
9.1. Simulations with Different Numbers of Processes

subtle issues can arise. See, for example, the paper Linearizable Implementations do

not Suffice for Randomized Distributed Computation, by Golab, Higham, and Woelfel, in

STOC 2011, pages 373–382.

9.1 Simulations with Different Numbers of Processes

In this section, we consider simulations of one asynchronous shared memory model by

another with a different number of processes.

An easy observation is that a wait-free implementation of an object shared by n

processes is also a wait-free implementation shared by fewer processes. This leads to the

following impossibility result.

Lemma 9.4. If there is a wait-free linearizable implementation of an object O′ with

consensus number c′ in a model with n > c processes using only registers and instances

of objects with consensus number at most c, then c ≥ c′.

Proof. Let B be a set of objects with consensus number at most c, let O′ be an object

with consensus number c′, and suppose there is a wait-free linearizable implementation

of O′ in a model with n > c processes using only registers and objects in B. Because this

implementation is wait-free, it also works if there are only n′ = min{n, c′} ≤ n processes.

Since O′ has consensus number c′, there is a consensus algorithm for c′ processes

and, hence, for n′ ≤ c′ processes, using only registers and instances of O′. Simulate this

algorithm by replacing each instance of O′ with an implementation from registers and

instances of objects in B. This simulation solves consensus for n′ processes using only

registers and objects with consensus number at most c, so n′ ≤ c. This implies n′ < n

and, thus, n′ = c′. Hence c′ ≤ c.

The availability of additional processes is not a problem if the number of processes

that can crash does not increase.

Lemma 9.5. Let M ′ be a model with f + 1 processes and let M be a model with n > f

processes and one register, R, in addition to the objects in M ′. Furthermore, suppose

that, in any execution of M , at most f processes can crash. If there is no solution to

consensus in M , then there is no solution to consensus in M ′.

Proof. Suppose there is a (wait-free) solution to consensus in M ′. This algorithm can be

simulated in M . Specifically, each process is M ′ is simulated by a different process in M .

Just before returning, it writes its output value to R. The initial value of R is not a valid

output. The remaining n − f − 1 processes in M repeatedly read R until it contains a

value different from its initial value.

Since at most f processes crash in any execution, at least one of the processes perform-

ing the simulation does not crash. All such processes eventually complete the simulation

and write the same output value to R. All of the n − f − 1 remaining processes that

do not crash will eventually read this value and return it. Thus, there is a solution to

consensus in M .

117



9. Reductions and Simulations

More generally, an algorithm can be simulated by any number of processes if the

number of processes that can crash does not change, using extra registers and test&set

objects. The idea is that every simulated process is simulated by every simulating process,

rather than by just one simulating process.

Theorem 9.6. Let M ′ be a model with n > f processes. Let M be a model with f + 1

processes that has n test&set objects and n registers in addition to the objects in M ′. If

there is no wait-free solution to k-set consensus in M , then there is no solution to k-set

consensus in M ′ that tolerates f process crashes.

Proof. Suppose there is a solution to k-set consensus in M ′ that tolerates f process

crashes. The algorithm can be simulated in M as follows. Associated with each process

q′j in M ′, there is one test&set object, Tj , which is initially unset, and one register, Rj

which will contain a state of the process. Initially Rj contains ⊥, which is not a valid

state. Every object that is in M ′ has the same initial value in M as it has in M ′.

Each process pi in M tries to choose the input for each process q′j in M ′ and simulate

the successive steps of its algorithm. It begins by performing test&set on Tj . If it is

unsuccessful, it continues on to the next process in M ′ in round-robin order. If it is

successful, it reads Rj . If it contains ⊥, process pi writes the initial state of process q′j
into Rj , using its own input as the input to q′j . Then process pi resets Tj and continues to

the next process in M ′. If not, Rj contains the current state of q′j . If process q
′

j is about

to return a value, process pi resets Tj and returns this value. Otherwise, it performs the

next step on behalf of q′j , writes the resulting state of q′j into Rj , resets Tj , and continues

on to the next process in M ′.

Each step that is performed on behalf of a process in M ′ is linearized when it is

performed during the execution inM . The test&set object Tj associated with process q′j is

used as a lock to prevent any step of q′j from being performed more than once. If a process

in M crashes when it holds this lock, no further steps of process q′j are simulated. In other

words, process q′j crashes in the simulated execution. If at most f of the f + 1 processes

in M crash, then at most f simulated processes crash in the simulated execution. Since

the k-set consensus algorithm being simulated tolerates f process crashes, the simulated

outputs satisfy k-agreement and validity. Hence, the simulated algorithm solves k-set

consensus in M .

In their paper, A Completeness Theorem for a Class of Synchronization Objects,

12th PODC, 1993, pages 159–170, Afek, Weisberger, and Weisman gave a wait-free,

linearizable implementation of a test&set object using registers and any objects with

consensus number at least two. Combining this fact with Theorem 9.6 for k = 1 and

Lemma 9.2 implies the following result.

Corollary 9.7. There is no solution to consensus that tolerates f ≥ 2 process crashes in

a system of n > f processes using only objects with consensus number at most f .

In particular, there is no algorithm for consensus in a system of n ≥ 3 processes

that tolerates two process crashes using only registers and test&set objects, fetch&add

118



9.2. The BG Simulation

objects, swap objects, stacks, or queues. There is also no algorithm for consensus in a

system of n ≥ 2m− 1 processes that tolerates 2m− 2 process crashes using only registers

and m-assignment objects, for m ≥ 2.

Lemma 9.6 and Corollary 9.7 are from Tushar Deepak Chandra, Vassos Hadzilacos,

Prasad Jayanti, and Sam Toueg’s paper, Generalized Irreducibility of Consensus and the

Equivalence of t-Resilient and Wait-Free Implementations of Consensus, SIAM Journal

on Computing, volume 34, number 2, 2004, pages 333-357. However, the corollary is false

when f = 1. In their paper On the power of shared object types to implement one-resilient

Consensus, Distributed Computing, volume 13, 2000, pages 689-728, Wai-Kau Lo and

Vassos Hadzilacos designed a deterministic object, which, together with five registers, can

be used by three processes to get a solution to consensus that tolerates one process crash.

They also proved that wait-free consensus for two processes cannot be solved using only

instances of this object and registers.

9.2 The BG Simulation

The BG simulation uses an approach similar to the proof of Theorem 9.6 for simulating

an algorithm by a smaller number of processes, while still tolerating the same number of

process crashes. However, it assumes that processes only communicate using single-writer

registers.

Instead of using a test&set object as a lock to ensure that each step of each simulated

process is performed at most once, it uses an object, called safe election, that can be

implemented from single-writer registers. It supports two operations, nominate and elect.

Each nonfaulty process first performs nominate and then repeatedly performs elect until

it gets a result other than ⊥. The identifier of a process that has completed nominate

can also be returned by elect. We will show that, in any execution of safe election, all

instances of elect that don’t return ⊥ return the same identifier. We will also show that,

if no process crashes while performing nominate, then all processes that do not crash

eventually get a result other than ⊥ from elect.

The implementation of safe election that appears in Figure 9.1 uses one single-writer

register S[i] for each process pi. These are all initialized to 0. In nominate, process pi

writes 1 to S[i] and then reads the other registers. If any of them contains the value 2, it

writes 0 to S[i]; otherwise, it writes 2. In elect, a process reads the registers in order until

it sees a nonzero value. If it reads the value 1, it returns ⊥. If it reads 2 from register

S[ℓ], it returns the value ℓ, indicating that process pℓ has been elected.

From the code, it follows that no process completes nominate until some register

contains the value 2. Furthermore, once a register contains the value 2, it never changes

value. Thus, if a process does not crash while performing elect, one of the tests will be

successful and it will return with ⊥ or with a process id. A process has 1 in its register

only when it is performing nominate. Therefore, if no process crashes while performing

nominate, then, eventually, no register contains 1. Any instance of elect that starts after

this point will not return ⊥.

119



9. Reductions and Simulations

nominate

S[i]← 1
for j ∈ {0, . . . , n− 1} − {i} do

if S[j] = 2
then S[i]← 0

return
S[i]← 2
return

elect

for ℓ← 0 to n− 1 do
s← S[ℓ]
if s = 1 then return(⊥)
if s = 2 then return(ℓ)

Figure 9.1. Safe election, code for process pi

Consider any execution of safe election in which each process begins by performing

nominate and thereafter only performs elect. Let pj be the process with smallest index

that writes 2 to its register. Then no process returns any value smaller than j from elect.

Let C be the first configuration in which some register contains 2. Any process that

starts nominate after configuration C will read 2 from some register and, hence, will not

write 2 to its own register. Therefore, in configuration C, register S[j] contains 1 or 2.

Since no process starts elect until after C, every call of elect returns either ⊥ or j. Thus,

all processes that return from elect with a value other than ⊥ return the same value.

Let M ′ be an asynchronous shared memory model in which n processes communicate

using single-writer registers. It suffices to assume each process q′j in M ′ has exactly one

single-writer register R′

j to which it can WRITE, since multiple single-writer registers

with the same writer can be combined into one using different fields or using tags.

Suppose there is a solution to k-set consensus in M ′ that tolerates f process crashes,

where k ≤ f < n. We will show how to obtain a wait-free simulation of this algorithm in

an asynchronous shared memory model M with f +1 processes that communicate using

single-writer registers.

As in the simulation in the proof of Theorem 9.6, each process pi in M tries to choose

the input for each process q′j in M ′ and simulate the successive steps of its algorithm. A

separate set of n single-writer registers, {S[j, t, i] | i = 0, . . . , n − 1}, is used to perform

safe election for the t’th simulated step of process q′j .

Unlike test&set, safe election is not an atomic operation. If a process pi crashes while

it is performing multiple instances of nominate, it could cause the simulations of those

processes to block. To prevent this from happening, once process pi begins to perform

nominate, it completes it before doing anything else. Since the worst-case step complexity

of nominate is n+ 1, this cannot prevent pi from simulating other processes in M ′.

120



9.2. The BG Simulation

A process pi might continually perform elect with result ⊥ in some instance of safe

election, because some other process has crashed or will eventually crash. To ensure it

continues to make progress, process pi might have to perform many instances of safe

election concurrently. However, if process pi crashes after being elected to perform the

next steps of many simulated processes, but before it performs them, the simulations

of all those processes will be blocked. Instead, to simulate the t’th step of process q′j ,

each process pi performs this step and records the resulting state of q′j (including the

contents of R′

j) in a single-writer register R[j, t, i] before performing the t’th instance of

safe election for process q′j . Then, even if the elected process crashes while it is performing

elect, the remaining processes in M can continue with the simulation of process q′j .

Suppose that, during an execution of the instance of safe agreement for the t’th step

of process q′j , a process is elected that changes the simulated value of R′

j from v to v′.

Later, it is possible that another (slow) process crashes while performing nominate in this

same instance of safe agreement. Then any process that performs elect afterwards will

return ⊥ and, hence, is blocked from finding out which process was elected. This can

make it impossible to linearize the simulated execution, since one process could simulate

reading v′ from R′

j and, later, another process could simulate reading v from R′

j . To

prevent this from happening, there is an n-component single-writer snapshot object Aj

for each process q′j in M ′. (Note that there is a wait-free, linearizable implementation

of a single-writer snapshot object from single-writer registers.) We may assume that,

initially, each component of Aj contains ⊥. Immediately after a process pi returns with

id ℓ from elect in the t’th instance of safe election for process q′j , it updates component

i of the snapshot object Aj with the value (t, ℓ). A simulating process can then scan Aj

to determine the last step of process q′j that has been simulated and which simulating

process was elected for that step.

A process pi simulating a process q′j first does a scan of Aj . If it sees that Aj has

never been updated, it writes the initial state of process q′j to register R[j, 0, i] (including

the initial value of R′

j) using its own input as the input to process q′j . Then it performs

nominate and one call to elect in the instance of safe election for the initialization of

process q′j using the set of registers {S[j, 0, i] | i = 0, . . . , n − 1}. If ⊥ is returned, it

temporarily stops simulating q′j and starts or continues simulating the next process in

M ′, in round robin order. If pi ever returns from elect with a value ℓ 6= ⊥ in this instance

of safe election, it then updates component i of the snapshot object Aj with the pair (0, ℓ)

to finish its simulation of the initialization of process q′j .

If process pi sees that Aj has been updated at least once, it finds the pair (t, ℓ)

contained in its components with the largest value of t. Then it reads the state of process

q′j after its t’th step, as recorded in R[j, t, ℓ] by the process pℓ elected for this step. If the

next step of process q′j is to return value v, then process pi returns value v and performs

no further steps in the simulation. If the next step of process q′j is a WRITE, process

pi determines the resulting state of process q′j and writes this state (including the value

written by process q′j) to register R[j, t + 1, i]. If the next step of process q′j is a READ

of the single-writer register R′

r of process q′r, process pi scans the snapshot object Ar.

121



9. Reductions and Simulations

From this, pi determines th, the number of steps of process q′r that have been simulated,

and which process, ph, was elected in the instance of safe agreement for the last of these

steps. Then process pi reads R[r, th, h] and, from it, determines the simulated contents

of R′

r at the end of step th. Finally, process pi determines the resulting state of process

q′j and writes this state to R[j, t+ 1, i]. For both READS and WRITES, process pi next

performs nominate and one call to elect in the instance of safe election for step k + 1 by

process q′j , using the set of registers {S[j, t + 1, i] | i = 0, . . . , n − 1}. If ⊥ is returned,

it temporarily stops simulating q′j and starts or continues simulating the next process in

M ′, in round robin order. If pi ever returns from elect with a value ℓ 6= ⊥ in this instance

of safe election, it then updates component i of the snapshot object Aj with the pair

(k + 1, ℓ) as its final piece of the simulation of step k + 1 by process q′j .

After finishing the simulation of the initialization of process q′j or a step by process

q′j , process pi scans Aj and starts simulating another step of process q′j .

Each READ that is performed on behalf of a process q′j in M ′ is linearized when the

process elected for that step does its scan of Aj . If step t of a simulated process is a

WRITE, it is linearized the first time any process updates the snapshot object Aj with

a pair (t, ℓ). Note that all processes that finish this instance of safe election return from

elect with the same value, namely the index of the process elected for this step.

If a process in M crashes while it is performing nominate as part of its simulation of

step t by process q′j , it can only block further steps of process q′j from being simulated.

Thus, if at least one process (in M) does not crash, then at most f simulated processes

crash in the simulated execution. Since the k-set consensus algorithm being simulated tol-

erates f process crashes, the simulated outputs satisfy k-agreement and validity. Hence,

the simulated algorithm solves k-set consensus in M .

Thus, we have shown the following result.

Theorem 9.8. Let M and M ′ be asynchronous shared memory models in which processes

communicate using single-writer registers. Suppose M has f + 1 processes and M ′ has

n > f ≥ k processes. If there is no wait-free solution to k-set consensus in M , then there

is no solution to k-set consensus in M ′ that tolerates f process crashes.

Corollary 9.9. There is no solution to k-set consensus for n > f ≥ k processes that

tolerates f process crashes in an asynchronous shared memory model in which processes

communicate using single-writer registers.

Proof. Suppose there is a solution to k-set consensus in M ′ that tolerates f process

crashes. Since any algorithm for k-set consensus is also an algorithm for f -set consensus, it

follows from Theorem 9.8 that there is a wait-free algorithm for f+1 processes that solves

f -set consensus using only single-writer registers. This contradicts Theorem 2.10.

The BG simulation is due to Borowsky and Gafni and originally appeared in their

paper Generalized FLP impossibility result for t-resilient asynchronous compuations, Pro-

ceedings of the 25th ACM Symposium on Theory of Computing, 1993, pages 91–100. Its

proof of correctness appears in The BG Distributed Simulation Algorithm, by Borowsky,

Gafni, Lynch, and Rajsbaum, Distributed Computing, volume 14, 2001, pages 127–146.

122



9.3. Round by Round Simulations

9.3 Round by Round Simulations

Round-by-round simulations are used to derive a lower bound on the number of rounds

to solve a problem in a synchronous message-passing model M from the impossibility

of that problem in an asynchronous shared-memory model M ′ with the same number of

processes, in which processes communicate using registers. Specifically, they show how

to simulate any f -round execution in model M , in which at most one process crashes

each round, using model M ′, in which at most one process crashes.

We consider a synchronous broadcast model M . In each round, a process sends the

same message to all processes, receives messages from all processes that have not crashed,

and possibly receives some messages from the processes that crashed during the round.

This model can simulate a model in which a process can send different messages

to different processes in the same round by broadcasting the concatenation of all the

messages and their intended recipients in the round. This does not change the number

of rounds of communication.

The round by round simulation will use a simple approximate agreement object. This

object supports one operation, propose(v), where v ∈ {0, 1}, which returns a value in

{0, 1
2
, 1} such that, in every execution, the return values satisfy validity and 1

2
-agreement.

Thus, if all inputs to propose are the same, then this is the only value that is returned.

Furthermore, there is no execution in which 0 and 1 are both returned.

The implementation in Figure 9.2 uses two registers, R0 and R1, both initially 0. If

the input value of a process is 0, it writes 1 to R0; otherwise it writes 1 to R1. Then

it reads the other register. If the other register is still 0, then the process outputs its

input value; otherwise, it outputs 1

2
. If all processes have the same input value v, they

propose(x)
Rx ← write 1
if R1−x = 0 then return x

else return 1

2

Figure 9.2. Approximate agreement object, code for process pi

only write to Rv and, hence, they can only read 0 from R1−v. Thus, the only value they

output is v. Otherwise, some process has input 0 and some other process has input 1.

This ensures validity, since the only possible output values are 0, 1, and 1

2
.

Suppose register Rv is the first register that is written to in some execution. Then

every process with input value 1− v will read 1 from Rv and will output 1

2
. Hence, only

values in {v, 1
2
} are output and they are within 1

2
of one another. Thus, 1

2
-agreement is

ensured.

Theorem 9.10. Any n-process consensus algorithm in model M that tolerates f < n

process crashes requires more than f rounds.

123



9. Reductions and Simulations

Proof. Suppose there is an algorithm for n-process consensus in model M that tolerates

f < n process crashes and requires at most f rounds. We will simulate an execution of

this algorithm in model M ′ to obtain a contradiction.

Each process qi of M
′ simulates a different process pi of M , using its own input as

the input to pi. The processes simulate the rounds of the algorithm in order. Since one

process in M ′ can crash, processes must finish the simulation of a round when at least

n− 1 processes have participated in it.

The idea is that if some process qi is slow to participate in round r or it crashes

before announcing the message pi broadcast in round r, other processes will propose that

process pi is faulty. If the processes agree that pi is faulty, they will stop simulating it.

However, it is not necessary that the simulating processes agree in the same round. It

suffices that some processes think agreement is reached in one round and the remainder

think it is reached in the subsequent round. This simulates the situation in which process

pi fails during the round after sending messages to the second set of processes.

Each process, qi locally maintains a set faultyi of processes in M that it proposes

to be faulty. Initially, this set is empty. Once a process is added to this set, it is never

removed.

For each round, there is a shared array of single-writer registers, Mr[0 . . . n− 1] all of

whose entries are initially empty and a shared array of approximate agreement registers

in their initial state Ar[0 . . . n− 1].

At the beginning of the simulation of round r ≥ 1, process qi writes into Mr[i] the

message that process pi broadcasts in round r, or a special value indicating that qi agrees

process pi is faulty. Then process qi then repeatedly performs collect on Mr until it has

seen a view with n nonempty components or it has twice seen a view with n−1 nonempty

components. If qi does not fail, it will happen eventually, since at most one process fails.

This gives a snapshot of Mr. Note, every process that sees n− 1 nonempty components

in its last collect of Mr sees the same empty component.

For all j ∈ {0, . . . , n − 1}, if j ∈ faultyi or process qi sees that Mr[j] is empty, then

process qi performs propose(0) on Ar[j]; otherwise it performs propose(1) on Ar[j]. If it

returns 0 to process qi, then qi agrees that process pj has crashed, adds j to faultyi, and

does not simulate the receipt of a message from process pj to process pi for j 6= i. If it

returns1 or 1

2
to process qi, then at least one process saw that Mr[j] was nonempty, so

process qi can read Mr[j] to simulate the receipt of a message from process pj to process

pi. In the latter case, qi adds j to faultyi and will henceforth propose that process pj is

faulty.

Note that if Ar[j] returns 0 to any process, then it returns either 0 or 1

2
to every

process, so every process qi will add j to faultyi. Hence, in all subsequent rounds r′, no

process will perform propose(1) on Ar′ [j] and, by validity, Ar′ [j] will return 0 to every

process. Thus, each process will agree that process pi is faulty in either round r or round

r + 1.

124



9.4. Undecidability of Consensus Number

9.4 Undecidability of Consensus Number

In sequential computation, a common way to prove that a problem is undecidable is to give

a reduction to it from a problem already known to be undecidable, such as the halting

problem. We can use the same technique for showing the unsolvability of distributed

computing problems. Here is one example.

Theorem 9.11. There is no algorithm that, given the sequential specifications of an

object, decides whether its consensus number is 1.

Proof. To obtain a contradiction, suppose there is such an algorithm. We will use it to

solve the halting problem for one-tape Turing machines with initially blank tape.

Given a deterministic Turing machine M , let C be the set of all configurations of M

and let C0 be the configuration when M is in its initial state and its tape is blank. Define

the object O whose value set is C × {true, false}, whose intial value is (C0, false), and

which supports one operation, next. This operation takes no input and returns a value

in {0, 1, 2}. When O has value (C, flag), next behaves as follows:

• If flag = false and C is not a final configuration of M , then next(O) returns 0 and

the new value of O is (C ′, false), where C ′ is the configuration that results when

M takes one step starting from configuration C.

• If flag = false and C is a final configuration of M , then next(O) returns 1 and the

new value of O is (C, true).

• If flag = true next(O) returns 2 and the value of O remains unchanged.

Suppose that M halts starting from configuration C0. Then the algorithm in Fig-

ure 9.3 solves wait-free consensus for two processes using object O and two single-writer

registers, R0 and R1.

propose(xi)
Ri ← xi
repeat u← next(O) until u 6= 0
if u = 1 then return xi

else return R1−i

Figure 9.3. Two-process wait-free consensus, code for process pi

The value decided in any execution of this algorithm is the input value of the process

that first performs next(O) after O’s first component is a final configuration. In this case,

the consensus number of O is at least 2.

Now suppose that M does not halt starting from configuration C0. Then next(O)

always returns 0. If there was an algorithm that solved wait-free consensus for two pro-

cesses using only registers and copies of object O, then there would also be an algorithm

125



9. Reductions and Simulations

that solved wait-free consensus for two processes using only registers: simply replace each

occurrence of next by the constant 0. But this is impossible. Therefore, the consensus

number of O is 1.

Therefore M halts starting from configuration C0 if and only if the consensus number

of O is not 1. Since the halting problem is undecidable, it follow that deciding whether

O has consensus number 1 is also undecidable.

It follows that there is no algorithm to compute the consensus number of an object.

However, for certain classes of objects, for example, deterministic objects with finite value

sets that support only read-modify-write primitives, there is an algorithm that decides

whether a given object has consensus number at least n. This result is by Eric Ruppert,

Determining Consensus Numbers, SIAM J. Comput., volume 30, number 4, 2000, pages

1156–1168. The proof that determining the consensus number of objects is, in general,

unsolvable is from Some Results on the Impossibility, Universality, and Decidability of

Consensus by Prasad Jayanti and Sam Toueg, which appeared in WDAG 1992, pages

69–84.

126


