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ABSTRACT
Social networking websites, like Twitter and Facebook, allow users
to create and share content. As users of these sites reshare others’
posts with their friends and followers, big information cascades
of post resharing can form. One of the central challenges in un-
derstanding such cascading behaviors is in forecasting information
outbreaks, where a single post becomes widely popular by being
reshared by many users.

In this paper, we focus on predicting the final number of re-
shares of a given post. We build on the theory of self-exciting point
processes to develop a statistical model that allows us to predict
the final number of reshares of a given post that is being reshared
through the network. Our model requires no training or expen-
sive feature engineering and results in a simple and efficiently com-
putable formula that allows us to in real-time answer questions like:
Given the post’s resharing history so far, what will be its final num-
ber of reshares? And, which will be the most reshared posts in the
future? We validate our model on one month of complete Twitter
data and demonstrate a strong improvement in predictive accuracy
over existing approaches. Our model gives only 15% relative error
in predicting final size of an information cascade after observing it
for just one hour.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining
General Terms: Algorithms; Experimentation.
Keywords: tweet popularity; information diffusion; self-exciting
point process; social media.

1. INTRODUCTION
Online social networking services, like Facebook, Youtube, and

Twitter, allow their users to post and share content in the form of
posts, images, and videos [9, 16, 20, 29]. As a user is exposed to
posts of others she follows, the user may in turn reshare a post with
her own followers, who may further reshare it with their respective
sets of followers and this way large information cascades of post
resharing behavior may spread through the network.
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A fundamental question in modeling information cascades is to
predict future evolution of a cascade. Arguably the most direct way
to formulate this question is to consider predicting the final size of
the information cascade. That is, to predict how many reshares a
given post will ultimately receive.

Predicting the attention or the ultimate popularity of a content is
important for content ranking and aggregation. For instance, Twit-
ter is overflowing with posts and users have a hard time keeping up
with all of them. Thus, much of the content gets missed and even-
tually lost. The ability to predict the ultimate popularity of content
would allow Twitter to better rank content, faster discover trend-
ing posts, and improve the content placement in content-delivery
networks. Moreover, predicting the size of information cascades
allows us to gain fundamental insights into predictability of col-
lective behaviors where uncoordinated actions of many individuals
lead to big spontaneous outcomes, for example, large information
outbreaks.

Most research on predicting information cascades involves ex-
tracting an exhaustive set of features describing the past evolution
of a cascade and then using these features in a simple machine
learning classifier to make a prediction about the future growth of
the cascade [4, 6, 16, 19, 25, 29]. However, feature extraction can
be expensive and cumbersome, and one is never sure if more effec-
tive features could be extracted. The question thus remains whether
it is possible to design a simple and principled bottom-up model of
cascading behavior. The challenge lies in defining a model of an
individual’s behavior and then aggregating the effects of the indi-
viduals in order to make a good global prediction.

Present work. Here we focus on predicting the final size of an
information cascade spreading in a social network. We develop
a statistical model based on the theory of self-exciting point pro-
cesses. A point process is also called a counting process when it is
indexed by time, which counts the number of instances (reshares,
in our case) over time. In contrast to homogeneous Poisson pro-
cesses which assume that the intensity of the process is constant
over time, self-exciting processes assume that all the previous in-
stances (i.e., reshares) influence the future evolution of the process.
Self-exciting point processes are frequently used to model “rich
get richer” phenomenon [21, 22, 32, 35], and are ideal for model-
ing information cascades in networks, because every new reshare
of a post not only adds 1 to its cumulative reshare count, but also
exposes new followers, who may further reshare the post.

We develop SEISMIC (Self-Exciting Model of Information Cas-
cades) for predicting the total number of reshares of a given post.
In our model, each post is fully characterized by its infectiousness,
which models post’s resharing probability as a function of time.
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Figure 1: Retweeting activity in the first 6 hours of a pop-
ular tweet [1] (top). The tweet relates the death of dictator
Muammar Gaddafi with singer Justin Bieber. Interestingly, the
car manufacturer Chevrolet Twitter account retweeted it about
30min after the original post, which lead to post’s sustained
popularity. Tweet infectiousness against time as estimated by
SEISMIC (middle). Predictions of the tweet’s final retweet count
“Truth” as a function of time (bottom). We compare SEISMIC
with Linear regression (LR). “Observed” plots the cummula-
tive number of observed retweets by a given time. SEISMIC
quickly finds an accurate estimate of the final retweet count.

As the content gets stale the infectiousness may drop (see Fig-
ure 1), and thus, in SEISMIC we allow the infectiousness to freely
vary over time. Moreover, our model is able to identify at each
time point whether the cascade is in the supercritical or subcritical
state, based on whether its infectiousness is above or below a crit-
ical threshold. Cascade in the supercritical state is going through
a critical “explosion” period and its final size cannot be predicted
accurately at the current time. However, when a cascade is in sub-
critical state it is tractable and we are able to predict its ultimate
popularity accurately.

Our SEISMIC approach makes several contributions:

• Generative model: SEISMIC imposes no parametric assump-
tions, and requires no expensive feature engineering. More-
over, as complete social network structure may be hard to ob-
tain, SEISMIC assumes minimal knowledge of the network:
The only required input is the time history of reshares and
the degrees of the resharing nodes.

• Scalable and parallel computation: Making a prediction
using SEISMIC only requires computational time linear in
the number of observed reshares. Since predictions for in-
dividual posts are made independently, SEISMIC can also be
trivially parallelized.
• Ease of interpretation: For an individual cascade, the model

synthesizes all its past history into a single infectiousness pa-
rameter. This infectiousness parameter holds a clear mean-
ing, and can serve as input to other applications.

We evaluate our SEISMIC method on one month of complete
Twitter data, where users posts tweets which others can then re-
share by retweeting them. Such retweeting behavior can cause
large information cascades to occur. We demonstrate that SEISMIC
is able to predict the final retweet count of a given tweet with 30%
better accuracy when compared to the state-of-the-art approach.
For highly contagious tweets, our model achieves 15% relative er-
ror in predicting the final retweet count after observing the tweet for
1 hour, and 25% error after observing the tweet for just 10 minutes.
Moreover, we also demonstrate how SEISMIC is able to identify
tweets that will go “viral” and be among the most popular tweets
in the future. By maintaining a shortlist of size 500 over time, we
are able to cover 78 of the 100 most reshared tweets and 281 of the
500 most reshared tweets 10 minutes after they are posted.

The rest of the paper is organized as follows: Section 2 sur-
veys the related work. Section 3 describes SEISMIC, and Section 4
shows how the model can be used to predict the final size of an
information cascade. We evaluate our method and compare its per-
formance with a number of baseline as well as state-of-the-art ap-
proaches in Section 5. And, in Section 6, we conclude and discuss
future research directions.

2. RELATED WORK
The study of information cascades is a rich and fruitful field [26]

and recent models for predicting size of information cascades can
be characterized by two types of approaches, feature based methods
and point process based methods.

Feature based methods first extract an exhaustive list of poten-
tially relevant features, including content features, original poster
features, network structural features and temporal features [6]. Then
different learning algorithms are applied, such as simple regression
models [2, 6], probabilistic collaborative filtering [34], regression
trees [3], content-based models [23], and passive-aggressive algo-
rithms [25]. There are several issues with such approaches: The
performance is highly sensitive to the quality of the features [4,
29]. And, laborious feature engineering and extensive training are
crucial for their success. Moreover, such approaches have lim-
ited applicability because they cannot be used in real-time online
settings—given the massive amount of posts produced every sec-
ond, it is practically impossible to extract all the necessary features
for every post and then apply complicated prediction rules to each
of them. In contrast, SEISMIC requires no feature engineering and
results in an efficiently computable formula that allows SEISMIC to
in real-time predict the final popularity of millions of posts as they
are spreading through the network.

The second group of approaches are based on point processes,
which directly model the formation of an information cascade in a
network. Such models were mostly developed for the complemen-
tary problem of network inference, where one observes a number
of information cascades and tries to infer the structure of the under-
lying network over which the cascades propagated [8, 10, 12, 14,
17, 32, 35]. These methods have been successfully applied to study
the spread of memes on the web [10, 14, 31, 32] as well as hashtags



Symbol Description
w Post/information cascade
pt Infectiousness of w at time t (Section 3.2)
φ(s) Memory kernel (Section 3.1)
i Node that contributed ith reshare.

i = 0 corresponds to the originator of the post.
ti Time of the ith reshare relative to the original post.
ni Out-Degree of the ith node
Rt Cumulative popularity by time t: |{i > 0; ti ≤ t}|
R∞ Final popularity (final number of reshares): |{i > 0}|
Nt Cumulative degree of resharers by time t:

∑
i:ti≤t ni

Ne
t Effective cumulative degree of resharers by time t:

Ne
t =

∑Rt
i=0 ni

∫ t
ti
φ(s− ti)ds

λt Intensity of cumulative popularity Rt
p̂t Model’s estimate of infectiousness pt at time t
R̂∞(t) Model’s estimate at time t of final popularity R∞

Table 1: Table of symbols.

on Twitter [35]. In contrast, our goal is not to infer an unobserved
network but to predict the ultimate size of a cascade in an observed
network.

A major distinction between our model and existing works based
on Hawkes processes (e.g., [21, 22, 32, 33, 35]) is that we assume
the process intensity λt depends on another stochastic process pt,
the post infectiousness. In other words, we allow the infectious-
ness to change over time. Moreover, some of these methods [33]
rely on computationally expensive Bayesian inference, while our
method has linear time complexity. Another recently proposed re-
lated work is [13], which also takes the point process approach and
directly aim to predict tweet popularity. However, their method
makes restrictive parametric assumptions and does not consider the
network structure, which limits its predictive ability. We compare
SEISMIC with [13] in the experiment in Section 5.

3. MODELING INFORMATION CASCADES
Next we formally describe SEISMIC, a statistical model of infor-

mation cascades. We discuss how SEISMIC can be used for:

1. Estimating spreading rate of a given information cascade,
which we quantify by the post’s infectiousness.

2. Determining whether the cascade is in supercritical (explo-
sive) or subcritical (dying out) state.

3. Predicting the final size of the information cascade, which is
measured by the ultimate number of reshares received by the
post that stated the cascade.

Important quantities in our model are the post infectiousness pt,
the cascade speed of spreading λt, which is determined by human
reaction time modeled by φ(s), and Rt which is the cumulative
number of reshares of a given post up to time t. Our goal is to
predict R∞, which the ultimate number of reshares of a post.

We proceed by defining human reaction time model φ(s) in Sec-
tion 3.1 and infectiousness pt in Section 3.2. We then connect
the two by describing our self-exciting model in Section 3.3. The
model enables us to predict the final post popularity R∞ at any
point in time. Table 1 summarizes the notation.

3.1 Human reaction time
The first component of our model is human reaction time. In

our problem of predicting post popularity, we need to know how
long it takes for a person to reshare a post. We assume that the

time between the appearance of a post in a users’ timeline and a
reshare of the same post by the user, denoted by s, is distributed
with density φ(s). This is also called memory kernel in physics
literature, because it measures a physical/social system’s memory
of stimuli [7].

The distribution of human response times φ(s) has been shown
to be heavy-tailed in social networks [5]. Usually the tail of φ(s) is
assumed to follow a power-law with exponent between 1 and 2 or
a log-normal distribution [7, 33]. However, due to the rapid nature
of information sharing on Twitter, it is also natural to expect many
short-reaction times. In fact, our exploratory data analysis in Sec-
tion 5.2 confirms that in Twitter, φ(s) is approximately constant
for the first 5 minutes followed by a power-law decay. Different
social networks usually have different distributions of human re-
action times. However, φ(s) only needs to be estimated once for
the whole network and thus we can safely assume it is given to us.
Detailed estimation procedure of φ(s) can be found in Section 5.2.

3.2 Post infectiousness
The second component of our model is post infectiousness. We

assume each post w is associated with a time dependent, intrinsic
infectiousness parameter pt(w). In other words, pt(w) models how
likely will the post w be reshared at time t. Infectiousness of a
post may depend on an intricate combination of factors, including
the quality of the post’s content, poster’s social network structure,
current time of the day, poster’s geographical location, and many
others. However, as we assume no parametric form for pt, our
model is able to infer the right value of pt, which accounts for all
the factors, as well as how it evolves over time.

Literature studying self-exciting point processes mostly assumes
pt to be fixed over time. Consequently, an important concept is
the criticality of the process Rt. In self-exciting point processes
with constant infectiousness pt ≡ p, there exists a phase transition
phenomenon at certain critical threshold p∗ such that [11]:

1. If p > p∗, then Rt → ∞ as t → ∞ almost surely and
exponentially fast. This is called the supercritical regime.

2. If p < p∗, then suptRt < ∞ almost surely. This is called
the subcritical regime.

In reality, Rt is always bounded due to the finite size of the net-
work. Thus, if pt is assumed to be a constant p, no supercritical
cascades can exist. We propose a more flexible model of infec-
tiousness that allows pt to change over time. For example, as the
post gets older, the information may get outdated and its spreading
power (i.e., infectiousness) might decrease. Similarly, as the post
spreads further away from the original poster, its ability to spread
(i.e., infectiousness) might decay [33]. And, if a post is reshared
by a highly influential user, that may increase the posts’ infectious-
ness. Thus, rather than assuming a particular evolutionary pattern
of pt, we allow it to vary over time in a non-parametric way.

3.3 The SEISMIC model
To derive SEISMIC, we connect human reaction times and post

infectiousness with the size of the information cascade, i.e., number
of reshares of a post. In order to link pt to the post resharing pro-
cess Rt, we assume Rt is actually a doubly stochastic self-exciting
point process, an extension to the self-exciting point process also
called the Hawkes process [15] and was initially used to model
earthquakes [24].

We first define the intensity λt ofRt, which simply measures the
rate of obtaining an additional reshare at time t. More formally:

λt = lim
∆↓0

P (Rt+∆ −Rt = 1)

∆
.



In SEISMIC, the intensity λt at time t is determined by infec-
tiousness pt, reshare times ti, node degrees ni, and human reaction
time distribution φ(s). The exact relationship described in Eq. (1)
is inspired by the theory of Hawkes processes [15]:

λt = pt ·
∑

ti≤t, i≥0

niφ(t− ti), t ≥ t0. (1)

Intuitively,
∑
ti≤t, i≥0 niφ(t− ti) is the intensity of the arrival

of newly exposed users at time t, so its product with the resharing
probability at time t gives the intensity of reshares at time t.

Note that the above point process is self-exciting because each
previous observation i (ti ≤ t) contributes to the intensity λt. It
is further doubly stochastic because the infectiousness pt is itself a
stochastic process.

Additionally, we assume {ni} are independent and identically
distributed with some mean n∗. Mean degree n∗ is related to the
critical threshold p∗ already discussed in Section 3.2. The critical
infectiousness threshold takes value p∗ = 1/n∗. We give the proof
of this fact in Proposition 4.1.

4. PREDICTING INFORMATION CASCADES
Next we describe how to perform statistical inference for self-

exciting model of cascades we just described in the previous sec-
tion. Specifically, we discuss how SEISMIC estimates the infec-
tiousness parameter pt and then predicts the ultimate size of the
cascade, that is, the total number of post’s reshares R∞.

Throughout this section, we assume the followers of all the re-
sharers are disjoint. This assumption may not be true in general,
however the conclusions made in this section remain valid if the
node degree ni is replaced by the “effective” node degree which is
simply the total number of newly exposed followers, i.e., the fol-
lowers of ith resharer who do not follow the first i− 1 resharers or
the original author of the post.

4.1 Estimating post infectiousness
We first define the sample-function density, which plays a cen-

tral role in decision and estimation problems in a self-exciting point
process [28]. Denote Ft = {(ni, ti)}Rt

i=0 as the information avail-
able by time t. The sequence of ti is the increasing reshare occur-
rence times and ni is the number of followers of the ith resharer.
Sample-function density is defined as the joint probability of the
number of reshares in the time interval [t0, t) and the density of
their occurrence times.

To motivate our estimator of pt, we first consider the case that the
infectiousness parameter remains constant over time, i.e., pt ≡ p.
Later we will relax this assumption and allow pt to vary over time.

In SEISMIC, the sample-function density can be expressed using
the intensity λt as [28, Thm. 6.2.2]

P(Rt = r, t1, . . . , tr) =

Rt∏
i=1

λti · exp

{
−
∫ t

t0

λsds

}
. (2)

By taking derivative of the log of Eq. (2) and combining it with
Eq. (1), we obtain the maximum likelihood estimate (MLE) of p(t):

p̂(t) =
Rt∑Rt

i=0 ni
∫ t
ti
φ(s− ti)ds

∆
=
Rt
Ne
t

(3)

The above equation forms the basis of SEISMIC as it allows us to
estimate the infectiousness p̂(t) at any given time t. Moreover,
a confidence interval of p(t) can also be obtained [28]. Notice
that in the calculations above, we implicitly assume node degrees
n0, n1, . . . are given and related to the process through Eq. (1).

In the estimator in Eq. (3), the numeratorRt, is the current num-
ber of reshares of a given post and the denominator Ne

t can be
thought as the accumulative “effective” number of exposed users
to the post. To shed more light on our estimator, we take t → ∞,
which leads to:

p̂(∞) =
1

1
R∞

∑R∞
j=0 nj

≈ 1

n∗
(4)

This means if we assume the infectiousness pt is a constant over
time, most of the posts will have the same infectiousness. This
cannot explain the bursty and volatile dynamics observed only for
some posts. Note that the above approximation is true for most of
the realizations such that R∞ is large. If a post was created by a
high-degree node, then n0 is very large, and hence p̂(∞) could in
fact be smaller than 1/n∗.

The observation Eq. (4) as well as tweets like the one in Figure 1
motivate us to allow pt varying over time. In this case, we smooth
the MLE in Eq. (3) by only using observations close to time t
to estimate pt. In particular, we rely on a sequence of one-sided
weighting kernels Kt(s), s > 0, indexed by time t and estimate
post infectiousness:

p̂(t) =

∫ t
t0
Kt(t− s)dRs∫ t

t0
Kt(t− s)dNe

s

=

∑Rt
i=1 Kt(t− ti)∑Rt

i=0 ni
∫ t
ti
Kt(t− s)φ(s− ti)ds

.

(5)

Notice that when Kt(s) ≡ 1 the estimator reduces to the MLE
we derived in Eq. (3). In SEISMIC we use a triangular kernel with
growing window size t/2 as weighting kernel Kt(s):

Kt(s) = max

{
1− 2s

t
, 0

}
, s > 0. (6)

We chose the triangular kernel because it has properties impor-
tant for our application. First, the kernel discards all posts that
are older than t/2. In particular, it quickly discards the unstable
and possibly explosive period at the beginning, which if included,
would introduce an upward bias to pt. Second, the kernel takes into
account posts in a larger window size as time t increases. Accord-
ing to our experiments, the growing window size helps to stabilize
p̂(t) compared to a fixed window size. Third, for reshares within
the window, the kernel up-weights the most recent ones and gradu-
ally down-weights older ones. This keeps our estimator p̂(t) closer
to the ever-changing true pt. And last, since Kt(s) is piece-wise
linear, the integral

∫
Kt(t − s)φ(s − ti)ds has a closed form for

many different functions φ(s), including a constant followed by a
power-law decay, which is the φ(s) we use in SEISMIC (Eq. (9)).

4.2 Predicting final popularity
Having described the procedure for inferring the post infectious-

ness, we now need to account for the network structure in order to
predict how the post is going to spread across the network. Follow-
ing, we can predict post’s final reshare count at any point in post’s
lifetime.

For simplicity, let us assume the post is first posted at time 0, i.e.,
t0 = 0. Consider we have observed the post for t time units and
our goal now is to predict post’s final reshare count, R∞, based on
the information we have observed so far, Ft.

The following proposition shows how to compute the expected
final reshare count of a post. The main idea is to model an informa-
tion cascade spreading over the network with a branching process



Figure 2: An illustration of the information diffusion tree after
time t. Zk denotes the number of reshares caused by the kth

generation descendants. Note that the final reshare count R∞
is simply Rt +

∞∑
k=1

Zk.

that counts how posts are reshared, as illustrated in Figure 2. Pre-
dictor for R∞ used by SEISMIC can be stated as follows:

PROPOSITION 4.1. Assume the (out-)degrees in the network are
i.i.d. with expectation n∗ and the infectiousness parameter ps is a
constant p for s ≥ t. Then, we have

E[R∞| Ft] =


Rt +

p(Nt −Ne
t )

1− pn∗
, if p <

1

n∗
,

∞, if p ≥ 1

n∗
.

(7)

PROOF. We derive Eq. (7), which allows us to predict the ex-
pected final reshare count, as follows. First, we consider the case
where p < 1/n∗. We define the sequence of auxiliary random vari-
ables, {Z1, Z2, Z3, . . .} that aim to model the future shape of the
information diffusion tree as illustrated in Figure 2. Our intuition
is as follows: We have just observed the cascade (all the post re-
shares Rt) by time t and now we aim to model how the cascade
will further spread throughout the network. We model this as a
branching process, where Zk denotes the number of reshares made
by the kth generation descendants (counting from generationRt on-
wards). Thus, 1st generation descendants Z1 refers to the number
of new reshares generated by the posts created before time t, 2nd

generation descendants Z2 refers to the reshares of the posts of the
1st descendants, and so on (Figure 2). Notice that the summation
over the Zk’s gives the post’s final reshare count. In the following
we use descendants Zk only for derivation and emphasize that our
final estimator does not require explicit descendant information.

GivenZ1, the sequence of random variablesZk defines a Galton-
Watson tree with the offspring expectation µ = n∗p [11]. Here, µ
denotes the expected number of reshares that user’s post gets. Us-
ing the standard branching process result that Zi/µi is a martin-
gale, we obtain that ∀i > 1,

E [Zk+1|Zk] = µ Zk,

and therefore,

E

[
∞∑
k=1

Zk

∣∣∣∣∣Z1

]
=

Z1

(1− µ)
=

Z1

(1− n∗p)
.

Algorithm 1 SEISMIC: Predict final cascade size
Purpose: For a given post at time t, predict its final reshare count
Input:
• Post resharing information: ti and ni for i = 0, . . . , Rt

Algorithm:
Nt = 0, Ne

t = 0
for i = 0, . . . , Rt do

Nt += ni
Ne
t += ni

∫ t
ti
φ(s− ti)ds (Sec. 3.1)

end for
R̂∞(t) = Rt + αtp̂t(Nt −Ne

t )/(1− γtp̂tn∗) (Alg. 2)
Deliver: R̂∞(t)

Hence, we obtain

E[R∞|Ft] = Rt + E

[
∞∑
k=1

Zk

]
= Rt +

E[Z1]

(1− n∗p)
,

which ends up being the right hand side in Eq. (7) because E[Z1] =
p(Nt −Ne

t ) by the definition of Z1 and Ne
t .

Next, consider the case where p = p̂t ≥ 1/n∗. In this regime,
the point process is supercritical and stays explosive. In terms of
the Galton-Watson tree discussed above, the offspring expectation
µ = n ∗ p ≥ 1, so E[Zk+1] ≥ E[Zk] ≥ · · · ≥ E[Z1]. So, the
total future reshares

∑∞
k=1 Zk has infinite expectation and the final

reshare count cannot be reliably predicted.

Note that the Proposition 4.1 assumes that ps = pt for s ≥ t,
which may sometimes be unrealistic. To accommodate for this,
we slightly change the prediction formula in Eq. (7) by adding two
scaling constants αt, γt that adjust the final prediction:

R̂∞(t) = Rt + αt
p̂t(Nt −Ne

t )

1− γtp̂tn∗
, 0 < αt, γt < 1 . (8)

Our intuition to introduce these correction factors is the following.
We expect αt to decrease over time t and this ways scale-down the
estimated infectiousness to account for the post getting stale and
outdated. Similarly, γt accounts for the overlap in the neighbor-
hoods of reposters’ followers and thus over time as the post spreads
farther in the network, we expect γt to increase as more nodes get
exposed multiple times, and thus the arrival rate of new previously
unexposed nodes decreases over time.

We use same values of αt and γt for all posts and may change
over time. The values of αt and γt are selected to minimized me-
dian Absolute Percentage Error (refer to Section 5.4 for definition)
on the training set. As described in Section 5.2, we find αt is more
important than γt in practice.

4.3 The SEISMIC algorithm
Last, we put together all the components described so far and

synthesize them in the SEISMIC algorithm. SEISMIC algorithm for
predicting R̂∞(t) is described in Algorithm 1, which uses the al-
gorithm for computing p̂t (Algorithm 2) as a subroutine. The algo-
rithms are based on Eqs. (5) and (8). We assume parametersKt(s),
αt, γt, n∗ are given a priori or estimated from the data.

Computational complexity of SEISMIC. For any choice of φ(s)
and Kt(s), the computational cost of SEISMIC is O(Rt) for both
calculating p̂t and predicting R̂∞(t). Of course, the actual com-
puting time depends heavily on the computation of the integral∫ t
ti
Kt(t − s)φ(s − ti)ds and

∫ t
ti
φ(s − ti)ds, however, overall,



Algorithm 2 Compute real-time infectiousness p̂(t)
Purpose: For a given post w, calculate infectiousness pt with
information about w prior to time t
Input:
• Post resharing information: ti and ni for i = 0, . . . , Rt

Algorithm:
R̃t = 0, Ñe

t = 0
for i = 0, . . . , Rt do

R̃t += Kt(t− ti)
end for
for i = 0, . . . , Rt do

Ñe
t += ni

∫ t
ti
Kt(t− s)φ(s− ti)ds (Sec. 4.1)

end for
pt = R̃t/Ñ

e
t

Deliver: pt

the computational cost of SEISMIC is linear in the observed num-
ber of reshares Rt of a given post by time t.

The linear time complexity is in part also due to the shape of our
memory kernel. In Section 5.2 we will estimate the memory kernel
φ(s) for Twitter to have the following form (for some s0 > 0):

φ(s) =

{
c if 0 < s ≤ s0,

c(s/s0)−(1+θ) if s > s0.
(9)

This means that with the memory kernel φ(s) in Eq. (9) and tri-
angular weighting kernel Kt(s) in Eq. (6), both integrals can be
evaluated in closed form because they are piecewise polynomials
(polynomial with possibly non-integer exponents). We omit the
details for brevity.

5. EXPERIMENTS
In this section, we describe the Twitter data set, our parameter

estimation procedure, and compare the performance of SEISMIC to
baselines as well as state-of-the-art estimators.

5.1 Data description and data processing
Our data is the complete set of over 3.2 billion tweets and retweets

on Twitter from October 7 to November 7, 2011. For each retweet,
the data provides information on the original tweet id, original post
time, retweet time, and number of followers of the retweeter.

We focus on a subset of tweets with at least 50 retweets, so
that our model enables the prediction as soon as sufficient num-
ber of retweets occurs. There are 166076 tweets satisfying this
criterion in the first 15 days. We form the training set using the
tweets from the first 7 days and the test set using the tweets from
the next 8 days. We use the remaining 14 days for the retweet cas-
cades to unfold and evolve. For a particular retweet cascade, we
obtain all the retweets posted within 14 days of the original post
time, i.e., we approximate R∞ by R14 days. We estimate parameters
φ(s), αt, γt and n∗ with the training set, and evaluate the perfor-
mance of the estimator R̂∞ on the test set. For the tweets in our
training set,R14 days has mean 209.8 and median 110. The temporal
evolution of mean and median of Rt are also shown in Figure 3.

5.2 SEISMIC parameter estimation
Next, we describe the fitting of φ(s), αt, γt and n∗. First we fit

the memory kernel φ(s) with the training set. We take 15 sub-
critical tweets, and assume all their retweets come from immediate
followers. Under this assumption, the reaction time (Section 3.1) is
the same as the relative retweet time.
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Figure 3: The red dotted line shows the evolution of the mean
of cumulative retweet count Rt, while the green triangular line
shows the median. The dashed horizontal lines correspond to
mean and median final retweet count R14 days.
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Figure 4: Plot of observed reaction time distribution and esti-
mated memory kernel φ(s). The reaction time is plotted on a
log scale, hence a linear trend in the plot suggests a power law
decay in the distribution.

The observed reaction time distribution plotted in Figure 4 sug-
gests a form of Eq. 9 for the memory kernel: constant in the first
5 minutes, followed by a power-law decay. After setting the con-
stant period s0 to 5 minutes, we estimated power law decay pa-
rameter θ = 0.242 with the complimentary cumulative distribu-
tion function (ccdf), and chose c = 6.265725 × 10−4 to make∫∞

0
φ(s)ds = 1. The memory kernel is a network wide parameter,

hence only needs to be estimated once. The fitted memory kernel
is plotted in Figure 4.

Last, we briefly comment on the correction factors αt and γt in-
troduced in Eq. (7). We use the same values of αt and γt for all
tweets. Notice that γt and n∗ only affect the predictions through
their product γtn∗. Overall, we find the value of γtn∗ has little
effect on the performance of our algorithm. In our experiments we
simply set γtn∗ = 20 for all t. We choose the value of αt such
that it minimizes the training median Absolute Percentage Error
(Section 5.4). We report values of αt in Table 2. αt has a par-
ticularly small value at t = 5 minutes, which may be a result of
the overestimation of pt, when the triangular kernel has not moved
away from the unstable beginning period. After that αt begins a
slow and consistent decay to account for the fact that information



is getting increasing stale and outdated over time.
Now, we are ready to apply SEISMIC (Algorithms 2 and 1) and

for a given tweetw for every 5 minute interval t output our estimate
R̂∞(t, w) of the final retweet count R∞(w).

time (minute) 5 10 15 20 30
α 0.389 0.803 0.772 0.709 0.680

time (minute) 60 120 180 240 360
α 0.562 0.454 0.378 0.352 0.326

Table 2: List of αt used in Algorithm 1.

5.3 Baselines for comparison
We consider four baseline estimators for comparison. The first

two are regression based and the next two are point process based.

• Linear regression (LR) [30]: The model can be defined as

logR∞ = αt + logRt + ε,

where ε denotes the Gaussian noise. This is also the second
baseline estimator used in [33]. Notice that all the tweets
receive the same multiplicative constant for a given time.
• Linear regression with degree (LR-D) [30]: This model

can be written as

logR∞ = αt + β1,t logRt + β2,t logNt + β3,t logn0 + ε

where ε denotes, as before, the Gaussian noise. LR-D is more
flexible than LR, since it allows logRt has slope not equal to
1 and uses additional features such as the cumulative degree
and the tweet originator’s degree.
• Dynamic Poisson Model (DPM) [2, 7]: It models the retweet

times {tk} as a point process with rate

λt = λtpeak (t− tpeak)
γ

where tpeak = arg maxs<t λs. The power-law parameter γ is
estimated separately for each tweet. To discretize the model,
we bin time into b = 5 minutes intervals. Note that when
γ > −1, the integral

∫∞
tpeak+b

λtdt is infinite. If this is the
case, we move tpeak forward to the second to maximum bin.
• Reinforced Poisson Model (RPM) [27]: This recently pub-

lished state-of-the-art approach models rate of retweet times
as

λt = cfγ(t)rα(Rt)

where parameter c measures the attractiveness of the mes-
sage, fγ(t) ∝ t−γ(γ > 0) models the aging effect, and
rα(Rt)(α > 0) is the reinforcement function which depicts
the “rich get richer” phenomenon. Given a particular tweet,
the parameters c, γ, α are found by maximizing the likeli-
hood function, where the optimal values are projected to their
feasible sets whenever they are outside.

5.4 Evaluation metrics
We use the following comprehensive evaluation metrics to com-

pare our method with the baseline estimators. For a particular
tweet, suppose that the prediction for R∞ at time t is denoted by
R̂∞(t). We use the following criteria for evaluation:

• Absolute Percentage Error (APE): For a given tweetw and
a prediction time t, the APE metric is defined as,

APE(w, t) =
|R̂∞(w, t)−R∞(w)|

R∞(w)
.

When APE metric is used for evaluation purposes, various
quantiles of APE over the tweets (all possible w) in the test
dataset will be reported at each time t.
• Kendall-τ Rank Correlation: This is a measure of rank cor-

relation [18], which computes the correlation between the
ranks of R̂∞(t) and R∞ for all test tweets. This metric is
generally more robust than Pearson’s correlation between the
exact values of R̂∞(t) and R∞. A high value of rank corre-
lation means our predictoin and the final retweet counts are
strongly correlated.
• Breakout Tweet Coverage: We create a ground-truth list

of top-k tweets with the highest final retweet count. We re-
fer to these tweets as “breakout” tweets. Using our model
we can also produce a top-k list based on the predicted final
retweet count. We evaluate the two lists by comparing how
well does the predicted top-k cover the ground-truth top-k
list. We give additional motivation and details for this metric
in Section 5.5.3.

5.5 Experimental results
In this section, we evaluate the performance of our SEISMIC

method and the four baselines described in Section 5.3. All the
methods start making predictions as soon as a given tweet gets
retweeted 50 times.

5.5.1 SEISMIC model validation
First, we aim to empirically validate the SEISMIC prediction

question and the claim in Proposition 4.1. In Proposition 4.1, we
obtained a formula of the expected number of final retweets in
terms of the infectiousness parameter pt. Our goal is to show that
Proposition 4.1 actually gives an unbiased estimate of the true final
retweet count. We proceed as follows.

We use SEISMIC to make a prediction after observing each tweet
for 1 hour and then plot the prediction against the true final number
of retweets. If SEISMIC gives an unbiased estimate, then we expect
a linear curve y = x, that is, the expected predicted R̂∞ matches
the true expected R∞.

Figure 5 shows that the empirical average almost perfectly coin-
cides with SEISMIC’s prediction. This suggests that SEISMIC esti-
mator in Eq. (7) is unbiased and we can safely use it to predict the
expected final number of retweets.

However, as mentioned earlier after Proposition 4.1, in practice
one often wants to shrink the prediction in order to stabilize the es-
timator and achieve better performance. This is particularly impor-
tant if the error metric is Absolute Percentage Error (APE), since
an underestimation can at most result in 100% error but an overes-
timation could incur a much worse error. Therefore, we use the cal-
ibrated prediction formula Eq. (8) for the rest of the experiments in
this section. Note, that we apply the similar calibration procedure
for all baselines as well, as we found that it significantly improves
their performance as well.

5.5.2 Predicting final retweet count
We run our SEISMIC method for each tweet and compute the

Absolute Percentage Error (APE) metric as a function of time. We
plot the quantiles of the distribution of APE of SEISMIC in Figure 6.
After observing the cascade for 10 minutes (t = 10min), the 95th,
75th, and 50th percentiles of APE are less than 71% , 44%, and
25%, respectively. This means that after 10 minutes, average error
is less than 25% for 50% of the tweets and less than 71% for 95% of
them. After 1 hour the error gets even lower—APE for 95%, 75%
and 50% of the tweets drops to 62%, 30% and 15%, respectively.

The proposed method, SEISMIC, demonstrates a clear improve-
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Figure 5: An empirical validation of our SEISMIC model. The
empirical average of 14 days retweets (red dotted line) nicely
follows the SEISMIC prediction (black solid line).
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Figure 6: Absolute Percentage Error (APE) of SEISMIC on the
test set. We plot the median and the middle 50%, 80%, 90%
percentiles of the distribution of APE across the tweets.

ment over the baselines as shown by Figures 7 and 8. The left
panel of Figure 7 and 8 shows the median Absolute Percentage
Error (APE) of different methods over time as more and more of
the retweet cascade gets revealed. The Linear Regression model
(LR) and Linear Regression model with Degree (LR-D) have very
similar performance, indicating the additional features used by LR-
D are not very informative. DPM performs poorly across the en-
tire tweet lifetime, while the other point process baselines RPM is
worse than LR and LR-D in the early period but becomes better
after about 2 hours. Overall, SEISMIC is about 30% more accu-
rate than all the baselines across the entire tweet lifetime in median
APE.

Similarly, the right panels of Figures 7 and 8 show the Kendall-τ
rank correlation between the predicted ranking of top most retweeted
tweets and the truth ranking of tweets by their ultimate retweet
count. Again SEISMIC is giving much more accurate rankings than
the baselines.

5.5.3 Identifying breakout tweets
Can we identify a breakout tweet before it receives most of its

retweets? This question arises from various applications like trend
forecasting or rumor detection. The goal of this prediction task is
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Figure 7: Median Absolute Percentage Error (APE) and
Kendall’s Rank Correlation of SEISMIC and the baselines as
a function of time. SEISMIC consistently gives best perfor-
mance.
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Figure 8: Zoom-in of Figure 7: Median APE and Rank Corre-
lation for the first 60 minutes after the tweet was posted. SEIS-
MIC performs especially well early in tweet’s lifetime.

to as early as possible identify “breakout” tweets, which have the
highest final retweet count. We compare performance of different
models in detecting breakout tweets using models’ predictions of
tweet’s final retweet count.

First, we form a ground-truth set L∗M of size M . Set L∗M con-
tains top-M tweets with the highest final retweet count. Then with
each of the prediction methods, we produce a sequence of size m
lists, L̂m(t). At each time t list L̂m(t) contains the top-m tweets
with the highest predicted retweet count.

As described in Section 5.4, we then compare each L̂m(t) with
L∗M , and calculate the Breakout Tweet Coverage, which is defined
as the proportion of tweets in L∗M covered by L̂m(t).

Figure 9 shows the performance of SEISMIC for detecting top
100 most retweeted tweets (L∗100) as a function of time. SEISMIC
is able to cover 82 tweets in the first 1 hour and 93 tweets in the
first 6 hours.

The 5th most retweeted tweet in this plot is actually the tweet
[1] we showed earlier in Figure 1. Notice how SEISMIC detects
this tweet 30 minutes after it was posted, while LR and LR-D take
more than an hour. DPM fails to detect this breakout for the first 6
hours because the power constant γ is never less than −1.
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Figure 9: Time changing coverage of the top 100 tweets by
shortlist of 500 tweets generated from our SEISMIC model.
Rows i represent tweets with ith largest final total retweet
count. White blocks in row i and time t indicate tweet i was
not covered by our predicted list of top-500 tweets at time t,
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To compare SEISMIC with baseline methods, we keep the size
of the predicted lists to be m = 500, and use a larger target list
L∗500, which is a more difficult task than finding L∗100. Figure 10
compares the coverage of different methods against the proportion
of retweets seen. After seeing 20% of the retweets of these 500
tweets, SEISMIC covers 65% of them in the shortlist, while LR-D
and LR both cover 50%. In general, the dynamic Poisson models
fail to provide accurate predictions and breakout identifications.

Overall, SEISMIC allows for effective detection of breakout tweets.
For instance, after seeing around 25% of the total number of retweets
of a given tweet (in other words, after observing a tweet for around
5 minutes), SEISMIC can identify 60% of the top-100 tweets ac-
cording to the final retweet count.

5.6 Discussion of model robustness
SEISMIC demonstrates better robustness than the other two point

process based methods — DPM and RPM. While SEISMIC doesn’t
predict for supercritical tweets, DPM and RPM fails to predict
when the parameter is in the infeasible set (γ < −1 for DPM
and γ < 0 or α < 0 for RPM). For example, in Figure 1, SEIS-
MIC characterizes the tweet as supercritical for the first 70 min,
DPM fails to predict for the first 6 hours and RPM can only pre-

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Fraction of observed retweets

C
ov

er
ag

e

Method
SEISMIC
LR
LR−D
DPM
RPM

Comparison of the Coverage of Top 500 Tweets

Figure 10: Comparison of coverage of the target list L∗500 by
different methods. SEISMIC starts to have a real advantage
over all baseline methods after about 10% of retweets of a given
tweet are seen. All methods except for DPM have perfect cov-
erage after about 65% of retweets of a given tweet are seen.

dict from 30 to 80 minutes. On average, for all tweets with at least
50 retweets, when making predictions at 15 minutes, 1 hour and 6
hours, SEISMIC considers 1.80%, 1.29% and 0.67% of the tweets
to be supercritical. In comparison, DPM fails to make predict for
6.77%, 5.79% and 1.45%, and RPM fails for 3.45%, 5.69% and
15.43% of the tweets.

Our SEISMIC method is also significantly faster than the RPM
model [27], which requires to solve a nonlinear optimization prob-
lem every time it predicts. In our implementation, the average run-
ning time per tweet for predicting at every 5 minutes for 6 hours
is 0.02s for SEISMIC and 3.6s for RPM. The reported running time
includes both parameter learning and prediction.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed SEISMIC, a flexible framework for

modeling information cascades and predicting the final size of an
information cascade. Our method differs from others in the follow-
ing aspects:

• We model the information cascades as self-exciting point
processes on Galton-Watson trees. Our SEISMIC approach
provides a theoretical framework for explaining temporal pat-
terns of information cascades.
• SEISMIC is both scalable and accurate. The model requires

no feature engineering and scales linearly with the number
of observed reshares of a given post. SEISMIC provides a
way to predict information spread for millions of posts in an
online real-time setting.
• SEISMIC brings extra flexibility to estimation and prediction

tasks as it requires minimal knowledge about the information
cascade as well as the underlying social network structure.

Last, we also mention that, there are many interesting venues for
future work and our proposed model can be extended in many dif-
ferent directions. For example, if network structure is available, one
could replace the node degree ni by the number of newly exposed
followers. If content-based features or features of the original post
are available, one could easily formulate a prior of pt for each post.
If temporal features such as the user’s time zone are available, one
could directly use them to modify the estimator p̂t. In this sense,



the proposed model provides an extensible framework for predict-
ing information cascades.

Overall, we presented a statistically sound and scalable bottom-
up model of information cascades that allows for predicting final
cascade size as the cascade unfolds over the network. We hope that
our framework will prove useful for developing richer understand-
ing of cascading behaviors in online networks and will pave ways
towards better management of shared content and applications that
can identify trending content early.

Data and Software
We will release the dataset and a software of SEISMIC upon publi-
cation.
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