
8.4. Turan’s Theorem

8.4 Lower Bounds using Any Objects with Limited

Contention via Turan’s Theorem

Some objects limit the number of processes that can access them. For example, a single-

writer register can be accessed by only one process. More generally, in this section, we

are interested in objects that can be simultaneously accessed by a only a limited number

of processes. We will prove a lower bound on implementations from any objects with this

restriction.

The contention of an object is the maximum, over all reachable configurations, C, of

the number of processes that are poised to perform non-trivial operations on the object

in configuration C.

The model we consider is synchronous shared memory containing any types of objects

with contention at most w. We allow processes to crash, but only at the beginning of an

execution.

We prove a lower bound on the number of steps taken in a solo execution, i.e. when all

but one of the processes crash before taking any steps. To do so, we consider executions

which may involve multiple processes, but which are indistinguishable from solo execu-

tions to every nonfaulty process. For any set of processes Q, we define a Q-independent

execution to be an execution in which only processes in Q take steps and each process in

Q only accesses objects that have not been modified by any other processes (in Q). In

particular, a solo execution by process p is a {p}-independent execution. Also, an empty

execution is Q-solo for any set of processes Q.

If all the steps of some process p ∈ Q are removed from a Q-independent execution,

then the resulting execution is (Q − {p})-independent and both executions are indistin-

guishable to all of the processes in Q− {p}.

We use the following result from graph theory to find a set of processes that do not

acquire any information about one another during a round.

Theorem 8.7 (Turan). Any graph G = (V,E) has an independent set of size at least
|V |2

|V |+2|E| .

The next lemma shows how to construct Q-independent executions.

Lemma 8.8. Consider any algorithm for n processes that uses only objects with con-

tention at most w. Suppose that, in every Q-independent execution with |Q| > 1, at most

one process terminates. Then, for every integer 0 ≤ t < logw+2 n, there is a t-round

Qt-independent execution αt, where |Qt| ≥
n

(w+2)t .

Proof. The proof is by induction on t. The case t = 0 holds with Q0 being the set of all

processes and α0 being the empty execution. So, suppose that t > 0.

By the induction hypothesis, there is a (t − 1)-round Qt−1-independent execution

αt−1, where |Qt−1| ≥
n

(w+2)t−1 . Let C be the configuration at the end of αt−1. Consider

the operation (if any) each process in Qt−1 is poised to perform in C.

103

8. Combinatorial Arguments

Let G = (Qt−1, E) be an undirected graph where {pi, pj} ∈ E if and only if either pi
and pj are both poised to perform a non-trivial operation to the same object in C or one

of them is poised to access an object in C that was modified by the other process during

αt−1.

For each object B, let w(B) denote the number of processes poised to perform non-

trivial operations to B in configuration C. Since the contention of every object is at

most w, w(B) ≤ w. The number of pairs of processes that are poised to apply non-trivial

operations to the same object in C is
∑

{
(

w(B)
2

)

| B is an object} ≤ |Qt−1|
w

(

w
2

)

= |Qt−1|
w−1
2 .

This is because, by convexity, the sum is maximized when there are as many groups with

size w as possible.

Since αt−1 is a Qt−1-independent execution, each object is modified by at most one

process during αt−1. In C, there are most |Qt−1| processes that are poised to access one

of these objects. Thus, there are most |Qt−1| pairs of processes where one of them is

poised to access an object that was modified by the other process during αt−1.

Hence, |E| ≤ |Qt−1|
w−1
2 + |Qt−1| = |Qt−1|

w+1
2 . By Turan’s Theorem, there is an

independent set Qt in G such that

|Qt| ≥
|Qt−1|

2

|Qt−1|+ 2|E|
≥

|Qt−1|
2

|Qt−1|+ |Qt−1|(w + 1)
=

|Qt−1|

w + 2
≥

n

(w + 2)t
.

Let α′
t be obtained from αt−1 by removing all steps of all processes in Qt−1−Qt. Let

αt be an execution obtained by extending α′
t with the next step of each process in Qt,

where, in the last round, all trivial operations precede all non-trivial operations. Since

|Qt| > 1, at least one of these processes takes a step in the last round.

By the induction hypothesis, each access in α′
t is to an object that has not been

modified by any other process. By construction, each access in the last round of αt has

this property. Thus αt is a t-round Qt-independent execution.

8.5 The Solo Step Complexity of Implementing Weak

Test&Set

A weak test&set object supports a single operation, T&S, which can either succeed or

fail. In every execution, at most one T&S operation on each object succeeds. A T&S

operation must succeed if no other T&S operations on the same object begin until after

it has completed.

Theorem 8.9. Any implementation of an n-process weak test&set object from objects

with contention at most w has a solo execution of a T&S operation with Ω(logn
log(w+2))

steps.

Proof. Consider any implementation of a weak test&set object that uses only objects with

contention at most w. Let α be any Q-independent execution α of this implementation

with |Q| > 1. For each process in Q, α is indistinguishable from a solo execution. So,

104

8.6. Yao’s Principle

if it terminates, its T&S operation must succeed. In every execution of a correct imple-

mentation, at most one T&S operation succeeds. Thus, at most one process terminates

in α.

Let t = ⌈logw+2 n⌉ − 1. By Lemma 8.8, there is a t-round Qt-independent execution

αt, where |Qt| ≥ n/(w + 2)t ≥ 2. Hence, there is a solo execution of a T&S operation

that takes at least t ∈ Ω(log n
log(w+2)) steps.

A somewhat weaker version of this lower bound appears in Hagit Attiya, Faith Ellen

Fich, and Yaniv Kaplan, Lower Bounds for Adaptive Collect and Related Objects, PODC,

2004, pages 60–69. For w > 1, they also give a weak test&set implementation with

O(logn/ logw) step complexity, using O(n/w) registers with contention at most w. Thus,

the step complexity and solo-step complexity of implementing weak test&set are the same

to within a constant factor and does not improve when more powerful base objects are

available.

8.6 Yao’s Principle

Given any deterministic algorithm D, an adversary can produce an execution by speci-

fying the inputs each process receives and the order in which the processes take steps.

Consider any complexity measure that assigns a cost c(D,σ) to an execution produced

by an adversary σ applied to a deterministic algorithmD. Then the worst case complexity

of D for a set of adversaries S is

max
σ∈S

c(D,σ).

For any probability distribution over a set of adversaries S, the average case complexity

of a deterministic algorithm D is

E
σ∈S

[c(D,σ)].

This is also called the distributional complexity of the algorithm D. The distributional

complexity of a problem is the distributional complexity of the best algorithm that solves

the problem, i.e.

min
D

E
σ∈S

[c(D,σ)],

where the minimum is taken over all deterministic algorithms D that solve the problem.

For a randomized algorithm, an adversary defines a set of executions, rather than

a single execution. The execution that results depends on the outcomes of the coin

tosses that each process performs. Thus, a randomized algorithm A can be viewed as a

probability distribution over deterministic algorithms A[ρ], where ρ denotes the sequences

of coin toss outcomes, one for each process. For example, if each process performs at most

r coin tosses, then ρ is distributed uniformly over ({0, 1}r)n.

Given an adversary σ, the expected cost of a randomized algorithm A is

E
ρ

[c(A[ρ], σ)]

105

8. Combinatorial Arguments

and its worst case expected complexity for a set of adversaries S is

max
σ∈S

E
ρ

[c(A[ρ], σ)].

The worst case expected complexity of a problem is the worst case expected complexity

of the best algorithm that solves it, i.e.

min
A

max
σ∈S

E
ρ

[c(A[ρ], σ)],

where the minimum is taken over all randomized algorithms A that solve the problem.

We restrict attention to oblivious adversaries, which choose the inputs each process re-

ceives and the order in which processes take steps before the execution begins. Therefore,

they do not depend on the outcomes of the coin tosses performed by the processes during

the execution of the algorithm. Note that lower bounds proved for oblivious adversries

also apply for more powerful adversaries.

Yao’s principle says that the worst case expected cost of a problem against a set

of oblivious adversaries S is bounded below by its distributional complexity, for any

probability distribution over S.

Lemma 8.10 (Yao’s Principle). For any probability distribution over a set of oblivious

adversaries S, min
A

max
σ∈S

E
ρ

[c(A[ρ], σ)] ≥ min
D

E
σ∈S

[c(D,σ)], where A is chosen from a

set of randomized algorithms, D is chosen from the set of all deterministic algorithms

obtained from randomized algorithms in this set by fixing the outcomes of their its coin

tosses, and ρ is chosen from the possible sequences of coin toss outcomes.

Proof. Consider any randomized algorithm A from the set. Then

max
σ∈S

E
ρ

[c(A[ρ], σ)] ≥ E
σ∈S

E
ρ

[c(A[ρ], σ)] = E
ρ

E
σ∈S

[c(A[ρ], σ)].

The order of the expectations can be interchanged, because all the adversaries are obliv-

ious. Since A[ρ] is a deterministic algorithm for each choice of ρ,

max
σ∈S

E
ρ

[c(A[ρ], σ)] ≥ E
ρ

E
σ∈S

[c(A[ρ], σ)] ≥ min
D

E
σ∈S

[c(D,σ)].

Finally, since A is an arbitrary randomized algorithm from the set,

min
A

max
σ∈S

E
ρ

[c(A[ρ], σ)] ≥ min
D

E
σ∈S

[c(D,σ)].

Thus, a lower bound on the worst case expected complexity of a problem against

a set of oblivious adversaries, S, can be obtained by (carefully) choosing a probability

106

8.7. A Lower Bound for Randomized Implementations of a Max Register

distribution over S and deriving a lower bound on the distributional complexity of the

problem under that distribution.

Yao’s principle was first presented for the decision tree model in Andrew Yao’s pa-

per Probabilistic Computations: Toward a Unified Measure of Complexity, 18th FOCS,

1977, pages 222-227. It is possible to obtain versions of Yao’s principle for distributed

algorithms against more general adversaries, but care is needed. See, for example, the

papers New Lower Bound Techniques for Distributed Leader Finding and Other Prob-

lems on Rings of Processors, by Hans Bodlaender, which appeared in TCS, volume 81,

1991, pages 237-256, Average and Randomized Complexity of Distributed Problems, by

Nechama Allenberg-Navony, Alon Itai, and Shlomo Moran, which appeared in SIAM J.

Computing, volume 25, 1996, pages 1254-1267, and A Tight RMR Lower Bound for Ran-

domized Mutual Exclusion, by George Giakkoupis and Philipp Woelfel, which appeared

in STOC, 2012, pages 983-1001.

8.7 A Lower Bound for Randomized Implementations of a

Max Register

A max register is an object that supports two operations,

• ReadMax, which returns the current value of the object, and

• WriteMax(v), which sets the value of the object to be the maximum of its current

value and v.

We use Yao’s principle (Lemma 8.10) to derive a lower bound for the expected step com-

plexity of randomized implementations of a max register from registers against oblivious

adversaries. The input to an implementation is the sequence of operations each process

performs.

We begin by considering a set of adversaries in which process p0 is allocated no

steps and process pi performs a single WriteMax(i) operation and is allocated at most

w steps, for i = 1, . . . , n − 1. For k1, . . . , kn−2 ∈ {0, . . . , w − 1} and i ∈ {1, . . . , n − 1},

let σ′(k1, . . . , kn−2, 0) denote the adversary that allocates no steps to any process and

let σ′(k1, . . . , kn−2, i) denote the adversary that allocates kj steps to process pj , for j =

1, . . . , i− 1, followed by w steps to process i, followed by one more step to process pj for

j = i − 1, . . . , 1. A process does nothing when it is allocated a step after it has finished

its operation.

Let D be an arbitrary deterministic implementation of a max register such that

WriteMax has worst case step complexity w. Fix k1, . . . , kn−2 ∈ {0, . . . , w − 1} and

consider the sequence of steps α′
i that occur when D is performed starting from its initial

configuration C0 using the adversary σ′(k1, . . . , kn−2, i), for i = 0, . . . , n− 1.

107

8. Combinatorial Arguments

Then

α′
0 =

α′
1 = β1

α′
2 = β′

1β2δ1

α′
3 = β′

1β
′
2β3δ2δ1,

...

α′
i = β′

1β
′
2 · · ·β

′
i−1βiδi−1 · · · δ2δ1,

...

and α′
n−1 = β′

1β
′
2 · · ·β

′
n−2βn−1δn−1 · · · δ2δ1.

Here βi is a sequence of at most w consecutive steps by process pi in which it completes

WriteMax(i). Either β′
i is the prefix of βi consisting of ki steps and δi consists of the

next step by process pi or β
′
i = βi and δi is empty. In general, βi depends on the values

of k1, . . . , ki−1 and β′
i and δi also depend on the value of ki, but none of them depend

on the values of kj+1, . . . , kn−2. Note that, if δi is a read step, it might return different

values when α′
i+1, . . . , α

′
n−1 are performed starting from C0.

Let vR(i) denote the value of register R in configuration C0α
′
i. In particular, vR(0) is

the initial value of register R and, if δi is a write to R, then vR(i+ 1) = · · · = vR(n− 1).

Let VR = #{vR(i) | i = 0, . . . , n− 1} denote the number of different values in register R

at the end of these n executions. If none of β1, . . . , βn−1 write to R, then VR = 1.

Suppose that vR(i) 6∈ {vR(0), . . . , vR(i − 1)}. Then δ1, . . . , δi−2 are not writes to R.

Since vR(i) 6= vR(i − 1), either δi−1 is a write to R, βi contains a write to R, or there

exists 1 ≤ f(i) ≤ i − 1 such that β′
f(i) contains a write to R, but β′

f(i)+1 · · ·β
′
i−1βi does

not. Note that f is an injective partial function.

For example, suppose R is initially 0, suppose β1 writes the value 10 to R during β′
1

and later writes the value 20, suppose β2 writes the value 30 to R during β′
2 and has no

further writes to R, and suppose β3 contain no writes to R. Then vR(0) = 0, vR(1) = 20,

vR(2) = 30, vR(3) = 10, and f(3) = 1.

If VR > d, then there exist 0 < i1 < · · · < id ≤ n − 1 such that, for 1 ≤ u ≤ d,

vR(iu) 6∈ {vR(0), . . . , vR(iu−1)}. Since vR(id) 6= vR(id−1), it follows that δ1, δ2, . . . , δid−2

are not writes to R. Furthermore, for 1 ≤ u ≤ d − 1, if βiu does not contain a write to

R, then βf(iu) contains a write to R. Thus, at least (d− 2)/2 = d/2− 1 of the sequences

of steps β1, β2, . . . , βid−2 contain a write to R.

The following lemma shows it is unlikely that a register can contain many different

values at the ends of the different sequences of steps α′
0, . . . , α

′
n−1. The idea is that, if a

process pi writes to the register when it is allocated w steps, then, with probability at

least 1/w, process pi will cover the register after the adversary first allocates steps to pi
and the register will contain the same value at the ends of α′

i+1, . . . , α
′
n−1.

108

8.7. A Lower Bound for Randomized Implementations of a Max Register

Lemma 8.11. For every register R, if k1, . . . , kn−2 are chosen independently and uni-

formly from {0, . . . , w − 1}, then, for any positive integer d ≤ n, Prob [VR > d] ≤

(1− 1/w)d/2−1.

Proof. We prove by backwards induction on m that, for all 0 ≤ m ≤ n − 2, for all

0 ≤ c ≤ n −m − 2, and for all choices of k1, . . . , km ∈ {0, . . . , w − 1}, if km+1, . . . , kn−2

are chosen independently and uniformly from {0, . . . , w − 1}, then

Prob





for some i ∈ {0, . . . , n− 1}, none of δ1, . . . , δi
are writes to R and at least c of the sequences

βm+1, . . . , βi contain a write to R



 ≤ (1− 1/w)c.

If c = 0, then choosing i = 0 vacuously satisfies the condition, so the probability is

1 = (1− 1/w)c. In particular, if m = n− 2, then c = 0, so the claim is true.

Now suppose that m < n− 2, c > 0, and the claim holds for m+ 1. Fix k1, . . . , km ∈

{0, . . . , w−1}, a deterministic algorithm, and a non-negative integer c ≤ n−m−2. This

defines β1, . . . , βm+1 and δ1, . . . , δm.

First, suppose that βm+1 does not contain a write to R. Then for each choice of

km+1 ∈ {0, . . . , w − 1}, δm+1 is not a write to R and, by the induction hypothesis, if

km+2, . . . , kn−2 are chosen independently and uniformly from {0, . . . , w − 1}, then

Prob





for some i ∈ {0, . . . , n− 1}, none of δ1, . . . , δi
are writes to R and at least c of the sequences

βm+2, . . . , βi contain a write to R



 ≤ (1− 1/w)c.

Hence, if km+1, . . . , kn−2 are chosen independently and uniformly from {0, . . . , w − 1},

then the claim also holds for m.

Now suppose βm+1 does contain a write to R. Let

K = {k ∈ {0, . . . , w − 1} | δm+1 is a write to R when km+1 = k} .

In general, K depends on the choices of k1, . . . , km, like βm+1 does. If km+1 is chosen

uniformly from {0, . . . , w − 1}, then Prob[km+1 ∈ K] ≥ 1/w. Since c > 0, if at least c of

the sequences βm+1, . . . , βi contain a write to R, then i ≥ m+ 1. Hence, for each k ∈ K,

Prob





for some i ∈ {0, . . . , n− 1}, none of δ1, . . . , δi
are writes to R and at least c of the sequences

βm+1, . . . , βi contain a write to R

∣

∣

∣

∣

∣

∣

km+1 = k



 = 0.

By the induction hypothesis, for each k 6∈ K, if km+1, km+2, . . . , kn−2 are chosen inde-

109

8. Combinatorial Arguments

pendently and uniformly from {0, . . . , w − 1},

Prob





for some i ∈ {0, . . . , n− 1}, none of δ1, . . . , δi
are writes to R and at least c of the sequences

βm+1, . . . , βi contain a write to R

∣

∣

∣

∣

∣

∣

km+1 = k





= Prob





for some i ∈ {0, . . . , n− 1}, none of δ1, . . . , δi
are writes to R and at least c− 1 of the sequences

βm+2, . . . , βi contain a write to R





≤ (1− 1/w)c−1.

It follows that, when km+1, km+2, . . . , kn−2 are chosen independently and uniformly from

{0, . . . , w − 1},

Prob





for some i ∈ {0, . . . , n− 1}, none of δ1, . . . , δi
are writes to R and at least c of the sequences

βm+1, . . . , βi contain a write to R





=
w−1
∑

k=0

Prob









for some i ∈ {0, . . . , n− 1}, none of

δ1, . . . , δiare writes to R and at least

cof the sequencesβm+1, . . . , βi
contain a write to R

∣

∣

∣

∣

∣

∣

∣

∣

km+1 = k









· Prob[km+1 = k]

=
∑

k 6∈K

Prob









for some i ∈ {0, . . . , n− 1}, none of

δ1, . . . , δiare writes to R and at least

cof the sequencesβm+1, . . . , βi
contain a write to R

∣

∣

∣

∣

∣

∣

∣

∣

km+1 = k









· Prob[km+1 = k]

≤
∑

k 6∈K

(1− 1/w)c−1 Prob[km+1 = k]

= (1− 1/w)c−1 Prob[km+1 6∈ K]

≤ (1− 1/w)c.

This proves the claim for m.

By induction, when m = 0 and c = d/2− 1, if k1, . . . , kn−2 are chosen independently

and uniformly from {0, . . . , w − 1}, then

Prob[VR > d] ≤





for some i ∈ {0, . . . , n− 1}, none of δ1, . . . , δi
are writes to R and at least d/2− 1 of the

sequences β1, . . . , βi contain a write to R



 ≤ (1− 1/w)d/2−1.

For each oblivious adversary σ′(k1, . . . , kn−2, i), with k1, . . . , kn−2 ∈ {0, . . . , w−1} and

i ∈ {0, . . . , n− 1}, let σ(k1, . . . , kn−2, i) = σ′(k1, . . . , kn−2, i)ρ be the oblivious adversary

that allocates steps to a single ReadMax operation by process p0 fillowing the steps it

allocates to other processes performing WriteMax operations. When the deterministic

110

8.7. A Lower Bound for Randomized Implementations of a Max Register

implementation D is performed starting from its initial configuration C0 using the adver-

sary σ(k1, . . . , kn−2, i), an instance of WriteMax(i) is completed (by the steps of βi) and

no instances of WriteMax(i′) are invoked, for 0 < i < i′ ≤ n− 1, so p0 must return i. If

i = 0, then no instance of WriteMax are invoked, so p0 must return 0.

For each choice of k1, . . . , kn−2, the executions of ReadMax starting from C0 using the

adversaries σ(k1, . . . , kn−2, 0), . . . , σ(k1, . . . , kn−2, n − 1) can be described by a decision

tree with n leaves. If VR ≤ d, then the branching factor at each node of this tree is at

most d. In this case, the decision tree has fewer than d2r leaves at depth at most 2r,

so the average depth of the leaves in this tree is greater than 2r(n − d2r)/n. Let r =

log(n/2)/2 log d. Then the average step complexity of ReadMax for an adversary chosen

uniformly from {σ(k1, . . . , kn−2, 0), . . . , σ(k1, . . . , kn−2, n − 1)}) is greater than 2r(n −

d2r)/n = r. From Lemma 8.11, Prob[VR > d] ≤ (1− 1/w)d/2−1 ≤ e−(d/2−1)/w. It follows

that the average step complexity of ReadMax for an adversary chosen uniformly from

{σ(k1, . . . , kn−2, i) | k1, . . . , kn−2 ∈ {0, . . . , w − 1}, i ∈ {0, . . . , n− 1}} is greater than

Prob[VR > d] · 0 + Prob[VR ≤ d] · r ≥
(

1− e−(d/2−1)/w
)

log(n/2)/2 log d.

Setting d = 2 + 2w lnn gives a lower bound of (1 − 1/n) log(n/2)/2log(2 + 2w lnn) ∈

Ω((log n)/ log(w log n)).

Among all deterministic implementations such that WriteMax has worst case step

complexity at most w, the implementation D was chosen arbitrarily. Thus, this is a

lower bound on the distributional step complexity of ReadMax and, hence, by Yao’s

principle, on the worst case expected step complexity of ReadMax for all randomized

implementations such that WriteMax has worst case step complextiy at most w. This

holds against the set of adversaries

{σ(k1, . . . , kn−2, i) | k1, . . . , kn−2 ∈ {0, . . . , w − 1}, i ∈ {0, . . . , n− 1}}

and, more generally, against the set of all oblivious adversaries.

Theorem 8.12. For any randomized implementation of a max register that can be ac-

cessed by n processes and for which the worst case step complexity of WriteMax is at most

w, the worst case expected step complexity of ReadMax against an oblivious adversary is

in Ω((log n)/ log(w log n)).

When w is polylogarithmic in n, the worst case expected step complexity of Read-

Max is in Ω(log n/ log log n). When w is polynomial in n, the worst case expected step

complexity of ReadMax is in Ω(1).

The Ω((log n)/ log(w log n)) lower bound on the worst case expected step complexity

of ReadMax can be extended to randomized implementations of a max register for which

the worst case expected step complexity of WriteMax is at most w, even when a ReadMax

operation can return an incorrect result with low probability. This result is from the paper

Polylogarithmic concurrent data structures from monotone circuits, by James Aspnes,

Hagit Attiya and Keren Censor-Hillel, J.ACM, volume 59, number 1, 2012, pages 2:1-2:24.

111

8. Combinatorial Arguments

This paper also contains a deterministic implementation of a max register in which the

worst case step complexities of ReadMax andWriteMax are both inO(logn) when at most

n operations are performed and a randomized implementation of a max register in which

the worst case step complexity of WriteMax is in O(n3), the worst case step complexity of

ReadMax is in O(1), and ReadMax returns an incorrect result with probability O(1/n).

8.8 Anonymous Conflict Detectors

In the m-valued conflict detector problem, each process pi has an input value vi ∈

{1, . . . ,m} and each nonfaulty process must output a Boolean value bi that satisfy the

following properties:

• If all the inputs are the same, all the outputs are false.

• If vi 6= vj , then at least one of bi and bj is true.

Algorithms that solve this problem are components of many randomized consensus algo-

rithms. (See, for example, the paper A Modular Approach to Shared-Memory Consensus,

with Applications to the Probabilistic-Write Model, by James Aspnes, which appeared in

PODC 2010, pages 460–467.)

The model we consider is asynchronous shared memory, where processes are anony-

mous and only communicate using registers.

Theorem 8.13. Any deterministic algorithm that solves the m-valued conflict detector

problem for n anonymous processes has Ω(min(n, logm/ log logm)) step complexity.

Consider any deterministic algorithm for the problem. We will prove that it has a

solo execution that contains Ω(min(n, logm/ log logm)) steps.

For each v ∈ {1, . . . ,m} and each positive integer k, let Ek(v) denote the solo exe-

cution by a process with input v, if it has length at most k, or the first k steps of that

execution, if it does not terminate within k steps.

Suppose that there is a subset Vk ⊆ {1, . . . ,m} of size at least 2 such that, for all

v, w ∈ Vk, v 6= w, and all 1 ≤ i ≤ k, if p reads register R in step i of Ek(v) and does not

write to R before step i of Ek(v), then q does not write to R before step i of Ek(w). We

show that an adversary can construct an execution E′ that is indistinguishable from Ek(v)

to a process p performing Ek(v) and indistinguishable from Ek(w) to another process q,

performing Ek(w) for any v, w ∈ Vk.

Starting with Ek(v) performed by process p, we construct an execution E∗
k(v) that

also includes steps by at most k− 1 clones of p. Specifically, E∗
k(v) consists of a sequence

of rounds in which p and some of its clones each takes one step. In round i, process p

performs its i’th step. For each step of Ek(v) in which p reads from a register, R, to

which it has previously written, there is a clone of p which is scheduled to perform the

same step as p in every round up to, but not including p’s last write to R prior to the

read. This clone delays its next step until immediately before the read and then takes

112

8.8. Anonymous Conflict Detectors

no further steps. Note that the last step of this clone rewrites the value that is already

in R, so Ek(v) and E∗
k(v) are indistinguishable to p.

Then it is possible to interleave E∗
k(v) and E∗

k(w) to create the desired execution E′.

Specifically, E′ consists of a sequence of rounds in which p, q and their clones each take

at most one step. If p writes to register R in step i of Ek(v), then p and all of its clones

that take steps in round i of E∗
k(v) write to R at the end of round i of E′. If p reads

register R in step i of Ek(v), but has written to R earlier, then there is a clone of p whose

last step in E∗
k(v) is a write to R immediately before step i by process p. In this case,

this clone writes to R in the middle of round i of E′, immediately followed by the reads

of R by p and those of its clones that read R in round i of E∗
k(v). Thus they all read the

same value that they read in round i of E∗
k(v). Finally, if p reads from register R in step

i of Ek(v) and does not write to R before step i of Ek(v), then p and all of its clones

that take steps in round i of E∗
k(v) read R at the beginning of round i of E′. Note that,

since v, w ∈ Vk, it follows that q and, hence, none of its clones, write to R before step i

of Ek(w). Therefore, p and its clones read the initial value of R in round i of E′, just as

they do in E∗
k(v). Process q and its clones behave analogously to p and its clones.

If k ≤ n/2, then there are at most n processes taking steps in E′. Hence execution

E′ can be constructed.

Note that Ek(v) and E′ are indistinguishable to p. Thus, if p returns during Ek(v),

it also returns false in E′. Similarly, if q returns during Ek(w), it also returns false in E′.

Since p and q cannot both return false in E′, it follows that either p or q must perform

more than k steps.

To prove our lower bound, it remains to prove the existence of the set Vk, for some

k ∈ Ω(logm/ log logm). This is an easy consequence of the following result.

Lemma 8.14. For all k ≥ 1, there is a subset Vk ⊆ {1, . . . ,m} of size at least m/(e +

2)k−1(k − 1)! such that, for all v, w ∈ Vk, v 6= w, and all 1 ≤ i ≤ k, if p reads register R

in step i of Ek(v) and does not write to R before step i of Ek(v), then q does not write

to R before step i of Ek(w).

Proof. by induction on k. The claim is vacuously true for V1 = {1, . . . ,m}. So, suppose

the claim is true for some k ≥ 1.

Construct a directed bipartite graph with vertex set Vk×U , where U = ∪{Uk(v) | v ∈

Vk} and Uk(v) is the set of all registers written to in Ek(v). For each v ∈ Vk, there is an

edge from v to each register in Uk(v) and, if step k+1 of Ek+1(v) is the read of a register

R ∈ U − Uk(v), there is also an edge from R to v. Note that, in this graph, each v ∈ Vk

has outdegree at most k and indegree at most 1. Also, there are no cycles of length 2.

Randomly partition U into two parts, U ′ and U ′′, where each register R ∈ U is in U ′

independently with probability 1/(k + 1). Let V ′ = {v ∈ Vk | there is no edge from v to

U ′ and no edge from U ′′ to v}.

For each v ∈ Vk,

Pr[v ∈ V ′] ≥
1

k + 1

(

1−
1

k + 1

)k

=
1

k

(

1−
1

k + 1

)k+1

> 1/(e+ 2)k,

113

8. Combinatorial Arguments

so the expected size of V ′ is at least |Vk|/(e + 2)k ≥ m/(e + 2)kk!. Hence there exists

a subset Vk+1 ⊆ Vk of size at least m/(e + 2)kk! such that each vertex v ∈ Vk+1 has no

edge to any vertex in U ′ and no edge from any vertex in U ′′.

Now suppose that v, w ∈ Vk+1 ⊆ Vk and v 6= w. Note that the first k steps of Ek(v)

and Ek+1(v) are the same and the first k steps of Ek(w) and Ek+1(w) are the same.

Hence, if p reads register R in step i of Ek+1(v) and does not write to R before step i of

Ek+1(v), where 1 ≤ i ≤ k, then q does not write to R before step i of Ek+1(w). If p reads

register R in step k+1 of Ek+1(v) and does not write to R before step k+1 of Ek+1(v),

there is an edge from R to v in the graph. Hence, by definition of Vk+1, R 6∈ U ′′, so

R ∈ U ′ and there is no edge from w to R. This means that q does not write to R during

Ek(w) and, hence, before step k + 1 of Ek+1(w). Thus the claim is true for k + 1.

These proofs are due to Jim Aspnes, Faith Ellen, and Nati Linial. The m-valued

conflict detector problem has asymptotically matching upper bounds. In their paper,

Tight Bounds for Anonymous Adopt-Commit Objects, SPAA 2011, Jim Aspnes and Faith

Ellen give one algorithm that solves this problem in O(n) steps and another that solves

it in O(logm/ log logm) steps.

114

