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Abstract

We study maximum likelihood estimators
(MLEs) for the residual variance, the signal-
to-noise ratio, and other variance parame-
ters in high-dimensional linear models. These
parameters are essential in many statisti-
cal applications involving regression diagnos-
tics, inference, tuning parameter selection for
high-dimensional regression, and other appli-
cations, including genetics. The estimators
that we study are not new, and have been
widely used for variance component estima-
tion in linear random-effects models. How-
ever, our analysis is new and it implies that
the MLEs, which were devised for random-
effects models, may also perform very well
in high-dimensional linear models with fixed-
effects, which are more commonly studied
in some areas of high-dimensional statistics.
The MLEs are shown to be consistent and
asymptotically normal in fixed-effects mod-
els with random design, in asymptotic set-
tings where the number of predictors (p) is
proportional to the number of observations
(n). Moreover, the estimators’ asymptotic
variance can be given explicitly in terms mo-
ments of the Marčenko-Pastur distribution.
A variety of analytical and empirical results
show that the MLEs outperform other, pre-
viously proposed estimators for variance pa-
rameters in high-dimensional linear models
with fixed-effects. More broadly, the results
in this paper illustrate a strategy for draw-
ing connections between fixed- and random-
effects models in high dimensions, which may
be useful in other applications.
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1 INTRODUCTION

Variance parameters — including the residual vari-
ance, the proportion of explained variation, and, under
some interpretations (e.g. Dicker, 2014; Hartley & Rao,
1967; Janson et al., 2015), the signal-to-noise ratio —
are important parameters in many statistical models.
While they are often not the primary focus of a given
data analysis or prediction routine, variance parame-
ters are fundamental for a variety of tasks, including:

(i) Regression diagnostics, e.g. risk estimation (Bay-
ati et al., 2013; Mallows, 1973).

(ii) Inference, e.g. hypothesis testing and construct-
ing confidence intervals (Fan et al., 2012; Javan-
mard & Montanari, 2014; Reid et al., 2013).

(iii) Optimally tuning other methods, e.g. tuning pa-
rameter selection for high-dimensional regression
(Sun & Zhang, 2012).

(iv) Other applications, e.g. genetics (De los Campos
et al., 2015; Listgarten et al., 2012; Loh et al.,
2015; Yang et al., 2010).

This paper focuses on variance estimation in high-
dimensional linear models. We study maximum
likelihood-based estimators for the residual variance
and other related variance parameters. The results in
this paper show that — under appropriate conditions
— the maximum likelihood estimators (MLEs) out-
perform several other previously proposed variance es-
timators for high-dimensional linear models, in theory
and in numerical examples, with both real and simu-
lated data.

The MLEs studied here are not new. Indeed, they
are widely used for variance components estimation in
linear random-effects models (e.g. Searle et al., 1992).
However, the analysis in this paper is primarily con-
cerned with the performance of the MLEs in fixed-
effects models, which are more commonly studied in
some areas of modern high-dimensional statistics (e.g.
Bühlmann & Van de Geer, 2011). Thus, from one per-
spective, this paper may be viewed as an article on
model misspecification: We show that a classical es-
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timator for random-effects models may also be used
effectively in fixed-effects models. More broadly, the
results in this paper illustrate a strategy for drawing
connections between fixed- and random-effects mod-
els in high dimensions, which may be useful in other
applications; for instance, a similar strategy has been
employed in Dicker’s (2016) analysis of ridge regres-
sion.

1.1 Related Work

There is an abundant literature on variance compo-
nents estimation for random-effects models, going back
to at least the 1940s (Crump, 1946; Satterthwaite,
1946). More recently, a substantial literature has de-
veloped on the use of random-effects models in high
throughput genetics (e.g. De los Campos et al., 2015;
Listgarten et al., 2012; Loh et al., 2015; Yang et al.,
2010). Maximum likelihood estimators for variance
parameters, like those studied in this paper, are widely
used in this research area. A variety of questions about
the use of MLEs for variance parameters in modern
genetics remain unanswered; including fundamental
questions about whether fixed- or random-effects mod-
els are more appropriate (De los Campos et al., 2015).
Our work here focuses primarily on fixed-effects mod-
els, and thus differs from much of this recent work on
genetics. However, Theorem 2 (see, in particular, the
discussion in Section 4.2) and the data analysis in Sec-
tion 6 below suggest that fixed-effects analyses could
possibly offer improved power over random-effects ap-
proaches to variance estimation, in some settings.

Switching focus to high-dimensional linear models
with fixed-effects, previous work on variance estima-
tion has typically been built on one of two sets of
assumptions: Either (i) the underlying regression pa-
rameter [β in the model (1) below] is highly structured
(e.g. sparse) or (ii) the design matrix X = (xij) is
highly structured [e.g. xij are iid N(0, 1)]. Notable
work on variance estimation under the “structured β”
assumption includes (Chatterjee & Jafarov, 2015; Fan
et al., 2012; Sun & Zhang, 2012). Bayati et al. (2013),
Dicker (2014), and Janson et al. (2015) have stud-
ied variance estimation in the “structured X” setting.
This paper also focuses on the structured X setting.
As is characteristic of the structured X setting, many
of the results in this paper require strong assumptions
on X; however, none of our results require any sparsity
assumptions on β.

Figure 1 illustrates some potential advantages of the
structured X approach. In particular, it shows that
structured β methods for estimating the residual vari-
ance σ2

0 can be biased, if β is not extremely sparse,
while the structured X methods are effective regard-
less of sparsity. Figure 1 was generated from datasets

where the design matrix X was highly structured, i.e.
xij ∼ N(0, 1) were all iid (a detailed description of the
numerical simulations used to generate Figure 1 may
be found in the Supplementary Material). In general,
structured X methods work best when the entries of X
are uncorrelated. Indeed, by generating X with highly
correlated columns and taking β to be very sparse, it
is easy to generate plots similar to those in Figure 1,
where the structured X methods are badly biased and
the structured β methods perform well. On the other
hand, if the design matrix X is correlated, it may be
possible to improve the performance of structured X
methods by “decorrelating” X (i.e. right-multiplying
X by a suitable positive definite matrix); this is not
pursued in detail here, but may be an interesting area
for future research.

The method labeled “MLE” in Figure 1 is the main
focus of this paper. The other methods depicted in
Figure 1 that rely on structured X are “MM,” “Eigen-
Prism,” and “AMP.” MM is a method-of-moments es-
timator for σ2

0 proposed in (Dicker, 2014); EigenPrism
was proposed in (Janson et al., 2015) and is the so-
lution to a convex optimization problem; AMP is a
method for estimating σ2

0 based on approximate mes-
sage passing algorithms and was proposed in (Bay-
ati et al., 2013). In Figure 1, each of the structured
X methods is evidently unbiased. Additionally, it is
clear that the variability of MLE is uniformly smaller
than that of MM and EigenPrism (detailed results are
reported in Table S1 of the Supplementary Material).
The AMP method is unique among the four structured
X methods, because it is the only one that can adapt
to sparsity in β; consequently, while the variability of
MLE is smaller than that of AMP when β is not sparse
(e.g. when sparsity is 40%), the AMP estimator has
smaller variance when β is sparse. This is certainly
an attractive property of the AMP estimator. How-
ever, little is known about the asymptotic distribution
of the AMP estimator. By contrast, one important
feature of the MLE is that it is asymptotically nor-
mal in high dimensions and its asymptotic variance is
given by the simple formula in Theorem 2. This is
a useful property for performing inference on σ2

0 and
related parameters, and for better understanding the
asymptotic performance of the MLE.

1.2 Overview of the Paper

Section 2 covers preliminaries. We introduce the sta-
tistical model and define a bivariate MLE for the resid-
ual variance and the signal-to-noise ratio — this is the
main estimator of interest. We also give some addi-
tional background on the “structured X” model that
is studied here.

In Section 3, we present a coupling argument, which
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Figure 1: Estimates of the residual variance σ2
0 from 500 independent datasets. Structured X simulations:

xij ∼ N(0, 1) are iid. Parameter values: σ2
0 = 1, η20 = 4, n = 500, p = 1000. “α%-sparse” indicates that

(α/100) × p coordinates of β ∈ Rp are set equal to 0. Structured X estimators: MLE, MM (Dicker, 2014),
EigenPrism (Janson et al., 2015), AMP (Bayati et al., 2013). Structured β estimators: Scaled-Lasso (Sun &
Zhang, 2012), RCV-Lasso (Fan et al., 2012). Detailed description of settings and results may be found in the
Supplementary Material.

is the key to relating the fixed-effects model of inter-
est and the random-effects model that motivates the
MLEs studied here.

Basic asymptotic properties of the MLEs are described
in Section 4. Consistency and asymptotic normal-
ity results (given in Section 4.1) rely heavily on the
coupling argument from Section 3: Theorems 1–2 fol-
low by coupling the fixed-effects model with random
predictors (the “structured X” model) to a random-
effects model and then appealing to existing results for
random-effects models and quadratic forms.

In Section 5, we use results from random matrix theory
to derive explicit formulas for the asymptotic variance
of the MLEs, which are determined by moments of the
Marčenko-Pastur distribution. Using these formulas,
we analytically compare the asymptotic variance of the
MLEs to that of other estimators.

The results of a real data analysis involving gene
expression data and single nucelotide polymorphism
(SNP) data are described in Section 6. The results
illustrate some potential benefits of our results in an
important practical example.

A concluding discusion may be found in Section 7.

2 PRELIMINARIES

Consider a linear regression model, where outcomes
y = (y1, ..., yn)> ∈ Rn are related to an n × p matrix
of predictors X = (xij)1≤i≤n;1≤j≤p via the equation

y = Xβ + ε; (1)

ε = (ε1, ..., εn)> ∈ Rn is a random error vector, and
β = (β1, ..., βp)

> ∈ Rp is an unknown p-dimensional
parameter. The observed data consists of (y, X).

In this paper, we make the following distributional as-
sumptions:

εi ∼ N(0, σ2
0), xij ∼ N(0, 1), (2)

1 ≤ i ≤ n, 1 ≤ j ≤ p are all independent. The
parameter σ2

0 > 0 is the residual variance. Estimating
σ2
0 when p and n are large is one of the main objectives

of the paper.1

The distributional assumptions (2) are strong. How-
ever, others following the “structured X” approach to
variance estimation have made the same assumptions
(e.g. Bayati et al., 2013; Dicker, 2014; Janson et al.,
2015). There is also a substantial literature on estimat-
ing β in high-dimensions under similar distributional
assumptions; see, for instance, research on approx-
imate message passing (AMP) algorithms (Donoho
et al., 2009; Rangan, 2011; Vila & Schniter, 2013). In
the AMP literature, there has been some success at
relaxing the Gaussian assumption (2) (e.g. Korada &
Montanari, 2011; Rangan et al., 2014). Relaxing (2)
for structured X approaches to variance estimation is
an important topic for future research. (See also the
discussion in Section 7.)

1 If p ≤ n and X has full rank, then the residual sum

of squares σ̂2
OLS = (n − p)−1‖y − Xβ̂OLS‖2 may be used

to estimate σ2
0 , where β̂OLS = (X>X)−1X>y. Thus, es-

timating σ2
0 when p > n is more interesting and may be

considered the main focus of this work (however, the re-
sults in Section 5.2 imply that the MLE σ̂2 outperforms
σ̂2
OLS even when p < n).
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To estimate the residual variance, we introduce two
auxiliary parameters that are closely related to σ2

0 :
The signal strength, τ20 = ‖β‖2, and the signal-to-
noise ratio, η20 = τ20 /σ

2
0 (here and throughout the pa-

per, ‖·‖ denotes the `2-norm). Now define the bivariate
parameter θ0 = (σ2

0 , η
2
0). Consider the estimator

θ̂ = argmax
σ2,η2≥0

`(θ), (3)

where θ = (σ2, η2) and

`(θ) = −1

2
log(σ2)− 1

2n
log det

(
η2

p
XX> + I

)
− 1

2σ2n
y>
(
η2

p
XX> + I

)−1
y. (4)

The estimator θ̂ is the main focus of this paper.2 It is
the MLE for θ0 under a linear random-effects model,
where the regression parameter β ∼ N{0, (τ20 /p)I} is
Gaussian and independent of ε and X; indeed, under
this random-effects model, the distribution of y|X ∼
N{0, (τ20 /p)XX> + σ2

0I} is Gaussian.

3 A COUPLING ARGUMENT

Theoretical properties of θ̂ have already been stud-
ied extensively in the literature, within the context of
random-effects models (e.g. Dicker & Erdogdu, 2016;
Hartley & Rao, 1967; Jiang, 1996; Searle et al., 1992).
In this paper we are primarily concerned with the per-
formance of θ̂ in the fixed-effects model (1)–(2), where
β is non-random. The main objective of this section
is to explain why one might expect θ̂ to perform well
in the fixed-effects model. To do this, we show that
the model (1)–(2) can be coupled to a random-effects
model. The key points of the coupling argument are
that the distribution of the design matrix X and the
estimator θ̂ are both invariant under orthogonal trans-
formations, i.e.

X
D
= XU>, (5)

θ̂(y, X) = θ̂(y, XU>) (6)

for any p×p orthogonal matrix U (“
D
=” denotes equal-

ity in distribution). The argument is given in more
detail below.

Let U be an independent uniformly distributed p × p
orthogonal matrix, define β̃ = Uβ, and let

ỹ = Xβ̃ + ε. (7)

2If `(θ) has multiple maximizers, then use any pre-

determined rule to select θ̂. Maximizing `(θ) is a noncon-
vex problem; however, it has been extremely well-studied
and is straightforward, e.g. (Demidenko, 2013).

Then (ỹ, X) may be viewed as data drawn from a
random-effects linear model, with the regression pa-
rameter β̃ ∼ uniform{Sp−1(τ20 )} uniformly distribu-
tion on the sphere in Rp of radius τ0, Sp−1(τ20 ) = {u ∈
Rp; ‖u‖2 = τ20 }. Next define the MLE based on (7),

θ̃ = argmax
σ2,η2≥0

˜̀(θ),

where ˜̀(θ) is defined just as in (4), except that y is

replaced by ỹ. Then the distribution of θ̂ = θ̂(y, X)
is the exact same as the distribution of θ̃ = θ̃(ỹ, X);
more precisely, for any Borel set B ⊆ R2, we have

P{θ̂(y, X) ∈ B} = P{θ̂(XU>β̃ + ε, X) ∈ B}

= P{θ̂(XU>β̃ + ε, XU>) ∈ B}

= P{θ̂(Xβ̃ + ε, X) ∈ B}
= P{θ̃(ỹ, X) ∈ B},

where the second equality holds because of (6) and the
third inequality follows from (5). Thus, the distribu-

tional properties of θ̂ — the estimator based on the
original data from the fixed-effects model — are the
exact same as the distributional properties of θ̃ — the
estimator based on the random-effects data, i.e.

θ̂
D
= θ̃. (8)

The distributional identity (8) links the fixed-effects
model (1)–(2) with the random-effects model (7).
However, one remaining issue is that the random-
effects vector β̃ = (β̃1, . . . , β̃p)

> ∈ Rp has correlated
components. While most of the existing work on
random-effects models applies to models with indepen-
dent random-effects, Dicker & Erdogdu (2016) recently
derived concentration bounds for variance components
estimators in models with correlated random-effects,
which can be applied in the present setting. Dicker &
Erdogdu’s bounds rely on the existence of a tight inde-
pendent coupling; this means finding a random vector
β? with independent components, such that ‖β̃−β?‖
is small with high probability. Such a coupling is de-
scribed in the following paragraph.

Let z ∼ N(0, I) be an independent p-dimensional
Gaussian random vector. Without loss of generality,
we assume that

β̃ =
τ0z

‖z‖
∼ uniform{Sp−1(τ20 )}.

Now define β? = (τ0/p
1/2)z ∼ N{0, (τ20 /p)I}. Then

β? has independent components and, when p is large,
‖z‖ ≈ p1/2 and β̃ ≈ β?. This is the required coupling.
More precisely, applying Chernoff’s bound to the chi-
squared random-variable ‖z‖2 implies that if 0 ≤ r <
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τ20 , then

P
{
‖β̃ − β?‖ > r

}
= P

{
τ0

∣∣∣∣‖z‖√p − 1

∣∣∣∣ > r

}
= P

{
‖z‖2 > p

(
1 +

r

τ0

)2
}

+ P

{
‖z‖2 < p

(
1− r

τ0

)2
}

≤ 2 exp

(
− pr

2

2τ20

)
, (9)

for 0 ≤ r < τ0.

4 ASYMPTOTIC PROPERTIES

4.1 Consistency and Asymptotic Normality

In this section, we derive consistency and asymptotic
normality results for θ̂, under the assumption that
p/n → ρ ∈ (0,∞) \ {1}.3 Consistency, i.e. conver-
gence in probability, is a direct consequence of (9) and
Proposition 2 from (Dicker & Erdogdu, 2016).

Theorem 1. Assume that (1)–(2) holds. Let K ⊆
(0,∞) be a compact set and suppose that σ2

0 , η
2
0 ∈ K.

Additionally suppose that ρ ∈ (0,∞)\1. Then θ̂ → θ0

in probability, as p/n→ ρ.

It takes a little bit more work to show that θ̂ is asymp-
totically normal, but the approach is similar to the
standard argument for asymptotic normality of maxi-
mum likelihood and M -estimators (e.g. Chapter 5 of

Van der Vaart, 2000). The key fact is that θ̂ solves the

score equation S(θ̂) = 0, where

S(θ) =
∂`

∂θ
(θ) =

(
∂`

∂σ2
(θ),

∂`

∂η2
(θ)

)>
,

∂`

∂σ2
(θ) =

1

2σ4n
y>
(
η2

p
XX> + I

)−1
y − 1

2σ2
,

∂`

∂η2
(θ) =

1

2σ2n
y>
(

1

p
XX>

)(
η2

p
XX> + I

)−2
y

− 1

2n
tr

{(
1

p
XX>

)(
η2

p
XX> + I

)−1}
.

Taylor expanding S(θ) about θ0, we obtain

n1/2(θ̂ − θ0) ≈ −n1/2
{
∂S

∂θ
(θ0)

}−1
S(θ0). (10)

3If ρ = 1, then inf λmin(p−1XX>) = 0, where
λmin(p−1XX>) is the smallest nonzero eigenvalue of
p−1XX>. This causes some technical difficulties, which
arise frequently in random matrix theory, but can often
be overcome with some additional work, e.g. (Bai et al.,
2003).

The right-hand side of (10) (in particular, S(θ0))
involves a quadratic form in y. If the data were
drawn from a random-effects model with independent
random-effects, then standard theory (for random-
effects models or quadratic forms) could be used to

argue that n1/2(θ̂ − θ0) is approximately normal.
However, since we are interested in the fixed-effects
model (1)–(2) there is an additional step: We must
go through a variant of the coupling argument from
Section 3 again.

Define S̃(θ) to be the same as S(θ), except replace y
with ỹ. Then, using (8),

n1/2(θ̂ − θ0)
D
= n1/2(θ̃ − θ0)

≈ −n1/2
{
∂S̃

∂θ
(θ0)

}−1
S̃(θ0). (11)

The entries of S̃(θ) are quadratic forms in

ỹ = Xβ̃ + ε = X
τ0z

‖z‖
+ ε. (12)

Thus, the approximation (11) allows us to shift focus
to the random-effects model (7) and quadratic forms
in ỹ. This is an important step, because of the rela-
tive simplicity of random-effects models. However, the
coordinates of β̃ are correlated, which is an additional
obstacle that must be addressed. To overcome this is-
sue, we use the fact that ỹ can be represented in terms
of z and ε, as in (12), and apply the delta method to
S̃(θ0) (that is, we use another Taylor expansion; cf.
Ch. 3 of Van der Vaart, 2000). Following this strat-
egy, S̃(θ0) can be approximated by quadratic forms in
the random vectors z and ε, which have independent
components. Asymptotic normality for S̃(θ0) then fol-
lows from existing normal approximation results for
quadratic forms in independent random variables.

Theorem 2. Assume that the conditions of Theorem
1 hold. Additionally, define

IN (θ0) =

[
ι2(θ0) ι3(θ0)
ι3(θ0) ι4(θ0)

]
,

where

ιk(θ0) =

1

2nσ
2(4−k)
0

tr

{(
1

p
XX>

)k−2(
η20
p
XX> + I

)2−k}
,

for k = 2, 3, 4, and

J (θ0)−1 = IN (θ0)−1 − 2η40
(p/n)

[
0 0
0 1

]
. (13)

Then n1/2J (θ0)1/2(θ̂− θ0)→ N(0, I) in distribution,
as p/n→ ρ.
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As described above, the proof of Theorem 2 relies on
three steps: (i) The distributional identity and Taylor
approximation (11), (ii) applying the delta method to
handle the correlated coordinates of β̃, and (iii) normal
approximation results for quadratic forms in z and ε.
These steps can be rigorously justified using Theorem
2 and Proposition 2 from (Dicker & Erdogdu, 2016).

4.2 Random-Effects Model

The matrix IN (θ0) defined in Theorem 2 is the Fisher
information matrix for θ0 under the Gaussian random-
effects linear model, where β ∼ N{0, (τ20 /p)I}. Well-
known results on random-effects models (Jiang, 1996)
and standard likelihood theory (e.g. Ch. 6 of Lehmann
& Casella, 1998) imply that under this random-effects

model, θ̂ is asymptotically efficient with asymptotic
variance IN (θ0)−1. Thus, Theorem 2 implies that
η̂2 has smaller asymptotic variance under the fixed-
effects model than under the random-effects model (on
the other hand, σ̂2 has the same asymptotic variance
in both models). As a consequence, confidence inter-
vals for variance parameters related to η20 tend to be
smaller under the fixed-effects model than under the
random-effects models, and corresponding tests may
have more power in the fixed-effects model. A practi-
cal illustration of this observation may be found in the
data analysis in Section 6.

5 MARČENKO-PASTUR
APPROXIMATIONS

5.1 Formulas for the Asymptotic Variance of θ̂

Let F = Fn,p denote the empirical distribution of the
eigenvalues of p−1XX>. Marčenko & Pastur (1967)
showed that under (2), if p/n → ρ ∈ (0,∞), then
Fn,p → Fρ, where Fρ is the Marčenko-Pastur distribu-
tion with density

fρ(s) = max{1− ρ, 0}δ0(s) +
ρ

2π

√
(b− s)(s− a)

s
,

for a ≤ s ≤ b and a = (1 − ρ−1/2)2, b = (1 + ρ−1/2)2.
In Theorem 2, observe that the entries of IN (θ0) can
be reexpressed as

ιk(θ0) =
1

2σ
2(4−k)
0

∫ (
s

η20s+ 1

)k−2
dF(s).

Thus, it is evident that if ρ ∈ (0,∞), then
limp/n→ρ ιk(θ0) = ιρk(θ0), where

ιρk(θ0) =
1

2σ
2(4−k)
0

∫ b

a

(
s

η20s+ 1

)k−2
fρ(s) ds. (14)

The quantities ιρk(θ0) — and, consequently, the asymp-

totic variance of θ̂, given in Theorem 2 — can be com-
puted explicitly using properties of the Stieltjes trans-
form of the Marčenko-Pastur distribution. The Stielt-
jes transform of the Marčenko-Pastur distribution is
defined by

mρ(z) =

∫ b

a

1

s+ z
fρ(s) ds (15)

=
1

2z

[
1− ρz − ρ+ {(1− ρz − ρ)2 + 4ρz}1/2

]
,

where the second equality holds for z > 0 (see, e.g., Ch.
3 of Bai & Silverstein, 2010). Comparing (14)–(15)
and differentiating mρ(z) as necessary implies that

ιρ2(θ0) =
1

2σ4
0

, (16)

ιρ3(θ0) =
1

2σ2
0

{
1

η20
− 1

η40
mρ

(
1

η20

)}
, (17)

ιρ4(θ0) =
1

2

{
1

η40
− 2

η60
mρ

(
1

η20

)
− 1

η80
m′ρ

(
1

η20

)}
.

(18)

To compute the asymptotic variance of θ̂ in terms
of mρ(z), we use (13) and the expressions for ιρk(θ0)
given above. In particular, let ψρk+l(θ0) denote the
kl-element of limp/n→ρ J (θ0)−1. It follows from basic
matrix algebra that

ψρ2(θ0) = 2σ4
0

[
1− {m(η−20 )− η20}2

m′(η−20 ) +m(η−20 )2

]
, (19)

ψρ3(θ0) = −
2σ2

0η
4
0

{
m(η−20 )− η20

}
m′(η−20 ) +m(η−20 )2

, (20)

ψρ4(θ0) = − 2η80
m′(η−20 ) +m(η−20 )2

− 2η40
ρ
. (21)

From (15) and (19)–(21), it is apparent that the

asymptotic variance of θ̂ is an easily computed alge-
braic function in σ2

0 , η20 , and ρ.

5.2 Comparison to Previously Proposed
Estimators

Define the proportion of explained variation4 r20 =
τ20 /(τ

2
0 + σ2

0) = η20/(η
2
0 + 1) and the estimator r̂2 =

η̂2/(η̂2 + 1). Consistency and asymptotic normality
for r̂2 follows easily from Theorems 1–2 and the delta
method. In this section, we compare the asymptotic
variance of σ̂2 and r̂2 to that of other previously pro-
posed estimators for σ2

0 and r20.

4The proportion of explained variation is an important
parameter for regression diagnostics. It is also important
in genetics; see Section 6
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Figure 2: Plots of the asymptotic variance of various estimators for σ2
0 and r20, as functions of η20 (the signal-

to-noise ratio) for ρ = 0.5, 1, 5. Top row: Asymptotic variances of estimators for σ2 (vMLE, vMM, and vOLS).
Bottom row: Asymptotic variances of estimators for r2 (wMLE and wMM). Theorem 2 does not apply to the
case where ρ = 1; the asymptotic variances for the MLEs in this case are conjectured to be vMLE(η20 , 1) and
wMLE(η20 , 1). The values vMM, vOLS, and wMM are given explicitly in the Supplementary Material.

First define the standardized asymptotic variance of
σ̂2,

vMLE(η20 , ρ) =
n

2σ4
0

lim
p/n→ρ

Var(σ̂2) =
1

2σ4
0

ψρ2(θ0)

= 1− {m(η−20 )− η20}2

m′(η−20 ) +m(η−20 )2
.

The asymptotic variance of r̂2 can be derived using
(21) and the delta method; assuming p/n → ρ ∈
(0,∞) \ {1}, it is given by

wMLE(η20 , ρ)

=
n

2
lim

p/n→ρ
Var(r̂2) =

1

2

(
1

η20 + 1

)4

ψρ4(θ0)

= −
(

η20
η20 + 1

)4{
1

m′(η−20 ) +m(η−20 )2
+

1

ρη20

}
.

The asymptotic variances vMLE and wMLE are plot-
ted in Figure 2, along with the asymptotic variances
of method-of-moments (MM) estimators for σ2

0 and r20
(Dicker, 2014), and, in the top-left plot, the asymp-

totic variance of σ̂2
OLS = (n−p)−1‖y−Xβ̂OLS‖2, which

was defined in Footnote 1. Explicit formulas for the
asymptotic variances of the MM and OLS estimators
are given in the Supplementary Material (these for-
mulas have been derived elsewhere previously). We
note that the OLS estimator appears only in the top-
left plot of Figure 2 because σ̂2

OLS is undefined when

p > n (i.e. ρ > 1) and has infinite variance when
p = n; furthermore, even for p < n, it is unclear how a
corresponding estimate of r20 should be defined. From
Figure 2, it is clear that the MLEs have smaller asymp-
totic variance (i.e. they are more efficient) than the
MLE and OLS estimators.

In other work on variance estimation within the “struc-
tured X” paradigm, Janson et al. (2015) proposed
the EigenPrism method for estimating σ2

0 and η20 .
While (Janson et al., 2015) do describe methods for
constructing confidence intervals for σ2

0 , they do not
give an explicit formula for the asymptotic variance of
EigenPrism; instead, they gives bounds on the asymp-
totic variance in terms of the solution to a convex op-
timization problem. Given this discrepancy, we omit
the EigenPrism estimator from Figure 2. However, the
performance of EigenPrism relative to the MLE and
the MM estimator for σ2

0 is depicted in Figure 1 (see
also Table S1); in these settings, the MLE appears to
have significantly smaller variance than EigenPrism.

6 DATA ANALYSIS: ESTIMATING
HERITABILITY

To illustrate how the results from this paper could
be used in a practical application and to further in-
vestigate the MLE’s performance vis-à-vis other pre-
viously proposed methods for variance estimation, we
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conducted a real data analysis involving publicly avail-
able gene expression data and single nucelotide poly-
morphism (SNP) data.

6.1 Background

In genetics, heritability measures the fraction of vari-
ability in an observed trait (the phenotype) that can
be explained by genetic variability (the genotype). In
the context of linear models like (1)–(2), it is natu-
ral to identify heritability with the parameter r20 =
η20/(η

2
0 + 1) (De los Campos et al., 2015; Yang et al.,

2010). More specifically, if yi is the i-th subject’s phe-
notype and xij ∈ {0, 1, 2} is a measure of their geno-
type at location j (i.e. the minor allele count at a given
location in the i-th subject’s DNA), then r2 measures
the fraction of variability in the phenotype yi that is
explained by the genotype (xij)j=1,...p. Heritability is
often studied in relation to easily observable pheno-
types, such as human height (Yang et al., 2010). How-
ever, other important work has focused on more basic
phenotypes, such as gene expression levels, which may
be measured by mRNA abundance (Stranger et al.,
2007, 2012).

6.2 Analysis and Results

This data analysis was based on publicly available SNP
data from the International HapMap Project and gene
expression data collected by Stranger and coauthors5

on n = 80 individuals from the Han Chinese HapMap
population. For each of 100 different genes, we es-
timated the heritability r20 of the gene’s expression
level using genotype data from nearby SNPs, and then
computed corresponding confidence intervals (CIs). In
other words, we estimated r20 separately for 100 dif-
ferent genes, based on a different collection of SNPs
(ranging from p = 17 to p = 190) for each gene, and
then computed CIs for each r20. The 100 genes were
selected from genes that (Stranger et al., 2007) had
previously identified as having significant association
between gene expression levels and nearby SNPs in
the Japanese HapMap population. More detailed pre-
processing steps are described in the Supplementary
Material.6 The main objective of this data analysis is
to compare the lengths of the various CIs for r20. Given

5Accessed at http://hapmap.ncbi.nlm.nih.gov/ and
http://www.ebi.ac.uk/arrayexpress/experiments/E-
MTAB-264/

6We emphasize that the entries of X are discrete and
thus violate the normality assumptions required for most
of the theoretical results in this paper, even after prepro-
cessing. However, additional experiments with simulated
data (not reported here) suggest that many of these re-
sults remain valid for iid discrete xij . Pursuing theoretical
support for these observations is of great interest.

that the genes under consideration were already iden-
tified as significant in another study, we take shorter
CIs to be an indicator of more efficient inference on r20.

For each gene, we calculated two estimates for r20: (i)
The MLE r̂2 and (ii) the method-of-moments esti-
mate r̂2MM proposed in (Dicker, 2014). After comput-
ing these estimates, we then constructed three Wald-
type 95% CIs for the r20 of each gene using: (i) r̂2 and
the asymptotic standard error suggested by Theorem
2 (referred to as MLE-FE); (ii) r̂2 and the asymptotic
standard errors corresponding to a Gaussian random-
effects model, where β ∼ N{0, (τ20 /p)I} (MLE-RE);
and (iii) r̂2MM and the asymptotic standard error given
by Proposition 2 of (Dicker, 2014) (MM). Summary
statistics from our analysis are reported in Table 1.
The results in Table 1 indicate that the MLE-FE inter-
vals are typically the shortest, which potentially points
towards the improved power of this approach.

Table 1: Mean and empirical SD (in parentheses) of
95% CI length and corresponding estimates r̂2, com-
puted over 100 genes of interest.

MLE-FE MLE-RE MM
CI length 0.43 (0.13) 0.47 (0.14) 0.45 (0.26)
r̂2 0.21 (0.21) 0.21 (0.21) 0.22 (0.23)

7 DISCUSSION

The MLEs studied in this paper outperform a vari-
ety of other previously proposed methods for vari-
ance parameter estimation in high-dimensional lin-
ear models. Additionally, our methods highlight con-
nections between fixed- and random-effects models in
high dimensions, which may form the basis for fur-
ther research in this area. Investigating the extent to
which the distributional assumptions (2) may be re-
laxed will be important for determining the breadth
of applicability of the results in this paper, and that
of other “structured X” methods for high-dimensional
data analysis. In this paper, the key implication of
assumption (2) is the invariance property (5). Two
possible directions relaxing (5) are: (i) Replacing the
identity (5) with an approximate identity (as could
be satisfied by certain classes of sub-Gaussian ran-
dom vectors (xi1, . . . , xip)

> ∈ Rp) and (ii) assuming
that (5) holds only for U belonging to certain sub-
sets G of p × p orthogonal matrices, such as G =
{p × p permutation matrices} (this relaxation seems
relevant for iid, but not necessarily Gaussian, xij).
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