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Abstract—In the online setting, a user continuously releases a
time-series that is correlated with his private data, to a service
provider to derive some utility. Due to correlations, the continual
observation of the time-series puts the user at risk of inference
attacks against his private data. To protect the user’s privacy,
the time-series is randomized prior to its release according
to a probabilistic privacy mapping. This mapping should be
designed in a way that balances privacy and utility requirements
over time. First, we formalize the framework for the design of
utility-aware privacy mappings for time-series, under both online
and batch models. We introduce two threat models, for which
we respectively show that under the log-loss cost function, the
information leakage can be modeled by the mutual or directed
information between the randomized time-series and the private
data. Second, we prove that the design of the privacy mapping
can be cast as a convex optimization. We provide a sequential
online scheme that allows to design privacy mappings at scale,
that accounts for privacy risk from the history of released data
and future releases to come. Third, we prove the equivalence of
the optimal mappings under the batch and the online models, in
the case of a Hidden Markov Model. Evaluations on real-world
time-series data show that smart-meter data can be randomized
to prevent disaggregation of per-device energy consumption, while
maintaining the utility of the randomized series.

I. INTRODUCTION

In the era of the Internet of Things, the collection of
fine-grained time-series data raises privacy concerns, as such
data is often correlated with sensitive information that users
would like to keep private. Studies have shown that private
information such as household composition, user behavior and
lifestyle (appliance use, eating and sleeping patterns, presence
or absence, household activities) [1], health status, or mobility
patterns can be inferred from data collected by sensors in
houses, business offices or cars, such as smart-meters, HVAC
systems (NEST), temperature, light, or motion sensors; by
health-monitoring devices (fitbit, jawbone); and by sensors on
handheld devices such smartphones, tablets, game controllers.
The entity collecting user data may make this data available to
third parties with or without user knowledge or the possibility
to opt-out. The trust boundary may lie either centrally at the
aggregator side: the user may trust the entity aggregating data
but not the third-parties with whom the aggregator may share
data; or locally at the user side: the user may not entirely
trust the aggregating entity in the first place, and may want
to limit the amount of private information leaked by the data
he releases to the aggregator. Data distortion was proposed as
a countermeasure to protect user privacy in both cases: either
locally at the user side by randomized response of the user
data prior to its release, or in a centralized manner at the
aggregator side by randomizing the answer to a query over
a user database. In either case, the design of the distortion
mechanism should satisfy formal privacy guarantees, but also
maintain utility of the distorted data. Initially, data distortion
approaches were devised for the static case, and when they

were subsequently extended to the dynamic case of time-series,
scalability challenges arose. First, as the sequence of distorted
releases carries correlation across time, the amount of distor-
tion introduced by the randomization procedure may grow with
the sequence length, thus maintaining utility often becomes
challenging. Second, the distortion mechanism balancing the
privacy-utility trade-off over time is often obtained through
algorithms or optimizations whose complexity may scale with
the length of the sequence.

Contributions: We consider the online setting where a user
would like to continuously release a time-series of data that is
correlated with his private data, to a service provider to derive
some utility. To protect the user from inference attacks on
his private data, samples from the time-series are sequentially
randomized prior to their release according to a stochastic pro-
cess, called the privacy mapping. The privacy mapping should
be designed in a way that balances privacy and utility require-
ments over time. Our contributions are threefold. First, we
formalize the framework for the design of utility-aware privacy
mappings for time-series, under both online and batch models.
Our framework for time-series builds on and generalizes the
static framework for privacy against statistical inference [2] to
account for temporal correlations in the time-series, and for
multiple sequential releases of data. We introduce two threat
models, namely the adaptive and the instantaneous inference
attacks, for which we respectively show that under the log-
loss cost function, the information leakage can be modeled by
the mutual information or the directed information between
the randomized time-series and the private data. Second, we
prove that the design of the privacy mapping can be cast
as a convex optimization. We provide a sequential scheme
that allows to design online privacy mappings at scale, that
accounts for privacy risk from the history of released data and
future releases to come. Third, we prove the equivalence of
the optimal mappings under the batch and the online models,
in the case where the time-series follow a Hidden Markov
Model (HMM). Finally, evaluations over real-world time-series
data show that smart-meter data can be randomized for privacy
purposes to prevent disaggregation of per-device consumption,
while maintaining the utility of the randomized series.

Related Work: The problem of preserving differential privacy
when an analyst continually tracks statistics over a time-series
[3] was studied for running sum of bits, for decayed sums
of predicates, and for aggregate-sum queries over the time-
series data of multiple users. However, these approaches do
not account for temporal correlations that may exist between
samples of the time-series. Moreover, in this paper, the quantity
that is locally randomized prior to the release to the service
provider is not an aggregate quantity over multiple users
or over multiple time instants, on the contrary to aggregate
queries in the centralized differential privacy setting for either
user-level or event-level privacy under continual observation.



We locally distort and release an individual time-series of an
individual privacy-conscious user. Approaches to protect user
privacy for the specific case of smart-meter data [4] include
battery-based solutions, data distortion [5], and cryptographic
protocols. Privacy-utility tradeoffs for smart-meter data were
studied in [5] under an information-theoretic framework.
Assuming a stationary Gaussian Markov model, their privacy
mapping is designed and applied offline once over the whole
sequence prior to the release, and the privacy guarantees hold
asymptotically through a single asymptotic constraint on the
equivocation rate. In contrast, our approach considers the
online setting where data is distorted and released sequentially
under a sequence of constraints on the private information
leakage at each time, and it is applicable to any stochastic
model for the time-series.

II. A GENERAL FRAMEWORK FOR TIME-SERIES DATA

[T ] is the set of integers {1, . . . T}, and XT =
{X1, X2, . . . XT } a sequence of T random variables.

A. Setting and challenges
We consider the dynamic setting where at every time

instant t ∈ [T ], a privacy-conscious user generates samples
from two time-series of data: a sample St ∈ S of sensitive
data that the user would like to keep private, and another
sample of data Xt ∈ X that the user is willing to release
to a service provider, to receive some utility. Assuming that
the time-series ST = {St}Tt=1 and XT = {Xt}Tt=1 are
correlated, the sequential observation of the samples from
XT by the service provider might allow him to adversarially
perform inference attacks on the private sequence ST . As a
countermeasure to protect the user’s privacy, the time-series
XT is not released as such, but is distorted according to a
stochastic process called the privacy mapping, to generate
a new time-series X̂T = {X̂t}Tt=1, from which the user
will sequentially release samples to the adversarial service
provider. The privacy mapping should be designed in a way
that balances privacy and utility requirements over time: the
time-series should be altered dynamically in a way that renders
inference attacks against the private sequence ST harder at any
instant, but not to the extent where the alteration would hinder
extracting some utility from the distorted data.

In the dynamic setting of time-series, a natural question
arises as to whether the privacy mapping can be designed and
operated sequentially as data is generated online, or whether a
batch scheme that designs and operates the mapping based
on buffered sequences of data would be preferable. More
precisely, the privacy mapping can be designed and can operate
according to either of the following schemes:

Batch scheme: the batch privacy mapping is produced at time
t = T by an algorithm that generates a single joint distribution
for the random vector X̂T based on all the information
available until time T (after observing all T samples).

Online scheme: the privacy mapping is produced sequentially
by an online algorithm that at every time t ∈ [T ] generates a
distribution for X̂t based on all or a subset of the information
available up to time t. The online privacy mapping thus
consists of a sequence of distributions. Online schemes can
be further categorized as interactive or non-interactive. An
interactive scheme refers to an online scheme that at time t,
leverages all the information (X̂t−1, Xt, St) available up to
time t to generate X̂t, whereas in the non-interactive scheme
the distorted data is generated based only on current (Xt, St).

B. Threat Model

We define two inference attack models.

Adaptive inference attack: Under the adaptive model, at
each time t ∈ [T ], the adversary selects a joint distribution
q ∈ PSt on the whole sequence St, in order to minimize the
average inference cost C(St, q) at time t. If the adversary had
not observed X̂t, he would choose q as the solution to

C0(t)∗ = min
q∈PSt

ESt [C(St, q)]. (1)

However, after observing the sequence X̂t = x̂t, the adversary
would chose q as the solution to the minimization

CX̂t(t)
∗ = min

q∈PSt
ESt|X̂t [C(St, q)|X̂t = x̂t]. (2)

At time t, the average gain in inference cost by the adversary
after observing the sequence X̂t = x̂t is thus

∆C(t) = C0(t)∗ − EX̂t [CX̂t(t)
∗]. (3)

The inference cost gain ∆C(t) at time t ∈ [T ] represents how
much the quality of the inference of the private sequence St

improves thanks to the observation of the sequence X̂t.

In this model, at each time t, the adversary improves his
inference of the whole sequence St. In particular, he improves
his inference with respect to the previous time t− 1 in which
he only carried out an inference attack on St−1 using X̂t−1.
At time t, not only does the adversary use all observations
X̂1, . . . , X̂t up to time t to infer the latest private sample St,
but he also uses the observation of the latest sample X̂t along
with the past sequence X̂t−1 to revise his inference on the past
S1, . . . , St−1. Thus at each time t, the inference of any past
private data Si, i ∈ [t] is revised using its future X̂i+1, . . . , X̂t,
contemporary X̂i and past X̂1, . . . , X̂i−1 observations.

Instantaneous inference attack: In the instantaneous model,
at each time t ∈ [T ], the adversary selects a marginal
distribution q ∈ PSt over the variable St, in order to minimize
the average instantaneous inference cost C(St, q) at time t. If
the adversary had not observed X̂t, he would choose q as the
solution to the minimization

c0(t)∗ = min
q∈PSt

ESt [C(St, q)], (4)

and the resulting aggregate inference cost up to time t is then

C ′0(t)∗ = c0(t)∗ + C ′0(t− 1)∗ =

t∑
i=1

c0(i)∗. (5)

After observing the sequence X̂t = x̂t, the adversary would
chose q as the solution to the minimization

cX̂t(t)
∗ = min

q∈PSt
ESt|X̂t [C(St, q)|X̂t = x̂t], (6)

and the resulting aggregate cost up to time t would be

C ′
X̂t

(t)∗ = cX̂(t)∗ + C ′
X̂

(t− 1)∗ =

t∑
i=1

cX̂(i)∗. (7)

At time t, the average gain in inference cost by an adversary
performing an instantaneous inference attack, after observing
the sequence X̂t = x̂t, is thus

∆C(t) = C ′0(t)∗ − EX̂t [C
′
X̂t

(t)∗]. (8)



The instantaneous model represents an adversary who, at each
time t, tries to infer St based on his observation of the whole
sequence X̂t up to time t, but who does not have the possibility
to later improve the quality of the inference of St using
observation of future samples X̂i, i > t. In particular at time t,
the adversary is not allowed to revise and improve his inference
of past St−1 using the latest observation X̂t. The instantaneous
model represents a weaker adversary than the adaptive model,
in terms of quality of the inference for ST .

C. Privacy Metric

Under both the adaptive and the instantaneous attacks, the
inference cost gain ∆C(t) at time t represents how much the
quality of the inference of the private sequence St improves
thanks to the observation of sequence X̂t. Thus, ∆C(t) as
defined in either Eq. (3) or (8) will be used as a privacy metric,
representing the private Information Leakage up to time t.

Definition 1. The Information Leakage from X̂t to St is
defined as J (X̂t;St) = ∆C(t). It quantifies the improvement
in the inference of St after observing X̂t.

Def. 1 captures a broad class of adversaries performing
inference attacks on time-series, under either the adaptive or
the instantaneous model.

Definition 2. A sequence XT ∈ RT is εT -private with respect
to a sequence ST if ∀t ∈ [T ], the information leakage at time
t is bounded by εt, i.e., ∀t ∈ [T ], J (Xt;St) ≤ εt.

Def. 2 constrains the information leakage at each time t ∈
[T ]. This is in contrast with prior works, [5] which constrain
the average equivocation rate asymptotically as the sequence
size grows large. The sequence of privacy constraints εT can
be specified by the user or a privacy agent on his behalf.

D. Distortion Metric

The distortion metric d : R × R → R quantifies the
proximity of the distorted sequence X̂t to the original data
Xt. We will assume that the distortion metric is separable:
d(Xt, X̂t) = 1

t

∑t
τ=1 d(Xτ , X̂τ ). Examples of separable met-

rics include Hamming distance, and lp-norms to the power p.

E. Privacy-Utility trade-off for time-series

The design of the privacy mapping should aim at minimiz-
ing the expected distortion between XT and X̂T , d(XT , X̂T ),
while enforcing a privacy constraint εt at each time t, thus
balancing the privacy-utility tradeoff over time. That is, the pri-
vacy mapping should generate a distorted version X̂T of XT

which is εT−private and close to the original sequence XT .

Batch Scheme: The batch scheme, shown in Alg. 1, minimizes
the distortion between XT and X̂T over the joint distribution
p(x̂T |xT , sT ) under T privacy constraints in a single run. It
requires as input the joint distribution p(xT , sT ), since both
the objective and the constraints can be written as functions
of the input p(xT , sT ) and the variable p(x̂T |xT , sT ).

Online Scheme: The online scheme, shown in Alg. 2, op-
erates sequentially by leveraging at time t all that has been
accomplished by past steps from time 1 to time t − 1, as
illustrated in Fig. 1. More precisely, at every time t ∈ [T ], the
online scheme minimizes the distortion between Xt and X̂t

under privacy constraint J(X̂t;St) ≤ εt over the distributions
p(x̂t|xt, st, x̂t−1), which is conditioned over the history of

past samples xt, st and past randomization outputs x̂t−1.
Moreover, at step t, the online scheme requires the joint
distribution p(x̂t−1, xt, st) as an input. This is obtained in
Eq. (10) by combining p(x̂t−1, xt−1, st−1), which is an output
from the previous step t − 1, and p(xt, st|xt−1, st−1), which
is assumed to be known at step t, and by using the conditional
independence of x̂t−1 and (xt, st) conditioned on (xt−1, st−1).
Finally, by definition, the information leakage at time t,
J(X̂t;St) measures the leakage of the whole sequence X̂t

with respect to the whole sequence St, and thus incorporates
leakages due to earlier releases of distorted data X̂t−1. Thus,
the constraint at time t both accounts for the leakage up to
time t− 1 and bounds the incremental leakage due to step t.

Definition 3. The regret between the online and batch schemes
is the difference between the optimal distortions they achieve.

III. ANALYSIS OF THE BATCH AND ONLINE SCHEMES

A. Information Leakage under the log-loss

We focus on the information leakage under the log-loss
cost C(s, q) = − log q(s). The relevance and generality of the
log-loss cost in the privacy metric were justified in [2], [6].

Lemma III.1. Assuming an adaptive inference attack, the
information leakage at time t under the log-loss cost function
C(st, q) = − log q(st) is given by the mutual information
between sequences St and X̂t, i.e., J (X̂t;St) = I(X̂t;St).

Mutual information has been previously introduced to
quantify information leakage in the static setting in [2]. A
related metric, the equivocation rate 1

tH(St|X̂t), was used
in [7], [8] to quantify the level of privacy in the asymptotic
regime of large sequences under a batch scheme.

Lemma III.2. Assuming an instantaneous inference attack, the
information leakage at time t under the log-loss cost function
C(st, q) = − log q(st) is given by the directed information [9]
from the sequence X̂t to the sequence St, i.e. J (X̂t;St) =
I(X̂t → St) = H(St)−H(St‖X̂t).

H(St‖X̂t) denotes the causally conditional entropy [10].
The directed information [9] I(X̂t → St) from sequence X̂t

to sequence St is an asymmetric measure of how much X̂t

is relevant for temporally causal inference of St. Temporal
causality here does not mean causation, but how past samples
X̂t up to time t affect the inference of elements of St, while
future samples X̂i, i > t are not relied upon to infer St.

B. Convexity of the optimizations

Theorem III.3. Assuming finite alphabets S,X , X̂ , and that
the information leakage metric is either mutual or directed
information, then Optimizations (9) and (11) are convex.

Theorem III.3 (proof in appendix) allows for the use of
efficient convex optimization techniques. However, without
any model assumption, the number of variables of the convex
program grows exponentially with T . Simplifying model as-
sumptions, such as HMM or time-window dependency, allow
to decrease the problem size. For instance, for independent
samples, the size of the online problem scales linearly with T .



Algorithm 1 Batch scheme Ab
Input: p(xT , sT ), εT

Solve optimization Ab(T ):

p∗(x̂T |xT , sT ) = argmin
p(x̂T |xT ,sT )

EXT ,X̂T [d(XT , X̂T )]

subject to: J (X̂t;St) ≤ εt, ∀t ∈ [T ]
(9)

Output: p∗(x̂T |xT , sT )

p(x̂t|xt, st, x̂t−1)p(x̂t−1|xt−1, st−1, x̂t−2)

tt− 1 t + 1

p(xt, st|xt−1, st−1)p(xt−1, st−1|xt−2, st−2) p(xt+1, st+1|xt, st)

Ao AoAo p(x̂t−1, xt−1, st−1) p(x̂t, xt, st)

Fig. 1: Sequential structure of the online scheme.

C. Regret under a Hidden Markov Model

The schemes described in Eq.(9-11) do not make any
model assumptions. Depending on the application and the
corresponding model, the described method might be sig-
nificantly simplified. Two simple and notable cases are the
Independent and the HMM. In this section, we assume a
generalized HMM, depicted in Fig. 2. In this model, there is
a Markov relation between the hidden states, representing the
private data {St}Tt=1, and Xt is independent from any other
state conditioned on St, St−1. This model allows a flexible
dependency structure for the current data Xt with respect to
the past private data.

Theorem III.4. Let the information leakage metric J , be
either mutual or directed information. For a given batch
problem with privacy levels {εt}Tt=1, if the sequence of random
pairs {St, Xt}Tt=1 satisfies the HMM model in Fig. 2, then
there exists a choice of privacy levels {ε′t}Tt=1 for the online
problem resulting in no regret.

Assuming further that the random triplets {xt, st, st−1}Tt=1
are identically distributed and the increments of privacy levels,
{δt = εt − εt−1}Tt=1, are non-decreasing, then the online
and the batch problems are equivalent for the same choice
of privacy levels, resulting in no regret.

Theorem III.4 (proof in appendix) states that the online
and the batch schemes are the same and that there is no
regret under a general HMM assumption. If we further assume
independence between time points, the online scheme reduces
to a non-interactive one. Ongoing work includes deriving
regret bounds when increments are not increasing.

IV. EXPERIMENTS ON SMART-METER DATASET

REDD dataset: The Reference Energy Disaggregation Data
Set (REDD) [11], [12] consists of the power consumption of
6 houses. For each house, the power consumption of each
appliance in the house is available every 3 seconds. For a given
house, the aggregate load of that house at time t is defined as
the total power consumption of all the appliances at that time.
In our experiments, for each house, the aggregate load data is
split into a training set (90% data) and a test set (10% data).

The collection of aggregate load data from a house at a
fine-grained time-scale presents privacy risks to the house-
hold members. Research in the field of Non-Intrusive Load
Monitoring (NILM) [12] has shown that aggregate loads can
be disaggregated with high fidelity, and that the per-device

Algorithm 2 Online scheme Ao
for all t ∈ [T ] do

Input: p(xt, st|xt−1, st−1), p′(x̂t−1, xt−1, st−1), εt
Update:

p(x̂t−1, xt, st) = p(xt, st|xt−1, st−1)p′(x̂t−1, xt−1, st−1)
(10)

Solve optimization Ao(t):

p∗(x̂t|xt, st, x̂t−1) = argmin
p(x̂t|xt,st,x̂t−1)

EXt,X̂t [d(Xt, X̂t)]

subject to: J (X̂t;St) ≤ εt
(11)Update:

p′(x̂t, xt, st) = p(x̂t−1, xt, st)p∗(x̂t|xt, st, x̂t−1) (12)

Output: p∗(x̂t|xt, st, x̂t−1), p′(x̂t, xt, st)

consumption at every instant can be recovered. Consequently,
the aggregate load can be used to make inferences on the
household private information, including its occupancy, sleep-
ing and eating patterns of its members, their health status.

Experimental setting: The scenario for the experiments in-
volves a household, and a service provider, who may behave
adversarially. The service provider offers some utility to the
household, which requires inference of the state of washer-
dryer in the house from the aggregate load. To provide utility
to the user, for instance automated control of the washer/dryer,
the service provider needs process the aggregate load data
received the user. The utility Ut represents the outcome of
the service provider’s algorithm that runs on the released data.
In this experiment, Ut will be the result of the inference on
the state of washer-dryer from the load data.

The household is willing to give the aggregate load Xt to
the service provider, but wishes to keep the information related
to their eating patterns private, in particular the microwave
usage which can also be inferred from the aggregate load.
In this experiment, we choose the private information St to
be the state of the microwave (ON or OFF). If the user
released Xt as is, it can be used adversarially by the service
provider to infer information regarding St, thus raising privacy
concerns. The user will instead release a distorted version
X̂t. Examples of adversarial providers include third-parties,
such as apps, to whom the company operating the smart-
meter may give access to the data it collects, or a malicious
insider such as a curious employee. Our goal is to get the
utility related to the washer-dryer, while keeping the sensitive
information regarding microwave usage private. The dataset
provides ground truth for both the microwave and washer-
dryer state, which allows us to verify the performance of our
approach. Note that neither the private data nor the utility are

S1 S2 S3 S4 ST

X1 X2 X3 X4 XT

X̂1 X̂2 X̂3 X̂4 X̂T

Fig. 2: HMM dependency graph for online or batch schemes
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Fig. 3: ROC for inference attack on private data (microwave)

limited to components of the aggregate load, and could be any
information correlated with the aggregate load.

Training phase: Each day is broken into 24 hourly periods.
For each household, and for each hourly period, the empirical
joint distributions for (St, Xt) and (Ut, Xt), corresponding
respectively to the pairs of private data and aggregate load,
and of utility data and aggregate load, are obtained using
the training set. Thus 24 joint distributions are trained for
each pair. The joint distributions for (St, Xt) are assumed
to be available to both the adversarial provider, and to the
privacy agent acting on behalf of the household, while the
joint distribution for the pair (Ut, Xt) is assumed to be known
only by the service provider. This worst-case setting assumes
that the adversarial service provider has full knowledge of the
joint statistics of the private data and the aggregate load. This
might be the case in reality, as the adversarial provider might
have data collected from a different but similar household, or
have historical aggregate load data for this given household
prior to the activation of privacy protection.

Using the training set, the adversarial provider trains mod-
els for inference of utility Ut from the aggregate load, as
well as for inference attack on private St from the aggregate
load. Our experiments evaluated several models for both utility
and private data inference, including Maximum a Posteriori,
logistic regression based on Xt, or regressions based on feature
vectors. For the sake of conciseness, results are only presented
for logistic regression, as other models led to similar results.
Using the training set, the privacy agent trains a non-interactive
privacy mapping for each hourly period, using the online
scheme in Eq. (11), under the HMM setting in Fig. 2.

Test phase: The privacy agent uses the privacy mapping to
generate the distorted loads {X̂t}Tt=1. Privacy leakage levels
are set to εt = tε. In the non-private case, where the user
sends the aggregate load itself, the leakage level is ε = Inf.

For a leakage level ε, we input the distorted aggregate load
to the previously trained models. Fig. 3 shows ROC curves
of the inference attack on the microwave, while Fig. 4 shows
the utility inference on the washer-dryer, both using logistic re-
gression. The Area Under the Curve (AUC) illustrates intrusion
level and prediction quality. As the leakage level ε decreases,
inference attack quality degrades, whereas the quality of utility
inference remains unchanged. For a small enough ε (purple
curve), the inference attack curve becomes close to diagonal,
implying that the inference algorithm does not outperform a
random guess. Indeed, when ε goes to zero, the distorted output
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Fig. 4: ROC for utility inference (washer-dryer)

becomes independent from the private data.
V. CONCLUSION

We propose an online and a batch scheme for the design
of utility-aware privacy mappings, in the setting where a
user continuously releases a time-series that is correlated with
his private information, to a service provider in the hope of
deriving some utility from this release. These general schemes
can be adapted to any model assumption suitable for a given
application. We prove that the schemes can be cast as convex
optimizations. Under an HMM assumption, we show that the
outputs of the online and the batch schemes are the same,
thus there is no regret. Experiments on a smart-meter dataset
show that leakage can be bounded over time while maintaining
utility of the distorted data. Other applications may include
privacy for time-series data from health-monitoring devices,
sensors in houses, offices, cars or handheld devices.
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APPENDIX A
PROOFS

We state all the proofs in the Appendix. We start with
a simple decomposition property used several times in the
proofs.

Lemma A.1 (Decomposition rules).

I(St; X̂t) =I(St−1; X̂t−1)

+ I(X̂t−1;St|St−1) + I(X̂t;S
t|X̂t−1)

(13)

I(X̂t → St) = I(X̂t−1 → St−1) + I(X̂t;St|St−1). (14)

The proof of LemmaA.1 is omitted as it follows straight-
forward from the definitions of the mutual and directed infor-
mation.

A. Proof of Theorem III.3

Proof of Theorem III.3: We will prove the convexity
of the online and the batch problems for the case where the
information leakage metric is mutual information. The proof
for directed information use similar arguments.

We start with the batch problem. Denote by x̂T−{t},
the sequence {x̂1, ..., x̂t−1, x̂t+1, ..., x̂T }. Clearly, the batch
problem in Eq.(9) can be written as,

minimize over
the probability simplex

T∑
t=1

∑
x̂t∈X̂ ,
xt∈X

p(x̂t|xt)p(xt)d(xt, x̂t)

subject to:
∑

x̂t∈X̂ t,
st∈St

p(x̂t|st)p(st) log
(
p(x̂t|st)
p(x̂t)

)
≤ εt,

∀t ∈ [T ];∑
x̂T−{t}∈X̂T−1,

sT∈ST

p(x̂T |xT , sT )p(xT−{t}, sT |xt) = p(x̂t|xt),

∀t ∈ [T ],∀x̂t ∈ X̂ ,∀xt ∈ X ;∑
x̂Tt+1∈X̂

T−t,

sTt+1∈S
T−t, ∀xT∈XT

p(x̂T |xT , sT )p(xT , sTt+1|st) = p(x̂t|st),

∀t ∈ [T ],∀x̂t ∈ X̂ t,∀st ∈ St;∑
st∈St

p(x̂t|st)p(st) = p(x̂t),

∀t ∈ [T ],∀x̂t ∈ X̂ t.

The optimization variables are the probabilities p(x̂t|xt),
p(x̂t|st), p(x̂t), ∀t ∈ [T ] and p(x̂T |xT , sT ). Notice that
the function (x, y) → x log(x/y) is convex in the pair
(x, y). Hence, the inequality constraints are just summations
of convex functions. The other constraints are affine equality
constrains between the optimization variables. Further, the
objective is a linear function of variables. Therefore, we
conclude that the batch problem is in fact convex.

Next, we show that the online algorithm can be written as
a convex program. For this, we write the problem in Eq.(11)

explicitly, for each t. Notice that, at time t, p(x̂t−1, xt, st)
is assumed to be known due to the sequential nature of the
algorithm which we described in Section II. Therefore, for the
online problem, we write,

minimize over
the probability simplex

∑
x̂t∈X̂ ,
xt∈X

p(x̂t|xt)p(xt)d(xt, x̂t)

subject to:
∑

x̂t∈X̂ t,
st∈St

p(x̂t|st)p(st) log
(
p(x̂t|st)
p(x̂t)

)
≤ εt;

∑
x̂t−1∈X̂ t−1,
xt−1∈X t−1,

st∈St

p(x̂t|xt, st, x̂t−1)p(x̂t−1, xt−1, st|xt)

= p(x̂t|xt),

∀x̂t ∈ X̂ ,∀xt ∈ X ;∑
∀xt∈X t

p(x̂t|xt, st, x̂t−1)p(x̂t−1, xt|st) = p(x̂t|st),

∀x̂t ∈ X̂ t,∀st ∈ St;∑
st∈St

p(x̂t|st)p(st) = p(x̂t), ∀x̂t ∈ X̂ t.

The optimization variables are p(x̂t|xt), p(x̂t|st), p(x̂t) and
p(x̂t|xt, st, x̂t−1). By the same argument in the batch case,
we conclude that the above problem is convex.

The proofs for which the information leakage metric is set
to directed information, follow from the similar steps. That is,
by the Lemma A.1, we write the information constraint as

I(X̂t → St) =

t∑
τ=1

I(X̂τ ;Sτ |Sτ−1),

=

t∑
τ=1

∑
x̂τ∈X̂ τ ,
sτ∈Sτ

p(x̂τ |sτ )p(sτ ) log

(
p(x̂τ |sτ )

p(x̂τ |sτ−1)

)
≤ εt,

and apply the same argument as before.

B. Proof of Theorem III.4

Proof of Theorem III.4: We first prove the case where
the information leakage metric is set to mutual information,
that is, J (X̂t;St) = I(X̂t;St). Let P denote the set of joint
probability measures p(x, s2, s1) and define the function h :
R+ × P → R as

h(δ, p(x, s2, s1)) = minimize
p(x̂|x,s2,s1)

, E[d(X, X̂)] (15)

subject to: I(X̂;S2|S1) ≤ δ.

We have the following lemma that will be useful through-
out the proof:

Lemma A.2. For p = p(x, s2, s1), the function h(δ, p) is
convex and monotone decreasing in δ.



Remark 1. Please note the resemblance of h(δ, p) to the rate
distortion theorem in which we would have X instead of S2

and no conditioning on S1 in the information constraint. Proof
follows from similar steps.

Proof of Lemma A.2: Consider the minimization prob-
lem stated in Eq.(15) for two different constraints, δ1, δ2 ∈
R+ and, assume that p1(x̂|x, s2, s1) and p2(x̂|x, s2, s1) are
the corresponding minimizers, and that Ip1(X̂, S2|S1) and
Ip2(X̂, S2|S1) be the corresponding mutual informations, re-
spectively. For some λ ∈ [0, 1], let δλ = λδ1 + (1 − λ)δ2
and form a new probability measure by linearly combining
the above distributions. That is,

pλ(x̂|x, s2, s1) = λp1(x̂|x, s2, s1) + (1− λ)p2(x̂|x, s2, s1),

pλ(x̂|s2, s1) =
∑
x∈X

pλ(x̂|x, s2, s1)p(x|s2, s1)

= λp1(x̂|s2, s1) + (1− λ)p2(x̂|s2, s1),

pλ(x̂, s2|s1) = pλ(x̂|s2, s1)p(s2|s1)

= λp1(x̂, s2|s1) + (1− λ)p2(x̂, s2|s1),

pλ(x̂) =
∑

x∈X ,s∈S
pλ(x̂|x, s2, s1)p(x, s2, s1)

= λp1(x̂) + (1− λ)p2(x̂).

Next, we write the mutual information over the distribution
pλ, using Kullback-Leibler(KL) divergence which is convex
in both of its arguments.

Ipλ(X̂;S2|S1) =DKL (pλ(x̂, s2|s1)‖pλ(x̂)p(s2|s1)) ,

≤λIp1(X̂;S2|S1) + (1− λ)Ip2(X̂;S2|S1),

≤λδ1 + (1− λ)δ2 = δλ,

where we used the convexity of KL divergence. Therefore, pλ
is in the feasible set of h(δλ, p) and by definition,

h(δλ, p) ≤ Epλ [d(X̂,X)].

We also have, by linearity of the expectation,

h(δλ, p) ≤Epλ [d(X̂,X)],

=λEp1 [d(X̂,X)] + (1− λ)Ep2 [d(X̂,X)],

=λh(δ1, p) + (1− λ)h(δ2, p).

Hence we conclude h(δ, p) is convex in δ.

The monotone nature of h(δ, p) is due to the dependence
of the feasible set on δ. As we increase δ, we also increase the
size of the feasible set for h(δ, p) which implies that h(δ, p)
is a decreasing function of δ.

In the following, we will use the function h(δ, p) and its
properties. Consider the modified version of the batch problem
in Eq. (9):

minimize
p(x̂T |xT ,sT )

E[d(XT , X̂T )] (16)

subject to:
t∑

τ=1

I(X̂τ ;Sτ |Sτ−1) ≤ εt, ∀t ∈ [T ].

Note that the above problem has the same objective func-
tion but a different feasible set compared to the problem stated

in Eq. (9). Now, we write a simple inequality on the mutual
information.

I(X̂t;St) = H(St)−H(St|X̂t),

=

t∑
τ=1

H(Sτ |Sτ−1)−H(St|X̂t),

=

t∑
τ=1

[
H(Sτ |Sτ−1)−H(Sτ |Sτ−1, X̂t)

]
,

≥
t∑

τ=1

I(X̂τ ;Sτ |Sτ−1). (17)

The third equality follows from the model assumptions and
the inequality follows from the fact that conditioning reduces
the entropy. The above identity shows that the problem in
Eq. (9) has a smaller feasible set compared to the problem
in Eq. (16). Therefore, we conclude that the optimal value
of Eq. (16) is smaller than or equal to the that of Eq.
(9). Let the solution of the modified problem be attained
at p∗(x̂

T |xT , sT ). Then we can obtain the corresponding
conditional distributions, p∗(x̂t|xt, st, st−1), simply by using
Bayes’ rule and integration. Note that the constraints and
the distortion only depends on these conditional distributions
through their product measure hence the optimal solution of the
modified problem is attainable by optimizing over the product
measure

p(x̂T |xT , sT ) =

T∏
t=1

p(x̂t|xt, st, st−1).

By the same argument as before, since the above measure is
attainable by the original batch problem, we conclude that the
optimal value of the original problem will be attained by this
product measure. The resulting dependence structure will be
as shown in Figure 2.

For the optimal distribution p∗ (or the set of conditional
distributions), let Ip∗(X̂t;St) = δt for t = 1, ..., T . By the
definition of h(δ, p), we know that

T∑
t=1

h(δt, p(xt, st, st−1)) ≤
T∑
t=1

E[d(X̂t, Xt)].

This proves that the solution of the original batch problem will
be the same as the product measure formed by the solutions
of h(δt, p(xt, st)).

Similarly, for the online problem with the privacy levels
{∑t

τ=1 δτ}Tt=1, we can use the inequality in Eq.(17) and
a similar argument as above to conclude that, at time t,
minimizing over p(x̂t|xt, st, st−1) will give the optimal
result (obviously, we assume that the feasible set is not
empty). Now, if we consider the solution of online problem
sequentially, we can prove the first part by using an induction
argument: Starting from t = 1, we observe that the solution
is just the optimal solution of h(δ1, p(x1, s1)). Now assume
that at time t − 1, the solutions of the online problem and
h(δt−1, p(xt−1, st−1, st−2)) match. Using the algorithm
statement given in Eq. (11) and Lemma A.1, it is easy to see
that the optimal value of the online problem at time t will
be h(δt, p(xt, st, st−1)). Hence the proof of the first part is
completed.



For the second part, we define a new sequence, {δ′τ}Tτ=1,
by

δ′1 = ε1,

δ′i = εi − εi−1 for i = 2, ..., T.

and we notice that the constructed sequence will be increasing
by the given condition, i.e.

δ′1 ≤ δ′2 ≤ ... ≤ δ′T .
We will show that the problem in Eq. (16) attains its optimum
at the constraint boundaries.

First, we consider the case where ∀t, δ′t < δ∗ where δ∗ is
defined as

δ∗ = inf{δ > 0 : h(δ, p) = 0}.
In this part, since we have the identical distributions on the
triples, we denote the joint distributions by p = p(xt, st, st−1),
∀t. We showed in the previous part that the batch problem is
in fact equivalent to

minimize
δ1,δ2,...,δT

T∑
t=1

h(δt, p) (18)

subject to
t∑

τ=1

δτ ≤
t∑

τ=1

δ′τ , ∀t ∈ [T ], (19)

δt ≥ 0, ∀t ∈ [T ].

By Lemma A.2, we have ḣ(δ, p) ≤ 0 and −ḣ(δi, p) ≥
−ḣ(δj , p) ≥ 0 for i < j where ḣ denotes the derivatives that
are with respect to the first argument. Assume that for some
sequence {αt}Tt=1, the problem constraints are satisfied and
we have

t∑
τ=1

ατ ≤
t∑

τ=1

δ′τ , ∀t ∈ [T ]. (20)

For this choice of privacy levels to be the optimum solution,
it should provide a smaller objective, i.e.,

T∑
t=1

h(δ′t, p) ≥
T∑
t=1

h(αt, p).

But, using the convexity of the function h, we can write
t∑

τ=1

{h(ατ , p)− h(δ′τ , p)} ≥
t∑

τ=1

ḣ(δ′τ , p)(δ
′
τ − ατ ).

Since δτ < δ∗, we have ∀τ ḣ(δ′τ , p) > 0 and let the minimum
of those be C. Then the right hand side of the above equation
is larger than C

∑t
τ=1(δ′τ − ατ ) ≥ 0. Therefore the optimal

value is attained at the sequence δ′1, δ
′
2, ..., δ

′
T .

Now, if for some t, δ∗ ≤ δ′t, since the sequence of δ′t’s is
increasing and also by the i.i.d. assumption, we have ∀τ ≥ t,
δ∗ < δτ and h(δτ , p) = 0. This means that the constraint
has no effect on the minimization problem for τ ≥ t and X̂τ

will have the same distribution as Xτ resulting in 0 distortion.
The optimal solution will be anywhere between δ∗ and δτ .
We can conclude that the optimal value will be attained at the
boundary. Since the previous constraints will be attained by
the above argument, we can conclude that the optimum value
will be attained at the constraint boundaries.

Hence, we may conclude that the solutions of the online
and the batch problems will be the same.


