
CHAPTER 5
Information Theory Arguments

Information theory arguments rely on the fact that collecting information from many

different processes takes a long time. They usually give bounds of the form Ω(log n),

where n is the number of processes in the system.

An information theory lower bound begins by carefully defining a measure of infor-

mation, for example, the number of input values that influence the state of a process

or the value of an object at a given point in time. Then a recurrence is used to describe

how much the information can increase as a result of a single step.

Information theory arguments are mostly used to obtain lower bounds on the num-

ber of rounds in synchronous systems without process failures. These automatically

imply lower bounds when processes can fail. In a synchronous system, each process

takes one step per round until it completes or fails, so information theory arguments

also give lower bounds for the number of steps taken by a process in an asynchronous

system. But they are not generally useful for showing a problem is harder in an asyn-

chronous system than in a synchronous system.

Throughout this chapter, our lower bounds do not assume any upper bounds on the

sizes of the objects that are being used: the values that they contain can be arbitrarily

large. This only makes the lower bounds stronger.

We begin this chapter with lower bounds for the simpler situation in which pro-

cesses communicate using only single-writer registers. After developing an important

technical lemma in Section 5.1, we apply it to obtain lower bounds for two prob-

lems: computing OR (Section 5.2) and approximate agreement (Section 5.3). Then we

consider lower bounds when more powerful objects, including multi-writer registers,

are available. In Section 5.4, we present another technical lemma, followed by two

applications, to collect (Section 5.5) and to atomic snapshots (Section 5.6).

5.1 Lower Bounds using Single-Writer Registers

In Sections 5.1, 5.2, and 5.3, we consider the synchronous shared memory model where

processes communicate using single-writer registers and no processes fail. To minimize

the flow of information in each round, an adversary will schedule the processes per-

forming reads before the processes performing writes. The order in which processes

39

5. Information Theory Arguments

read does not matter. Since no two processes write to the same register, the order in

which processes write does not matter either.

A register is allowed to hold an arbitrarily large amount of information. Therefore,

any number of single-writer registers that can be written to by the same process can

be combined into one single-writer register with multiple components. Hence, there

is no loss of generality in assuming that each process pi has exactly one single-writer

register ri into which it may write. We may also restrict attention to full information

algorithms, in which each process writes its entire history whenever it writes to its

single-writer register. Then C
pi
∼ C ′ implies that ri has the same value in both C and

C ′.

Consider any synchronous execution α. The set of processes whose inputs process

pi knows about at the end of round t can be described by the recurrence:

I(pi, t) =

{pi} if t = 0,

I(pi, t− 1) ∪ I(pj , t− 1) if the step by process pi in round t

of α is a read from register rj ,
I(pi, t− 1) otherwise.

More generally, the cardinality of the set I(pi, t) is a measure of the amount of infor-

mation process pi has at the end of round t of execution α. Let I(t) = max
pi
{|I(pi, t)|}.

Then

I(0) = 1, and

I(t) ≤ 2I(t− 1), for t > 0.

It is easy to prove by induction on t that I(t) ≤ 2t.

Let αt denote the longest prefix of α in which no process has taken more than t

steps. In other words, αt consists of the first t rounds of α. In particular, α0 is the

empty execution starting from the initial configuration of α.

During αt, process pi only learns information about the input values of processes

in I(pi, t). It does not learn any information about other input values. Formally, this

means that pi cannot distinguish αt from the first t rounds of any other synchronous

execution that has the same input values for all processes in I(pi, t).

Lemma 5.1. Let α be a synchronous execution starting from an initial configuration

C. Let β be a synchronous execution starting from another configuration C ′. For any

process pi and any nonnegative integer t, if C
p
∼ C ′ for all p ∈ I(pi, t), then αt

pi
∼ βt.

Proof. The proof is by induction on t.

If C
p
∼ C ′ for all p ∈ I(pi, 0) = {pi}, then process pi has the same state in C and

C ′. Since α0 and β0 are both empty executions, process pi has the same local history

in both. Thus α0

pi
∼ β0 and the claim is true for t = 0.

Let t ≥ 1 and assume the claim is true for t − 1. Suppose that C
p
∼ C ′ for all

p ∈ I(pi, t). Since I(pi, t− 1) ⊆ I(pi, t), it follows that C
p
∼ C ′ for all p ∈ I(pi, t− 1).

Hence, by the induction hypothesis, αt−1

pi
∼ βt−1 and the local history of process pi is

the same in executions αt−1 and βt−1 and pi is in the same state at the end of both

these executions. Thus, the step performed by process pi in round t will be the same

in executions αt and βt. For the local history of process pi to be the same in executions

40

5.2. OR

αt and βt, it suffices to prove that this step, if it exists, has the same response in both

executions.

Since writes always have the same response, it suffices to consider the case when

the step by process pi in round t is a read from the register, rj , of some other process

pj . In this case, I(pj , t − 1) ⊆ I(pi, t). Hence, C
p
∼ C ′ for all p ∈ I(pj , t − 1) and, by

the induction hypothesis, αt−1

pj
∼ βt−1. Therefore, the value of rj is the same at the

end of αt−1 and βt−1. The reads in round t precede the writes in round t. It follows

that process pi reads the same value from rj during round t in αt and βt. Therefore,

the claim is true for t and, hence, by induction, for all t ≥ 0.

5.2 A Round Lower Bound for OR

We apply Lemma 5.1 to get a lower bound on the worst-case number of rounds to

compute OR. In this problem, each process pi has an input value xi ∈ {0, 1} and must

output x0 ∨ · · · ∨xn−1. For a process to output 1, it only has to know that some input

value is 1. However, to output 0, it has to know that all input values are 0. We focus

on this case. Let C0 denote the initial configuration in which all input values are 0.

Theorem 5.2. Any synchronous algorithm for computing OR among n processes that

only communicate using single-writer registers has an execution in which each process

takes at least log2 n steps.

Proof. The proof is by contradiction. Let α denote any execution starting from C0.

Suppose there is a process pi that outputs the OR in execution α within t < log2 n

steps. Since all the input values are 0, process pi must output value 0 in α.

Since |I(pi, t)| ≤ 2t < n, there is some process pj 6∈ I(pi, t). Let C ′ denote the

initial configuration in which xj = 1, but all other input values are 0. Then C0

p
∼ C ′

for all p ∈ I(pi, t). Let β be an execution starting from C ′. Lemma 5.1 implies that

αt
pi
∼ βt. Since process pi outputs value 0 in αt, it also outputs value 0 in βt. But this

is incorrect, since the OR of the input values in this execution is 1.

If no processes fail, the OR can be computed in O(logn) rounds, using a binary

tree to collect information.

Can we get a better (i.e., bigger) lower bound if all processes do not necessarily

start at the same time? If the input values are private and all 0, then no process can

output (the value 0) until after all of the processes have started, because, until then,

it is possible that one of the input values is 1. This can be an arbitrarily long time.

So, suppose that the input value of each process pi is initially in its single-writer

register ri. In this case, a process executing by itself from the initial configuration in

which all of the input values are 0 would have to read the single-writer register of every

other process. Thus, it must perform at least n− 1 steps.

If processes communicate using multi-writer registers, OR is easy to compute in

a synchronous system in which processes don’t fail: Assume that register r initially

contains the value 0. In round 1, each process pi with xi = 1 writes 1 to r. In round 2,

each process reads r and returns the value it contains. Thus, the Ω(log n) lower bound

on the number of rounds to compute OR using single-writer registers doesn’t extend

to multi-writer registers. Moreover, this implies that any synchronous simulation of

41

5. Information Theory Arguments

multi-writer registers using only single-writer registers will have an execution in which

some operation takes Ω(log n) rounds to be performed.

5.3 A Round Lower Bound for Approximate Agreement

Next, we consider the approximate agreement problem, which was defined in Section

2.3. If all processes are guaranteed to start in the same round, approximate agreement

can be solved in two rounds, even for ǫ = 0. In round 1, process p0 writes its input

x0 to its register r0 and outputs x0. In round 2, all other processes read x0 from r0

and output x0. So, the model considered in this section allows processes to start at

different times (although, once a process has begun, it takes one step per round until

it finishes). However, we will still prove a lower bound on the worst case number of

steps taken by processes in executions in which all processes start at the same time.

The lower bound holds even for a very restricted set of possible input values.

Theorem 5.3. For any ǫ < 1, any algorithm for approximate agreement among n

processes that only communicate using single-writer registers has a synchronous execu-

tion in which no process outputs a value before round ⌈log2 n⌉, even if all of the inputs

x0, . . . , xn−1 are restricted to be in {0, 1}.

Proof. The proof is by contradiction. Let C0 denote the initial configuration in which

all input values are 0. Let α denote any synchronous execution starting from C0. Let

pi be the first process that outputs a value in execution α. Suppose this happens

during round t < ⌈log2 n⌉. By validity, process pi must output value 0 in α, since

min{x1, . . . , xn} = max{x1, . . . , xn} = 0 in configuration C0.

Since |I(pi, t)| ≤ I(t) ≤ 2t < n, there is some process pj 6∈ I(pi, t). Let C1 denote

the initial configuration in which all input values are 1. Let γ denote the solo execution

by process pj starting from C1 that continues until pj halts. By validity, process pj

outputs value 1 during γ.

Let C denote the initial configuration in which xj = 1 and all other input values

are 0 and let γ′ be the solo execution by process pj starting from C. Since process pj
has the same state in C1 and C and each register has the same value in C1 and C, it

follows that γ
pj
∼ γ′. Thus, process pj outputs value 1 during γ′.

Let C ′ be the configuration at the end of γ′. Then C0

p
∼ C ′ for all p ∈ I(pi, t),

since these processes take no steps in γ′. Let β be an execution starting from C ′. Note

that process pj takes no steps in β, since it has halted in configuration C ′. Lemma 5.1

implies that βt
pi
∼ αt. Since process pi outputs value 0 during αt and takes no steps in

γ′, it also outputs value 0 during βt and γ′βt. But pj outputs value 1 during γ′ and,

hence, during γ′β. This contradicts ǫ-agreement, since ǫ < 1.

Since an asynchronous system is more general than a synchronous system in which

processes can start at different times, log2 n is also a lower bound on the worst case

number of rounds taken by a process to solve approximate agreement in an asyn-

chronous system.

The lower bound presented in this section is from Hagit Attiya, Nancy Lynch, and

Nir Shavit, Are Wait-free Algorithms Fast?, JACM, volume 41, number 4, 1994, pages

725–763. In the same paper, they also show this bound is tight (to within a constant

42

5.4. Lower Bounds using More Powerful Objects

✲

✲ ✲

✲

✲ ✲

pi outputs 0
βt

C ′

C1 pj outputs 1
γ′

C
γ

solo pj solo pj pj outputs 1

C ′

C0 pi outputs 0
αt

γ′

C
pj outputs 1
C ′

βt

pi outputs 0

Figure 5.1. The executions considered in the proof of Theorem 5.3.

factor), even in an asynchronous system. Moreover, their algorithm tolerates process

crashes, allows arbitrary inputs, and works for any value of ǫ.

For synchronous systems, the worst case step complexity of an algorithm is the

same as its round complexity. However, for asynchronous systems, the worst case

step complexity can be much larger, as the Ω(n) lower bound on step complexity for

approximate agreement in Section 2.3 shows.

5.4 Lower Bounds using More Powerful Objects

Proving information theory lower bounds is more difficult when multi-writer regis-

ters are available or when other primitives, such as compare&swap, load-linked and

store-conditional can be applied to objects in shared memory.

The compare&swap primitive (which we abbreviate as cas) applied to an object r

atomically reads the value of r, compares it to the value of the parameter old, and, if

they are the same, writes the value of the parameter new to r. It returns the value

r had immediately before the cas was applied. We say that a cas is successful if its

comparison was successful, i.e. if it returns the value old. Formally, cas can be specified

by the following piece of code, where r is the object to which it is being applied.

cas(r, old, new)

temp← r

if temp = old

then r ← new

return temp

If old = new, we say that the cas is degenerate.

The load-linked (LL) and store-conditional (SC) primitives work as follows. Like read,

LL returns the value of the object to which it is applied. When a process performs

SC(v) on an object, it either changes the value of the object to v and returns true, in

43

5. Information Theory Arguments

(0,0,0)

(1,1,0)

(0,1,0)

(0,1,1)
(1,1,1)

(1,0,1) (1,0,0)

(0,0,1)

Figure 5.2. A partition of the set {0, 1}3.

which case we say it is successful, or it leaves the value of the object unchanged and

returns false, in which case we say it is unsuccessful. The SC performed by a process

on an object is successful if and only if no write, successful SC, or successful cas has

been performed on the object since the process last performed LL on the object.

For the rest of this chapter, we consider the synchronous shared memory model in

which no processes fail and processes communicate using the primitives read, write, cas,

LL, and SC applied to any object. Once a process starts a computation, it performs

exactly one of these primitives every round until it finishes. In the lower bound proofs,

we restrict attention to certain synchronous executions. Specifically, in every round,

all instances of read and LL are performed before any instances of cas, all instances of

cas are performed before any writes, and all writes are performed before any instances

of SC. Amongst the cas operations, the degenerate ones are scheduled first, followed

by those whose old value is different from the value, v, in the object at the end of the

previous round, followed by those whose old value is v. Note that, in each round, at

most one successful non-degenerate cas or successful SC is applied to each object.

Consider any synchronous algorithm and let αx denote a synchronous execution of

this algorithm on the vector of inputs x ∈ {0, 1}n. Let αx,t denote the prefix of αx

containing its first t rounds. When only single-writer registers are available, Lemma 5.1

implies that, if xj = x′j for all pj ∈ I(pi, t), then αx,t
pi
∼ αx′,t.

In the case of more general objects, we also want to understand what different

inputs lead to executions that are indistinguishable to a process. For every process

pi and every round t, we partition the set {0, 1}n into equivalence classes such that

x, x′ ∈ {0, 1}n are in the same class if and only if the executions αx,t and αx′,t are

indistinguishable to process pi, i.e., αx,t
pi
∼ αx′,t. Let P (pi, t) denote this partition and

let

P (t) = max
pi
{ number of classes in P (pi, t) }.

Note that, for every process pi, the partition P (pi, 0) has 2 classes, since αx,0
pi
∼ αx′,0

if and only if xi = x′i. Hence P (0) = 2.

Similarly, for every object r and every round t, partition the set {0, 1}n into equiv-

alence classes such that x, x′ ∈ {0, 1}n are in the same class if and only if the value of

r is the same after executions αx,t and αx′,t. Let V (r, t) denote this partition and let

V (t) = max
r
{ number of classes in V (r, t) }.

44

5.5. Collect

Since every object has its initial value at the end of αx,0 for each x ∈ {0, 1}n, it follows

that V (0) = 1.

Lemma 5.4. P (t), V (t) ≤ 22
t

n2
t
−1 for all nonnegative integers t.

Proof. Let t > 0. The value of object r at the end of round t depends on which of

the n processes last performs a write, a successful cas, or a successful SC on r during

round t, if any. Each process pi can change object r to at most P (t−1) different values

during round t, since it applies the same primitive with the same input parameters in

round t of αx and αx′ , if x and x′ are in the same class of the partition P (pi, t − 1).

If no process performs a write, a successful cas, or a successful SC on r during round

t, the value of r at the end of round t depends on its value at the end of round t− 1.

Hence V (t) ≤ n · P (t− 1) + V (t− 1).

If x and x′ are in the same class of P (pi, t− 1), then process pi has the same state

at the end of αx,t−1 and αx′,t−1 and, hence, will take the same step (i.e. apply the same

primitive, with the same parameter values, on the same object) in round t of both αx

and αx′ . If this step is a write, then pi will have the same state at the end of αx,t and

αx′,t, so αx,t
pi
∼ αx′,t. In this case, x and x′ remain in the same class of P (pi, t). If this

step applies SC, then pi will get one of two possible responses, true or false and this

class of P (pi, t − 1) is split into at most two different classes in P (pi, t). If this step

is a read or LL, then x and x′ remain in the same class of P (pi, t) only if the object

they access has the same value at the end of round t− 1 in αx and αx′ . Thus, in this

case, a class in P (pi, t − 1) is split into at most V (t − 1) different classes. Otherwise,

this step applies cas to some object. Then the value returned is either one of the at

most V (t− 1) values in the object at the beginning of the round or one of the at most

P (t− 1) different values each of the other n− 1 processes could have changed it to. In

this case, a class in P (pi, t− 1) is split into at most V (t− 1)+ (n− 1)P (t− 1) different

classes. Hence, in all cases, P (t) ≤ P (t− 1) · [V (t− 1) + (n− 1)P (t− 1)].

It follows by induction that P (t), V (t) ≤ 22
t

n2
t
−1 for all t ≥ 0.

The lemma can be extended to objects that also support k-cas. This primitive

atomically compares the current values of k objects to old parameters and, if they are

the same, assigns the values of new parameters to the objects. It returns a Boolean

value, indicating whether it was successful. If, instead, the k-cas returns the values

of the k objects accessed, then the lower bound becomes Ω(logk n). See Attiya and

Hendler, Time and Space Lower Bounds for Implementations Using k-CAS, IEEE

Transactions on Parallel and Distributed Systems, volume 21, 2010, pages 162–173.

5.5 A Round Lower Bound for Collect

In the collect problem, each process pi has an input value xi ∈ {0, 1} and must output

the vector x = (x0, . . . , xn−1) of all the input values. All processes are assumed to

start performing COLLECT at the same time.

Theorem 5.5. Any synchronous algorithm that COLLECTS n values requires Ω(log n)

rounds in the worst case.

45

5. Information Theory Arguments

Proof. If the algorithm performs t rounds in the worst case, then P (t) = 2n, since, on

each vector of inputs, the processes must produce a different output and, hence, each

vector of inputs must be in a separate class of the partition P (p, t), for every process

p. Therefore, by Lemma 5.4, (2n)2
t

≥ P (t) ≥ 2n, so t ≥ log2 n − log2 log2(2n). This

implies that t ∈ Ω(log n).

This lower bound, for the case of multi-writer registers, is due to Paul Beame,

Limits on the Power of Concurrent-Write Parallel Machines, Proceedings of STOC,

1986, pages 169–176. A matching upper bound can be obtained by collecting the

information using a binary tree. Prasad Jayanti, A Time Complexity Lower Bound for

Randomized Implementations of Some Shared Objects, PODC, 1998, pages 201-210,

proves an equivalent lower bound for the LL, SC, validate, swap, and move primitives.

5.6 A Step Complexity Tradeoff for Synchronous

Snapshots

In this section, we use Lemma 5.4 to get a tradeoff between the step complexities of

two different operations of an implemented object. As in Section 5.3, processes may

start performing their operations at different rounds.

A (multi-writer) snapshot object consists of m ≥ 2 components and supports two

operations: UPDATE(i, v), which sets the value of component i to v, and SCAN,

which returns the current value of all m components. Initially, all components are

0. A single-writer snapshot is an n-component snapshot in which only process pi

can perform UPDATE on component i. Thus, in single-writer snapshots, no UPDATE

operations to the same component overlap one another. For our lower bound, it suffices

to consider restricted executions of a single-writer snapshot object in which processes

p1, . . . , pn−1 may each perform a single UPDATE and then process p0 performs a single

SCAN. In particular, the UPDATES are concurrent, but the SCAN does not overlap

any UPDATE. Thus, the value of component i returned by the SCAN is either the

value of the UPDATE performed by pi, or the initial value of component i, if pi did

not perform an UPDATE. In these restricted executions, the SCAN performed by p0 is

like COLLECT, except that the other processes can coalesce information for p0 before

it starts.

Theorem 5.6. Consider any implementation of a single-writer snapshot shared by n

processes. If U is the worst case step complexity of UPDATE and S is the worst case

step complexity of SCAN, then U + log2 S ∈ Ω(log n).

Proof. For every vector x ∈ {0, 1}n−1, let Cx be the initial configuration where, for

each i ∈ {1, . . . , n− 1}, process pi has input xi. Let αx denote the U round execution

starting from Cx in which process pi performs UPDATE(i,1) starting at round 1 for all

i ∈ {1, . . . , n− 1} with xi = 1. Let σx denote the solo SCAN performed by p0 starting

in round U + 1 at configuration Cxαx. Note that, by assumption, all UPDATES are

finished by the end of round U .

For each t′ ≤ S, let σx,t′ denote the prefix of σx containing its first t′ rounds.

Also let P ′(p0, t
′) denote the partition of {0, 1}n−1 into equivalence classes, where

x, x′ ∈ {0, 1}n−1 are in the same class if and only if the executions αxσx,t′ and αx′σx′,t′

46

5.6. Synchronous Snapshots

are indistinguishable to process p0. Let P
′(t′) denote the number of classes in P ′(p0, t

′).

Since p0 has no input and takes no steps in the first U rounds, P ′(0) = 1.

Now let 0 < t′ ≤ S and suppose that x and x′ are in the same class of the partition

P ′(p0, t
′−1). Then process p0 has the same state at the end of αxσx,t′−1 and αx′σx′,t′−1

and, hence, will perform the same step in round U + t′ of both αxσx and αx′σx′ .

If this step is a write or SC to an object or a read, LL, or cas of an object to which

p0 has previously performed read, LL, write, or cas, then p0 will have the same state at

the end of αxσx,t′ and αx′σx′,t′ . In other words, αxσx,t′
p0
∼ αx′σx′,t′ . In this case, x and

x′ are also in the same class of the partition P ′(p0, t
′).

Otherwise, this step is a read, cas, or LL of an object r that p0 has not already

accessed. Since r has not changed since round U , it can have at most V (U) different

values. If r had the same value at the end of αx and αx′ , then the vectors x and x′,

are in the same class of P ′(p0, t
′). Thus, each class of P ′(p0, t

′ − 1) contains at at

most V (U) different classes of P ′(p0, t
′). Hence, the number of classes in P ′(p0, t

′) is

bounded above by V (U) times the number of classes in P ′(p0, t
′ − 1). In other words,

P ′(t′) ≤ P ′(t′ − 1) · V (U).

It follows by induction that P ′(t′) ≤ (V (U))t
′

.

The SCAN by process p0 completes by the end of round U +S. Thus σx = σx,S for

all x ∈ {0, 1}n−1. If x′ 6= x, then the result returned by p0’s SCAN must be different

in the executions αx′σx′ and αxσx. Thus x
′ and x are in different classes of P ′(p0, S).

Hence P ′(S) = 2n−1.

By Lemma 5.4, V (U) ≤ (2n)2
U

. It follows that 2n−1 = P ′(S) ≤ (V (U))S ≤

(2n)S2
U

. This implies that U + log2 S ≥ log2(n− 1)− log2 log2(2n) ∈ Ω(log n).

When S denotes the number of objects used by the implementation, instead of the

worst case step complexity of SCAN, it is still the case that U+log2 S ∈ Ω(log n). This

is because a step by process p0 only increases the number of classes in the partition if

it is a read, LL, or cas of an object that p0 has not already accessed. Since there are

only S objects, this can happen at most S times. Each time, the number of classes

increases by at most a factor of V (U), so 2n−1 ≤ (V (U))S .

The lower bound in Theorem 5.6, for the case of multi-writer registers, is from

Alex Brodsky and Faith Ellen Fich, Efficient Synchronous Snapshots, Proccedings of

PODC, 2004, pages 70–79. This paper also constructs a family of linearizable (multi-

writer) snapshot implementations from multi-writer registers whose step complexities

of SCAN and UPDATE match the lower bound to within a constant factor. Hence

the complexities of implementing a restricted single-writer snapshot (in which only a

single fixed process is allowed to perform SCAN and only SCAN operations that do

not overlap UPDATE operations are permitted) and a (multi-writer) snapshot are the

same in this model. Moreover, allowing cas, LL, and SC primitives in addition to read

and write does not decrease the complexity of implementing a synchronous snapshot

object.

47

