thus, in at least one of these two executions, it returns an incorrect response.

This result is from a 1988 Princeton University technical report entitled PRAM: A

scalable shared memory by Richard Lipton and J. Sandberg.

9

2. Indistinguishability

2.2 A Space Lower Bound for First-Come First-Served

Mutual Exclusion

In the mutual exclusion problem, processes may need temporary exclusive access to a

shared resource. A process which has this access is said to be in the critical section.

To get the resource, a process performs an entry protocol. When a process has finished

with the resource, it performs an exit protocol. A process that does not currently care

about the resource is said to be in the remainder section.

A mutual exclusion algorithm consists of code for the entry and exit protocols for

each process. It must satisfy the following properties.

• Mutual Exclusion: two or more processes are never simultaneously in the critical

section.

• Deadlock Freedom: starting from any configuration in which some process is

performing the entry protocol and no process is in the critical section, some

process eventually enters the critical section.

• Unobstructed Exit: a process can always perform the exit protocol using only a

finite number of its own steps.

A mutual exclusion algorithm is first-come first-served if each entry protocol begins

with a section of code, called a doorway, and processes enter the critical section in the

order that they perform the doorway. More precisely, for any two processes pi 6= pj ,

if pi completes the doorway of some instance of the entry protocol before pj begins

some other instance of the entry protocol, then pi completes its instance of the entry

protocol and enters the critical section before pj does. The doorway has the property

that it can always be performed by a process using only a finite number of its own

steps.

In this section, we consider asynchronous shared memory models which support

arbitrary objects. There are no process failures. Moreover, when a process is in

the critical section, it eventually finishes using the resource (and performs the exit

protocol). We use an indistinguishability argument to prove a lower bound on the

space needed to solve this problem.

Theorem 2.4. Any first-come first-served mutual exclusion algorithm has at least n

possible values for its shared memory.

Proof. Consider any mutual exclusion algorithm in which the shared memory has less

than n possible values. We show that an adversarial scheduler can construct an execu-

tion starting from the initial configuration in which the first-come first-served property

is violated.

Let C0 be an initial configuration in which all processes are in the remainder section.

For i = 0, . . . , n − 1, starting from configuration Ci, consider the finite history in

which process pi takes steps until it completes its doorway. Let Ci+1 be the resulting

configuration and let vi+1 be the value of the shared memory in this configuration.

By the pigeon hole principle, there exist i and j, 1 ≤ i < j ≤ n such that vi = vj .

Let P = {p0, . . . , pi−1}. Starting from Ci, consider a scheduler that repeatedly sched-

ules the processes in P in round robin order. By deadlock freedom, eventually some

10

2.3. Approximate Agreement

process in P enters the critical section. When a process enters the critical section, it

begins the exit protocol at its next turn. By unobstructed exit, it eventually completes

the exit protocol. After entering the remainder section, it performs the entry protocol

again, beginning at its next turn. This happens repeatedly. Eventually some process

pk ∈ P enters the critical section a second time. Let σ denote the finite sequence of

events performed starting from Ci until this occurs.

Since Ci
P
∼ Cj and vi = vj , it follows from Lemma 2.1 that σ can be performed

starting from Cj . Consider the execution from C0 to Cj followed by the sequence

of events σ. In this execution, process pj−1 completes its doorway before process pk
begins its doorway for the second time. However, process pk enters the critical section

twice, whereas process pj−1 does not enter the critical section at all. This violates the

first-come first-served property.

This lower bound is due to Burns, Jackson, Lynch, Fischer, and Peterson, in their

paper, Data Requirements for Implementation of N-Process Mutual Exclusion Using a

Single Shared Variable, which appeared in JACM in 1982.

2.3 A Lower Bound on the Step Complexity of

Approximate Agreement

In the approximate agreement problem, processes have to output values that are close

to one another. Formally, each process pi has a private input value xi and, if it doesn’t

fail, has to output a value yi. The processes all know an accuracy parameter ǫ > 0.

The output values must satisfy the following two properties.

• ǫ-Agreement : All output values are within ǫ of each other.

• Validity : All output values are between the smallest and largest input values,

i.e., min{x0, . . . , xn−1} ≤ yi ≤ max{x0, . . . , xn−1} for all i ∈ {0, . . . , n− 1}.

In particular, if all the input values are the same, all the output values must equal this

input value. One place this problem arises is in clock synchronization when processes

attempt to maintain clock values that are close to one another.

We consider an asynchronous shared memory model with no process failures and

only single-writer registers.

Theorem 2.5. For x0, . . . , xn−1 ∈ {0, 1} and ǫ < 1, any algorithm for approximate

agreement that satisfies solo termination has worst case step complexity at least n− 1.

Proof. The proof is by contradiction. Consider any approximate agreement algorithm

and let α be the solo execution by a process pi starting from an initial configuration

C0 in which the input values of all processes are 0. Then, by solo termination and

validity, it must output value 0. Suppose this execution takes fewer than n− 1 steps.

Then process pi doesn’t read the single-writer register rj of some process pj 6= pi.

Next, consider the solo execution β by process pj starting from an initial configu-

ration, C1, in which the input values of all processes are 1. By solo termination and

validity, it must output value 1.

11

2. Indistinguishability

Now, consider the solo execution β′ by process pj starting from an initial config-

uration C in which its input value is 1, but all other input values are 0. Note that

C
pj
∼ C1 and each of the single-writer registers has the same value (i.e., its initial value)

in both these configurations, so β′ pj
∼ β. Hence, process pj outputs 1 in execution β′.

Finally, let C ′ be the configuration at the end of β′ and let α′ denote the solo

execution α′ by process pi starting from C ′. Since every single-writer register, except

rj , has the same value in C ′ and C0 and process pi does not read from rj during α, it

follows from Corollary 2.2 that α′ pj
∼ α. Hence, process pi outputs 0 in execution α′.

But this means that, in execution β′α′, process pj outputs 1 and process pi outputs

0. This violates ǫ-agreement.

A wait-free approximate agreement algorithm using multi-writer registers with

O(log(1/ǫ)) step complexity is presented in the paper Faster Approximate Agreement

with Multi-Writer Registers by Erik Schenk, Proceedings of FOCS, 1995, pages 714–

723. When x0, . . . , xn−1 ∈ {0, 1} and ǫ = 1

2
, it has O(1) step complexity. Together with

Theorem 2.5, this implies that single-writer registers are less powerful than multi-writer

registers.

Theorem 2.6. Any implementation of a multi-writer register shared by n processes

using only single-writer registers has Ω(n) step complexity in the worst case.

Thus, lower bounds on a particular problem can be used to prove that one model is

more powerful than another model. Theorem 2.6 can also be proved directly, using an

argument similar to that in the proof of Theorem 2.5.

In Atomic Shared Register Access by Asynchronous Hardware, by Paul Vitányi and

Baruch Awerbuch, Proceedings of FOCS, 1986, pages 233–243, there is a wait-free

implementation of a multi-writer register with O(n) step complexity. By Theorem 2.6,

this is optimal.

2.4 Chain Arguments for Consensus

In a chain argument, the idea is to construct a chain or sequence of executions such

that each pair of consecutive executions in the chain is indistinguishable to at least

one process. If, in each execution, all processes must have the same result, it follows

that the processes have the same result in all executions in the chain. This leads to

a contradiction if the result at one end of the chain must differ from the result at the

other end./

For any two executions, α and α′, we write α ∼ α′ if there is a process pi such

that α
pi
∼ α′. Let ≈ denote the transitive closure of ∼. In other words, α ≈ α′ if and

only if there is a chain of executions α = α0, α1, . . . , αk = α′ such that αi−1 and αi are

indistinguishable to at least one process, for i = 1, . . . , k, i.e., for each i, there exists a

process pj such that αi−1

pj
∼ αi.

Consensus is one of the most widely studied problems in the theory of distributed

computing and is used as a building block in many algorithms. The consensus problem

requires all processes that do not fail to output the same value. A trivial solution is to

have each process simply output the value 0. The problem becomes more interesting if

12

2.4. Chain Arguments for Consensus

each process has a private input value and is required to output this value when every

other process has the same input value.

Formally, each process pi has a private input value xi and, if it doesn’t fail, it has

to output a value yi. The output values must satisfy the following two properties:

• Agreement : All output values are the same.

• Validity : If all input values are the same, then no other value is output.

Binary consensus is a restricted version of the consensus problem, where all input

values are in {0, 1}.

We say that an execution of a consensus algorithm decides a value v if some process

outputs v during the execution. If α and α are executions that decide v and v′,

respectively, and α ≈ α′, it follows that v = v′.

We begin with an important observation about binary consensus algorithms, which

is proved by a simple chain argument. It applies to both synchronous and asynchronous

models in which processes can fail. We will use this observation in this section and,

again, in Chapter 7.

Lemma 2.7. Any binary consensus algorithm has an initial configuration from which

there are two executions that decide different values. In one of these executions, no

processes fail. In the other, one process crashes before taking any steps, but no other

processes fail.

Proof. For i = 0, . . . , n, let Ci denote the initial configuration in which the first i

processes, p0, . . . , pi−1, have input 1 and the rest have input 0, i.e.,

xj =

{

1 for j < i

0 for j ≥ i.

Let vi be the value decided by some execution αi, starting from Ci, in which no

processes fail. In configuration C0, all processes have input 0, so by validity, v0 = 0.

Similarly, in configuration Cn, all processes have input 1, so vn = 1.

Since v0 6= vn, there exists j ∈ {0, . . . , n − 1} such that vj 6= vj+1. Let α be an

execution starting from Cj in which process pj crashes before taking any steps and no

other process fails. If α does not decide vj , then the claim is true for executions αj

and α, which both start from Cj . So, suppose that α decides vj .

Configurations Cj and Cj+1 are the same, except for the state of process pj . By

Corollary 2.2, there is an execution α′ starting from Cj+1 such that α
p
∼ α′ for all

p 6= pj . Hence α′ decides vj , so the claim is true for executions αj+1 and α′, which

both start from Cj+1.

For the rest of this section, we consider a synchronous message passing model in

which processes can only fail by crashing. In each round, every process that has not

terminated and does not crash sends a message to every other process and then receives

all the messages that were sent to it in that round, ordered by the identifiers of the

processes that sent them. In a round in which a process crashes, it sends messages to

an arbitrary prefix (chosen by an adversary) of the sequence of other processes, ordered

by their identifiers. A process that crashes sends no messages in any subsequent round.

Furthermore, we assume that at most f failures occur during each execution.

13

2. Indistinguishability

Now, we will prove a lower bound on the number of rounds needed to solve consen-

sus in this model. The key to the proof is the following technical lemma, which uses a

more complicated chain argument. The chain of executions that it constructs is very

long.

Lemma 2.8. Consider any f -round execution α of a consensus algorithm for n ≥ f+2

processes in a synchronous message passing model, with at most one crash in each

round. Let γ be the f -round execution that is the same as α during its first r rounds

and has no crashes after round r, for some 0 ≤ r ≤ f . Then α ≈ γ.

Proof. By backwards induction on r. If r = f , then α = γ, so α ≈ γ. Suppose

0 ≤ r < f and assume the claim is true for r + 1.

Let β be the f -round execution that is the same as α during its first r + 1 rounds

and has no crashes after round r + 1. By the induction hypothesis, α ≈ β. Thus,

it suffices to show β ≈ γ. This is illustrated in Figure 2.1, where a round that may

contain a crash is indicated by a shaded box.

α

β

γ

· · ·

· · ·

· · · · · ·

· · ·

· · ·

1 r+1 f

Figure 2.1. Some of the executions considered in the proof of Lemma 2.8.

If no process crashes during round r + 1 of execution β, then β = γ and, hence,

β ≈ γ. So, suppose there is a process pi that crashes during round r+1. By assumption,

no other process crashes during round r + 1.

Let P denote the set of processes that do not fail during β. From the model, we

know that |P | ≥ n − f ≥ 2. Let Q be the subset of processes in P to which pi does

not send a message during round r + 1. These are the processes that can distinguish

β from γ at the end of round r + 1. If Q = φ, let t = 0. Otherwise, let t = |Q| and let

q1, . . . , qt be the processes in Q in increasing order by identifier.

We construct a chain of executions between β and γ. Let β0 = β and, for 1 ≤ k ≤ t,

let βk be the f -round execution that has no crashes after round r+ 1 and is the same

as β during its first r+1 rounds, except that pi also sends messages to q1, . . . , qk during

round r + 1.

First suppose that f = r + 1. For 1 ≤ k ≤ t, the only difference between βk−1

and βk is whether pi sends a message to qk in round r + 1. Therefore βk−1

p
∼ βk for

all processes p ∈ P − {qk}. Since |P | ≥ 2, there is at least one process in this set, so

βk−1 ≈ βk. Hence β ≈ βt. In βt, process pi crashes in the last round, after sending

messages to all processes in P , so no process in P can learn whether pi crashed. Note

that γ is the same as βt, except that pi does not crash, so βt
P
∼ γ. Since P 6= φ, βt ≈ γ

and, thus, β ≈ γ.

14

2.5. Impossibility of Set Consensus

Now suppose that f > r + 1. This case is more complicated because processes in

P can communicate with one another in rounds r+2, . . . , f . We inductively construct

a chain of executions between βk−1 and βk, for 1 ≤ k ≤ t. Let γk be the f -round

execution that is the same as βk for its first r + 1 rounds, but, at the beginning of

round r+2, process qk crashes without sending messages to any other process and has

no crashes after round r + 2. Similarly, let γ′k be the f -round execution that is the

same as βk−1 for its first r+1 rounds, but, at the beginning of round r+2, process qk
crashes without sending messages to any other process and has no crashes after round

r + 2. It follows from the induction hypothesis that βk ≈ γk and βk−1 ≈ γ′k.

Note that, up to the end of round r + 1, γk and γ′k are indistinguishable to all

processes in P−{qk}. Since process qk sends no messages in either execution after round

r + 1, Corollary 2.2 implies that γk
p
∼ γ′k for all p ∈ P − {qk}. Since |P | ≥ n− f ≥ 2,

there is at least one process in this set, so γk ≈ γ′k. Thus βk−1 ≈ βk and, hence, β ≈ βt.

In execution βt, process pi crashes at the end of round r+1, after sending messages

to all other processes, and no processes crash in subsequent rounds. Let β′ be the

execution that is the same as βt, except that pi crashes at the beginning of round

r + 2, before sending messages to any other other processes. Then βt
P
∼ β′. Hence

βt ≈ β′. Since β′ has no crashes during round r + 1, the first r + 1 rounds of β′ and γ

are the same. By the induction hypothesis, β′ ≈ γ, so β ≈ γ.

Therefore the claim is true for round r and, thus, by induction, for 0 ≤ r ≤ f .

Theorem 2.9. Any consensus algorithm with n ≥ f + 2 processes that tolerates f

crashes requires more than f rounds, even if at most one process crashes in each round.

Proof. Suppose there is a consensus algorithm with n ≥ f +2 processes that tolerates

f crashes and uses at most f rounds. By Lemma 2.7, there is an initial configuration

from which there are two executions α and γ that decide different values and in which

no processes crashes, except for one process that crashes at the beginning of the first

round of α. Lemma 2.8 implies that α ≈ γ. Hence these executions decide the same

value. This is a contradiction.

The proof of Lemma 2.7 is due to Fischer, Lynch, and Paterson, from their paper,

Impossibility of Distributed Consensus with One Faulty Processor, JACM 32, 1985,

pages 374–382. Theorem 2.9 appeared in Dwork and Moses, Knowledge and Common

Knowledge in a Byzantine Environment: Crash Failures, Information and Computa-

tion, 88, 1990, pages 156–186.

2.5 Impossibility of Set Consensus

The k-set consensus problem is an extension of the consensus problem in which non-

faulty processes decide on at most k different values. Formally, each process pi has a

private input value xi and, if it doesn’t fail, it has to output a value yi. The output

values must satisfy the following two properties:

• k-Agreement: There are at most k different output values.

• Validity: Every output value is one of the input values.

15

2. Indistinguishability

The consensus problem is the special case with k = 1.

We consider an asynchronous shared memory system in which processes commu-

nicate using single-writer registers of unbounded size. Any number of process crash

failures are allowed.

It is trivial to solve n-set consensus for n processes: Each process can simply output

its input value. However, if the number of different output values must be smaller than

the number of processes, the problem become impossible to solve.

Theorem 2.10. There is no wait-free algorithm for n processes that solves (n−1)-set

consensus.

The proof is by contradiction. Suppose there is such an algorithm for n processes

that solves (n − 1)-set consensus. It suffices that each process has one single-writer

register, because the single-writer registers have unbounded size. We may also assume

that when a process writes to its register, it writes its entire history. An algorithm

that does this is called a full information algorithm.

Since we are not concerned with the step complexity of the algorithm, there is no

loss of generality in assuming that each process starts with a write to its register and

alternates between writing to its register and reading the registers of all n − 1 other

processes, in order of their process identifiers. For our proof, it suffices to restrict

attention to special executions, which are induced by finite sequences of nonempty sets

of processes, as follows: Every process pi starts with its identifier i as input. Given

a sequence of nonempty sets of processes, B1, B2, . . . , Br, the execution proceeds in r

rounds. In the ℓ’th round, each process in Bℓ takes n steps. First, each process in

Bℓ, in increasing order of identifier, writes to its register. Then, each process in Bℓ,

in increasing order of identifier, reads the registers of all n − 1 other processes. For

example, the three round execution β induced by {p1, p2}, {p2, p3}, {p4} is

p1: w R

p2: w R w R

p3: w R

p4: w R

Here w denotes a write by a process to its register and R denotes a read by a process

of each of the other n− 1 registers.

If a process pi reads the single-writer register of another process pj in the ℓ’th round

of an execution, it learns the number of sets among B1, . . . , Bℓ to which pj belongs,

which is how many times pj participated during the first ℓ rounds. It also learns

the state of process pj immediately prior to the last round in which pj participated.

For example, every process in B1 learns which other processes belong to B1 and every

process in B2−B1 learns which other processes belong to B1∩B2, (B1−B2)∪(B2−B1),

and B1∩B2. If B1 and B2 are disjoint, then a process in B2 cannot determine whether

another process is in B2 − B1 or B1 − B2. Hence, the executions induced by B1 ∪ B2

and B1, B2 are indistinguishable to the processes in B2. However, the processes in B1

can distinguish between these two executions. More generally, because processes take

steps in a fixed order within each round, the following result can be proved inductively.

16

2.5. Impossibility of Set Consensus

Lemma 2.11. If β and β′ are both executions induced by finite sequences of sets

and they are indistinguishable to all processes, then those sequences are the same and

β = β′.

We are particularly interested in pairs of executions that are distinguishable by ex-

actly one process. For example, let β1 be the execution induced by {p1}, {p2}, {p2, p3}, {p4}:

p1: w R

p2: w R w R

p3: w R

p4: w R

and let β2 be the execution induced by {p1, p2}, {p2}, {p3}, {p4}:

p1: w R

p2: w R w R

p3: w R

p4: w R.

Then β is indistinguishable from β1 to all processes except p1 and β is indistinguishable

from β2 to all processes except p2, that is, β1
P−{p1}
∼ β, β1

p1

6∼β, β2
P−{p2}
∼ β, and β2

p2

6∼β.

Observation 2.12. For every process pi, if β and β′ are the executions induced by the

sequences B1, . . . , Br and B1, . . . , Br, {pi}, respectively, then β
P−{pi}
∼ β′ and β

pi

6∼β′.

The next lemma gives a different situation in which two sequences of sets induce

executions that are indistinguishable to all processes except pi.

Lemma 2.13. If pi participates in the execution β induced by B1, B2, . . . , Br and

Br 6= {pi}, then there is a unique sequence of sets B′
1, B

′
2, . . . , B

′
r′ such that B′

r′ 6= {pi},

β
P−{pi}
∼ β′, and β

pi

6∼β′, where β′ is the execution induced by B′
1, B

′
2, . . . , B

′
r′ .

Proof. Let ℓ be the latest round of β in which pi participates. If Bℓ 6= {pi}, split Bℓ

into two nonempty sets, the first of which contains only pi and the second of which

contains the rest of Bℓ. Then r′ = r + 1 and

B′
h =















Bh if 1 ≤ h < ℓ

{pi} if h = ℓ

Bℓ − {pi} if h = ℓ+ 1

Bh−1 if ℓ+ 1 < h ≤ r′.

Note that, if ℓ = r, then B′
r′ = Bℓ − {pi} 6= {pi} and, if ℓ < r, then B′

r′ = Br 6= {pi}.

If Bℓ = {pi}, then ℓ < r and pi 6∈ Bℓ+1 (since ℓ is the latest round in which pi
participates). In this case, merge Bℓ with Bℓ+1, so r′ = r − 1 and

B′
h =







Bh if 1 ≤ h < ℓ

Bℓ ∪Bℓ+1 if h = ℓ

Bh+1 if ℓ+ 1 ≤ h ≤ r′.

Since B′
r′ ⊇ Br 6= {pi} and Br 6= φ, it follows that B′

r′ 6= {pi}.

17

2. Indistinguishability

In both cases, β′
pi

6∼β. However, the induced executions β and β′ are the same prior

to round ℓ and they become distinguishable to process pi only after it last writes to

its single-writer register in round ℓ. The processes in P − {pi} that participate in

round ℓ of the shorter of these two executions (i.e., with r rounds) cannot tell the

difference between it and round ℓ+ 1 of the longer execution. Since pi takes no steps

after round ℓ in either execution and the last r − ℓ rounds of these executions are the

same, these executions remain indistinguishable to every other process from round ℓ

onwards. Thus, β′ P−{pi}
∼ β.

To prove uniqueness, consider any sequence of sets B′′
1 , . . . , B

′′
r′′ with B′′

r′′ 6= {pi}

that induces an execution β′′ such that β′′
pi

6∼β and β′ P−{pi}
∼ β. Since pi participates

in round ℓ of β and Br 6= {pi} it follows that the first ℓ − 1 rounds of β and β′′ are

indistinguishable to all processes, Bℓ 6= {pi}, and pi does not participate during any

later round. By Lemma 2.11, B′′
1 , . . . , B

′′
ℓ−1

= B1, . . . , Bℓ−1.

The last r − ℓ rounds of β and β′′ are indistinguishable to all processes except pi,

which does not participate. It follows by Lemma 2.11 that the last r − ℓ rounds of β′′

and β are the same and Bℓ+1, . . . , Br = B′′
r′′−r+ℓ+1

, . . . , B′′
r′′ .

Finally, between this prefix and suffix, if a process writes a different number of

times or sees a different number of writes by another process, it will have a different

state. Thus, the only writes in this part of the execution must be by processes in

Bℓ, all of them must write exactly once, and all the processes in Bℓ − {pi} must

write in the same round. Therefore the sequence that induced β′′ must be either

B1, B2, . . . , Br or B′
1, B

′
2, . . . , B

′
r′ . But β′′ 6= β, since β′′

pi

6∼β. Therefore β′′ = β′ and

B′′
1 , . . . , B

′′
r′′ = B′

1, B
′
2, . . . , B

′
r′ .

We say that a process pi is seen in the ℓ’th round of the execution induced by

B1, B2, . . . , Br, if pi ∈ Bℓ and ∪r
h=ℓBh 6= {pi}, i.e. there is some other process that

participates in round ℓ or later. If a process pi participates in the execution β induced

by B1, B2, . . . , Br, but is not seen, we say that it is unseen in β. This means that

pi takes all its steps after all other participating processes have stopped taking steps,

i.e. there exists ℓ ∈ {1, . . . , r} such that pi 6∈ Bh for 1 ≤ h < ℓ and Bh = {pi} for

ℓ ≤ h ≤ r. At most one process is unseen in the execution induced by a sequence of

sets of processes. For example, p4 is unseen in β, β1, and β2.

An m-process normal execution is an execution induced by a sequence of subsets

of {p0, . . . , pm−1} such that each of these m processes pi has input xi = i and outputs

a value yi ∈ {0, . . . ,m− 1} in the last round in which it participates. Let Nm denote

the set of all m-process normal executions in which all m input values are output, i.e.

{y0, . . . ym−1} = {0, . . . ,m− 1}.

Lemma 2.14. |Nm| is odd, for 1 ≤ m ≤ n.

Proof. The proof is by induction. Since the algorithm is deterministic and wait-free,

there is exactly one 1-process normal execution. In this execution, p0 outputs 0. Thus

|N1| = 1, which is odd.

Let 1 ≤ m ≤ n − 1 and assume that |Nm| is odd; note that since the algorithm

is deterministic and wait-free, Nm+1 is finite. Consider the set Am+1 of pairs (α, pi),

where 0 ≤ i ≤ m and α is an (m + 1)-process normal execution in which processes

18

2.5. Impossibility of Set Consensus

other than pi output all the values {0, . . . ,m − 1}. We start by showing that |Am+1|

is odd. There are three cases:

First, suppose that pi is seen in α. Let β be the execution obtained from α by re-

moving all rounds from the end of α in which only pi participates. By Observation 2.12,

β
P−{pi}
∼ α. By Lemma 2.13, there is a unique execution β′ such that the set of partici-

pants in its last round is not {pi}, β
pi

6∼β′, and β
P−{pi}
∼ β′. Let α′ be the (m+1)-process

normal execution obtained from β′ by letting process pi perform rounds by itself until

it returns a value. Since α is an extension of β, α′ is an extension of β′ and pi takes

the same number of steps in β and β′, it follows that α
pi

6∼α′. By Observation 2.12,

α′ P−{pi}
∼ β′. Hence α

P−{pi}
∼ α′. Since pi is seen in α, it follows that pi is seen in α′.

Furthermore, {y′0, . . . , y
′
m} − {y′i} = {y0, . . . , ym} − {yi} = {0, . . . ,m− 1}, where y′j is

the output of process pj in execution α′, for j = 0, . . . ,m. Thus (α′, pi) ∈ Am+1 and
P−{pi}
∼ partitions {(α, pi) ∈ Am+1 | pi is seen in α} into equivalence classes of size at

least two. In fact, each of these equivalence classes has size exactly two and hence, the

cardinality of this set is even. To see why an equivalence class cannot have size greater

than two, consider any three executions α1, α2, and α3 in the same equivalence class.

For j = 1, 2, 3, let βj be the execution obtained from αj by removing all rounds from

the end of αj in which only pi participates. Note that pi still participates in βj , since

pi is seen in αj . By Observation 2.12, βj
P−{pi}
∼ βk for all 1 ≤ j < k ≤ 3. It follows

from Lemma 2.13 that βj
pi
∼ βk for some 1 ≤ j < k ≤ 3. Then Lemma 2.11 implies

that βj = βk. This, in turn, implies that αj = αk, since the algorithm is deterministic

and α1, α2, and α3 are m-process normal executions.

Next, suppose that pi is unseen in α and i ∈ {0, . . . ,m− 1}. Since {y0, . . . , ym} −

{yi} = {0, . . . ,m − 1}, there exists j ∈ {0, . . . ,m} − {i} such that yj = i. Let α′

be obtained from α by deleting all steps by pi. By Observation 2.12, α′ P−{pi}
∼ α, so

α
pj
∼ α′. Let β be obtained from α′ by changing the value of xi from i to another value.

Since pi takes no steps in α′, it follows that α′ pj
∼ β. Hence, process pj also outputs i in

β. However, this violates validity. Thus, there are no pairs (α, pi) ∈ Am+1 with i 6= m

in which pi is unseen in α.

Finally, suppose that pm is unseen in α. Let α′ be obtained from α by deleting all

steps by pm. By Observation 2.12, α′ P−{pi}
∼ α, so α′ is an m-process normal execution

in which all the values 0, . . . ,m − 1 are output, i.e. α′ ∈ Nm. Similarly, from any

execution α′ ∈ Nm, we can construct a pair (α, pm) ∈ Am+1 such that pm is unseen in

α, by letting process pm perform rounds by itself until it returns a value, starting after

processes p0, . . . , pm−1 have all produced their output values. Because the algorithm

is deterministic and wait-free, α is unique. Thus {(α, pm) ∈ Am+1 | pm is unseen in α}

is isomorphic to Nm. By the induction hypothesis, |Nm| is odd. Thus, |Am+1| is odd.

Consider any pair (α, pi) ∈ Am+1 such pi does not output m in α. By validity,

it outputs a value v ∈ {0, . . . ,m − 1}. Since {y0, . . . , ym} − {yi} = {0, . . . ,m − 1},

there is a unique other process, pj , that decides the same value v in α. Note that

(α, pj) ∈ Am+1 and pj does not output m in α. Therefore, the set of such pairs can

be partitioned into groups of size two. This implies there are an even number of pairs

(α, pi) ∈ Am+1 such that pi does not output m in α.

Note that α ∈ Nm+1 if and only if yi = m for exactly one i ∈ {0, . . . ,m} and

19

2. Indistinguishability

{y0, . . . , ym}−{yi} = {0, . . . ,m− 1}. In turn, this is true if and only if (α, pi) ∈ Am+1

and pi outputs m in α. Since |Am+1| is odd and there are an even number of pairs

(α, pi) ∈ Am+1 such that pi does not output m, it follows that |Nm+1| is odd, which

proves the inductive step.

Finally, we can complete the proof of Theorem 2.10. By Lemma 2.14, |Nn| is

odd and, hence, nonempty. Thus, there is an n-process normal execution in which all

the values 0, . . . , n − 1 are decided. This violates (n − 1)-agreement. Therefore, the

algorithm does not solve (n − 1)-set consensus. This is a contradiction. Hence, there

is no wait-free algorithm for n processes that solves (n− 1)-set consensus.

Theorem 2.10 and Lemma 2.13 are from Hagit Attiya and Sergio Rajsbaum’s paper

The Combinatorial Structure of Wait-free Solvable Tasks, SIAM J. Comput., volume

31, 2002, pages 1286–1313. Lemma 2.14 is from Counting-Based Impossibility Proofs

for Renaming and Set Agreement, by Hagit Attiya and Ami Paz, which appeared at

DISC 2012, pages 356–370.

20

