
CHAPTER 7
Valency Arguments

In a valency argument, configurations are classified as either univalent or multivalent.

Starting from a univalent configuration, all terminating executions (from some class)

lead to the same result. In particular, all final configurations are univalent. Starting

from a multivalent configuration, there are two or more different terminating executions

(from the class) that each lead to a different result. When there are only two possible

results, for example, in binary consensus, a multivalent configuration is called bivalent.

A valency argument typically has two parts. One part is proving that every algorithm

has a multivalent initial configuration. This typically follows from the problem specifica-

tions. For example, Lemma 2.7 uses a chain argument to prove the existence of a bivalent

initial configuration for any binary consensus algorithm.

The other part of a valency argument is proving that, from every multivalent con-

figuration, there is a nonempty execution (from the class) that leads to a multivalent

configuration. Together with the existence of a multivalent initial configuration, this

implies the existence of an infinite execution containing only multivalent configurations.

Since no final configuration is multivalent, the termination property is violated.

Valency arguments were introduced by Michael Fischer, Nancy Lynch, and Michael

Paterson in their paper Impossibility of Distributed Consensus with One Faulty Processor,

Journal of the ACM, volume 32, number 2, 1985, pages 374–382, to show that consensus

is impossible in asynchronous message passing systems, even if at most one process can

crash.

We begin with a proof that wait-free binary consensus among two or more processes

is unsolvable in asynchronous systems where processes communicate via registers. More

generally, even if a process can atomically write to a number of registers, wait-free con-

sensus remains unsolvable, if the number of processes is sufficiently large. Then, we give

a lower bound on the number of rounds needed to solve binary consensus in synchronous

message passing systems. Next, we prove Fischer, Lynch, and Paterson’s result, but using

a simpler argument. In Section 7.4, we use a valency argument combined with a covering

argument to prove a lower bound on the number of registers needed to solve randomized

73

7. Valency Arguments

consensus, starting with the special case when processes are anonymous. Finally, we

present a step complexity lower bound for randomized consensus.

7.1 The Impossibility of Consensus using m-assignment

The consensus number of an object is the maximum number of processes for which wait-

free consensus can be solved in an asynchronous system in which processes communicate

using only copies of the object and registers. Thus, proving an upper bound on the

consensus number of an object is equivalent to proving that consensus cannot be solved

using only copies of the object and registers when the number of processes is sufficiently

large.

The model we consider is asynchronous shared memory, where processes communicate

via m-assignment objects. An m-assignment object consists of an array of registers that

can be read one at a time and any m (or less) of which can be written to simultaneously:

ri1 , . . . , rim ← v1, . . . , vm.

When m = 1, processes write to one register at a time. In other words, a 1-assignment

object is simply an array of registers that each support read and write.

A critical configuration is a multivalent configuration where one step by any process

moves the system into a univalent configuration. We prove, by contradiction, that critical

configurations cannot exist when there are only m-assignment objects. Different cases

are considered, depending on what step each process is about to take. In each case, we

identify two univalent configurations from which different values are decided. We also

identify a set of processes that cannot distinguish between these configurations and a part

of the environment that is the same in both configurations. Next, we choose a terminating

execution by processes in this set that only accesses this part of the environment. Then,

by Corollary 2.2, there is an execution starting from the second configuration which is

indistinguishable from the first execution to all processes in the set. Thus, these processes

decide the same value in both executions and a contradiction is obtained.

Theorem 7.1. It is impossible to solve wait-free binary consensus among n processes

that communicate using m-assignment objects if n ≥ 2 and m = 1 or n ≥ 2m − 1 and

m ≥ 2.

Proof. Suppose there is an implementation of wait-free binary consensus among n pro-

cesses, where m = 1 and n ≥ 2 or m ≥ 2 and n ≥ 2m − 1 ≥ 3. Consider any critical

configuration C. Let P0 be the set of processes whose step from C takes the system to

a univalent configuration from which only 0 is decided and let P1 be the set of processes

whose step from C takes the system to a univalent configuration from which only 1 is

decided. Then P0 and P1 partition the set {p0, . . . , pn−1} of all processes. Since C is

bivalent, neither P0 nor P1 is empty.

Suppose that some process pi does a read starting from C. Let pj be a process in the

other part of the partition. Let C ′ be the configuration obtained from C by performing

74

7.1. The Impossibility of Consensus using m-assignment

one step of pj . Let C
′′ be the configuration obtained from C by performing one step of pi

and then one step of pj . Since pi and pj are in different parts of the partition, different

values are decided starting from C ′ and C ′′. However, C ′ pj∼ C ′′ and all registers have the

same values in C ′ and C ′′, so pj decides the same value in solo terminating executions

starting from C ′ and C ′′. This is a contradiction.

Hence, in configuration C, each process is about to write to at most m different

registers. Let Ri denote the set of at most m registers that pi covers in C.

In configuration C, each process pi covers some register that is not covered by any

other process, i.e. Ri 6⊆ ∪{Rk | k 6= i}. To see why, suppose that Ri ⊆ ∪{Rk | k 6= i}.
Consider any process pj in the other part of the partition. Let α be a history that consists

of one step of pj , in which it writes to the registers in Rj , followed by one step by pk, for

each k 6= i, j, in which it writes to the registers in Rk. Let σ be the history that consists

of one step by pi, in which it writes the registers in Ri. Since pi and pj are in different

parts of the partition, different values are decided starting from Cα and Cσα. However,

Cα
pj∼ Cσα. Furthermore, all registers have the same values in Cα and Cσα, since all

the registers to which pi writes are overwritten during α. Therefore pj decides the same

value in solo terminating executions starting from Cα and Cσα. This is a contradiction.

Next, we show that, in configuration C, for each process pi ∈ P0 and each process

pj ∈ P1, there is some register that is covered by both pi and pj , but is not covered by

any other process, i.e. Ri ∩ Rj 6⊆ ∪{Rk | k 6= i, j}. To see why, suppose that Ri ∩ Rj ⊆
∪{Rk | k 6= i, j}. Let σ be the history that consists of one step of pi, in which it writes

to each register in Ri, and let τ be the history starting from C that consists of one step

of pj , in which it writes to each register in Rj . Then all executions starting from Cσ

decide 0 and all executions starting from Cτ decide 1. Let α be a history that consists

of one step of every process pk, for k 6= i, j. Since Ri ∩ Rj ⊆ ∪{Rk | k 6= i, j}, every
register written during both σ and τ is overwritten during α. Hence configurations Cστα

and Cτσα are identical. Thus, all terminating executions starting from Cτσα and Cστα

decide the same value. This is a contradiction.

Without loss of generality, suppose that |P1| ≥ |P0|. Let pi be a process in P0. Then

Ri contains at least |P1|+1 registers: one that is covered by pi, but by no other process,

and, for each pj ∈ P1, one that is covered by pi and pj , but by no other process. Since

|P0 ∪ P1| = n, it follows that |P1| ≥ ⌈n/2⌉ ≥ m and, thus, |Ri| ≥ m + 1. This is a

contradiction, because |Ri| ≤ m.

This result is due to Maurice Herlihy in his paper Wait-free Synchronization, ACM

Transactions on Programming Languages and Systems, volume 13, number 1, 1991, pages

124-149. That paper also gives a matching upper bound: a wait-free consensus algorithm

for 2m− 2 processes. Thus, the consensus number of the m-assignment object is 2m− 2

and there are objects with arbitrarily large consensus number.

75

7. Valency Arguments

7.2 An f + 1 Round Lower Bound for Consensus

Valency arguments can also be used to obtain lower bounds on the number of rounds

to solve consensus in synchronous models. Here, we consider the synchronous message

passing model defined in Section 2.4 and give another proof of Theorem 2.9. Recall that

we assume at most f processes crash in each execution. There is a similar proof for the

shared memory model in which processes communicate via registers.

Theorem 7.2. Any binary consensus algorithm in a synchronous message passing system

with n ≥ f + 2 processes that tolerates f crashes requires more than f rounds, even if at

most one process crashes in each round.

Proof. We restrict attention to the class of synchronous executions in which at most one

process crashes in each round. It suffices to prove that, starting from any bivalent config-

uration in which fewer than f processes have crashed, there is a round in which at most

one process crashes and which results in a bivalent configuration. Essentially, we show

that the adversary may crash one process during each round to maintain multivalence.

This can continue as long as there remains enough processes for the adversary to crash.

Let C be a bivalent configuration in which fewer than f processes have crashed.

Since n ≥ f + 2, there are at least three processes that have not crashed. To obtain a

contradiction, suppose that each round starting from C in which at most one process

crashes results in a univalent configuration. Let α be the round starting from C in which

no process crashes and let v be the value decided by all terminating executions in the

class that start from configuration Cα. Since C is bivalent, the set of rounds starting

from C in which one process crashes and from which all terminating executions in the

class decide 1 − v is nonempty. Among all the rounds in this set, let β be one in which

the process pi that crashes sends the largest number of messages.

First, suppose that, in round β, process pi sends a message to every other process pj

that has not crashed in C. Then Cα
pj∼ Cβ. Consider any terminating execution by the

remaining processes starting from Cα that is in the class. It decides v. By Lemma 2.1,

the same sequence of events can occur starting from Cβ. This is impossible, since every

execution in the class starting from Cβ decides 1− v.

Therefore, there is some process pk that has not crashed in C to which pi does not

send a message in β. Let γ be the round starting from C that is the same as β except

that pi also sends a message to pk. Then Cγ
pj∼ Cβ for all processes pj 6= pi, pk that have

not crashed in C. Consider any terminating execution by these processes starting from

Cγ that is in the class. By definition of β, this execution decides v. However, by Lemma

2.1, the same sequence of events can occur starting from Cβ. This is impossible, since

every execution in the class starting from Cβ decides 1− v.

This proof is from Macros Aguilera and Sam Toueg, A simple bivalency proof that

t-resilient consensus requires t + 1 rounds, Information Processing Letters, volume 71,

1999, pages 155-158.

76

7.3. The Impossibility of Consensus in Asynchronous Message Passing Systems

7.3 The Impossibility of Consensus in Asynchronous

Message Passing Systems

A similar proof can be used to prove that consensus is unsolvable in asynchronous message

passing systems. Instead of crashing a process each round, it suffices to delay a process

each round. Thus, the adversary never runs out of processes.

Theorem 7.3. It is impossible to solve wait-free binary consensus in an asynchronous

message passing system in which one process can crash.

Proof. We restrict attention to a class A of almost synchronous executions, each of which

consists of a sequence of rounds. In each round, all or all but one of the processes each

takes a step, in which it sends a message to every other process and then receives messages

that have been sent to it. There are three types of rounds: In a full round, every process

takes exactly one step in which it sends a message to every other process and then receives

all messages that have been sent to it, but not yet received, including those sent during

the round by processes that were scheduled earlier. A partial round is the same as a full

round, except that one process does not take a step. Finally, a pi-round is like a full

round, except that process pi is not scheduled first, and it does not receive the message

sent to it during the round by the process scheduled immediately before it.

It suffices to prove that, starting from any bivalent configuration at the end of a

round, there is a round which results in a bivalent configuration. Let C be a bivalent

configuration at the end of some round. To obtain a contradiction, suppose that every

round starting from C results in a univalent configuration.

Consider any full round α and let β be the partial round obtained from α by removing

the step by its last process, pi. Let α′ be any full round starting with a step by process

pi and let β′ be the partial round obtained from α′ by removing its first step. Then Cαβ′

and Cβα′ are indistinguishable to all processes, since they consist of the same sequence

of steps. Hence, any terminating execution in A starting from these two configurations

must decide the same value. Since Cα and Cβ are both univalent, it follows that all

terminating executions in A starting from them must decide this same value, as well.

Next, consider any pi-round γ and suppose that process pj is scheduled immediately

before pi. Let γ′ be the pj-round execution obtained from γ by interchanging the order

of pi and pj . Since neither pi nor pj receives the message sent to one another during

this round, configurations Cγ and Cγ′ are indistinguishable to all processes. Hence, all

terminating executions in A starting from these two univalent configurations must decide

the same value.

Now, let δ be the full round in which processes take steps in the same order as

in γ. Since pi sends all its messages before receiving any messages, Cγ and Cδ are

indistinguishable to all processes except pi. Then any terminating execution of partial

rounds starting from these two configurations in which pi takes no steps (i.e. in which pi
has crashed) must decide the same value. Hence, all terminating executions in A starting

from these two univalent configurations must decide the same value.

77

7. Valency Arguments

Finally, suppose there are two rounds α0 and α1 such that all terminating executions

in A starting from Cα0 decide 0 and all terminating executions in A starting from Cα1

decide 1. Without loss of generality, we may assume that α0 and α1 are both full rounds.

Since any permutation of {p1, . . . , pn} can be converted into any other by a sequence of

transpositions, we may assume that α and α1 are identical, except that some process

pi is scheduled immediately before pj in α0 and immediately after pj in α1. Let γ0 be

the pj-round in which processes take steps in the same order as in α and let γ1 be the

pi-round in which processes take steps in the same order as in α1. Then, all terminating

executions in A starting from Cγ0 decide 0 and all terminating executions in A starting

from Cγ1 decide 1. This contradicts the fact that all terminating executions in A starting

from these two configurations must decide the same value.

Thus, all terminating executions starting from C decide the same value. This contra-

dicts the assumption that C is bivalent.

The proof of this lower bound was adapted from Yoram Moses and Sergio Rajsbaum,

A Layered Analysis of Consensus, SIAM J. Comput., vol. 31, no. 4, pages 989–1021.

Essentially the same proof can also be used for shared memory models in which processes

communicate using single-writer registers or a single-writer snapshot object.

7.4 A Space Lower Bound for Consensus

From Section 7.1, we know that in an asynchronous shared memory model where processes

only communicate via registers, wait-free consensus is impossible. However, consensus

is possible with weaker termination conditions. There are randomized algorithms which

terminate in finite expected time. There are deterministic obstruction-free algorithms,

in which a process terminates if it is given sufficiently many consecutive steps. The

termination condition we use in this section, nondeterministic solo termination, is weaker

than both of these. It requires that, from every configuration and for all processes, p,

there is a finite solo execution by p in which p terminates.

Even though we are considering weaker termination conditions, the outputs of all

executions must still satisfy the agreement and validity properties. To show that an

algorithm is faulty, we construct an execution that decides both 0 and 1. For example,

suppose there is a reachable configuration C in which all the registers are covered by a

set of processes P and there is a solo execution α starting from C by a process q 6∈ P

that decides 1. Consider the execution of Figure 7.1, in which the processes in P perform

a block write β and then a process p ∈ P performs a solo execution γ starting from the

resulting configuration. If p decides 0, then αβγ is an execution that decides both 0 and

1.

We use a combination of valency and covering arguments to prove an Ω(
√
n) lower

bound on the number of registers used by any consensus algorithm that satisfies non-

deterministic solo termination. Specifically, we show that, if the number of processes is

sufficiently large relative to the number of registers, then it is possible to construct an

execution that decides both 0 and 1. Starting from any bivalent configuration, we either

78

7.4. A Space Lower Bound for Consensus

I C

1

0

0,1

solo α by

q 6∈ P

block write

β by P

solo γ by

p ∈ P

solo γ by

p ∈ P

block write

β by P

Figure 7.1. A simple situation where agreement can be violated

construct an execution that decides both 0 and 1, or prove that it is possible to reach a

bivalent configuration in which more registers are covered. This gives an upper bound

on the number of processes (as a function of the number of registers) in any correct algo-

rithm satisfying nondeterministic solo termination, which implies a lower bound on the

number of registers (as a function of the number of processes), and also for randomized

algorithms and deterministic obstruction-free algorithms.

Anonymous Processes

We begin by proving the lower bound in a system of anonymous processes. This means

that all processes are identical and they run the same code. If two such processes are

in the same state, they apply the same primitive to the same object when they are next

allocated a step and, if the results are the same (for example, they read the same value

or they get the same outcome from a coin flip), then they go to the same state. Initially,

all processes with the same input value will be in the same state. Although this model

is quite restrictive, it provides important insight for the lower bound in the general case.

A clone of a process p is a process with the same input as p, which proceeds in

lockstep with p, reading and writing the same values as p, until immediately before some

write to a register. An adversary can have the clone apply that write at some later point

in the execution to ensure that the value p reads from that register is the same as the

value that p last wrote there. After applying its delayed write, a clone takes no further

steps. Note that, until a clone does its delayed write, other processes, including p, are

unaware of its existence. In other words, the execution with this clone and without it are

indistinguishable to them.

Let r denote the number of registers. The following lemma shows that, if there is a

bivalent configuration in which there are sufficiently many processes available to be used

as clones, then it is possible to construct an execution that decides both 0 and 1. The

situation is illustrated in Figure 7.2.

Lemma 7.4. Consider a reachable configuration C in which there is a set of processes

P covering a set of registers V , a disjoint set of processes Q covering a (not necessarily

79

7. Valency Arguments

I C

1

0

solo β by

q ∈ Q

block write

to W by Q

solo α by

p ∈ P

block write

to V by Pδ

Figure 7.2. The situation in Lemma 7.4

disjoint) set of registers W , and at least r2−r+(|V |+ |W |−|V |2−|W |2)/2 processes that

have taken no steps and are not in P ∪Q. Suppose that after the block write by P there

is a solo execution α by a process p ∈ P in which p decides 0 and after the block write by

Q there is a solo execution β by a process q ∈ Q in which q decides 1. Then there is an

execution that decides both 0 and 1.

Proof. By induction on (V,W), where pairs of sets are partially ordered by component-

wise inclusion and the base case of the induction is when at least one of these two sets

consists of all the registers (i.e. |V | = r or |W | = r). Consider any pair (V,W) and

suppose that the claim is true for all (V ′,W ′) 6= (V,W) such that V ⊆ V ′ and W ⊆W ′.

We consider two cases.

Case 1. V ⊆W . The case W ⊆ V is symmetric.

First, assume all writes that occur during α are to registers in W . For example, this

happens in the base case, when |W | = r. Consider the execution to C followed by the

block write to V by P , α, the block write to W by Q, and β. This execution, illustrated

in Figure 7.3, decides both 0 and 1.

I C 10

solo β by

q ∈ Q

block write

to W by Q

solo α by

p ∈ P

block write

to V by Pδ

Figure 7.3. The case when V ⊆W and all writes during α are to registers in W .

Otherwise, let α′ be the longest prefix of α that only contains writes to registers in

W , let R 6∈ W be the register covered by p immediately after α′, and let α′′ be the

remainder of α, following the write by p to R. Let C ′ be the configuration immediately

after α′, except that there is a clone covering each register in V , which was left behind

80

7.4. A Space Lower Bound for Consensus

when that register was last written to. The block write to V by the set, P ′, of these

clones starting from configuration C ′ does not change the values of any registers, so the

solo execution by p consisting of a write to R followed by α′′ can be performed starting

from the resulting configuration. When the processes in Q perform a block write starting

from C ′ instead of from C, the resulting configurations are indistinguishable to process

q, so the solo execution β by q still decides 1. Therefore, we have the situation depicted

in Figure 7.4.

I 0

solo α′ by

p ∈ P

C ′

1

solo β by

q ∈ Q

block write

to W by Q

block write

to V by P ′

block write

to V by P
solo by p

α′′write

to R

Figure 7.4. The case when V ⊆W and α contains a write to a register R 6∈W .

Let V ′ = V ∪ {R}, so |V ′| = |V |+ 1. In C ′, the number of processes that have taken

no steps and are not in P ′ ∪Q is at least

r2 − r + (|V |+ |W | − |V |2 − |W |2)/2− |V | = r2 − r + (|V ′|+ |W | − |V ′|2 − |W |2)/2.

By the induction hypothesis for (V ′,W), with C ′ instead of C and P ′ ∪{p} instead of P ,

there is an execution that decides both 0 and 1.

Case 2. V 6⊆ W and W 6⊆ V . Let U = V ∪ W . Then V,W (U . Consider any

terminating execution starting from C that begins with a block write to U and continues

with a solo execution γ by one of these processes. The existence of γ is guaranteed by

nondeterministic solo termination. Without loss of generality, suppose that γ decides 0.

Let C ′ be the configuration that is the same as C, except there is a clone covering each

register in W − V = U − V , which was left behind when that register was last written

to. Let P ′ be a set of processes disjoint from Q covering U in C ′. This is illustrated in

Figure 7.5.

In C ′, the number of processes that have taken no steps and are not in P ′ ∪ Q is at

81

7. Valency Arguments

I C ′

1

0

solo β by

q ∈ Q

block write

to W by Q

solo γ by

p ∈ P ′

block write

to U by P ′

Figure 7.5. The case when V 6⊆W and W 6⊆ V .

least

r2 − r + (|V |+ |W | − |V |2 − |W |2)/2− |W − V |
= r2 − r + (|U | − |W − V |+ |W | − (|U | − |W − V |)2 − |W |2 − 2|W − V |)/2
= r2 − r + (|U |+ |W | − |U |2 − |W |2)/2 + |W − V | · (|V | − |W − V |/2− 3/2)

≥ r2 − r + (|U |+ |W | − |U |2 − |W |2)/2,

since |V | ≥ 1 and |W − V | ≥ 1. By the induction hypothesis for (U,W), with C ′ instead

of C and P ′ instead of P , there is an execution that decides both 0 and 1.

Using this lemma, we show that no consensus algorithm exists, if the number of anony-

mous processes is sufficiently large compared to the number of registers.

Theorem 7.5. There is no consensus algorithm using r registers for r2 − r+ 2 or more

processes.

Proof. Suppose there is such an algorithm. Let C0 be an initial configuration in which

p has input 0 and q has input 1. Then there is a solo execution α from C0 by p that

decides 0 and a solo execution β from C0 by q that decides 1. If p doesn’t write during α,

then αβ is the desired execution and if q doesn’t write during β, then βα is the desired

execution. So suppose that p first writes to R and q first writes to R′. Say that α = α′α′′,

where α′ is the longest prefix of α that contains no writes and β = β′β′′, where β′ is the

longest prefix of β that contains no writes. Let P = {p}, Q = {q}, V = {R}, W = {R′},
and C = C0α

′β′. In configuration C, the number of processes that have taken no steps

and are not in P ∪Q is at least r2− r = r2− r+(|V |+ |W | − |V |2− |W |2)/2. Therefore,
by Lemma 7.4, there is an execution that decides both 0 and 1. This contradicts the

correctness of the algorithm.

82

7.4. A Space Lower Bound for Consensus

The General Case

When processes are not anonymous, it is more difficult for the adversary to get multiple

processes to cover the same register. Although the structure of the proof is the same as in

the case of anonymous processes, there is more bookkeeping and combinatorics involved.

The following notation is helpful. For any set of registers V , let V denote the set of

registers not in V . Then |V | = r− |V |, where r is the number of registers in the system.

The key to the lower bound is the following definition. It is the analogue of a termi-

nating solo execution with added clones.

Definition 1. Let P be a set of processes and let V be a set of registers. An execution

α = α1α
′ starting from configuration C is interruptible for P and V if

• in C, there are at least |V |+ 1 processes in P covering every register in V ,

• α1 begins with a block write to V ,

• all writes in α1 are to registers in V ,

• all steps of α are by processes in P ,

• some process in P decides by the end of α, and

• either α = α1 or there exist a set of processes P ′ ⊆ P and a set of registers V ′) V

such that α′ is interruptible for P ′ and V ′.

Note that, if an execution is interruptible for P and V , it is also interruptible for

P ′′ and V , for all P ′′ ⊇ P . It may be helpful to consider the following equivalent,

noninductive definition: An execution α starting from configuration C is interruptible

for a set of processes P and a set of registers V if α can be divided into one or more pieces

α = α1 · · ·αk and there exist V = V1 (V2 (· · · (Vk and P = P1 ⊇ P2 ⊇ · · · ⊇ Pk such

that, for i = 1, . . . , k,

• αi begins with a block write to a set of registers Vi,

• all writes in αi are to registers in Vi,

• at the beginning of αi (i.e. immediately after α1 · · ·αi−1, if i > 1) there are at least

|Vi|+ 1 processes in Pi covering every register in Vi,

• all steps of αi are by processes in Pi, and

• some process in Pk decides by the end of α = α1 · · ·αk.

After each piece of an interruptible execution, there are more registers covered, but

there may be fewer processes covering a particular register. This execution is interruptible

in the sense that it is possible to insert certain executions by processes not in P between

the pieces of α so that the resulting execution is indistinguishable from α to the processes

83

7. Valency Arguments

in P . Specifically, let β1, . . . , βk, βk+1 be executions by processes not in P such that for

i = 1, . . . , k, all writes in βi are to registers in Vi. Then α
P∼ β1α1 · · ·βkαkβk+1.

While it is straightforward to add clones to an execution when processes are anony-

mous, the existence of an interruptible execution for P and V starting from configuration

C requires a careful proof, which depends on P being sufficiently large and, in configu-

ration C, each register in V being covered by sufficiently many processes in P . We use

the following simple combinatorial fact.

Proposition 7.6. If x1 ≥ · · ·xk is a sequence of integers such that
∑k

i=1
xi > k(k−1)/2,

then there exists i ∈ {1, . . . , k} such that xi ≥ k + 1− i.

Proof. Suppose not. Then xi ≤ k − i for i = 1, . . . , k and
∑k

i=1
xi ≤

∑k
i=1

k − i =∑k−1

j=0
j = k(k − 1)/2, which contradicts the assumption.

Using a simplified version of Lemma 7.7 (with Y = φ) we can show that, if |P | >
(r2 − r + |V | − |V |2)/2 and, in configuration C, there are at least |V |+ 1 processes in P

covering every register in V , then there is an interruptible execution for P and V starting

from C. However, this is insufficient to get an analogue of Lemma 7.4 without using

clones. Specifically, in the proof of the second case of Lemma 7.4, clones of processes in

P that are covering registers in V are combined with clones of processes in Q covering

registers in W to create a new execution. To facilitate this, we introduce the concept of

reserving processes for a set of registers.

Definition 2. An interruptible execution α = α1α
′ for P and V starting at configuration

C reserves processes for a set of registers Y if there are at least |Y | processes not in

P covering every register in Y ∩ V in configuration C and either α = α1 or α′ is an

interruptible execution for P ′ ⊆ P and V ′) V that reserves processes for Y .

Note that, if α reserves processes for Y and Y ′ ⊆ Y , then α reserves processes for Y ′.

Lemma 7.7. Suppose that, in configuration C, there are at least |V |+ 1 processes in P

covering every register in V and there are at least |Y | processes not in P covering every

register in V ∩ Y . If |P | > |Y | · |Y ∩ V | + (r2 − r + |V | − |V |2)/2, then there is an

interruptible execution for P and V starting from C that reserves processes for Y .

Proof. By induction on |V |.
Let P̂ ⊆ P contain |V | processes covering each register in V . Then |P − P̂ | =

|P | − |V | · |V |. Let α1 be an execution starting from C that begins with a block write to

V by processes in P − P̂ and, one at a time, each process in P − P̂ takes steps until it

is covering a register in V or it decides, whichever happens first. Nondeterministic solo

termination guarantees the existence of such an execution.

If some process in P decides in α1, then α1 is an interruptible execution for P and

V that reserves processes for Y . In particular, if |V | = 0, then every process in P − P̂

decides in α1.

Now suppose |V | ≥ 1 and, in the configuration C ′ at the end of α1, every process in

P − P̂ is covering a register in V . For each register R ∈ V , let x′(R) denote the number of

84

7.4. A Space Lower Bound for Consensus

processes in P − P̂ covering R in configuration C ′. Let x(R) = x′(R)− |Y | if R ∈ Y ∩ V ,

let x(R) = x′(R) if R ∈ Y ∩ V , and let x1 ≥ x2 ≥ · · · ≥ x|V | be a sorted list of the

numbers x(R), for R ∈ V . Then

|V |∑

i=1

xi =
∑

R∈V

x′(R)− |Y | · |Y ∩ V |

= |P − P̂ | − |Y | · |Y ∩ V |
= |P | − |V | · |V | − |Y | · |V ∩ Y |
> (r2 − r + |V | − |V |2)/2− |V | · |V |
= |V |(|V | − 1)/2.

By Lemma 7.6, there exists i ∈ {1, . . . , |V |} such that xi ≥ |V |+ 1− i. Thus, there is a

set S ⊆ V of i registers such that x(R) ≥ |V | + 1 − i for all R ∈ S and let V ′ = V ∪ S.

Let P ′ be obtained from P by removing |Y | processes covering each register in Y ∩ S.

Since only processes in P take steps in α1, there are at least |Y | processes not in P and,

hence not in P ′, covering each register in Y ∩ V . Thus, there are at least |Y | processes
not in P ′ covering each register in Y ∩ V ′.

There are x′(R) − |Y | = x(R) processes in P ′ covering each register in Y ∩ S and

x′(R) = x(R) processes in P ′ covering each register in Y ∩ S. Thus, there are x(R) ≥
|V |+1−i = |V ′|+1 processes in P ′ covering each register in S. There are also |V | ≥ |V ′|+1

processes in P̂ ⊆ P ′ covering each register in V . Hence, there are at least |V ′|+1 processes

in P ′ covering each register in V ′.

Since |V ′| > |V | ≥ 1 and f(v) = v−v2 is a nonincreasing function of the non-negative

integers, it follows that

|P ′| = |P | − |Y | · |Y ∩ S|
> |Y | · |Y ∩ V |+ (r2 − r − |V |2 + |V |)/2− |Y | · |Y ∩ S|
= |Y | · |Y ∩ V ′|+ (r2 − r − |V |2 + |V |)/2
≥ |Y | · |Y ∩ V ′|+ (r2 − r − |V ′|2 + |V ′|)/2

So, by the induction hypothesis, there is an interruptible execution α′ for P ′ and V

starting from C ′ that reserves processes for Y . Hence α1α
′ is an interruptible execution

for P and V starting from C that reserves behind processes for Y .

Now we can prove a lemma similar to Lemma 7.4, provided P and Q are sufficiently

large.

Lemma 7.8. Let P and Q be disjoint sets of processes and let V and W be (not neces-

sarily disjoint) sets of registers. Consider a configuration C from which there is an inter-

ruptible execution α = α1α
′ for P and V that decides 0 and reserves processes for W and

an interruptible execution β for Q and W that decides 1 and reserves processes for V . If

|P | ≥ |W |·|W ∩V |+(r2−r+|V |−|V |2)/2 and |Q| ≥ |V |·|V ∩W |+(r2−r+|W |−|W |2)/2,
then there is an execution starting from C that decides both 0 and 1.

85

7. Valency Arguments

Proof. By induction on (V,W), as in the proof of Lemma 7.4. Consider any pair (V,W)

and suppose that the lemma is true for all (V ′,W ′) 6= (V,W) such that V ⊆ V ′ and

W ⊆W ′. We consider two cases.

Case 1. V ⊆W . The case W ⊆ V is symmetric.

First suppose that all writes that occur during α are to registers in W . For example,

this happens in the base case of the induction, when |W | = r. Then αβ starting from C

decides both 0 and 1.

Otherwise, α′ is interruptible for some P ′ ⊆ P and V ′) V and reserves processes for

W . Let C ′ be the configuration at the end of α1. Since all writes in α1 are to registers

in V and β begins with a block write to W ⊇ V , the executions β and α1β starting

from C are indistinguishable to processes in Q. Furthermore, V ′ ⊆ V . Therefore β is

interruptible for Q and W starting from C ′ and leaves behind processes for V ′.

Consider configuration C ′. Since α′ reserves processes for W , there are at least |W |
processes not in P ′ covering each register in W ∩V ′. Let P ′′ be a maximum size set such

that P ′ ⊆ P ′′ ⊆ P and there are at least |W | processes not in P ′′ covering each register

in W ∩ V ′. Then α′ is also interruptible for P ′′ and V ′ and reserves processes for W .

Furthermore, P ′′ and Q are disjoint. Since only processes in P take steps in α1, there

are at least |W | processes not in P covering each register in W ∩ V in configuration C ′.

Hence

|P ′′| ≥ |P | − |W | · |W ∩ (V ′ − V)|
≥ |W | · |W ∩ V |+ (r2 − r + |V | − |V |2)/2− |W | · |W ∩ (V ′ − V)|
= |W | · |W ∩ V ′|+ (r2 − r + |V | − |V |2)/2
≥ |W | · |W ∩ V ′|+ (r2 − r + |V ′| − |V ′|2)/2.

By the induction hypothesis applied to (V ′,W), there is an execution γ starting from C ′

that decides both 0 and 1. Then the execution α1γ starting from C decides both 0 and

1.

Case 2. V 6⊆W and W 6⊆ V . Let U = V ∪W . Then V,W (U , so |V |, |W | ≥ |U |+ 1.

Consider configuration C. Since α is interruptible for P and V and reserves processes

for W , there are at least |V | + 1 processes in P covering each register in V and at least

|W | processes not in P covering each register in W ∩ V . Let Q′′ be a set consisting of

|W | processes not in P covering each register in W ∩ V = U −W . Similarly, since β

is interruptible for Q and W and reserves processes for V , there are at least |W | + 1

processes in Q covering each register in W and a set P ′′ consisting of |V | processes not in
Q covering each register in V ∩W = U − V . The processes in P ′′ and Q′′ cover disjoint

sets of registers, so P ′′ ∩Q′′ = φ. Let P ′ = P ∪ P ′′ and Q′ = Q ∪Q′′. Since P ∩Q = φ,

P ∩Q′′ = φ, and P ′′ ∩Q = φ, it follows that P ′ and Q′ are disjoint.

There are at least |V | ≥ |U |+1 processes in P ′ covering each register in V ∪(U−V) = U

and there are at least |W | processes not in P ′ covering each register in W ∩ V = W ∩U .

Since |P ′| ≥ |P | ≥ |W | · |W ∩ V | + (r2 − r + |V | − |V |2)/2 > |W | · |W ∩ U | + (r2 − r +

|U | − |U |2)/2, Lemma 7.7 implies that there is an interruptible execution α′ for P ′ and

86

7.4. A Space Lower Bound for Consensus

U starting from C that reserves processes for W . Similarly, |Q′| > |V | · |V ∩ U | + (r2 −
r+ |U | − |U |2)/2 and there is an interruptible execution β′ for Q′ and U starting from C

that reserves processes for V .

First suppose that α′ decides 0. Since U ⊆ V , execution β is interruptible for Q and

W and reserves processes for U . Then, by the induction hypothesis, there is an execution

starting from C that decides both 0 and 1.

Similarly, if β′ decides 1, there is an execution starting from C that decides both 0

and 1.

Otherwise, α′ decides 1 and β′ decides 0. Since U ⊆ V ,W , it follows that α′ is an

interruptible execution for P ′ and U that reserves processes for U , β′ is an interruptible

execution for Q′ and U that reserves processes for U , and |P ′|, |Q′| > |U | · |U ∩U |+(r2−
r+ |U |− |U |2)/2. Hence, by the induction hypothesis, there is an execution starting from

C that decides both 0 and 1.

Now we prove the main result, by showing that, if there are too many processes

compared to the number of registers, then there is a execution in which both 0 and 1 are

decided.

Theorem 7.9. Any consensus algorithm for n processes that uses only registers and

satisfies nondeterministic solo termination needs Ω(
√
n) registers.

Proof. Suppose there is a consensus algorithm for n ≥ 3r2 − r + 2 processes using only

r registers. Divide the processes into two sets, P and Q, with more than (3r2 − r)/2

processes each. Let C0 be an initial configuration in which each process in P has input

0 and each process in Q has input 1. Let V = W = φ. Then W ∩ V = V ∩W = φ and

|W |·|W ∩V |+(r2−r+|V |−|V |2)/2 = |V |·|V ∩W |+(r2−r+|W |−|W |2)/2 = (3r2−r)/2.
Lemma 7.7 implies that, starting from C0, there is an interruptible execution α for P

and V that reserves processes for W and an interruptible execution β for Q and W that

reserves processes for V . Since all processes in P have input 0, α must decide 0. Similarly,

β must decide 1. Then, by Lemma 7.8, there is an execution starting from C0 that decides

both 0 and 1. This contradicts the correctness of the algorithm.

These lower bounds, the use of clones, and the concept of nondeterministic solo termi-

nation first appeared in the paper On the Space Complexity of Randomized Synchroniza-

tion, by Faith Ellen Fich, Maurice Herlihy, and Nir Shavit, Journal of the ACM, volume

45, 1998, pages 843–862. They also extended these lower bounds to solving consensus

using historyless objects.

87

