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Abstract

We analyze the complexity of sampling from a class of heavy-tailed distributions by discretizing a

natural class of Itô diffusions associated with weighted Poincaré inequalities. Based on a mean-square

analysis, we establish the iteration complexity for obtaining a sample whose distribution is ǫ close to

the target distribution in the Wasserstein-2 metric. In this paper, our results take the mean-square

analysis to its limits, i.e., we invariably only require that the target density has finite variance, the

minimal requirement for a mean-square analysis. To obtain explicit estimates, we compute upper bounds

on certain moments associated with heavy-tailed targets under various assumptions. We also provide

similar iteration complexity results for the case where only function evaluations of the unnormalized

target density are available by estimating the gradients using a Gaussian smoothing technique. We

provide illustrative examples based on the multivariate t-distribution.

1 Introduction

The problem of sampling from a given target density π : R
d → R arises in a wide variety of problems

in statistics, machine learning, operations research and applied mathematics. Markov chain Monte Carlo
(MCMC) algorithms are a popular class of algorithms for sampling (Robert and Casella, 1999; Andrieu et al.,
2003; Hairer et al., 2006; Brooks et al., 2011; Meyn and Tweedie, 2012; Leimkuhler and Matthews, 2016;
Douc et al., 2018); a widely used approach in this domain is to discretize an Itô diffusion that has the target
as its stationary density. A popular choice of diffusion is the overdamped Langevin diffusion,

dXt = ∇ log π(Xt)dt+
√

2dBt, (1)

whereBt is a d-dimensional Brownian motion. For example, the Unadjusted Langevin Algorithm (Rossky et al.,
1978), the Metropolis Adjusted Langevin Algorithm (Roberts and Tweedie, 1996; Roberts and Rosenthal,
1998) and the proximal sampler (Titsias and Papaspiliopoulos, 2018; Lee et al., 2021; Vono et al., 2022)
arise as different discretizations of (1). Under light-tailed assumptions, i.e. when the density π has exponen-
tially fast decaying tails, the diffusion Xt in (1) converges exponentially fast to π as its stationary density,
which motivates the use of discretizations of (1) as practical algorithms for sampling. In the last decade, the
non-asymptotic iteration complexity of various discretizations have been well-explored, thereby providing a
relatively comprehensive story of sampling from light-tailed densities.

Motivated by applications in robust statistics (Kotz and Nadarajah, 2004; Jarner and Roberts, 2007;
Kamatani, 2018), multiple comparison procedures (Genz et al., 2004; Genz and Bretz, 2009), Bayesian statis-
tics (Gelman et al., 2008; Ghosh et al., 2018), and statistical machine learning (Balcan and Zhang, 2017;
Nguyen et al., 2019; Şimşekli et al., 2020; Diakonikolas et al., 2020), in this work, we are interested in sam-
pling from densities that have heavy-tails, for example, those with tails that are polynomially decaying.
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When the target density π is heavy-tailed, the solution to (1) does not converge exponentially to its sta-
tionary density in various metrics of interest. Indeed, Theorem 2.4 by Roberts and Tweedie (1996) shows
that if |∇ log π(x)| → 0 as |x| → ∞, then the solution to (1) is not exponentially ergodic. In the other
direction, standard results in the literature, for example Wang (2006); Bakry et al. (2014) show that the
solution to (1) converging exponentially fast to its equilibrium density in the χ2 metric, is equivalent to the
density π satisfying the Poincaré inequality, which in turn requires π to have exponentially decaying tails.
Furthermore, when π has polynomially decaying tails, the convergence is only sub-exponential or polyno-
mial (Wang, 2006, Chapter 4). Consequently, the algorithms obtained as discretizations of the Langevin
diffusion in (1) are suited to sampling only from light-tailed exponentially decaying densities, and are rather
inefficient for sampling from heavy-tailed densities.

Our approach to heavy-tailed sampling is hence based on discretizing certain natural Itô diffusions that
arise in the context of the following Weighted Poincaré inequality (Blanchet et al., 2009; Bobkov and Ledoux,
2009). Such inequalities could be considered generalizations of the Brascamp-Lieb inequality (established
for the class of log-concave densities) to a class of heavy-tailed densities.

Theorem 1 (Weighted Poincaré Inequality; Theorem 2.3 in Bobkov and Ledoux (2009)). Let the target
density be of the form πβ ∝ V −β with β > d and V ∈ C2(Rd) positive, convex and with (∇2V )−1(x) well-
defined for all x ∈ R

d. For any smooth and πβ-integrable function g on R
d and G = V g,

(β + 1)V arπβ
(g) ≤

∫

Rd

〈(∇2V )−1∇G,∇G〉
V

dπβ +
d

β − d

(∫

Rd

gdπβ

)

. (2)

A canonical example of a heavy-tailed density that satisfies the conditions in Theorem 1, and hence (2), is
the multivariate t-distribution. In particular, we consider the following Itô diffusion process

dXt = −(β − 1)∇V (Xt)dt+
√

2V (Xt)dBt, (3)

where (Bt)t≥0 is a standard Brownian motion in R
d. The Itô diffusion in (3) converges exponentially fast to

the target πβ in the χ2-divergence as long as it satisfies the Weighted Poincaré inequality and additional mild
assumptions; see Proposition 1 for details. Hence, we study the oracle complexity of the Euler-Maruyama
discretization of (3), for sampling from heavy-tailed densities. Our proofs are based on mean-square analysis
techniques, a popular technique to analyze numerical discretizations of stochastic differential equations; see,
for example, Milstein and Tretyakov (2004) for an overview. Our results in this paper pushes mean-square
analysis to its limits; the heavy-tailed densities we consider invariably need to have only finite variance,
which is the minimum requirement when using this technique.

1.1 Our Contributions

In this work, we make the following contributions:

• In Theorem 2, we provide upper bounds on the number of iterations required by the Euler-Maruyama
discretization of (3) to obtain a sample that is ǫ-close in the Wasserstein-2 metric to the target density.
The established bounds are in terms of certain (first and second-order) moments of the target density
π. Our proof technique is based on a mean-squared analysis; we demonstrate that for the case of
multivariate t-distributions, our analysis is non-vacuous as long as the density has finite variance, a
necessary condition to carry out the mean-squared analysis.

• While the result in Theorem 2 assumes access to the exact gradient of the unnormalized target density
function (referred to as the first-order setting), in Theorem 3, we analyze the case when the gradient
is estimated based on function evaluations (the zeroth-order setting) based on a Gaussian smoothing
technique.

• We provide several illustrative examples highlighting the differences between the results in the first
and the zeroth-order setting. Specifically, in Section 5 we show that for the multivariate t-distribution
with smaller degrees of freedom, (and hence the truly heavy-tailed case) the gradient estimation error
is dominated by the discretization error. Whereas, in the case with larger degrees of freedom (and
hence the comparatively moderately heavy-tailed case), the discretization error is of comparable order
to the gradient estimation error. Hence, the zeroth-order algorithm matches the iteration complexity
of the first-order algorithm by using mini-batch gradient estimators.
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1.2 Related Work

Non-asymptotic iteration complexity of different discretizations of (1) have been analyzed extensively in the
last decade. The analysis of the Unadjusted Langevin Algorithm (ULA) under various light-tailed assump-
tions was carried out, for example, in Dalalyan (2017); Durmus and Moulines (2017); Dalalyan and Karagulyan
(2019); Durmus et al. (2019); Lee et al. (2020); Shen and Lee (2019); He et al. (2020); Chen et al. (2020);
Durmus et al. (2019); Dalalyan et al. (2019); Li and Erdogdu (2020); Chen et al. (2020); Chewi et al. (2021a)
and references therein. In particular, Vempala and Wibisono (2019); Erdogdu and Hosseinzadeh (2021);
Chewi et al. (2021a) analyzed the performance of ULA under various functional inequalities suited to light-
tailed densities. Furthermore, the recent work of Balasubramanian et al. (2022) analyzed the performance of
(averaged) ULA for target densities that are only Hölder continuous, albeit in the weaker Fisher information
metric.

Several works, for example, Dwivedi et al. (2019); Chewi et al. (2021b); Wu et al. (2022), analyzed the
Metropolis-Adjusted Langevin Algorithm (MALA) in light-tailed settings. The proximal sampler algorithm
was analyzed under various light-tailed assumptions in Lee et al. (2021); Chen et al. (2022). The iteration
complexity of the widely used Hamiltonian Monte Carlo algorithm and discretizations of underdamped
Langevin diffusions were analyzed, for example, in Dalalyan and Riou-Durand (2020); Bou-Rabee et al.
(2020); Chen et al. (2020); Ma et al. (2021); Monmarché (2021); Cao et al. (2021); Wang and Wibisono
(2022); Chen and Vempala (2022). We also refer interested readers to Lu and Wang (2022); Ding and Li
(2021) for non-asymptotic analyses of other MCMC algorithms used in practice in light-tailed settings.

In the context of heavy-tailed sampling, Kamatani (2018) considered the scaling limits of appropriately
modified Metropolis random walk in an asymptotic setting. Johnson and Geyer (2012) proposed a variable
transformation method in the context of Metropolis Random Walk algorithms. Here, the heavy-tailed density
is converted into a light-tailed one based on certain invertible transformations so that one can leverage the
rich literature on light-tailed sampling algorithms. Similar ideas were also examined recently in Yang et al.
(2022). It is also worth highlighting that Deligiannidis et al. (2019); Durmus et al. (2020) and Bierkens et al.
(2019) used the transformation approach for proving asymptotic exponential ergodicity of bouncy particle and
zig-zag samplers respectively, in the heavy-tailed setting. We also point out the recent works of Andrieu et al.
(2021a) and Andrieu et al. (2021b) that establish similar sub-exponential ergodicity results for other sampling
methods such as the piecewise deterministic Markov process Monte Carlo, independent Metropolis-Hastings
sampler and pseudo-marginal methods in the polynomially heavy-tailed setting. The works of Şimşekli et al.
(2020); Huang et al. (2021) and Zhang and Zhang (2022) established exponential ergodicity results for diffu-
sions driven by α-stable processes with heavy-tailed densities as its equilibrium in the continuous-time setting.
However, the problem of obtaining convergence results for practical discretizations of these diffusions is still
largely open.

The literature on non-asymptotic oracle complexity analysis of heavy-tailed sampling is extremely lim-
ited. Chandrasekaran et al. (2009) considered the iteration complexity of Metropolis random walk algorithm
for sampling from s-concave distributions. He et al. (2022) considered ULA on a class of transformed den-
sities (i.e., the heavy-tailed density is transformed to a light-tailed one with an invertible transformation,
similar to Johnson and Geyer (2012)) and established non-asymptotic oracle complexity results. However,
they focused mainly on the case of isotropic densities. Li et al. (2019) analyzed a class of discretizations of
general Itô diffusions that admit heavy-tailed equilibrium densities. A detailed comparison to Li et al. (2019)
is provided in Section 5.

The recent works by Hsieh et al. (2018); Zhang et al. (2020); Chewi et al. (2020); Ahn and Chewi (2021);
Jiang (2021); Li et al. (2022) also considered sampling based on discretizations of the Mirror Langevin diffu-
sions. The above-mentioned works mainly focus on sampling from constrained densities. The continuous-time
convergence is analyzed typically under the so-called mirror Poincaré inequalities which are generalizations
of the Brascamp-Lieb inequalities in a different direction compared to the Weighted Poincaré inequalities.
The discretization analysis by Li et al. (2022) is based on mean-squared analysis.

As mentioned previously, our work leverages the literature on weighted functional inequalities, that are
satisfied by heavy-tailed densities. The weighted Poincare inequality was introduced in Blanchet et al. (2009)
and Bobkov and Ledoux (2009), and using an extension of the Brascamp-Lieb inequality, is shown to hold
for the class of s-concave densities. We also refer the interested reader to Cattiaux et al. (2010, 2011);
Bonnefont et al. (2016); Cordero-Erausquin and Gozlan (2017); Cattiaux et al. (2019) for various extensions
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and improvements of the works of Blanchet et al. (2009) and Bobkov and Ledoux (2009).

1.3 Notation

We use the following notation throughout the rest of the paper.

• 〈·, ·〉 denotes the Euclidean inner product and | · | denotes the Euclidean norm.
• For two matrices A and B, A � B means that B−A is positive semi-definite. The 2-norm of any d×d

matrix A is denoted as ‖A‖2. Id is the d× d identity matrix.
• ∆ denotes the Laplacian, and ∇ denotes the gradient of a given function.
• C2(Rd) refers to the set of all real functions on R

d that are twice continuously differentiable. C2
c (Rd)

refers to the set of all functions in C2(Rd) with compact support.
• The Wasserstein-2 distance between two probability measures on R

d, µ and ν is given by

W2(µ, ν) := inf
ζ∈C(µ,ν)

(∫

Rd×Rd

|x− y|2ζ(dx, dy)

)
1
2

.

where C(µ, ν) is the set of all measures on R
d × R

d whose marginals are µ and ν respectively.
• The χ2 divergence from a probability measure ν to a probability measure µ is defined as

χ2(ν|µ) :=

∫

Rd

(

ν(dx)

µ(dx)
− 1

)2

µ(dx).

• The gamma and beta functions are given by:

Γ(z) :=

∫ ∞

0

tz−1e−tdt, ∀ z > 0, and B(x, y) :=

∫ 1

0

tx−1(1 − t)y−1dt, ∀ x, y > 0.

• For two positive quantities f(d), g(d) depending on d, we define f(d) = O(g(d)) if there exists a
constant C > 0 such that f(d) ≤ Cg(d) for all d > 1. We define f(d) = Θ(g(d)) if there exist constants
C1, C2 > 0 such that C1g(d) ≤ f(d) ≤ C2g(d) for all d > 1. We use Õ to hide log factors in the O
notation.

1.4 Organization

In Section 2, we first establish the exponential ergodicity of the Itô diffusion in (3) under certain assumptions
that are favorable for the discretization analysis. We next provide our main results on the non-asymptotic
oracle complexity of the Euler-Maruyama discretization of (3). In Section 3, we provide moment compu-
tations in the heavy-tailed setting that are required to obtain explicit rates from the results in Section 2.
In Section 4, we provide an extension of our results to the zeroth-order setting. In Section 5 we provide
several illustrative examples. We discuss further implications of our assumptions in Section 6. The proofs
are provided in Section 7 and in Appendices A, B and C.

2 Itô Discretizations and Weighted Poincare inequalities

In this section, our goal is to analyze the Itô diffusion in (3) which admits a specific class of heavy-tailed
densities as its stationary density. Let X0 follow distribution ρ0 and denote the distribution of Xt by ρt for
all t ≥ 0. For any function ψ ∈ C2

c (Rd), the infinitesimal generator of (3) is given by

Lψ = −(β − 1)〈∇V,∇ψ〉 + V∆ψ. (4)

Hence, the Fokker-Planck equation corresponding to (3) is

∂tρt = ∇ · (βρt∇V + V∇ρt) = ∇ ·
(

ρtV∇ log
ρt
πβ

)

. (5)

It follows that, under the conditions in Theorem 1, πβ ∝ V −β is the unique stationary density of (3). We
next examine the convergence properties of (3) to its stationary density. To do so, we introduce the following
assumption.
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Assumption 1. There exists a positive constant CV such that, for all x ∈ R
d,

〈(∇2V )−1(x)∇V (x),∇V (x)〉
V (x)

≤ CV .

When V is radially symmetric, i.e., when V (x) := φ(|x|) for some φ ∈ C2(R+), the condition in Assump-
tion 1 simplifies as follows. Note that

∇V (x) =
φ′(|x|)
|x| x, and ∇2V =

(

φ′′(|x|) − φ′(|x|)
|x|

)

x⊗ x

|x|2 +
φ′(|x|)
|x| Id,

where ⊗ denotes outer-product. Hence, it follows that it is sufficient for φ to satisfy

φ′(r) ≤ (φ′′(r)r) ∧ (CV φ(r)/r), for all r ≥ 0.

For example, this property holds with CV = p if φ is a p-order polynomial with p ≥ 2 and non-negative
coefficients.

We next provide the following corollary to Theorem 1, motivated by the discussion in Section 2 of
Bobkov and Ledoux (2009).

Corollary 1. Consider the setting of Theorem 1 and suppose further that Assumption 1 holds with CV ∈
(0, β + 1), then for any smooth, πβ-integrable function, φ on R

d,

V arπβ
(φ) ≤

(

√

β + 1 −
√

CV

)−2
∫

Rd

〈V (x)(∇2V )−1(x)∇φ(x),∇φ(x)〉πβ (x)dx. (6)

Proof. We start from (2), assume that
∫

Rd gdπβ = 0. Then (2) could be rewritten as

(β + 1)

∫

Rd

g(x)2πβ(x)dx ≤
∫

Rd

〈(∇2V )−1(x)∇(gV )(x),∇(gV )(x)〉
V (x)

πβ(x)dx.

Now, note that we have the following elementary bound

〈A(u + v), (u+ v)〉 ≤ r〈Au, u〉 +
r

r − 1
〈Av, v〉, u, v ∈ R

d, r > 1,

for any arbitrary positive definite symmetric matrix A ∈ R
d×d. Hence, we obtain

(β + 1)

∫

Rd

g(x)2πβ(x)dx ≤ r

∫

Rd

〈(∇2V )−1(x)g(x)∇V (x), g(x)∇V (x)〉
V (x)

πβ(x)dx

+
r

r − 1

∫

Rd

〈(∇2V )−1(x)V (x)∇g(x), V (x)∇g(x)〉
V (x)

πβ(x)dx.

Invoking the condition in Assumption 1, we further obtain

(β + 1)

∫

Rd

g(x)2πβ(x)dx ≤ rCV

∫

Rd

g(x)2πβ(x)dx

+
r

r − 1

∫

Rd

〈V (x)(∇2V )−1(x)∇g(x),∇g(x)〉πβ(x)dx,

which then implies that, for any r ∈ (1, (β + 1)/CV ),
∫

Rd

g(x)2πβ(x)dx ≤ r

(r − 1)(β + 1 − rCV )

∫

Rd

〈V (x)(∇2V )−1(x)∇g(x),∇g(x)〉πβ(x)dx.

With the choice of r :=
√

β+1
CV

> 1, we get that for all g such that
∫

gdπβ = 0, and

∫

Rd

g(x)2πβ(x)dx ≤
(

√

β + 1 −
√

CV

)−2
∫

Rd

〈V (x)(∇2V )−1(x)∇g(x),∇g(x)〉πβ (x)dx.
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For all general φ, letting g = φ−
∫

φdπβ , we get

V arπβ
(φ) ≤

(

√

β + 1 −
√

CV

)−2
∫

Rd

〈V (x)(∇2V )−1(x)∇φ(x),∇φ(x)〉πβ (x)dx.

When V is strongly convex, Assumption 1 holds under the following sufficient condition.

Assumption 2. The function V : Rd → (0,∞) is twice continuously differentiable and V satisfies

(1) V is α-strongly convex, i.e. ∇2V (x) � αId for all x ∈ R
d.

(2) There exists a positive constant CV such that, for all x ∈ R
d,

〈∇V (x),∇V (x)〉
V (x)

≤ αCV .

The following result follows immediately from Assumption 2.

Lemma 1. Let β > d. If Assumption 2 holds with CV ∈ (0, β + 1), then for any smooth, πβ integrable
function φ on R

d, we have

Varπβ
(φ) ≤ α−1

(

√

β + 1 −
√

CV

)−2
∫

Rd

V (x)|∇φ(x)|2πβ(x)dx. (7)

With (7), we can show the exponential decay in χ2-divergence along (3). The proof of the following
proposition is standard and we include it here for completeness.

Proposition 1. Under the conditions in Lemma 1, for (Xt) following diffusion (3) with ρt being the distri-
bution of Xt, we have

χ2(ρt|πβ) ≤ exp

(

−2α
(

√

β + 1 −
√

CV

)2

t

)

χ2(ρ0|πβ). (8)

Proof of Proposition 1. First we can calculate the derivative of χ2(ρt|π) via (5),

d

dt
χ2(ρt|πβ) =

d

dt

∫

Rd

(

ρt(x)

πβ(x)
− 1

)2

πβ(x)dx

= 2

∫

Rd

∂tρt(x)

(

ρt(x)

πβ(x)
− 1

)

dx

= −2

∫

Rd

〈

∇
(

ρt
πβ

)

(x),∇ log

(

ρt
πβ

)

(x)

〉

V (x)ρt(x)dx

= −2

∫

Rd

V (x)

∣

∣

∣

∣

∇
(

ρt
πβ

)

(x)

∣

∣

∣

∣

2

πβ(x)dx.

According to (7), we get

d

dt
χ2(ρt|πβ) ≤ −2α

(

√

β + 1 −
√

CV

)2

Varπβ

(

ρt
πβ

)

= −2α
(

√

β + 1 −
√

CV

)2

χ2(ρt|πβ).

Finally, (8) follows from Gronwall’s inequality.
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The above result shows that for the class of πβ satisfying Assumption 2, the Itô diffusion in (3), converges
exponentially fast to its stationary density. Hence, time-discretizations of (3) provide a practical way of
sampling from that class of densities. The Euler-Maruyama discretization to (3) is given by

xk+1 = xk − h(β − 1)∇V (xk) +
√

2hV (xk)ξk+1, (9)

where h > 0 is the step size and {ξ}∞k=1 is a sequence of i.i.d. standard Gaussian random vectors in R
d.

We now present our main result on the iteration complexity of (9) for sampling from πβ . We state our
discretization result, based on a mean-square analysis, in the W2 metric. In particular, we highlight that
Proposition 1 requires that condition that β > d, in addition to Assumption 2, whereas Theorem 2 below,
does not. In Section 6, we revisit these conditions and provide additional insights. Obtaining convergence
results in the stronger χ2-divergence is left as future work.

Theorem 2. Let V be gradient-Lipschitz with parameter L > 0, and satisfying Assumption 2 with

δ :=
β − 1 − 1

4CV d
1
4CV d

> 0. (10)

Let (xk)∞k=0 be generated from (9) with νk denoting the distribution of xk, for all k ≥ 0. Then with the
step-size,

h < min

(

1

4(β − 1)L
,

2δ

3(1 + δ)α(β − 1)

)

,

the decay of Wasserstein-2 distance along the Markov chain (xk)∞k=0 can be described by the following equation:
For all k ≥ 1,

W2(νk, πβ) ≤ (1 −A)kW2(ν0, πβ) +
C

A
+

B
√

A(2 − A)
. (11)

with A,B and C given respectively in (51), (52) and (53).

Remark 1 (Constant δ). We now motivate the definition and the condition on the constant δ based on
exponential contractivity arguments.

Definition 1 (Exponential contractivity). Let Xt, Yt be two different solutions to the same stochastic
differential equation (SDE) with initial conditions x, y respectively. We say the SDE is W2-exponential
contractive if there exists a constant κ > 0, such that

W2(L(Xt), L(Yt)) ≤ e−κt |x− y|,
where by L(X) we refer to the law of X.

Uniform dissipativity is a sufficient condition for exponential contractivity (Gorham et al., 2019, Theorem
10). The uniform dissipativity condition for (3) can be represented as

−(β − 1)〈∇V (x) −∇V (y), x− y〉 +
1

2

∥

∥

∥

√

2V (x)Id −
√

2V (y)Id

∥

∥

∥

2

F
≤ −κ|x− y|2,

or equivalently as

−(β − 1)〈∇V (x) −∇V (y), x− y〉 + d|
√

V (x) −
√

V (y)|2 ≤ −κ|x− y|2.
When V satisfies Assumption 2, a sufficient condition for the above uniform dissipativity condition is given
by

− α(β − 1)|x− y|2 +
d

4
αCV |x− y|2 ≤ −κ|x− y|2,

or equivalently,

α

(

β − 1 − d

4
CV

)

≤ κ.

The sufficient condition coincides with the condition that δ > 0 in Theorem 2, which also motivates the
assumption in Theorem 2.
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Remark 2 (Iteration complexity). With Theorem 2, we can calculate the order of the iteration complexity
to reach an ǫ-accuracy in Wasserstein-2 distance. With (51),(52),(53), we have

C

A
=

9(δ + 1)L

αδ
d

1
2 h

1
2Eπβ

[V (X)]
1
2 +

6(δ + 1)L

αδ
(β − 1)hEπβ

[

|∇V (X)|2
]

1
2 ,

B
√

A(2 −A)
≤ 8(δ + 3)

δ
d

1
2h

1
2Eπβ

[V (X)]
1
2 +

8(δ + 3)

δ
(β − 1)hEπβ

[

|∇V (X)|2
]

1
2 .

The above display implies that

C

A
+

B
√

A(2 −A)
≤ 9(δ + 3)

δ

(

1 +
L

α

)

(

d
1
2h

1
2Eπβ

[V (X)]
1
2 + (β − 1)hEπβ

[

|∇V (X)|2
]

1
2

)

.

Hence, we get C
A + B√

A(2−A)
< ǫ/2 if the step-size h satisfies

h < min







δ2Eπβ
[V (X)]

−1
ǫ2

81d(δ + 3)2(1 + L
α )2

,
δEπβ

[

|∇V (X)|2
]− 1

2 ǫ

81(β − 1)(δ + 3)(1 + L
α )







. (12)

Defining Kǫ = log (2W2(ν0, πβ)/ǫ), we have W2(νk, πβ) < ǫ for all k ≥ K with

K =
3(1 + δ)

α(β − 1)δh∗
Kǫ

≤ 273 max







(δ + 3)3(1 + L
α )2dEπβ

[V (X)]

αδ3(β − 1)ǫ2
,

(δ + 3)2(1 + L
α )Eπβ

[

|∇V (X)|2
]

1
2

αδ2ǫ







Kǫ. (13)

Recall the definition of δ in (10). The order of K depends on the order of δ. That is, we have the following
two cases:

• If δ = O(1) and β = O(d), we have that

K = Õ

(

1

αǫ2

(

1 +
L

α

)2

Eπβ
[V (X)] +

1

αǫ

(

1 +
L

α

)

Eπβ

[

|∇V (X)|2
]

1
2

)

.

• If δ = O(1/d) and β = O(d), we have that

K = Õ

(

d3

αǫ2

(

1 +
L

α

)2

Eπβ
[V (X)] +

d2

αǫ

(

1 +
L

α

)

Eπβ

[

|∇V (X)|2
]

1
2

)

.

In order to obtain more explicit iteration complexity bounds from Remark 2, it is required to compute
bounds on the following two quantities: Eπβ

[

|∇V (X)|2
]

and Eπβ
[V (X)].

3 Moment Bounds

In this section, we compute moment bounds under the conditions in Theorem 2.

3.1 An Example: Multivariate t-distribution

We first start with the isotropic case.

Proposition 2. Let πβ = Z−1
β V −β with β > d/2 + 1, V (x) = 1 + |x|2 and Zβ =

∫

Rd(1 + |x|2)−βdx. We
have

Eπβ
[V (X)] =

β − 1

β − 1 − d
2

and Eπβ

[

|∇V (X)|2
]

=
2d

β − 1 − d
2

. (14)
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Proof. Let Ad(1) denote the surface area of the unit sphere in d dimensions. By a standard calculation, we
have that, for all β > d

2 ,

Zβ =

∫

Rd

(1 + |x|2)−βdx =

∫ ∞

0

(1 + r2)−βrd−1drAd(1) =
π

d
2

Γ(d2 )

∫ ∞

0

(1 +R)−βR
d
2−1dR

=
π

d
2

Γ(d2 )

∫ 1

0

u
d
2−1(1 − u)β−

d
2−1du =

π
d
2B(d2 , β − d

2 )

Γ(d2 )
,

where B is the beta function. In the above calculation, the second identity follows from a change to polar
coordinates. The third identity follows from a substitution with R = r2 and the fourth identity follows from
a substitution u = R/(1 +R). Therefore for all β > d/2 + 1, we have that

Eπβ
[V (X)] = Z−1

β

∫

Rd

(1 + |x|2)(1 + |x|2)−βdx =
Zβ−1

Zβ
=
π

d
2B(d2 , β − 1 − d

2 )

Γ(d2 )

Γ(d2 )

π
d
2B(d2 , β − d

2 )

=
B(d2 , β − 1 − d

2 )

B(d2 , β − d
2 )

=
Γ(d2 )Γ(β − 1 − d

2 )

Γ(β − 1)

Γ(β)

Γ(d2 )Γ(β − d
2 )

=
β − 1

β − 1 − d
2

.

where the fourth identity follows from the property of Beta function, B(x, y) = Γ(x)Γ(y)
Γ(x+y) and the fifth identity

follows from the property of Γ function, Γ(1 + z) = zΓ(z). For the other expectation, we have

Eπβ

[

|∇V (X)|2
]

= Z−1
β

∫

Rd

|2x|2(1 + |x|2)−βdx = 4Z−1
β Ad−1(1)

∫ ∞

0

r2(1 + r2)−βrd−1dr

=
4π

d
2

Γ(d2 )Zβ

∫ ∞

0

R
d
2 (1 +R)−βdR =

4π
d
2

Γ(d2 )Zβ

∫ 1

0

u
d
2 (1 − u)β−

d
2−2du

=
4π

d
2B(d2 + 1, β − d

2 − 1)

Γ(d2 )

Γ(d2 )

π
d
2B(d2 , β − d

2 )
=

4B(d2 + 1, β − d
2 − 1)

B(d2 , β − d
2 )

= 4
Γ(d2 + 1)Γ(β − d

2 − 1)

Γ(β)

Γ(β)

Γ(d2 )Γ(β − d
2 )

=
2d

β − d
2 − 1

,

where we apply the same substitutions and properties of Beta functions and Gamma functions in the above
calculation.

Remark 3. If πβ is the class of isotropic multivariate t-distributions, with the results in Proposition 2, the
order of the two expectations in terms of the dimension parameter d is given as follows,

• when β > d
2 + 1 and β − 1 − d

2 = O(d), we have

Eπβ
[V (X)] = O(1), and Eπβ

[

|∇V (X)|2
]

= O(1).

• when β > d
2 + 1 and β − 1 − d

2 = O(1), we have

Eπβ
[V (X)] = O(d), and Eπβ

[

|∇V (X)|2
]

= O(d).

For a general class of non-isotropic multivariate t-distribution, we consider πβ = Z−1
β V −β with V (x) =

1 + xTΣx where Σ is a strictly positive-definite d × d matrix. In Roth (2012), it’s been shown that for any
β > d

2 , the normalization constant is

Zβ =
Γ(ν2 )π

d
2

√

det(Σ)

Γ(ν+d
2 )

=
Γ(β − d

2 )π
d
2

√

det(Σ)

Γ(β)
.

Therefore for any β > d
2 + 1, we have

Eπβ
[V (X)] =

Zβ−1

Zβ
=

Γ(β)Γ(β − 1 − d
2 )

Γ(β − 1)Γ(β − d
2 )

=
β − 1

β − 1 − d
2

,
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and

Eπβ

[

|∇V (X)|2
]

= Z−1
β

∫

Rd

〈∇V (x), V (x)−β∇V (x)〉dx

= −Z−1
β

∫

Rd

V (x)∇ ·
(

V (x)−β∇V (x)
)

dx

= βEπβ

[

|∇V (X)|2
]

− Z−1
β

∫

Rd

∆V (x)V (x)−(β−1)dx.

The above identity implies

Eπβ

[

|∇V (X)|2
]

= (β − 1)−1Z−1
β

∫

Rd

∆V (x)V (x)−(β−1)dx

≤ (β − 1)−1Z−1
β

∫

Rd

trace(∇2V (x))V (x)−(β−1)dx

≤ trace(Σ)

β − 1
Eπβ

[V (X)]

≤ trace(Σ)

β − 1 − d
2

where the second inequality follows from the fact that ∇2V (x) = Σ.

Remark 4. If πβ is in the class of non-isotropic multivariate t-distributions, the order of the two expectations
in terms of the dimension parameter d is as follows,

• when β > d
2 + 1 and β − 1 − d

2 = O(d), we have

Eπβ
[V (X)] = O(1), and Eπβ

[

|∇V (X)|2
]

= O(d−1trace(Σ)).

• when β > d
2 + 1 and β − 1 − d

2 = O(1), we have

Eπβ
[V (X)] = O(d), and Eπβ

[

|∇V (X)|2
]

= O(trace(Σ)).

3.2 Non-isotropic densities with quadratic-like V outside of a ball

In this section, we estimate the expectations for a class of non-isotropic densities in the form of πβ ∝ V −β

with V satisfying the following Lyapunov condition:

∃ ε,R > 0 such that ∆V (x) − (β − 1)
|∇V (x)|2
V (x)

≤ −ε ∀ |x| ≥ R. (15)

The above Lyapunov condition characterizes the class of V that are ‘quadratic-like’ outside a ball of radius
R. If we assume that V has Lipschitz gradients, then when β is sufficiently large, the above assumption is
satisfied if V satisfies the PL inequality |∇V (x)|2 ≥ a2V (x) wherever |x| ≥ R with some a > 0 and it is from
this inequality that quadratic growth follows. In particular, if V satisfies the gradient Lipschitz assumption
with parameter L, we have that for all β ≥ 1 + a−2(dL + ε),

∆V (x) − (β − 1)
|∇V (x)|2
V (x)

≤ dL− (β − 1)a2 ≤ −ε ∀ |x| ≥ R,

thereby leading to the Lyapunov condition in (15).

Proposition 3. If V ∈ C2(Rd) is positive, L-gradient Lipschitz and satisfies (15), then we have

Eπβ
[V (x)] ≤ (dL+ ε) max

|x|≤R
V (x), and Eπβ

[

|∇V (X)|2
]

≤ dL (dL + ε)

(β − 1)
max
|x|≤R

V (X). (16)
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Proof. Since L is ergodic with stationary distribution πβ , we have

Eπβ
[V (X)] = lim

t→∞
E [V (Xt)] ,

with (Xt)t≥0 being the solution to (3) with initial condition X0 = x. We will first bound E [V (Xt)] and then
take t→ ∞. Let (Pt)t≥0 be the Markov semigroup of (3), then

d

dt
Eπβ

[V (Xt)] =
d

dt
PtV (x) = PtLV (x).

With (4), we have

LV (x) = V (x)

[

∆V (x) − (β − 1)
|∇V (x)|2
V (x)

]

≤ V (x)
(

−ε1|x|≥R + dL1|x|<R

)

≤ −εV (x) + (dL+ ε) max
|x|≤R

V (x),

where the first inequality follows from (15) and the fact that ∆V ≤ d
∥

∥∇2V
∥

∥

2
. Therefore we obtain

d

dt
PtV (x) ≤ −εPtV (x) + (dL+ ε) max

|x|≤R
V (x),

and it follows from Gronwall’s inequality that

Eπβ
[V (Xt)] = PtV (x) ≤ V (x)e−εt +

(

1 − e−εt
)

(dL+ ε) max
|x|≤R

V (x).

We hence have that Eπβ
[V (X)] ≤ (dL+ ε) max|x|≤R V (x) by taking t → ∞. For the other expectation, we

have

Eπβ

[

|∇V (X)|2
]

= Z−1
β

∫

Rd

〈∇V (x), V (x)−β∇V (x)〉dx

= −Z−1
β

∫

Rd

V (x)∇ ·
(

V (x)−β∇V (x)
)

dx

= βEπβ

[

|∇V (X)|2
]

− Z−1
β

∫

Rd

∆V (x)V (x)−(β−1)dx.

The above identity implies

Eπβ

[

|∇V (X)|2
]

= (β − 1)−1Z−1
β

∫

Rd

∆V (x)V (x)−(β−1)dx

≤ (β − 1)−1Z−1
β

∫

Rd

trace(∇2V (x))V (x)−(β−1)dx

≤ (β − 1)−1Z−1
β dL

∫

Rd

V (x)−(β−1)dx

=
dL

β − 1
Eπβ

[V (X)]

≤ dL (dL+ ε)

β − 1
max
|x|≤R

V (x).

3.3 General Case

Next we discuss the general case where πβ = Z−1
β V β and V ∈ C2(Rd) is positive such that there exist

constants α,L > 0 and αId � ∇2V (x) � LId for all x ∈ R
d. Since V is strongly convex, there is a unique

x∗ ∈ R
d such that V (x) ≥ V (x∗) > 0 for all x ∈ R

d and ∇V (x∗) = 0. Without loss of generality, we assume
x∗ = 0.
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Proposition 4. Let β > d
2 + 1. If V ∈ C2(Rd) is positive, α-strongly convex and L-gradient Lipschitz, we

have for any r ∈ (0, β − d
2 − 1),

Eπβ
[V (X)] ≤

(

L

α

)

d
2

β−
d
2
−r

V (0)

(

Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2 )

)
1

β−
d
2
−r

, (17)

Eπβ

[

|∇V (X)|2
]

≤ dL

β − 1

(

L

α

)

d
2

β−
d
2
−r

V (0)

(

Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2 )

)
1

β−
d
2
−r

. (18)

Proof. For any r ∈ (0, β − d
2 − 1), we have

Eπβ
[V (X)] =

∫

Rd V (x)V (x)−βdx

Zβ
=
Zβ−1

Zβ
≤
(

L

α

)

d
2

β−
d
2
−r

V (0)

(

Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2 )

)
1

β−
d
2
−r

.

where the last inequality follows from Lemma 3. For the other expectation, we have

Eπβ

[

|∇V (X)|2
]

= Z−1
β

∫

Rd

〈∇V (x), V (x)−β∇V (x)〉dx

= −Z−1
β

∫

Rd

V (x)∇ ·
(

V (x)−β∇V (x)
)

dx

= βEπβ

[

|∇V (X)|2
]

− Z−1
β

∫

Rd

∆V (x)V (x)−(β−1)dx.

The above identity implies

Eπβ

[

|∇V (X)|2
]

= (β − 1)−1Z−1
β

∫

Rd

∆V (x)V (x)−(β−1)dx

≤ (β − 1)−1Z−1
β

∫

Rd

trace(∇2V (x))V (x)−(β−1)dx

≤ (β − 1)−1Z−1
β dL

∫

Rd

V (x)−(β−1)dx

=
dL

β − 1

Zβ−1

Zβ

≤ dL

β − 1

(

L

α

)

d
2

β−
d
2
−r

V (0)

(

Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2 )

)
1

β−
d
2
−r

.

where the last inequality also follows from Lemma 3.

Remark 5. A ratio between Gamma functions appears in (17) and (18). The ratio can be written explicitly
via properties of Gamma functions.

• When d is an even number and d = 2k for some integer k,

Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2 )

=
Γ(r)

Γ(d2 + r)

Γ(β)

Γ(β − d
2 )

=
Γ(r)

Γ(r)
∏k

i=1(d2 + r − i)

Γ(β − d
2 )
∏k

i=1(β − i)

Γ(β − d
2 )

=

∏k
i=1(β − i)

∏k
i=1(d2 + r − i)

≤
(

β − d
2

r

)
d
2

,

• When d is an odd number with d = 2k − 1 for some integer k,

Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2 )

=
Γ(r)

Γ(d2 + r)

Γ(β)

Γ(β − d
2 )

=
Γ(r)

Γ(12 + r)
∏k−1

i=1 (d2 + r − i)

Γ(β − d
2 + 1

2 )
∏k−1

i=1 (β − i)

Γ(β − d
2 )
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=

∏k−1
i=1 (β − i)

∏k−1
i=1 (d2 + r − i)

r−1Γ(r + 1)

Γ(12 + r)

Γ(β − d
2 + 1

2 )

Γ(β − d
2 )

≤
(

β − d
2 + 1

2

r + 1
2

)k−1

r−1(1 + r)
1
2

(

β − d

2
+

1

2

)
1
2

≤
√

1 + r

r

(

β − d
2

r

)
d
2

,

where the first inequality follows from Gautschi’s inequality (Ismail and Muldoon, 1994).

Remark 6. With Theorem 4 and the upper bounds in Remark 5, we can get the estimations for Eπβ

[

|∇V (X)|2
]

and Eπβ
[V (X)]: for any r ∈ (0, β − d

2 − 1),

Eπβ
[V (X)] ≤ V (0)

(

L

α

)

d
2

β−
d
2
−r

(

1 + r

r

)
1

2(β−
d
2
−r)

(

β − d
2

r

)

d
2

β−
d
2
−r

, (19)

Eπβ

[

|∇V (X)|2
]

≤ V (0)dL

β − 1

(

L

α

)

d
2

β−
d
2
−r

(

1 + r

r

)
1

2(β−
d
2
−r)

(

β − d
2

r

)

d
2

β−
d
2
−r

. (20)

4 Zeroth-Order Itô Discretization

While previously we consider the case when the gradient of the function V is analytically available to us,
we now consider the case when we have access only to the function evaluations. This setting is called the
zeroth-order setting and has been recently examined in the context of complexity of sampling in the works
of Dwivedi et al. (2019); Lee et al. (2021); Roy et al. (2022). In this setting, we construct an approximation
to the gradient via zeroth-order information, i.e., function evaluations. For simplicity, we consider the case of
obtaining exact function evaluations. Based on the Gaussian smoothing technique (Nesterov and Spokoiny,
2017; Roy et al., 2022), for any x ∈ R

d, we define the zeroth order gradient estimator gσ,,m(x) as

gσ,m(x) :=
1

m

m
∑

i=1

V (x+ σui) − V (x)

σ
ui (21)

where ui ∼ N (0, Id) are assumed to be independent and identically distributed. The parameter m is called
the batch size parameter. Then the zeroth order algorithm to sample πβ is given by

xk+1 = xk − h(β − 1)gσ,m(xk) +
√

2V (xk)ξk+1 (22)

where h > 0 is the step size and {ξk+1}∞k=0 is a sequence of independent identically distributed standard
Gaussian random vectors in R

d. From Balasubramanian and Ghadimi (2022) and Roy et al. (2022), we
recall the following property of gσ,m.

Proposition 5. (Roy et al., 2022, Section 8.1) Assume V is L-gradient Lipschitz. Define ζk = gσ,m(xk) −
∇V (xk) with gσ,m defined in (21) and {xk}∞k=0 generated by (22). We have for any k ≥ 0,

E
[

|E [ζk|xk] |2
]

≤ L2σ2d, (23)

and

E
[

|ζk − E [ζk|xk] |2
]

≤ σ2

2m
L2(d+ 3)3 +

2(d+ 5)

m
E
[

|∇V (xk)|2
]

. (24)
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Theorem 3. Suppose V is gradient-Lipschitz with parameter L > 0 and satisfies Assumption 2 with δ
in (10). Let gσ,m be as defined in (21) and (xk)∞k=0 be generated from (22) with xk ∼ νk for all k ≥ 0. Then
with the time step size

h < min

{

2δ

3(1 + δ)α(β − 1)
,

αmδ

24(1 + δ)(β − 1)(d+ 5)L2
,

1

4(β − 1)L

}

, (25)

the decay of Wasserstein-2 distance along the Markov chain (xk)∞k=0 can be described by the following equation.
For all k ≥ 1,

W2(νk, πβ) ≤ (1 −A′)kW2(ν0, πβ) +
C′

A′
+

B′

√

A′(2 −A′)
. (26)

with A′, B′ and C′ given respectively in (60), (61) and (62).

Remark 7. With Theorem 3, we can study the iteration complexity to reach an ε-accuracy in Wasserstein-2
distance. In the following discussion, we focus on the dimension dependence and ε dependence in the iteration
complexity. When β = Θ(d) and α,L = Θ(1), and when h satisfies (25), we have

A′ = O (δdh) ,
C′

A′
= O





(dhEπβ
[V (X)])

1
2 + dhEπβ

[

|∇V (X)|2
]

1
2 + σd

1
2

δ



 ,

B′

√

A′(2 −A′)
= O

((

dh

δ
+

dh
1
2

(δm)
1
2

)

Eπβ

[

|∇V (X)|2
]

1
2 +

(dh)
1
2

δ
Eπβ

[V (X)] +
σd2h

1
2

(δm)
1
2

)

.

To ensure W2(νK , πβ) < ε, we require that each of

(1 −A′)KW2(ν0, πβ),
C′

A′
,

B′

√

A′(2 −A′)
,

is smaller than ε/3. Setting σ = εδ/
√
d, and

h = O

(

min

{

(εδ)2

d
Eπβ

[V (X)]
−1
,
εδ

d
Eπβ

[

|∇V (X)|2
]− 1

2 ,
ε2δm

d2
Eπβ

[

|∇V (X)|2
]−1
})

,

we hence obtain that the iteration complexity K is of order

K = Õ

(

max

{

1

ε2δ3
Eπβ

[V (X)] ,
1

εδ2
Eπβ

[

|∇V (X)|2
]

1
2 ,

d

ε2δ2m
Eπβ

[

|∇V (X)|2
]

})

. (27)

The number of function evaluations is hence mK.

5 Illustrative Examples

We now provide illustrative examples to highlight the implications of our results.

5.1 Multivariate t-distribution: Large Degree of Freedom

We first consider the isotropic multivariate t-distribution with the degrees of freedom being d+2. We choose
V (x) = 1 + |x|2, β = d+ 1 and πβ(x) ∝ V (x)−β = (1 + |x|2)−(d+1). With this choice of V and β, V satisfies
Assumption 2 with α = 2, CV = 2, and V is L-Lipschitz gradient with L = 2. The constant δ in Theorem
2 becomes δ = 1. Furthermore, according to proposition 2, Eπβ

[V (X)] = 2 and Eπβ
[|∇V (X)|2] = 4.
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5.1.1 First order algorithm

According to Theorem 2 and (13), to obtain ǫ-accuracy in Wasserstein-2 distance, the iteration complexity
is of order Õ(1/ǫ2). With the same choice of V and β, we check the conditions of Theorem 1 in Li et al.
(2019). The diffusion (3) is α′-uniformly dissipative with α′ = d and the Euler discretization given in (9)
has local deviation with order (p1, p2) = (1, 3/2) and (λ1, λ2) = (Θ(d5),Θ(d4)). The detailed calculation for
deriving the constants above is provided in Appendix B. Hence, by Theorem 1 in Li et al. (2019), to reach
an ǫ-accuracy in Wasserstein-2 distance, the iteration complexity is of order Õ(d3/ǫ2). Hence, in comparison
with the result in Li et al. (2019), we obtain a dimension-free iteration complexity to ensure an ǫ-accuracy
in Wasserstein-2 distance.

5.1.2 Zeroth order algorithm

According to Theorem 3 and (27), to obtain ε-accuracy in Wasserstein-2 distance, the iteration complexity is
of order Õ

(

(1 ∨ d/m)/ε2
)

. When m = 1, the iteration complexity K ∼ Õ(d/ε2) and the number of functions

evaluations mK is also of the same order Õ(d/ε2). If we choose the batch size m = d, we get a dimension
independent iteration complexity K ∼ Õ(1/ε2) but the number of function evaluations is of order Õ(d/ε2).
Hence, we notice that in the case of multivariate t-distribution distributions with large degrees of freedom,
the cost of estimating the gradient has an effect on the sampling complexities.

5.2 Multivariate t-distribution: Small Degrees of Freedom

We now consider the isotropic multivariate t-distribution with the degrees of freedom being 3. We denote
the corresponding density function by πβ . The exact number of 3 is chosen just for convenience; the
results of this example apply to all cases where the degrees of freedom is strictly larger than 2 which
corresponds to the setting where the variance is finite. We choose V (x) = 1 + |x|2, β = (d+ 3)/2 and
πβ(x) ∝ V (x)−β = (1 + |x|2)−(d+3)/2. With the above choice of V and β, V satisfies Assumption 2 with
α = 2, CV = 2 and V is L-Lipschitz gradient with L = 2. Hence, the constant δ in Theorem 2 is given by
δ = 1/d. According to Proposition 2, Eπβ

[V (X)] = d+ 1 and Eπβ
[|∇V (X)|2] = 4d.

5.2.1 First order algorithm

According to Theorem 2 and (13), to obtain ǫ-accuracy in Wasserstein-2 distance, the iteration complexity
is of order Õ(d4/ǫ2). With the same choice of V and β, we check the conditions of Theorem 1 in Li et al.
(2019). The diffusion (3) is α′-uniformly dissipative with α′ = 1 and the Euler discretization given in (9)
has local deviation with order (p1, p2) = (1, 3/2) and (λ1, λ2) = (Θ(d5),Θ(d4)). The detailed calculation
for deriving the constants is provided in Appendix B. Hence, according to Theorem 1 in Li et al. (2019), to
reach an ǫ-accuracy in Wasserstein-2 distance, the iteration complexity is of order Õ(d6/ǫ2). Even in this
extremely heavy-tail case (i.e., only the variance exists), to ensure an ǫ-accuracy in Wasserstein-2 distance,
we can obtain an iteration complexity with polynomial dimension dependence. Furthermore, in comparison
to Li et al. (2019), our analysis helps to decrease the dimension exponent by a factor of 2.

5.2.2 Zeroth order algorithm

According to Theorem 3 and (27), to obtain ε-accuracy in Wasserstein-2 distance, the iteration complexity is

of order Õ
(

max{d4/ε2, d 5
2 /ε, d4/ε2m}

)

. Hence, we have that for any batch size m, the iteration complexity

K = Õ(d4/ε2). Picking m = 1, the number of function evaluations are of the same order, i.e., mK =
Õ(d4/ε2).

Remark 8. The example discussed in Section 5.2.2 highlights the following important observation: Choosing
a large batch size does not improve the iteration complexity. To explain this, we understand both (9) and (22)
as approximation to the continuous dynamics (3). For the first-order algorithm, the error of the approxima-
tion only comes from the Euler-Maruyama discretization. For the zeroth-order algorithm, the error of the
approximation comes from both the Euler-Maruyama discretization and the zeroth-order gradient estimate=.
When the error from the Euler-Maruyama discretization dominates, the optimal batch size is always 1 and
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the oracle complexity of the zeroth order algorithm is the same as the iteration complexity for the first-order
algorithm. When the error from the zeroth-order gradient estimate dominates, we need to choose a large
batch size depending on d so that the iteration complexity for the zeroth-order algorithm is the same as the
iteration complexity for the first-order algorithm while the zeroth-order oracle complexity is of order m-times
larger.

6 Further Results and Additional Insights on Assumptions

In Section 2, we provide sufficient conditions on V such that when β > d, πβ ∝ V −β satisfies the weighted
Poincaré inequality with weight V . In this section, we relax the conditions in Section 2 by introducing the
following assumptions.

Assumption 3. The function V : Rd → (0,∞) is twice continuously differentiable and V satisfies

(1) ∇2V (x) is invertible for all x ∈ R
d.

(2) There exists γ ∈
(

0, β
d+2

]

, such that

sup
x∈Rd

∥

∥

∥V (x)γ−1
(

∇2Vγ
)−1

(x)
∥

∥

∥

2
≤ CV (γ),

where Vγ := V γ and CV (γ) is a positive constant depending on γ.

Lemma 2. Under Assumption 3, for any smooth function φ ∈ L2(πβ),

V arπβ
(φ) ≤ CWPI

∫

Rd

|∇φ(x)|2V (x)πβ(x)dx, with CWPI = CV (γ)

(

β

γ
− 1

)−1

. (28)

Proof. First we define Vγ := V γ . Choose β′ = β − 2γ. For πβ′ ∝ V −β′

, we can write it as πβ′ ∝ Vγ
−a with

a =
β′

γ
=
β − 2γ

γ
≥ d,

where the inequality follows from the fact that γ ∈
(

0, β
d+2

]

. Therefore we can apply Theorem 1 to πβ′ ∝
Vγ

−a and get for any smooth, πβ′-square integrable function g with Eπβ′
[g(X)] = 0 and G = Vγg,

(a+ 1)

∫

Rd

g(x)2πβ′(x)dx ≤
∫

Rd

〈(∇2Vγ)−1(x)∇G(x),∇G(x)〉
Vγ(x)

πβ′(x)dx. (29)

Since β′ = β − 2γ, (29) is equivalent to

(a+ 1)

∫

Rd

|G(x)|2
V (x)

V (x)−(β−1)dx ≤
∫

Rd

〈(∇2Vγ)−1(x)∇G(x),∇G(x)〉V (x)−(β′+γ)dx. (30)

Under Assumption 3, we have
∫

Rd

〈(∇2Vγ)−1(x)∇G(x),∇G(x)〉V (x)−(β′+γ)dx

≤ CV (γ)

∫

Rd

|∇G(x)|2V (x)1−γV (x)−(β′+γ)dx

= CV (γ)

∫

Rd

|∇G(x)|2V (x)−(β−1)dx,

where the last identity follows from the fact that β′ = β − 2γ. Along with (30), we get

(a+ 1)

∫

Rd

|G(x)|2
V (x)

V (x)−(β−1)dx ≤ CV (γ)

∫

Rd

|∇G(x)|2V (x)−(β−1)dx. (31)
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Since G = V γg, G is smooth, πβ-square integrable and Eπβ−γ
[G(X)] = 0. For any πβ-square integrable φ,

let G = φ− Eπβ−γ
[φ(X)] and we get

∫

Rd

|φ(x) − Eπβ−γ
[φ(X)]|2πβ(x)dx ≤ CV (γ)

a+ 1

∫

Rd

|∇φ(x)|2V (x)πβ(x)dx. (32)

Therefore for any smooth, πβ-square integrable φ,

V arπβ
(φ) = inf

c∈R

∫

Rd

|φ(x) − c|2πβ(x)dx ≤ CV (γ)

a+ 1

∫

Rd

|∇φ(x)|2V (x)πβ(x)dx,

which is equivalent to (28) with CWPI = CV (γ)
a+1 = CV (γ)

(

β
γ − 1

)−1

.

Remark 9. Lemma 2 can be applied to the class of multivariate t-distributions with V (x) = 1 + |x|2. When
β ∈

(

d+2
2 , d

]

, with the choice of γ = β
d+2 , Assumption 3 holds with

CV (γ) =
(d+ 2)2

2β(2β − d− 2)
.

Hence, Lemma 2 implies that the multivariate t-distribution with degree of freedom ν ∈ (2, d] satisfies the
weighted Poincaré inequality with weight 1 + |x|2 and with

CWPI =
(d+ 2)2

ν(d+ 1)(d+ ν)
.

The detailed calculation for deriving the above mentioned constants is provided in Appendix C.

As an immediate consequence of Lemma 2, we have the following χ2 convergence result for (3).

Proposition 6. Under Assumption 3, with (Xt) satisfying (3) with ρt being the distribution of Xt, we have

χ2(ρt|πβ) ≤ exp

(

−CV (γ)−1

(

β

γ
− 1

)

t

)

χ2(ρ0|πβ). (33)

For the case of multivariate t-distributions, Proposition 6 allows us to show exponential convergence of (3)
in the χ2 divergence with smaller degrees of freedom (and hence heavier tails) compared to Proposition 1.

6.1 Relationship between Lemma 1 and Lemma 2

The result in Lemma 2 complements that in Lemma 1. It can be used to study the WPI for πβ when β ≤ d.
In particular, when β ≤ d, if πβ ∝ V −β and V satisfies Assumption 2 with CV ∈ (0, d+2

d+2−β ), then V satisfies
Assumption 3. Therefore πβ satisfies the WPI. In Proposition 7, this relation is proved formally.

Proposition 7. When β ≤ d, if Assumption 2 holds with CV ∈ (0, d+2
d+2−β ), then Assumption 3 holds.

Proof. First ∇2V is invertible because ∇2V � αId. Next we show that there exists γ ∈ (0, β
d+2 ] such that

∥

∥V (x)γ−1(∇2Vγ)−1(x)
∥

∥

2
≤ CV (γ) for all x ∈ R

d. It is equivalent to showing that there exists γ ∈ (0, β
d+2 ]

such that
∥

∥V (x)1−γ(∇2Vγ)(x)
∥

∥

2
> 0 for all x ∈ R

d. From the calculations in Section C, we have

∇2Vγ(x) = γV (x)γ−1
(

(γ − 1)V (x)−1∇V (x)T∇V (x) + ∇2V (x)
)

.

Therefore

V (x)1−γ(∇2Vγ)(x) = γ
(

∇2V (x) − (1 − γ)V (x)−1∇V (x)T∇V (x)
)

� αγ (1 − (1 − γ)CV ) Id,
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where the inequality follows from Assumption 2. Last we show that there exists γ ∈ (0, β
d+2 ] such that

1 − (1 − γ)CV > 0. Note that

1 − (1 − γ)CV > 0 =⇒ γ > 1 − 1

CV
.

Since CV ∈
(

0, d+2
d+2−β

)

, we have that

1 − 1

CV
<

β

d+ 2

Therefore there exists a constant γ ∈
(

0, β
d+2

]

such that
∥

∥V (x)1−γ(∇2Vγ)(x)
∥

∥

2
> 0 for all x ∈ R

d.

6.2 Relationship between Theorem 2 and Proposition 6

Proposition 6 studies the convergence of the continuous dynamics (3) while Theorem 2 studies the conver-
gence of the discretization (9). The conditions in Theorem 2 can be shown to imply conditions in propo-
sition 6. In Proposition 6 we only assume Assumption 3. In Theorem 2, we assume (i) Assumption 2, (ii)

δ =
β−1− 1

4CV d
1
4CV d

> 0, and (iii) V is gradient Lipschitz. In the following proposition, we show that these three

assumptions together imply Assumption 3.

Proposition 8. If Assumption 2 holds such that δ =
β−1− 1

4CV d
1
4CV d

> 0 and V is L-gradient Lipschitz, then

Assumption 3 holds.

Proof of Proposition 6. Under Assumption 2 and L-gradient Lipschitzness assumption, we have that V is
‘essential quadratic’. That is, assuming V attains its global minimum at x∗, for all x ∈ R

d,

V (x∗) +
α

2
|x− x∗|2 ≤ V (x) ≤ V (x∗) +

L

2
|x− x∗|2.

Therefore for all x ∈ R
d,

|∇V (x)|2
V (x)

≤ L2|x− x∗|2
V (x∗) + α

2 |x− x∗|2 ≤ 2L2

α
,

which implies that Assumption 2-(2) is satisfied with CV = 2L2

α2 . Furthermore,

V (x)1−γ(∇2Vγ)(x) � αγ (1 − (1 − γ)CV ) Id = αγ

(

1 − 2(1 − γ)
L2

α2

)

Id.

The condition δ =
β−1− 1

4CV d
1
4CV d

> 0 is equivalent to the condition β > L2

2α2 d+ 1. Notice that for all d ≥ 1, we

have
(

1 − α2

2L2

)

(d+ 2) <
L2

2α2
d+ 1

Therefore for any

β >
L2

2α2
d+ 1 >

(

1 − α2

2L2

)

(d+ 2),

we can choose γ = β
d+2 and obtain

V (x)1−γ(∇2Vγ)(x) � 2L2β

α(d + 2)

(

α2

2L2
+

β

d+ 2
− 1

)

Id

=
2L2β

α(d + 2)2

(

β −
(

1 − α2

2L2

)

(d+ 2)

)

Id
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Therefore Assumption 3-(2) is satisfied with γ = β/(d+ 2) and

CV (γ) =
α(d+ 2)2

2L2β

(

β −
(

1 − α2

2L2

)

(d+ 2)

)−1

> 0.

The proof is now complete because Assumption 3-(1) is automatically satisfied under Assumption 2.

7 Proofs of the Main Results

7.1 Proofs of Theorem 2 and Theorem 3

In this section, we provide the proof of Theorem 2 and Theorem 3 via mean square analysis. We first start
with the following intermediate result.

Proposition 9. Let (Xt)t≥0 follow (3) with Xt ∼ ρt for all t ≥ 0. If V is gradient Lipschitz with parameter
L, then we have

E
[

|Xt −X0|2
]

≤ 4
[

(β − 1)2t2E
[

|∇V (X0)|2
]

+ tdE [V (X0)]
]

exp
(

4(β − 1)2L2t2 + d(β − 1)L2t2 + 2dLt
)

.
(34)

Proof of Proposition 9. According to (3),

E[|Xt −X0|2] ≤ 2(β − 1)2E

[

∣

∣

∣

∣

∫ t

0

∇V (Xs)ds

∣

∣

∣

∣

2
]

+ 4dE

[∫ t

0

V (Xs)ds

]

,

where

E

[

∣

∣

∣

∣

∫ t

0

∇V (Xs)ds

∣

∣

∣

∣

2
]

≤ 2E

[

(∫ t

0

|∇V (Xs) −∇V (X0)|ds
)2
]

+ 2E

[

(∫ t

0

|∇V (X0)|ds
)2
]

≤ 2tE

[∫ t

0

|∇V (Xs) −∇V (X0)|2ds
]

+ 2tE

[∫ t

0

|∇V (X0)|2ds
]

≤ 2L2t

∫ t

0

E
[

|Xs −X0|2
]

ds+ 2t2E
[

|∇V (X0)|2
]

, (35)

and

E

[∫ t

0

V (Xs)ds

]

(36)

≤ E

[∫ t

0

V (X0) + 〈∇V (X0), Xs −X0〉 +
L

2
|Xs −X0|2ds

]

= tE [V (X0)] +
L

2
E

[∫ t

0

|Xs −X0|2ds
]

− (β − 1)E

[∫ t

0

∫ s

0

〈∇V (X0),∇V (Xu)〉duds
]

≤ tE [V (X0)] +
L

2
E

[∫ t

0

|Xs −X0|2ds
]

− (β − 1)t2

2
E
[

|∇V (X0)|2
]

− (β − 1)E

[
∫ t

0

∫ s

0

〈∇V (X0),∇V (Xu) −∇V (X0)〉duds
]

≤ tE [V (X0)] +
L

2
E

[∫ t

0

|Xs −X0|2ds
]

− (β − 1)t2

2
E
[

|∇V (X0)|2
]

+
(β − 1)t2

2
E
[

|∇V (X0)|2
]

+
β − 1

4
E

[∫ t

0

∫ s

0

|∇V (Xu) −∇V (X0)|2duds
]
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≤ tE [V (X0)] +
L

2
E

[∫ t

0

|Xs −X0|2ds
]

+
(β − 1)L2

4
E

[∫ t

0

∫ s

0

|Xu −X0|2duds
]

≤ tE [V (X0)] +

(

L

2
+

(β − 1)L2t

4

)

E

[
∫ t

0

|Xs −X0|2ds
]

. (37)

With (35) and (36), we get

E[|Xt −X0|2] ≤
∫ t

0

[

4(β − 1)2L2t+ 2dL+ d(β − 1)L2t
]

E
[

|Xs −X0|2
]

ds+ 4dtE [V (X0)]

+ 4(β − 1)2t2E
[

|∇V (X0)|2
]

.

By Gronwall’s inequality, we hence have

E[|Xt −X0|2] ≤ 4
[

(β − 1)2t2E
[

|∇V (X0)|2
]

+ dtE [V (X0)]
]

exp
(

4(β − 1)2L2t2 + d(β − 1)L2t2 + 2dLt
)

.

Based on the above proposition, we now prove Theorem 2 below.

Proof of theorem 2. We perform mean square analysis to (9). Let (Xt)t≥0 follow (3) with X0 ∼ πβ . Since πβ
is the unique stationary distribution to (3), Xt ∼ πβ for all t ≥ 0. With (9), we can calculate the difference
between Xh and x1,

Xh − x1 = X0 −
∫ h

0

(β − 1)∇V (Xt)dt+

∫ t

0

√

2V (Xt)dBt −
(

x0 − (β − 1)hy0 +
√

2hV (x0)ξ1

)

= (X0 − x0) − (β − 1)h (∇V (X0) −∇V (x0)) −
∫ h

0

(β − 1) (∇V (Xt) −∇V (X0)) dt

∫ h

0

(

√

2V (Xt) −
√

2V (x0)
)

dBt

:= U1 + U2 + U3,

where

U1 := (X0 − x0) − (β − 1)h (∇V (X0) −∇V (x0)) , (38)

U2 := −
∫ h

0

(β − 1) (∇V (Xt) −∇V (X0)) dt, (39)

U3 :=

∫ h

0

(

√

2V (Xt) −
√

2V (x0)
)

dBt. (40)

Therefore according to triangle inequality,

E[|Xh − x1|2|]
1
2 ≤ E[|U1 + U3|2]

1
2 + E[|U2|2]

1
2 .

Since U1 is adapted to F0 and E[U3|F0] = 0, we get

E[|U1 + U3|2|F0] = |U1|2 + E[|U3|2|F0]

= |(X0 − x0) − (β − 1)h (∇V (X0) −∇V (x0)) |2

+ E

[

∫ h

0

∥

∥

∥

√

2V (Xt)Id −
√

2V (x0)Id

∥

∥

∥

2

F
dt|F0

]

.

Since V is α-strongly convex and L-gradient Lipschitz, it satisfies

〈X0 − x0,∇V (X0) −∇V (x0)〉 ≥ αL

α+ L
|X0 − x0|2 +

1

α+ L
|∇V (X0) −∇V (x0)|2.
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Therefore when h ≤ 2
(β−1)(α+L) ,

|(X0 − x0) − (β − 1)h (∇V (X0) −∇V (x0)) |2

=|X0 − x0|2 − 2(β − 1)h〈X0 − x0,∇V (X0) −∇V (x0)〉 + (β − 1)2h2|∇V (X0) −∇V (x0)|2

≤
(

1 − 2(β − 1)αLh

α+ L

)

|X0 − x0|2 + (β − 1)h

(

(β − 1)h− 2

α+ L

)

|∇V (X0) −∇V (x0)|2

≤ (1 − (β − 1)αh)
2 |X0 − x0|2. (41)

Meanwhile, for arbitrary r > 0, we have

E

[

∫ h

0

∥

∥

∥

√

2V (Xt) −
√

2V (x0)
∥

∥

∥

2

F
dt

]

=dE

[

∫ h

0

|
√

2V (Xt) −
√

2V (x0)|2dt
]

≤d
(

h
(

√

2V (X0) −
√

2V (x0)
)2

+ E

[

∫ h

0

∣

∣

∣

√

2V (Xt) −
√

2V (X0)
∣

∣

∣

2

dt

])

+ 2d|
√

2V (X0) −
√

2V (x0)|h 1
2E

[

∫ h

0

∣

∣

∣

√

2V (Xt) −
√

2V (X0)
∣

∣

∣

2

dt

]

≤d(1 + r)h
(

√

2V (X0) −
√

2V (x0)
)2

+ d(1 + r−1)E

[

∫ h

0

∣

∣

∣

√

2V (Xt) −
√

2V (X0)
∣

∣

∣

2

dt

]

.

Notice that under Assumption 2, we have

|∇(
√

2V (x))| =

√
2|∇V (x)|
2
√

V (x)
≤

√
2αCV

2
,

for all x ∈ R
d. Therefore

(
√

2V (X0) −
√

2V (x0))2 ≤ αCV

2
|X0 − x0|2, (42)

and

∫ h

0

|
√

2V (Xt) −
√

2V (X0)|2dt ≤ αCV

2

∫ h

0

|Xt −X0|2dt. (43)

With (42) and (43), we get

E[

∫ h

0

∥

∥

∥

√

2V (Xt) −
√

2V (x0)
∥

∥

∥

2

F
dt] ≤ αCV dh(1 + r)

2
E[|X0 − x0|2]

+
αCV d(1 + r−1)

2

∫ h

0

E[|Xt −X0|2]dt.

(44)

Next we apply Proposition 9 to E[|Xt −X0|2]. In particular, when

t ∈ [0, h] and h <
1

4(β − 1)L
,

we have

E[|Xt −X0|2] ≤
(

4dtE [V (X0)] + 4(β − 1)2t2E
[

|∇V (X0)|2
])

exp(1)

≤ 12dtE [V (X0)] + 12(β − 1)2t2E
[

|∇V (X0)|2
]

. (45)
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Combining (44) and (45), when h < 1
4(β−1)L , we have that

E[

∫ h

0

∥

∥

∥

√

2V (Xt) −
√

2V (x0)
∥

∥

∥

2

F
dt]

≤1

2
αCV d(1 + r)hE[|X0 − x0|2] (46)

+ 6αCV d(1 + r−1)

∫ h

0

(

dtE [V (X0)] + (β − 1)2t2E
[

|∇V (X0)|2
])

dt

=
1

2
αCV d(1 + r)hE[|X0 − x0|2] (47)

+ 3αCV d
2(1 + r−1)h2E [V (X0)] + 2αCV d(β − 1)2(1 + r−1)h3E

[

|∇V (X0)|2
]

.

With (41) and (46), we get

E[|U1 + U3|2]

≤
(

1 − 2(β − 1)αh+ (β − 1)2α2h2 +
1

2
αCV d(1 + r)h

)

E
[

|X0 − x0|2
]

+ 3αCV d
2(1 + r−1)h2E [V (X0)] + 2αCV d(β − 1)2(1 + r−1)h3E

[

|∇V (X0)|2
]

≤
(

1 − 2(β − 1)αh+ (β − 1)2α2h2 +
1

2
αCV d(1 + r)h

)

E
[

|X0 − x0|2
]

+ 2αCV d(1 + r−1)h2
(

3dE [V (X0)] + 2(β − 1)2hE
[

|∇V (X0)|2
])

. (48)

Since CV < 4(β−1)
d , denote δ =

(β−1)− 1
4CV d

1
4CV d

> 0. We have

1 − 2(β − 1)αh+ (β − 1)2α2h2 +
1

2
αCV d(1 + r)h

= 1 − 2(β − 1)αh+ (β − 1)2α2h2 + 2(β − 1)α
1 + r

1 + δ
h

=

[

1 − α(β − 1)(1 − 1 + 2r

1 + δ
)h

]2

+ α2(β − 1)2h2

− 2α(β − 1)
r

1 + δ
h− α2(β − 1)2h2

(

δ − 2r

1 + δ

)2

.

By picking r = δ
3 , we get for any h ∈

(

0, 2δ
3(1+δ)α(β−1)

)

that

1 − 2(β − 1)αh+ (β − 1)2α2h2 +
1

2
αCV d(1 + r)h

≤
[

1 − α(β − 1)
δ

3(1 + δ)
h

]2

+ α2(β − 1)2h

(

h− 2δ

3(1 + δ)
α−1(β − 1)−1

)

≤
[

1 − α(β − 1)
δ

3(1 + δ)
h

]2

.

With the choice of r = δ/3, (48) could be rewritten as

E[|U1 + U3|2] ≤
(

1 − α(β − 1)δ

3(1 + δ)
h

)2

E[|X0 − x0|2]

+
8α(β − 1)(3 + δ)h2

(1 + δ)δ

(

3dE [V (X0)] + 2(β − 1)2hE
[

|∇V (X0)|2
])

. (49)

Next, with the bound in (45), we get when h < 1
4(β−1)L ,

E[|U2|2] ≤ (β − 1)2L2
E





(

∫ h

0

|Xt −X0|dt
)2
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≤ (β − 1)2L2h

∫ h

0

E
[

|Xt −X0|2
]

dt

≤ 6d(β − 1)2L2h3E [V (X0)] + 4(β − 1)4L2h4E
[

|∇V (X0)|2
]

. (50)

With (49) and (50), we get when h < min
(

1
4(β−1)L ,

2δ
3(1+δ)α(β−1)

)

,

E
[

|Xh − x1|2
]

1
2 ≤

[

(1 −A)2E
[

|X0 − x0|2
]

+B2
]

1
2 + C,

with

A =
α(β − 1)δ

3(1 + δ)
h, (51)

B =
4α

1
2 (β − 1)

1
2 (3 + δ)

1
2h

(1 + δ)
1
2 δ

1
2

(

d
1
2Eπβ

[V (X)]
1
2 + (β − 1)h

1
2Eπβ

[

|∇V (X)|2
]

1
2

)

, (52)

C = 3d
1
2 (β − 1)Lh

3
2Eπβ

[V (X)]
1
2 + 2(β − 1)2Lh2Eπβ

[

|∇V (X)|2
]

1
2 . (53)

The above analysis works for each step, therefore we get for all k ≥ 1,

E
[

|Xkh − xk|2
]

1
2 ≤

[

(1 −A)2E
[

|X(k−1)h − xk−1|2
]

+B2
]

1
2 + C.

According to (Dalalyan and Karagulyan, 2019, Lemma 9), with A,B,C given in (51),(52),(53), for all k ≥ 1,

E
[

|Xkh − xk|2
]

1
2 ≤ (1 −A)kE

[

|X0 − x0|2
]

1
2 +

C

A
+

B
√

A(2 − A)
.

Choosing X0 such that W2(ν0, πβ) = E
[

|X0 − x0|2
]

1
2 , we get (11).

We now prove Theorem 3.

Proof of Theorem 3. Following the same strategy and notation in the proof of Theorem 2, we have

Xh − x1 = U1 + U2 + U3 + (β − 1)hE[ζ0|x0] + (β − 1)h (ζ0 − E[ζ0|x0]) , (54)

where U1, U2, U3 are defined in (38),(39),(40) respectively and ζ0 = gσ,m(x0) −∇V (x0). Therefore we have

E
[

|Xh − x1|2
]

1
2 ≤ E

[

|U1 + U3 + (β − 1)h (ζ0 − E[ζ0|x0]) |2
]

1
2

+ E
[

|U2|2
]

1
2 + (β − 1)hE

[

|E[ζ0|x0]|2
]

1
2

=
{

E
[

|U1 + U3|2
]

+ (β − 1)2h2E
[

|ζ0 − E[ζ0|x0]|2
]}

1
2

+ E
[

|U2|2
]

1
2 + (β − 1)hE

[

|E[ζ0|x0]|2
]

1
2 .

(55)

From the proof of Theorem 2 and Proposition 5, when

h < min

(

1

4(β − 1)h
,

2δ

3(1 + δ)α(β − 1)

)

,

we have that

E
[

|Xh − x1|2
]

1
2 ≤

{

(1 −A)2E
[

|X0 − x0|2
]

+B2 +
σ2

2m
L2(β − 1)2(d+ 3)3h2

+
2(d+ 5)(β − 1)2h2

m
E
[

|∇V (x0)|2
]

}
1
2

+ C + Lσ(β − 1)d
1
2 h, (56)
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where A,B,C are defined in (51),(52),(53). Using the fact that V is gradient Lipshcitz, we have

E
[

|∇V (x0)|2
]

≤ E

[

(|∇V (X0)| + L|X0 − x0|)2
]

≤ 2E
[

|∇V (X0)|2
]

+ 2L2
E
[

|X0 − x0|2
]

. (57)

Plugging (57) in (56), we get

E
[

|Xh − x1|2
]

1
2 ≤

{

(1 −A)2E
[

|X0 − x0|2
]

+
4(d+ 5)(β − 1)2L2h2

m
E
[

|X0 − x0|2
]

+B2

+
σ2

2m
L2(β − 1)2(d+ 3)3h2 +

4(d+ 5)(β − 1)2h2

m
E
[

|∇V (X0)|2
]

}
1
2

+ C + Lσ(β − 1)d
1
2h. (58)

When we pick the step-size such that

h < min

{

2(1 + δ)

α(β − 1)δ
,

αmδ

24(1 + δ)(β − 1)(d+ 5)L2

}

,

we have

(1 −A)2 +
4(d+ 5)(β − 1)2L2h2

m
≤
(

1 − A

2

)2

.

Therefore we have

E
[

|Xh − x1|2
]

1
2 ≤

{

(1 −A′)2E
[

|X0 − x0|2
]

+B′2
}

1
2

+ C′, (59)

where

A′ =
α(β − 1)δ

6(1 + δ)
h, (60)

B′ =

(

4α
1
2 (β − 1)

3
2 (3 + δ)

1
2h

3
2

(1 + δ)
1
2 δ

1
2

+
2(β − 1)(d+ 5)

1
2h

m
1
2

)

Eπβ

[

|∇V (X)|2
]

1
2

+
4α

1
2 (β − 1)

1
2 d

1
2 (3 + δ)

1
2h

(1 + δ)
1
2 δ

1
2

Eπβ
[V (X)]

1
2 +

σL(β − 1)(d+ 3)
3
2

m
1
2

h, (61)

C′ = 3L(β − 1)d
1
2h

3
2Eπβ

[V (X)]
1
2 + 2L(β − 1)2h2Eπβ

[

|∇V (X)|2
]

1
2 + σL(β − 1)d

1
2h. (62)

The rest of the proof is the same as the proof of Theorem 2, and hence we get (26).
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A Computations for Section 3.3

Lemma 3. Let β > d
2 + 1. If V ∈ C2(Rd) is positive, α-strongly convex and L-gradient Lipschitz, we have

for any r ∈ (0, β − d
2 − 1),

Zβ−1

Zβ
≤
(

L

α

)

d
2

β−
d
2
−r

V (0)

(

Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2 )

)
1

β−
d
2
−r

. (63)

Proof. Since V (x) ≤ V (0) + L
2 |x|2, we know that for any r ∈ (0, β − d

2 − 1), Z d
2+r is finite and π d

2+r is a

probability measure. Therefore

Zβ−1

Zβ
=

∫

Rd V (x)−(β−1)dx
∫

Rd V (x)−βdx

=
Z d

2+r

∫

Rd V (x)−(β− d
2−1−r)π d

2+r(x)dx

Z d
2+r

∫

Rd V (x)−(β− d
2−r)π d

2+r(x)dx

≤

(

∫

Rd V (x)−(β− d
2−r)π d

2+r(x)dx
)

β−
d
2
−1−r

β−
d
2
−r

∫

Rd V (x)−(β− d
2−r)π d

2+r(x)dx

=

(∫

Rd

V (x)−(β− d
2−r)π d

2+r(x)dx

)− 1

β−
d
2
−r

=
(

Z d
2+r

)
1

β−
d
2
−r

(∫

Rd

V (x)−βdx

)− 1

β−
d
2
−r

≤
(

Z d
2+r

)
1

β−
d
2
−r

(∫

Rd

(V (0) +
L

2
|x|2)−βdx

)− 1

β−
d
2
−r

.

For the integral
∫

Rd(V (0)+ L
2 |x|2)−βdx, we can calculate it via change of polar coordinates and substitutions,

∫

Rd

(V (0) +
L

2
|x|2)−βdx = Ad−1(1)

∫ ∞

0

(V (0) +
L

2
R2)−βRd−1dR

=
π

d
2

Γ(d2 )

∫ ∞

0

(V (0) + V (0)RL)−β(
2V (0)

L
)

d
2−1RL

d
2−1 2V (0)

L
dRL
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=
2

d
2 π

d
2

Γ(d2 )L
d
2 V (0)β−

d
2

∫ ∞

0

(1 +RL)−βR
d
2−1

L dRL

=
2

d
2 π

d
2

Γ(d2 )L
d
2 V (0)β−

d
2

∫ 1

0

u
d
2−1(1 − u)β−

d
2−1du

=
2

d
2 π

d
2B(d2 , β − d

2 )

Γ(d2 )L
d
2 V (0)β−

d
2

,

where the second identity follows from a substitution with RL = LR2/(2V (0)) and the fourth identity follows
from a substitution with u = RL

1+RL
. For Z d

2+r, we have

Z d
2+r =

∫

Rd

V (x)−
d
2−rdx

≤
∫

Rd

(

V (0) +
α

2
|x|2
)− d

2−r

dx

=
π

d
2

Γ(d2 )

∫ ∞

0

(

V (0) +
α

2
R2
)− d

2−r

Rd−1dR

=
π

d
2

Γ(d2 )

∫ ∞

0

(V (0) + V (0)Rα)
− d

2−r

(

2V (0)

α

)
d
2−1

Rα
d
2−1 2V (0)

α
dRα

=
2

d
2 π

d
2

Γ(d2 )α
d
2 V (0)r

∫ ∞

0

(1 +Rα)
− d

2−r
Rα

d
2−1dRα

=
2

d
2 π

d
2

Γ(d2 )α
d
2

∫ 1

0

u
d
2−1(1 − u)r−1du

=
2

d
2 π

d
2B(d2 , r)

Γ(d2 )α
d
2 V (0)r

.

Therefore, we can further get

Zβ−1

Zβ
≤
(

2
d
2 π

d
2B(d2 , r)

Γ(d2 )α
d
2 V (0)r

Γ(d2 )L
d
2 V (0)β−

d
2

2
d
2 π

d
2B(d2 , β − d

2 )

)
1

β−
d
2
−r

=

(

L
d
2 V (0)β−

d
2−r

α
d
2

Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2 )

)
1

β−
d
2
−r

=

(

L

α

)

d
2

β−
d
2
−r

V (0)

(

Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2 )

)
1

β−
d
2
−r

.

B Computations for Sections 5.1 and 5.2

Let πβ(x) ∝ V (x)−β = (1 + |x|2)−β with β > d+2
2 . The gradient and Hessian of V is

∇V (x) = 2x, ∇2V (x) = 2Id.

Therefore V is α-strongly convex with α = 2 and L-gradient Lipschitz with L = 2. (3) reduces to

dXt = b(x)dt+ σ(Xt)dBt, (64)

with b(x) = −2(β − 1)x and σ(x) =
√

2(1 + |x|2)
1
2 Id.
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Next we look at the uniform dissipativity condition:

〈b(x) − b(y), x− y〉 +
1

2

∥

∥

∥(1 + |x|2)
1
2 Id − (1 + |y|2)

1
2 Id

∥

∥

∥

2

F

= − 2(β − 1)|x− y|2 + d|(1 + |x|2)
1
2 − (1 + |y|2)

1
2 |2

≤− 2(β − 1 − d

2
)|x− y|2, (65)

where the inequality follows from the fact that x 7→ (1 + |x|2)
1
2 is 1-Lipschitz. Therefore diffusion (64) is

α′-uniform dissipative with α′ = 2(β−1− d
2 ). In particular, α′ = d when β = d+1 and α′ = 1 when β = d+3

2 .

Last we look at the local deviation for the Euler discretization to (64). We use the same notations in
Li et al. (2019). According to (Li et al., 2019, lemma 29), p1 = 1 and

λ1 = 2
(

µ1(b)2 + µF
1 (σ)2

) (

π1,2(b) + πF
1,2(σ)

)

(1 + E[|X̃0|2] + 2π1,2(b)α′−1
).

According to (Li et al., 2019, lemma 29), p2 = 3
2 and

λ2 = µ1(b)
(

π1,2(b) + πF
1,2(σ)

)

(1 + E[|X̃0|2] + 2π1,2(b)α′−1
),

with

µ1(b) := sup
x,y∈Rd,x 6=y

|b(x) − b(y)|
|x− y| = 2(β − 1),

µF
1 (σ) := sup

x,y∈Rd,x 6=y

‖σ(x) − σ(y)‖F
|x− y| =

√
2d,

π1,2(b) := sup
x∈Rd

|b(x)|2
1 + |x|2 = 4(β − 1)2,

πF
1,2(σ) := sup

x∈Rd

‖σ(x)‖2F
1 + |x|2 = 2d.

The order of λ1 and λ2 in dimension parameter d is given by:

λ1 = Θ
(

(

(β − 1)2 + d
) (

(β − 1)2 + 2d
)

(

1 + (β − 1)2α′−1
))

,

λ2 = Θ
(

(β − 1)
(

(β − 1)2 + 2d
)

(

1 + (β − 1)2α′−1
))

.

Therefore, we have that

• when β = d+ 1, (λ1, λ2) = (Θ(d5),Θ(d4)),

• when β = d+3
2 , (λ1, λ2) = (Θ(d5),Θ(d4)).

C Computations for Remark 9

In the example of Cauchy class distributions, V (x) = 1 + |x|2 and Vγ := V γ . When γ > 1
2 ,

∇Vγ(x) = γV (x)γ−1∇V (x)

∇2Vγ(x) = γ(γ − 1)V (x)γ−2∇V (x)T∇V (x) + γV (x)γ−1∇2V (x)

= γV (x)γ−1
(

(γ − 1)V (x)−1∇V (x)T∇V (x) + ∇2V (x)
)

.

Plug in V (x) = 1 + |x|2, we get

∇Vγ(x) = 2γ(1 + |x|2)γ−1x
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∇2Vγ(x) = 2γ(1 + |x|2)γ−1

(

Id + 2(γ − 1)
|x|2

1 + |x|2
xTx

|x|2
)

= 2γ(1 + |x|2)γ−1

(

(Id −
xTx

|x|2 ) +

(

1 − 2(1 − γ)
|x|2

1 + |x|2
)

xTx

|x|2
)

,

and

(∇2Vγ)−1(x) =
1

2γ
(1 + |x|2)1−γ

(

(Id −
xTx

|x|2 ) +
1 + |x|2

1 + (2γ − 1)|x|2
xTx

|x|2
)

.

When β ∈
(

d+2
2 , d

]

, γ = β
d+2 ∈

(

1
2 , 1
]

,

(∇2Vγ)−1(x) � 1

2γ(2γ − 1)
(1 + |x|2)1−γId =

(d+ 2)2

2β(2β − d− 2)
(1 + |x|2)1−γId.

Therefore Assumption 3 holds with CV (γ) = (d+2)2

2β(2β−d−2) . For the Cauchy distribution πβ ∝ (1 + |x|2)−β =

(1 + |x|2)−
d+ν
2 with β ∈ (d+2

2 , d], i.e. ν ∈ (2, d], according to lemma 2, πβ satisfies the weighted Poincaré
inequality with weight 1 + |x|2 with weighted Poincaré constant

CWPI = CV (γ)

(

β

γ
− 1

)−1

=
(d+ 2)2

2(d+ 1)β(2β − d− 2)
=

(d+ 2)2

ν(d + 1)(d+ ν)
.

32


	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Notation
	1.4 Organization

	2 Itô Discretizations and Weighted Poincare inequalities
	3 Moment Bounds
	3.1 An Example: Multivariate t-distribution
	3.2 Non-isotropic densities with quadratic-like V outside of a ball
	3.3 General Case

	4 Zeroth-Order Itô Discretization
	5 Illustrative Examples
	5.1 Multivariate t-distribution: Large Degree of Freedom
	5.1.1 First order algorithm
	5.1.2 Zeroth order algorithm

	5.2 Multivariate t-distribution: Small Degrees of Freedom
	5.2.1 First order algorithm
	5.2.2 Zeroth order algorithm


	6 Further Results and Additional Insights on Assumptions
	6.1 Relationship between Lemma 1 and Lemma 2
	6.2 Relationship between Theorem 2 and Proposition 6

	7 Proofs of the Main Results
	7.1 Proofs of Theorem 2 and Theorem 3

	A Computations for Section 3.3
	B Computations for Sections 5.1 and 5.2
	C Computations for Remark 9

