
CHAPTER 6
Covering Arguments

A process is poised at an object if it will apply a primitive to the object when it is next

allocated a step by the scheduler. If the value of the object resulting from applying

this primitive does not depend on its current value, then the information stored in the

object will be obliterated. In this case, we say that the primitive is historyless and the

process covers the object.

A covering argument is useful for proving lower bounds for asynchronous shared

memory systems. The goal is to construct a configuration in which a large set of objects

are covered. The size of the objects does not matter: They can be arbitrarily large.

The construction is usually inductive, with the number of covered objects increasing

as the argument progresses. The processes covering these objects can be used to hide

information that other processes may have stored there and wished to communicate.

If these objects are the only objects that the other processes have modified, then the

steps of these other processes can be hidden, in the sense that if they are removed from

the execution, the resulting execution is indistinguishable to the remaining processes.

For example, suppose that processes communicate through r multi-writer registers.

Note that write is a historyless primitive. Consider a history, β, starting from some

configuration C, in which r processes, pi1 , . . . , pir , each write a value to a different

register, one after the other. This is called a block write. Let γ be another history

starting from C by a subset of processes Q disjoint from {pi1 , . . . , pir}. Then the

executions starting from C with histories β and γβ are indistinguishable to all processes

not in Q. Moreover, each register has the same value in configurations Cβ and Cγβ.

Thus, γ is hidden from the processes not in Q, no matter what they do in the future.

Another example of a historyless primitive is swap. It has a single input parameter

v. When applied to an object, it sets the value of the object to v and returns the

value the object had beforehand. A consecutive sequence of swaps applied by different

processes to different objects is called a block swap. When a set of processes performs

a block write to a set of objects, they get no information about the previous values of

those objects. In contrast, when a set of processes performs a block swap to a set of

objects, they (collectively) learn the previous values of these objects. Hence, to hide

the information that was stored there, the adversary does not let these processes take

any further steps.

49



6. Covering Arguments

Any historyless primitive that sets the value of an object to v (regardless of its

previous value) can be simulated by swap(v). Thus, for proving lower bounds on

implementations using historyless primitives, it suffices to restrict attention to swap.

A primitive is trivial if it can never change the value of an object. The most

common example of a trivial primitive is read. We say that an object is historyless if

it only supports historyless and trivial primitives.

Covering arguments were introduced by Burns and Lynch, in their paper Bounds

on Shared Memory for Mutual Exclusion, Information and Computation, volume 107,

1993, pages 171–184, to prove a lower bound on the number of registers needed to solve

mutual exclusion. This result will be presented in Section 6.1. In subsequent sections,

we present a variety of other covering arguments: lower bounds on the number of

multi-writer registers needed to implement timestamps, space and step complexity

lower bounds for the implementation of a counter using swap, a lower bound on the

number of multi-writer registers needed to implement a multi-writer snapshot object,

and a step complexity lower bound for their space optimal implementations. In Section

6.5, we prove a lower bound on the worst case number of stalls incurred by READ in

any implementation of a counter using read-modify-write primitives. In this case, we

use a covering argument to increase contention, rather than to hide information.

6.1 A Space Lower Bound for Mutual Exclusion

Our first covering argument shows that any algorithm for mutual exclusion, with n ≥ 2

processes, uses at least n registers. Recall that the mutual exclusion problem was de-

fined in Section 2.2. We consider an asynchronous shared memory model that contains

only multi-writer registers. While a process is in the remainder section, we do not

consider it to be covering any of the registers.

First, we look at a solo execution by a process that takes it from the remainder

section to the critical section. We show that along the way, there is a configuration in

which one more register is covered.

Lemma 6.1. Suppose that C is a configuration in which process pi is in its remainder

section. Let α be a finite history by process pi starting from configuration C such that

pi is in the critical section in configuration Cα. Let R be the set of registers which are

covered in configuration C. Then, during α, process pi writes to some register that is

not in R.

Proof. By contradiction. Suppose that during α, process pi only writes to registers in

R. Let β be a block write to R starting from configuration C. Then the value of every

register is the same in configurations Cβ and Cαβ and Cβ
q
∼ Cαβ, for all q 6= pi. Note

that pi is still in the remainder section in configuration Cβ.

Starting from Cβ, we show that there exists a finite history γ by processes other

than pi such that one of these processes is in the critical section in configuration Cβγ.

If some process is in the critical section in Cβ, then it suffices to let γ be empty. If

not, but there is some process in the trying section, then deadlock freedom implies the

existence of γ. If there is no process in the trying or critical sections, but there is some

process other than pi in the remainder section, the adversary can first let some such

50



6.1. Mutual Exclusion

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

❄
✲

✲

✲

✲
critical

section

pj in

C

by pi

γ

γ

solo α

pi in

section

remainder

write

block

β to R

β
pi in

critical

section

pj
∼

Figure 6.1. The situation in Lemma 6.1.

process enter the trying section. Finally, if all processes other than pi are in the exit

section, the adversary can choose one of them and first allocate steps to it until it is in

the remainder section. This is because a process that is in the exit section will always

leave it within a bounded number of steps.

Let pj 6= pi be a process in the critical section in configuration Cβγ. Since Cβ
q
∼

Cαβ for all q 6= pi, it follows by Lemma 2.1 that Cβγ
pj
∼ Cαβγ. This is illustrated

in Figure 6.1. Note that both pi and pj are in their critical sections in configuration

Cαβγ. This violates mutual exclusion.

A configuration C is reachable from configuration Q if there is a finite history α

such that C = Qα. A configuration is quiescent if every process is in the remainder

section, i.e. there is no process that has entered the trying section, but has not sub-

sequently finished the exit section. From any quiescent configuration, we show how

to construct a sequence of reachable configurations with successively more covered

registers. Furthermore, each of these configurations will be indistinguishable from a

quiescent configuration to successively fewer processes.

Lemma 6.2. From any quiescent configuration, for k = 1, . . . , n, there are reachable

configurations, C and D, such that D is quiescent, each register has the same value

in C and D, p0, . . . , pk−1 cover k different registers in C, and C
q
∼ D for all q ∈

{pk, . . . , pn−1}.

Proof. By induction on k.

First consider k = 1. From any quiescent configuration Q, deadlock freedom implies

that there is a solo execution by process p0 that results in a configuration in which p0
is in the critical section. Let α be the history of that execution.

There are no registers covered in Q, so, by Lemma 6.1, during α, process p0 writes

to some register. Let α′ be the longest prefix of α that contains no writes. Then p0
covers a register in Qα′ and Qα′

q
∼ Q for all q ∈ {p1, . . . , pn−1}. Hence, the claim is

true with C = Qα′ and D = Q.

Now assume the claim is true for k, where 1 ≤ k < n. By the induction hypothesis,

from any quiescent configuration Qt, there are configurations Ct and Dt that satisfy

the claim. Let βt be a block write by {p0, . . . , pk−1} starting from Ct. Since Ct and

51



6. Covering Arguments

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✲✲

❄

✲

❄

✲✲

❄

β1γ1

C1Q1

D1

Q2

D2

Ct

βtγt

Qt

Dt

. . .

Figure 6.2. The situation in the proof of Lemma 6.2.

Dt are indistinguishable to the rest of the processes and Dt is quiescent, pk, . . . , pn−1

are all in the remainder section in Ct. Thus, deadlock freedom implies that there

is a finite history γt by the processes in {p0, . . . , pk−1} starting from Ctβt such that

Qt+1 = Ctβtγt is quiescent.

From any quiescent configuration Q, consider the sequence of configurations Q =

Q1, Q2, . . ., as shown in Figure 6.2. By the pigeon hole principle, there exist 1 ≤ t <

t′ ≤
(

r
k

)

+ 1 such that βt and βt′ are block writes to the same set of k registers R.

Configuration Dt is quiescent. Hence, deadlock freedom implies that there is a solo

execution by process pk, starting from Dt, that takes pk to the critical section. Let α

be the history of that execution. Since Ct
pk∼ Dt and each register has the same value

in Ct and Dt, it follows by Lemma 2.1 that α can occur starting from Ct and pk is in

the critical section in Ctα.

By Lemma 6.1, during α, process pk writes to some register not in R. Let α′

be the shortest prefix of α such that, in configuration Ctα
′, process pk covers some

register not in R. Since all writes in α′ are to registers in R and βt is a block write to

R, each register has the same value in Ctβt and Ctα
′βt. Since Ctβt

q
∼ Ctα

′βt for all

q 6= pk, Lemma 2.1 implies that γt · · ·βt′−1γt′−1 can occur starting from Ctα
′βt and

C = Ctα
′βtγt · · ·βt′−1γt′−1

q
∼ Ct′ for all q 6= pk. This is illustrated in Figure 6.3. Since

Ct′
q
∼ Dt′ , for all q ∈ {pk, . . . , pn−1}, it follows that C

q
∼ Dt′ for all q ∈ {pk+1, . . . , pn−1}.

Furthermore, each register has the same value in C, Ct′ , and Dt′ . Since pk takes no

steps during βtγt · · ·βt′−1γt′−1, it covers the same register in configuration C. Thus,

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✲ ✲

❄
✲

C

Ct′

CtQ1

βtγt · · · βt′γt′

βtγt · · · βt′γt′

solo α′

by pk

Figure 6.3. Two indistinguishable executions in the proof of Lemma 6.2.

52



6.2. Timestamps

p0, . . . , pk−1, pk cover k+1 different registers in C. Therefore the claim is true for k+1

with D = Dt′ . Hence, by induction, it is true for k = 1, . . . , n.

The lower bound follows easily from this lemma with k = n, using the fact that

the initial configuration is quiescient.

Theorem 6.3. Any mutual exclusion algorithm for n ≥ 2 processes must use at least

n registers.

6.2 Space Lower Bounds for the Implementation of

Timestamps

Timestamps provide information about the temporal ordering of events in an execution.

Formally, a timestamp system consists of a partially ordered set (U,<) of timestamps

and an operation GetTS with range U that satisfies the following validity condition: If

one GetTS operation is completed before another GetTS operation begins and these

operations return t1 and t2, respectively, then t1 < t2. If the two operations are

concurrent, then t1 can be less than, greater than, or incomparable to t2.

The model we consider is asynchronous shared memory in which n processes com-

municate via multi-writer registers. We show that n is a lower bound on the number

of registers needed for implementing a certain class of timestamp systems.

Theorem 6.4. Any n-process implementation of GetTS with range N, under its usual

ordering, and that satisfies solo termination requires at least n registers.

Proof. We prove by induction that, for i = 0, . . . , n, there is a reachable configuration

Ci in which a set Pi of i processes cover a set Ri of i different registers. The theorem

follows from this claim with i = n.

When i = 0, let C0 be the initial configuration and let P0 = R0 = φ. Now, let

1 ≤ i ≤ n and suppose that there is a reachable configuration Ci−1 in which a set Pi−1

of i − 1 processes cover a set Ri−1 of i − 1 different registers. If i > 1, let p ∈ Pi−1;

otherwise, let p be any process.

Consider an execution that starts from configuration Ci−1 with a block write β by

the processes in Pi−1 to the registers of Ri−1, followed by a solo execution γ by p in

which p completes its pending operation, if any, and then performs GetTS. By solo

termination, this operation eventually completes and returns some timestamp t.

Let q be a process not in Pi−1 ∪ {p}. We now show that a solo execution by q,

starting from Ci−1, in which it repeatedly performs GetTS, must eventually write to

a register not in Ri−1. Note that, by solo termination, each instance of GetTS in this

solo execution will eventually terminate. Let tj be the timestamp returned by the j’th

instance of GetTS by q in this solo execution. Then tj < tj+1 for all j ≥ 1. There are

only a finite number of timestamps less than t, so there exists j such that tj 6< t.

To derive a contradiction, suppose that q does not write to any register outside

Ri−1 during the solo execution, α, of its first j instances of GetTS, starting from Ci−1.

Since each register has the same value in configurations Ci−1β and Ci−1αβ, if follows

by Corollary 2.2 that there is an execution γ′ starting from Ci−1αβ such that γ and γ′

are indistiguishable to p. Then p returns t as the result of its last GetTS in γ′. Since

53



6. Covering Arguments

α

returns t
✲ ✲

β γ

✲ ✲

β γ′

❄

❄

❄

Ci−1

block write

by Pi−1 to Ri−1

solo GetTS by q

solo GetTS by q
returns t1

solo GetTS by q

returns t2

returns tj

...

solo GetTS by p

Figure 6.4. Executions used in the proof of Theorem 6.4.

the j’th instance of GetTS by q in α finishes before the last instance of GetTS by p in

γ′ begins, tj < t. This is a contradiction. Hence q must write to some register outside

Ri−1 in its solo execution starting from Ci−1.

Let α′ be the prefix of α after which q first covers some register R 6∈ Ri−1. Let Ci

be the resulting configuration. Let Pi = Pi−1 ∪ {q} and let Ri = Ri−1 ∪ {R}. Thus,

the claim is true for i and, hence, for i = 0, . . . , n.

The fact that the universe of possible timestamps is N under its usual ordering

is only used to argue that there are only a finite number of timestamps less than t.

The proof we presented actually holds when (U,<) is any nowhere dense partially

ordered set. This means that, for every two elements x, y ∈ U , there are only a finite

number of elements z ∈ U such that x < z < y. Some examples of nowhere dense

partially ordered sets are N under its usual ordering, the set of all finite sets, ordered

by set inclusion, and the set of integer vectors of length k ≥ 2, under component-wise

ordering, i.e. x ≤ y if and only if xi ≤ yi for all components i. Some examples of

partially ordered sets that are NOT nowhere dense are Q under its usual ordering,

R under its usual ordering, and the set of integer vectors of length k ≥ 2, ordered

lexicographically.

Theorem 6.5. Any implementation of GetTS for n processes, with a nowhere dense

partially ordered range, that satisfies solo termination requires at least n registers.

Lamport, in his paper, A new solution of Dijkstra’s concurrent programming prob-

lem, CACM, volume 17, 1974, pages 453–455, gives a timestamp system with range N

that uses n single-writer registers: Each process pi stores its current timestamp in its

single-writer register Ri and gets a new timestamp by reading all of the single-writer

registers and adding one to the largest timestamp that it saw. Initially each register

contains 0. The code for process pi is:

54



6.2. Timestamps

t← 1 + max{R0, . . . , Rn−1}

Ri ← t

return t

Theorem 6.5 shows that this implementation is optimal, even if multi-writer registers

are available, provided the universe of possible timestamps is a nowhere dense partially

ordered set. Is it possible to use fewer registers when the universe can be more general?

The following algorithm uses n− 1 single writer registers, instead of n. Its times-

tamps are pairs of integers, ordered lexicographically. The code for processes p0, . . . , pn−2

is the same as in Lamport’s algorithm, except that they return (t, 0) instead of t. The

code for process pn−1 is:

t← max{R0, . . . , Rn−2}

if t > old then c← 1

else c← c+ 1

old← t

return (t, c)

The code involves two persistent variables, old and c, which are both initially 0. The

idea for this simple algorithm came from understanding the lower bound. It is not a

particularly useful algorithm, but it does show the necessity of the assumption that

the partially ordered set is nowhere dense.

Without the restriction that the set of possible timestamps is nowhere dense, it is

still possible to get a linear lower bound on the number of registers, but the proof is

more involved.

Consider any timestamp implementation from registers that satisfies solo termina-

tion. Suppose there is a configuration in which each register in some subset is covered

by at least two processes. Then we can show that, from this configuration, it is possible

to reach another configuration in which some register not in the subset is covered by

an additional process.

Lemma 6.6. Let B1, B2, Q1, and Q2 be disjoint sets of processes and let C be a

reachable configuration in which B1 and B2 each cover the same set of registers R.

For i ∈ {1, 2}, let βi be the block write performed by Bi starting from configuration

C. Then there exists i ∈ {1, 2} such that every Qi-only execution starting from Cβi
containing a complete instance of GetTS writes to some register not in R.

Proof. To obtain a contradiction, suppose that, for all i ∈ {1, 2}, there is a Qi-only

execution αi from Cβi that contains a complete instance Ii of GetTS, returns the

timestamp ti, and only writes to registers in R. Without loss of generality, we may

assume that the executions α1 and α2 are finite. Processes in Q1 take no steps in

β2α2β1, so Cβ1
Q1

∼ Cβ2α2β1 The block write β1 ensures that the contents of all shared

registers are the same in these two configurations. Moreover, Cβ1
B1∼ Cβ2α2β1 since

processes in B1 take no steps in β2α2 and processes learn nothing from performing

writes. Then Lemma 2.1 implies that α1 can be performed starting from Cβ2α2β1 and

Cβ1α1

B1∪Q1

∼ Cβ2α2β1α1. Similarly, α2 can be performed starting from Cβ1α1β2 and

Cβ2α2

B2∪Q2

∼ Cβ1α1β2α2.

55



6. Covering Arguments

Since only processes in B1 ∪Q1 take steps in β1α1 and only processes in B2 ∪Q2

take steps in β2α2, the executions Cβ1α1β2α2 and Cβ2α2β1α1 starting from C are

indistinguishable to all processes. In other words, starting from configuration C, the

executions β1α1 and β2α2 can be performed in either order without changing the

resulting state of any process.

This is a problem because each of these executions contains a complete GetTS

operation and the results of these two operations must indicate which was performed

earlier. Specifically, I1 is completed before I2 begins in β1α1β2α2, so t1 < t2. Similarly,

t2 < t1, since I2 is completed before I1 begins in β2α2β1α1. This is a contradiction.

We say that a configuration is quiescent if no process has started an instance of an

operation that it has not yet finished. This is analogous to the definition of quiescent

used in Section 6.1. Suppose that, from every quiescent configuration, it is possible to

reach a configuration in which k processes cover registers, but no register is covered

by more than three processes. Then, using an argument similar to part of the proof

of Lemma 6.2, we show that there is an execution containing arbitrarily many config-

urations in which k processes cover registers and no register is covered by more than

three processes. It follows that it is possible to find two such configurations which are

the same in terms of the number of processes covering each register.

Lemma 6.7. Let Q be a set of processes. Suppose that, from every reachable quiescent

configuration, there is a Q-only execution that results in a configuration in which exactly

k processes cover registers and no register is covered by more than three processes.

Then, from any reachable quiescent configuration D, there is a Q-only history αβ1β2β3γ

such that

• there are exactly k processes covering registers in Dα,

• no register is covered by more than three processes in Dα,

• β1, β2, and β3 are block writes by disjoint sets of processes to the set of registers

that are covered by three processes in Dα, and

• each register is covered by the same number of processes in Dαβ1β2β3γ as it is

in Dα.

Proof. We inductively define a sequence E0, E1, . . . of configurations reachable from D.

Since D is reachable and quiescent, there is a Q-only execution starting from D that

results in a configuration E0 in which exactly k processes cover registers and no register

is covered by more than three processes. Let δ0 be the history of this execution.

For i ≥ 0, let Ri denote the set of registers that are covered exactly three times

in Ei and let β1,i, β2,i and β3,i denote block writes to Ri starting from Ei by disjoint

sets of processes. Let ρi denote an execution starting from Eiβ1,iβ2,iβ3,i in which each

process in Q with a pending operation completes that operation, but no new operations

are begun. Then Eiβ1,iβ2,iβ3,iρi is a quiescent configuration. Hence, there is a Q-only

execution δi+1 starting from this configuration that results in a configuration Ei+1 in

which exactly k processes cover registers and no register is covered by more than three

processes.

56



6.2. Timestamps

There are a finite number of registers and a finite number of processes. So, by the

pigeon hole principle, there exist 0 ≤ i < j such that each register is covered by the

same number of processes in Ei as it is in Ej . Let

α = δ0β1,0β2,0β3,0ρ1δ1β1,1β2,1β3,1ρ2 · · · δi,

β1 = β1,i,

β2 = β2,i,

β3 = β3,i, and

γ = ρiδi+1β1,i+1β2,i+1β3,i+1ρi+1δi+2β1,i+2β2,i+2β3,i+2ρi+2 · · · δj .

Then each register is covered by the same number of processes in Dαβ1β2β3γ = Ej as

it is in Dα = Ei, there are exactly k processes covering registers in Dα, no register

is covered by more than three processes in Dα, Ri is the set of registers covered by

three processes in Dα, and β1, β2, and β3 are block writes to Ri by disjoint sets of

processes.

Starting from a reachable configuration in which no register is covered by more

than three registers, we use Lemmas 6.6 and 6.7 to obtain another configuration in

which no register is covered by more than three registers, but the number of processes

covering registers has increased. This allows us to obtain the desired lower bound.

Theorem 6.8. Any n-process implementation of a timestamp from registers that sat-

isfies solo-termination requires at least ⌈(n− 1)/6⌉ registers.

Proof. We prove inductively that, for 0 ≤ k ≤ ⌊n/2⌋ and from any reachable quiescent

configuration D, there is a {p0, . . . , p2k−1}-only history that results in a configuration

in which exactly k processes cover registers and no register is covered by more than

three processes. Then, for k = ⌊n/2⌋, there are at least ⌈k/3⌉ = ⌈(n − 1)/6⌉ covered

registers.

For k = 0, the claim follows with σ0 being the empty history starting from D.

Let 0 < k ≤ ⌊n/2⌋ and let D be a reachable quiescent configuration. By the induc-

tion hypothesis, from every reachable quiescent configuration, there is a {p0, . . . , p2k−3}-

only history that results in a configuration in which exactly k − 1 processes cover

registers and no register is covered by more than three processes. Then, Lemma 6.7

implies that there is a {p0, . . . , p2k−3}-only execution αβ1β2β3γ starting from D such

that there are exactly k − 1 processes covering registers in Dα, no register is covered

by more than three processes in Dα, β1, β2, and β3 are block writes by disjoint sets of

processes to the set of registers R that are covered by three processes in Dα, and each

register is covered by the same number of processes in Dαβ1β2β3γ as it is in Dα.

For i ∈ {1, 2}, let δi be a p2k−i-only history starting from Dαβi in which p2k−i

performs a complete instance of GetTS. By Lemma 6.6, there exists i ∈ {1, 2} such

that p2k−i writes to some register not in R during δi. Let λ be the longest prefix of δi
in which p2k−i only writes to registers in R and let r 6∈ R be the register that p2k−i

covers in Dαβiλ.

Note that Dαβ1β2β3 and Dαβ2β1β3 are indistinguishable to all processes and they

are indistinguishable from Dαβiλβ3−iβ3 to all processes except p2k−i. Moreover, the

block write β3 overwrites all registers written during β1, β2, and λ, so each register has

the same value in all three of these configurations.

57



6. Covering Arguments

Since γ is a {p0, . . . , p2k−3}-only history Lemma 2.1 implies that γ can also occur

starting fromDαβ2β1β3 andDαβiλβ3−iβ3 and the resulting configurations,Dαβ1β2β3γ,

Dαβ2β1β3γ, and Dαβiλβ3−iβ3γ, are indistinguishable to all processes except p2k−i.

Thus, each process other than p2k−i covers the same register in these configurations

and each register other than r is covered by at most three processes.

Register r 6∈ R is covered by at most two processes inDα and, hence, inDαβ1β2β3γ.

Therefore, it is covered by at most three processes in Dαβiλβ3−iβ3γ.

Finally, there are exactly k − 1 processes in {p0, . . . , p2k−3} that cover registers in

Dα and, hence, in Dαβ1β2β3γ and in Dαβiλβ3−iβ3γ. Thus, including p2k−i, there are

exactly k processes that cover registers in Dαβiλβ3−iβ3γ. This proves the claim for

k.

Theorem 6.4, Theorem 6.5, the second algorithm, and Lemma 6.6 are from The

Space Complexity of Unbounded Timestamps, by Faith Ellen, Panagiota Fatourou,

and Eric Ruppert, which appears in Distributed Computing, volume 21, 2008, pages

103–115. Lemma 6.7 and Theorem 6.8 are from The Space Complexity of Long-lived

and One-Shot Timestamp Implementations, by Maryam Helmi, Lisa Higham, Eduardo

Pacheco, and Philipp Woelfel, which appears in PODC 2011, pages 139–148.

6.3 Space and Step Complexity Lower Bounds for the

Implementation of a Counter using Swap Objects

Next, we consider the problem of implementing a counter, an atomic object whose

set of values are the nonnegative integers and which supports two operations: READ,

which returns the current value of the object, and INCREMENT, which increases the

value of the object by 1. The initial value of a counter is 0.

The model we consider is asynchronous shared memory system in which n processes

communicate using swap objects that support the swap and read primitives.

We will prove the following lower bound:

Theorem 6.9. Any n-process implementation of a counter using only swap objects

requires at least n−1 swap objects and, in the worst case, a READ takes at least n−1

steps.

Fix any implementation of a counter and fix a process p. In this proof, an adversary

will construct an execution (starting from an initital configuration) in which p accesses

n− 1 different swap objects while performing a READ. It will inductively construct a

sequence of histories αkβkπk, for k = 0, . . . , n− 1 where

• αkβk is by set of k processes, not including p, in which each is performing IN-

CREMENT,

• βk is a block swap of a set Hk of k swap objects, and

• πk is the history of a prefix of a solo execution of a READ by p, in which Hk is

the set of swap objects it accesses.

The base case, k = 0 is easy: Let α0, β0, and π0, be empty histories and let Hk be

the empty set of swap objects. So, let 0 ≤ k < n− 1. Suppose the history αkβkπk has

58



6.3. Space and Step Complexity of a Counter

✲ ✲ ✲✲

✲✲ ✲❄

αk βk πk π

βk πk π

γ

Figure 6.5. The histories used in the proof of Claim 6.10.

been constructed. Let π be the extension of πk in which p finishes the solo execution

of its READ. Only k < n− 1 processes take steps in αkβk, so there is a process q 6= p

that takes no steps in αkβk. Let γ be the history of a solo execution by q starting

immediately after αk, in which it performs k + 1 complete INCREMENTS.

Claim 6.10. During πkπ, process p must access a swap object not in Hk that was

modified by q.

Proof. Suppose not. Then the executions with histories αkγβkπkπ and αkβkπkπ are

indistinguishable to p. This is because all the swap objects in Hk have the same values

after the block swap, βk, in both executions and, hence, all the swap objects that p

accesses during πkπ have the same values in both executions. It follows that p returns

the same value for its READ in both executions.

Let c be the number of INCREMENTS completed in αk. In βk, one step is per-

formed by each of k different processes, so there are at most k additional complete or

incomplete INCREMENTS in αkβk. Thus, the value that p returns for its READ in

αkβkπkπ is at most c+k. In αkγ, there are c+k+1 completed INCREMENTS, so the

value that p returns for its READ in αkγβkπkπ is at least c+k+1. Therefore p returns

different values for its READ in these two executions. This is a contradiction.

Let πk+1 be the shortest prefix of πkπ in which p accesses a swap object H not in

Hk and let Hk+1 = Hk ∪ {H}. Then πk+1 is the history of a prefix of a solo execution

of a READ by by p in which Hk+1 is the set of swap objects it accesses. Note that πk
is a proper prefix of πk+1, since p only accesses swap objects in Hk during πk.

Let ψ be the first access of H by q in γ and let γ′ be the prefix of γ up to, but not

including ψ. Let αk+1 = αkγ
′ and let βk+1 = ψβk. Then αk+1βk+1 is the history of

an execution by a set of k+1 processes, not including p, in which they are performing

INCREMENTS, βk+1 is a block swap of Hk+1, and the claim holds for k + 1. Hence,

by induction, the claim holds for all k such that 0 ≤ k ≤ n− 1.

Unfortunately, there is a mistake in this proof. The problem is that the first swap

object H 6∈ Hk that p accesses in π might not be a swap object that q accesses.

For example, p might access two swap objects not in Hk, but only the second is also

accessed by q.

An alternative is to define H to be the first swap object that q accesses which is not

in Hk. In this case, we can get an even simpler construction. Specifically, the history

will be αkβk, where

• αkβk is by a set of k processes, in which each is performing INCREMENT, and

59



6. Covering Arguments

• βk is a block swap of a set Hk of k swap objects.

Then, in the inductive step, it suffices to choose any distinct processes p and q that

take no steps in αkβk and to let π be the history of a solo execution by p of a READ

starting immediately after αkβk. The proof of the claim and the definitions of αk and

βk+1 remain the same. However, from this proof, we only get a lower bound of n − 1

on the number of swap objects needed by the implementation, but not on the number

of steps taken by a READ.

Instead, define H to be the first swap object that q accesses which is not in Hk and

which is accessed by p in πkπ. Then let πk+1 be the shortest prefix of πkπ in which

p accesses H 6∈ Hk. The problem now is that p may access other objects not in Hk

before it accesses H. So, it is not necessarily the case that Hk+1 = Hk ∪ {H} is the

set of swap objects that p accesses in πk+1. However, the equality is not important.

It suffices that we inductively maintain that Hk is a subset of the processes that p

accesses in πk. Specifically, the inductively constructed histories are αkβkπk, where

• αkβk is an execution by a set of k processes, not including p, in which each is

performing INCREMENT,

• βk is a block swap of a set Hk of k swap objects, and

• πk is the history of a prefix of a solo execution of a READ by p, in which it

accesses every swap object in Hk.

The proof of Claim 6.10 still holds.

Finally, we have to be careful about the definition of πk+1. It should not be the

shortest prefix of πkπ in which p accesses H. The problem is that p might access H

near the beginning of πk and, so, p might not access all the swap objects in Hk during

πk+1. A good way to define πk+1 is as the shortest prefix of πkπ in which p accesses

every swap object in Hk+1. Then the claim holds for k + 1.

This lower bound was first proved by Prasad Jayanti, King Tan, and Sam Toueg

in their paper Time and Space Lower Bounds for Nonblocking Implementations, which

appeared in SIAM Journal on Computing, volume 30, number 2, 2000, pages 438-456.

6.4 A Lower Bound on Step Complexity for

Space-Optimal Implementations of a Multi-Writer

Snapshot

We consider wait-free implementations of an m-component snapshot object shared by

n > m processes, each of which can update any component. Our model is asynchronous

shared memory, where processes communicate through multi-writer registers.

Fix any implementation of an m-component snapshot object shared by n > m

processes that communicate using at most m registers. We will prove that it uses at

least m registers and, in the worst case, a SCAN takes Ω(mn) steps. These lower

bounds are tight.

We begin with the definition of fatal configuration. It is fatal in the sense that, if an

implementation ever reaches a fatal configuration, it is incorrect. Using this definition,

60



6.4. Multi-Writer Snapshots

δ by q

❧

❧ ❧✲

✲

❄

✲

✲

β γ

β γ

solo
UPDATE(i, v′)

returns v for component i

returns v′ for component i

❧C

Figure 6.6. The executions in the proof of Lemma 6.11.

we will prove the space lower bound and a number of structural properties of space

optimal implementations. Then we will inductively construct a long SCAN.

A configuration C is k-fatal if there exists a set, P , of k ≤ m < n processes such

that, in C, processes in P cover k different registers, and processes in P are performing

UPDATES to fewer than k different components. A configuration is fatal if it is k-fatal

for some k ≥ 1.

Lemma 6.11. No execution can reach a fatal configuration.

Proof. Proof by contradiction. Consider the largest value of k for which there is a

reachable k-fatal configuration. In a k-fatal configuration, C, there is a set P of k

processes that covers a set R of k registers and the processes in P are performing

UPDATES to a set I of fewer than k components. Without loss of generality, we may

assume that all processes not in P are idle, because we can simply let each process not

in P perform steps until it completes its operation.

Consider the execution starting from C in which the processes in P perform a

block write β and then some process p ∈ P performs a solo execution, γ, in which it

completes its current operation and then performs a SCAN. Pick any component i 6∈ I

and let v be the value of component i in the response from this SCAN.

Pick a process q 6∈ P . There is such a process since there are n processes and

n > m ≥ k. Let δ be the solo execution by q starting from C in which it UPDATES

component i to a new value v′ 6= v.

Process q will eventually write to a register r 6∈ R. To see why, suppose that q only

writes to registers in R during δ. Then the executions βγ and δβγ starting from C

are indistinguishable to p. Hence, p must return the same response from its SCAN in

both executions. In particular, it must return value v for component i in βγ. However,

since the UPDATE by process q finishes before the SCAN by p begins in δβγ, and

there are no pending UPDATES to component i in configuration C, process p must

return value v′ for component i in δβγ starting from C. This is a contradiction.

Thus, there is a prefix δ′ of δ such that q covers a register r 6∈ R in configuration

Cδ′. This configuration is (k + 1)-fatal. This contradicts the maximality of k.

Now we present the structural lemmas.

Lemma 6.12. Processes performing SCAN operations do not write to registers.

Proof. Otherwise, there is a configuration in which some process is performing a SCAN

and is covering a register. This configuration is 1-fatal.

61



6. Covering Arguments

Lemma 6.13. Processes performing solo executions of UPDATE operations to the

same component starting from the same configuration, first write to the same register.

Proof. Suppose there are solo executions of UPDATE operations by p and q to the

same component starting from the same configuration, C, that first write to different

registers. Run p and q starting from C until just before their first writes. The resulting

configuration is 2-fatal.

Lemma 6.14. A process performing a solo execution of an UPDATE operation to a

particular component, i, starting from some configuration, C, first writes to the same

register, no matter what new value it is using for its UPDATE.

Proof. Suppose that process p first writes to two different registers, R and R′, when

performing solo executions of UPDATE(i, v) and UPDATE(i, v′), respectively, starting

from configuration C.

Let γ be a solo execution by some other process q starting from C in which it

finishes its pending operation, if any, and then performs an UPDATE to component

i until it first covers a register R′′. Without loss of generality, suppose R′′ 6= R. Let

α denote the longest prefix of p’s solo execution of UPDATE(i, v) starting from C in

which p does not write.

Since Cα is indistinguishable from C to process q, γ is an execution starting from

Cα. However, the resulting configuration Cαγ is 2-fatal.

Let C0 be the initial configuration in which all components have value ⊥ and let

Ri be the register to which a process first writes when performing a solo execution of

UPDATE to component i starting from configuration C0.

Lemma 6.15. Let α be an execution starting from C0 in which some process takes no

steps. Then all UPDATE operations to component i in α only write to Ri.

Proof. Suppose that process p writes to a register R 6= Ri during an UPDATE oper-

ation to component i. Let α′ denote a prefix of α such that, at the end of α′, p is

covering R while performing an UPDATE to component i.

Let q be a process that takes no steps in α. By Lemma 6.13, a solo execution of

an UPDATE to component i by q starting from C0 first writes to Ri. Let β be the

longest prefix of this solo execution in which q performs no writes.

Since C0 and C0β are indistinguishable to process p, βα′ is an execution starting

from C0. However, the resulting configuration, C0βα
′ is 2-fatal.

Lemma 6.16. Ri 6= Rj for i 6= j.

Proof. Suppose there are solo executions UPDATE(i, v) by process p and UPDATE(j, v′)

by process q starting from configuration C0 that both write to the same register R.

Note that both p and q are idle at C0, so by Lemma 6.15, they only write to register

R during these executions.

Let α denote the prefix of UPDATE(i, v) until process p first covers register R and

let α′ denote the rest of this solo execution followed by a solo execution of a SCAN

by p. Let β denote the solo execution of UPDATE(j, v′) by process q. Since C0 and

C0α are indistinguishable to process q, αβ is an execution starting from C0. Since α′

62



6.4. Multi-Writer Snapshots

begins with a write to register R and all writes in β are to register R, αβα′ is also an

execution starting from C0 and is indistinguishable from αα′ to p.

The SCAN by p in execution αα′ must return value ⊥ for component j, since αα′

contains no UPDATES to component j. The SCAN by p in execution αβα′ must

return value v′ for component j, because it starts after the UPDATE to component j

by q is finished. This is impossible, since these two executions are indistinguishable to

p.

From this lemma, we immediately get our space lower bound.

Theorem 6.17. Any implementation of an m < n component snapshot object shared

by n processes requires at least m registers.

Next, we prove our lower bound on the step complexity of SCAN.

Theorem 6.18. In any space-optimal implementation of an m < n component snap-

shot object shared by n processes, a process requires Ω(mn) steps to perform a SCAN

in the worst case.

We first outline the proof of this theorem. An adversary constructs a bad execution

where a troublesome SCAN by some process t performs Ω(n) batches of m− 1 reads.

The adversary ensures that during this time, the snapshot always has at least one

component that contains the value 1, which t has never seen. This implies that t

cannot have terminated.

The bad execution employs n− 4 visible processes, p1, . . . , pn−4, each of which has

started an UPDATE with value 0 to a carefully chosen component and is covering a

register before t starts. To prevent t from seeing the hidden value 1, just before t reads

from any register that might contain value 1, the adversary causes one of the visible

process to write obsolete information to it. The bad execution also employs two hidden

processes, q and q′, performing UPDATES, so the snapshot object always contains at

least one component with value 1, and SCANS, to constrain the linearization points

of the UPDATES by themselves and by the visible processes.

For each batch of reads of m− 1 different registers that t performs, the adversary

uses one visible process to overwrite the last of these registers just before t reads it.

Thus the adversary can schedule Ω(n) such batches. There is also one process that

performs no steps in the bad execution. This is useful so that we can apply some of

the structural lemmas.

Proof. Formally, we construct a sequence of components, i1, . . . , in−4, and a sequence

of executions, α0, . . . , αn−4, starting from C0 such that, for every k, where0 ≤ k ≤ n−4,

• αk = βk · · ·β1 · λ1 · w1 · · ·λk · wk,

• wj is the first write (to register Rij ) by process pj when it performs a solo execu-

tion of UPDATE(ij , 0) starting from C0 and βj is the portion of this execution

preceding wj ,

• λ1 · · ·λk is the prefix of a single SCAN performed by process t,

• process t reads from all registers except Rij during λj and is about to access Rij

at the end of λj , and

63



6. Covering Arguments

• if t runs by itself starting from C0αk, it will read every register before completing

its SCAN.

For the base case, k = 0, let α0 be the empty execution starting from C0. Let λ be

the solo execution of a SCAN by t starting from C0α0 = C0. Suppose t doesn’t read

some register Rℓ during λ. Let γ be the solo execution of UPDATE(ℓ, 1) by process q

starting from C0. By Lemma 6.15, process q only writes to Rℓ during γ, so γλ is an

execution that is indistinguishable from λ to process t. Hence, p must return the same

value for component ℓ in both these executions. However in λ, process p has to return

⊥ for component ℓ and in γλ, process p has to return 1 for component ℓ. This is a

contradiction.

Let 1 ≤ k ≤ n − 4 and suppose the claim is true for k − 1. By the induction

hypothesis, if t runs by itself starting from configuration C0αk−1 will eventually read

every register. Let λk be the longest solo execution by t starting from C0αk−1 in which

t does not read from every register. Let Rik be the register that t is about to read at

the end of λk.

Let wk be the first write (to register Rik) by process pk when it performs a solo

execution of UPDATE(ik, 0) starting from C0 and let βk be the portion of this execution

preceding wk. Then

αk = βkβk−1 · · ·β1 ·

λ1 · w1 ·
...

λk−1 · wk−1 ·

λk · wk

is an execution. Let λ be the solo execution by t starting from C0αk until it finishes

its SCAN.

It remains to prove that t reads every register during λ. Suppose t doesn’t read

register Rℓ during λ. We will construct an execution α′′ that is indistinguishable from

α = αkλ to t, but in which t must return a different response. Specifically, we will

show that in α′′, process t has to return the value 1 for some component. However,

in α, no UPDATES with value 1 are performed and no component has 1 as its initial

value, so t can’t return the same response.

We start by inserting k + 1 UPDATES with value 1 by the hidden process q, to

components i1, . . . , ik, ℓ, into α. They are denoted U1(i1, 1), . . . , Uk(ik, 1), Uk+1(ℓ, 1).

We also insert k SCANS, S1, . . . , Sk, by process q into α. Let

α′ = βkβk−1 · · ·β1 · U1(i1, 1) ·

λ1 · U2(i2, 1) · w1 · S1 ·

...

λk−1 · Uk(ik, 1) · wk−1 · Sk−1 ·

λk · Uk+1(ℓ, 1) · wk · Sk ·

λ.

All reads by the visible processes p1, . . . , pk occur in α′ before q takes any steps, so α′

and α are indistinguishable to them.

64



6.4. Multi-Writer Snapshots

By Lemma 6.12, q doesn’t write during its SCANS. By Lemma 6.13, q only writes to

Rij during Uj(ij , 1), for j = 1, . . . , k. The register Rij is not read by t during λj and the

contents of Rij are overwritten by the write wj of visible process pj . Therefore, t never

reads any value written to Rij by q during Uj(ij , 1). Similarly, Rℓ is the only register

q writes to during Uk+1(ℓ, 1), and, by assumption, t does not read from Rℓ during λ.

Thus, process t does not read any value that q writes and α′ is indistinguishable from

α to t.

Next, we insert k UPDATES with value 0 by the other hidden process q′, to com-

ponents i1, . . . , ik, into α
′. They are denoted U ′

1(i1, 0), . . . , U
′

k(ik, 0). Let

δ = βkβk−1 · · ·β1 · U1(i1, 1) ·

λ1 · U2(i2, 1) · U
′

1(i1, 0) · w1 · S1 ·

...

λk−1 · Uk(ik, 1) · U
′

k−1(ik−1, 0) · wk−1 · Sk−1 ·

λk · Uk+1(ℓ, 1) · U
′

k(ik, 0) · wk · Sk ·

λ.

In δ, the operations by the hidden processes don’t overlap with one another, so

they must be linearized in the following order:

U1(i1, 1),

U2(i2, 1), U
′

1(i1, 0), S1,

U3(i3, 1), U
′

2(i2, 0), S2,
...

Uk(ik, 1), U
′

k−1
(ik−1, 0), Sk−1,

Uk+1(ℓ, 1), U
′

k(ik, 0), Sk.

The UPDATES by visible processes all use 0, so even if some of them are linearized

between U ′

j(ij , 0) and Sj , the SCAN Sj must return 0 for component ij in δ, for

j = 1, . . . , k.

Now consider the execution

α′′ = βkβk−1 · · ·β1 · U1(i1, 1) ·

λ1 · U2(i2, 1) · U
′

1(i1, 1) · w1 · S1 ·

...

λk−1 · Uk(ik, 1) · U
′

k−1(ik−1, 1) · wk−1 · Sk−1 ·

λk · Uk+1(ℓ, 1) · U
′

k(ik, 1) · wk · Sk ·

λ.

This execution is the same as δ except that the UPDATES by process q′ use 1 instead

of 0. By Lemma 6.13, q′ only writes to Rij during U ′

j(ij , 0) and U ′

j(ij , 1). But Rij is

overwritten by wj before Rij can be read by any other process. Therefore, to all other

processes, α′′ and δ are indistinguishable from α′. Hence, the SCAN Sj must return 0

for component ij in α′′, for j = 1, . . . , k.

65



6. Covering Arguments

As before, in α′′, the operations by the hidden processes are linearized in the order

U1(i1, 1),

U2(i2, 1), U
′

1(i1, 1), S1,

U3(i3, 1), U
′

2(i2, 1), S2,
...

Uk(ik, 1), U
′

k−1
(ik−1, 1), Sk−1,

Uk+1(ℓ, 1), U
′

k(ik, 1), Sk.

There are no UPDATES by hidden processes linearized between U ′

j(ij , 1) and Sj . Since

Sj returns 0 for component ij , there must be at least one UPDATE to component ij by

a visible process linearized between them, for j = 1, . . . , k. Since there are k SCANS

by q and k UPDATES by visible processes, exactly one of these UPDATES must be

linearized between U ′

j(ij , 1) and Sj , for j = 1, . . . , k.

Note that ij 6= ij−1. This is because t starts λj by reading Rij−1
and doesn’t read

Rij during λj . Similarly, ℓ 6= ik. Therefore, in the linearization of the operations in α′′,

every UPDATE with value 0 is preceded by two UPDATES with value 1 to different

components. Thus, after U1(i1, 1), there will always be a component with value 1 in

the resulting linearization. Hence, during α′′, the troublesome SCAN by t will have to

return the value 1 in some component, no matter where it is linearized.

Since t does not return the value 1 in any component during α, and α and α′′ are

indistinguishable to t, we have a contradiction. Thus t reads every register during λ

and the claim is true for k.

The space and step complexity lower bounds apply to snapshot implementations

from any historyless objects, provided thatm < n−1. The proof also shows that SCAN

has a very particular form in any efficient, space-optimal snapshot implementation.

The results in this section are from Time Lower Bounds for Implementations of

Multi-writer Snapshots by Faith Ellen, Panagiota Fatourou, and Eric Ruppert, Journal

of the ACM, Volume 54, Number 6, December 2007.

When m = n − 1, Theorem 6.18 gives an Ω(n2) lower bound on step complex-

ity of SCAN in any implementation of an (n − 1)-component snapshot object from

n − 1 registers. In contrast, there is an implementation of an n-component snapshot

object using n registers with O(n) step complexity for SCAN. See Hagit Attiya and

Ophir Rachman, Atomic Snapshots in O(n logn) Operations, SIAM Journal on Com-

puting, volume 27, number 2, pages 319–340, April 1998 and A. Israeli, A. Shaham,

and A. Shirazi, Linear-time Snapshot Implementations in Unbalanced Systems, Math-

ematical Systems Theory, volume 28, number 5, pages 469–486, September/October

1995.

6.5 A Lower Bound on the Number of Stalls Incurred

by a Counter Implemented Using Arbitrary

Read-Modify-Write Primitives

Here, we consider an asynchronous shared memory model in which processes can apply

arbitrary read-modify-write primitives to base objects. A read-modify-write primitive

66



6.5. Stall Complexity of a Counter

has a fixed number of input variables. When it is applied to an object, the value of

the object may be changed, based on the current value of the object and the values of

these variables. A response is returned to the process that applied the primitive.

The time to perform an operation can be influenced, not only by the number of

primitives a process applies to objects, but also by the amount of contention it incurs

at objects when other processes access them concurrently. A stall is a delay that

results from waiting for another process that applies a nontrivial primitive to the same

object. For example, suppose that in some configuration, there is some object at

which no processes are poised. Let k processes each take steps that result in them

being poised to apply a nontrivial primitive to this object. Then let each of them take

another step. The i’th process to access the object incurs i− 1 stalls, for 1 ≤ i ≤ k.

A process that accesses a shared counter provided by the hardware can incur n− 1

stalls if the other processes all want to INCREMENT the counter at the same time. Is

it possible to reduce the maximum number of stalls the process incurs by implementing

the counter using more shared objects, each shared by fewer processes, or by using more

powerful shared objects? The following result says that it is not possible.

Theorem 6.19. Any implementation of a counter shared by n processes has an exe-

cution in which some READ incurs at least n− 1 stalls.

To prove this result, an adversarial scheduler constructs a bad execution in which

some process p incurs n−1 stalls while performing a single READ. This bad execution

has the form ασ1 · · ·σr. During α, all processes other than p take steps until they

cover base objects that will later be accessed by p. Let B1, . . . , Br be the base objects

covered by these processes at the end of α and, for i = 1, . . . , r, let Si be the set of

those processes that cover Bi. Then S1 ∪ · · · ∪ Sr is a disjoint union of all processes

except p. During σi, process p takes steps until it is about to access Bi, then each

process in Si takes one step in which it accesses Bi, and, finally, p accesses Bi. Hence

p incurs one stall in σi for each process in Si. In total, p incurs n − 1 stalls in this

execution.

A k-stall execution is an execution with a history ασ1 · · ·σr where there are distinct

base objects B1, . . . , Br and disjoint sets of processes S1, . . . , Sr whose union has size

k such that

• p is performing a single READ,

• all other processes only perform INCREMENTS,

• p takes no steps in α,

• at the end of α, each process in Si covers Bi, for i = 1, . . . , r,

• in σi, process p runs by itself until just before it first accesses Bi, then each of

the processes in Si accesses Bi, and, finally, p accesses Bi, and

• in every ({p} ∪ S1 ∪ · · · ∪ Sr)-free extension τ of α by processes performing

INCREMENTS, no process performs a nontrivial operation on any base object

accessed in σ1 · · ·σr.

67



6. Covering Arguments

S1

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏❄.

❅
❅
❅❘ ❄

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.◆

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.◆

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.✌

✡

☛

✠

✟

✡

☛

✠

✟

✡

☛

✠

✟

✲ ✲ ✲ ✲

�
�

�✠

✡

☛

✠

✟

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.✌

S2 S3 Sr

B1 B2 B3 Br
p

✒✑
✓✏

Figure 6.7. The configuration at the end of α in a k-stall execution.

This is illustrated in Figure 6.7. Note that process p incurs k stalls in a k-stall execu-

tion. The empty execution is a 0-stall execution.

Using the following lemma, we can inductively construct an (n−1)-stall execution.

This proves Theorem 6.19.

Lemma 6.20. If there is a k-stall execution, where 0 ≤ k < n − 1, then there is a

(k +m)-stall execution, for some m ≥ 1.

Proof. Suppose there is a k-stall execution with history ασ1 · · ·σr. Let σ be the

extension of ασ1 · · ·σr in which p completes its READ. Let v be the value returned.

Let τ be the extension of α in which some process q 6∈ {p} ∪ S1 ∪ · · · ∪ Sr performs n

complete INCREMENTS.

From the definition of a k-stall execution, during τ , process q performs no nontrivial

operations on base objects accessed during σ1 · · ·σr. Thus, by Lemma 2.1, σ1 · · ·σr
can occur following ατ . If we let p finish its READ, then it must return a value larger

than v. This is because, at the end of α, there are at most n−1 processes with pending

INCREMENTS. Thus, the number of INCREMENTS completed by the end of α is at

least v − (n− 1) and the number of INCREMENTS completed by the end of ατ is at

least v + 1.

During τ , process q must modify a base object accessed by p during σ; otherwise

the executions with histories ασ1 · · ·σrσ and ατσ1 · · ·σrσ would be indistinguishable

to p.

Consider the set E of all extensions τ ′ of α by one or more processes not in {p} ∪

S1 ∪ · · · ∪ Sr which are performing INCREMENTS and such that, at the end of τ ′,

at least one of these processes covers a base object that is accessed by p during σ.

p returns v′ > v

✲ ✲

✲ ✲❄

✲

✲

✲

✲

α

by q

σ2 σr σ

σ2 σr σ

p returns v
σ1

σ1

τ

✲

Figure 6.8. The histories in the proof of Lemma 6.20.

68



6.5. Stall Complexity of a Counter

The prefix of τ up to, but not including, its first access to a base object accessed by p

during σ is an example of a history in E.

Let Br+1 be the first base object accessed by p during σ that is covered at the end of

one or more of these histories in E. Since ασ1 · · ·σr is the history of a k-stall execution,

no history in E contains a nontrivial operation on any object accessed during σ1 · · ·σr.

Hence Br+1 6∈ {B1, . . . , Br}. Let σ
′ be the prefix of σ up to, but not including, p’s first

access of Br+1.

Among all the histories in E, let τ ′ be one such that, after ατ ′, the largest number

of processes cover Br+1. Suppose there are m such processes. Call this set of processes

Sr+1. Then, when each process in Sr+1 is scheduled after τ ′, it first performs a nontriv-

ial operation on Br+1. Let σr+1 denote σ′ followed by these m nontrivial operations

and then p’s access of Br+1. Let α′ = ατ ′. By the choice of Br+1 and the definition

of σ′, τ ′ contains no nontrivial operation on any object accessed in σ′. By Lemma 2.1,

σ1 · · ·σrσr+1 can occur following α′.

From the definition of Br+1 and the maximality of m, it follows that no ({p} ∪

S1 ∪ · · · ∪ Sr ∪ Sr+1)-free extension of α′ contains a nontrivial operation on any object

accessed in σ1 · · ·σrσr+1. Thus α
′σ1 · · ·σrσr+1 is the history of a (k+m)-stall execution.

This result is from Faith Ellen Fich, Danny Hendler, and Nir Shavit, Linear Lower

Bounds on Real-World Implementations of Concurrent Objects, Proceedings of the

46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), October

2005, pages 165–173.

69


