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Abstract

We consider the problem of learning a single-index target function f∗ : Rd → R
under the spiked covariance data:

f∗(x) = σ∗

(
1√
1+θ
⟨x,µ⟩

)
, x ∼ N (0, Id + θµµ⊤), θ ≍ dβ for β ∈ [0, 1),

where the link function σ∗ : R → R is a degree-p polynomial with information
exponent k (defined as the lowest degree in the Hermite expansion of σ∗), and it
depends on the projection of input x onto the spike (signal) direction µ ∈ Rd. In
the proportional asymptotic limit where the number of training examples n and
the dimensionality d jointly diverge: n, d → ∞, n/d → ψ ∈ (0,∞), we ask the
following question: how large should the spike magnitude θ be, in order for (i)
kernel methods, (ii) neural networks optimized by gradient descent, to learn f∗?
We show that for kernel ridge regression, β ≥ 1 − 1

p is both sufficient and nec-
essary. Whereas for two-layer neural networks trained with gradient descent,
β > 1− 1

k suffices. Our results demonstrate that both kernel methods and neural
networks benefit from low-dimensional structures in the data. Further, since k ≤ p
by definition, neural networks can adapt to such structures more effectively.

1 Introduction

Learning under spiked covariance. Real-world data is often high-dimensional but it also ex-
hibits certain low-dimensional structures. Indeed, the number of input features is exceedingly
large in machine learning, yet most relevant information is concentrated in a low-dimensional
subspace [LV07, HTFF09]. Such structures have important consequences on learning perfor-
mance. In random matrix theory, high dimensionality is reflected by the proportional asymp-
totic limit where the numbers of training examples and input features diverge to infinity at the
same rate, whereas the low-dimensional structure is often described by a spiked random matrix
model [Joh01, BAP05, BS06, BGN11] in which a low-rank signal (“spike”) is hidden in a large-
dimensional noise (“bulk”). In this work, we restrict ourselves to the simple setting where the signal
is rank-1, and consider the following data-generating process:

x ∼ N (0, Id + θµµ⊤), f∗(x) = σ∗

(
1√
1+θ
⟨x,µ⟩

)
, (1.1)

where the goal is to estimate the target function (teacher) f∗, which is a single-index model depend-
ing on the signal direction µ ∈ Rd, and σ∗ : R → R is an unknown link function. The signal µ is
also embedded in the spiked input data, and θ > 0 controls the spike magnitude; we scale θ ≍ dβ

for β ∈ [0, 1), where larger β indicates a more prominent low-dimensional structure, and hence the
learning problem becomes easier. We aim to characterize the efficiency of learning f∗ using kernel
methods and neural networks (NNs) in relation to the strength of the low-dimensional signal θ.
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Prior results: isotropic data. When θ = 0, the input features are isotropic and do not reveal any
information about the target f∗. In this setting, the performance of kernel methods and two-layer
NNs have been extensively studied in the proportional asymptotic limit.

• Kernel methods. For isotropic Gaussian or spherical input data, the performance of random
features (RF) regression and kernel ridge regression (KRR) has been precisely characterized in
the proportional limit [MM22, GLK+20, DL20, BMR21]. However, in this regime, RF models
and KRR suffers from the “curse of dimensionality” [Bac17, YS19] and cannot achieve vanishing
generalization error unless f∗ is linear [EK10, GMMM21, HL22]. More generally, for KRR to
learn a degree-p polynomial target, a sample complexity of n = Ω(dp) is required [GMMM21,
LRZ20, DWY21, MMM21].

• Neural networks + Gradient descent. While NNs can efficiently approximate a single-index
model (with polynomial link σ∗), the optimization complexity of gradient-based learning on
isotropic data is known to be governed by the information exponent, defined as the index of the first
non-zero Hermite coefficient of σ∗ [AGJ21]. For NNs trained with gradient descent (GD) to learn
a target with information exponent k, recent works showed that a sample complexity of n = Θ̃(dk)
suffices1 [AGJ21, DLS22, BBSS22, ABAM23]. Hence, in the proportional regime (n ≍ d), learn-
ability has only been established for k = 1 [AAM22, BES+22, MHPG+23, BMZ23].

These prior results delineate the limitation of kernel methods and GD-trained NNs under isotropic
data in the high-dimensional proportional scaling: KRR can only learn linear functions on the input,
and NNs learn targets with information exponent k = 1, which cannot cover many important prob-
lems such as phase retrieval [Fie82, CC15, TV23]. Following the intuition that low-dimensional
structure in the input data can make the learning problem easier, we ask the following question.

If the input data contains low-dimensional structure given by the spiked covariance model (1.1),
can kernel methods and neural networks learn a larger class of f∗ in the proportional regime?

1.1 Our Contributions
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Figure 1: Spike magnitude θ ≍ dβ for KRR
and GD-trained NN to learn the target f∗
with degree p and information exponent k in
the proportional regime. When k ̸= p, KRR
requires a stronger low-dimensional struc-
ture (i.e., larger spike) to learn f∗.

We answer this question in the affirmative by showing
that in the proportional asymptotic limit when the spike
magnitude θ reaches a certain threshold, both KRR and
GD-trained two-layer NN can learn the target function
f∗, where the link function σ∗ is a degree-p polynomial
with information exponent k (see Definition 1). Our find-
ings are summarized below and illustrated in Figure 1.

• For KRR with the inner-product kernel, we give a sharp
analysis of the prediction risk and show that to learn
a link function σ∗ with degree p in the proportional
regime, a spike magnitude of θ = Ω

(
d1−

1
p
)

is both
necessary and sufficient.

• For a two-layer NN with ReLU activation, we upper
bound the prediction risk when representation learning
is performed via one gradient descent step on the first-
layer parameters (analogous to [BES+22, DLS22]),
and show that a spike magnitude of θ = ω

(
d1−

1
k

)
is

sufficient to learn σ∗ with information exponent k.

Our analysis reveals that both KRR and NNs can benefit from the low-dimensional structure (spike)
in the input data, and they can learn a wider class of target functions in the proportional regime
compared to the isotropic setting (i.e., p > 1 for KRR, and k > 1 for NNs). Furthermore, since for
a given link function k ≤ p by definition, we know that NNs require a smaller spike magnitude θ to
learn the same target compared to KRR (see Figure 1). In other words, a GD-trained NN can utilize
such a low-dimensional structure more effectively than KRR.

1The appearance of k in the exponent of the dimensionality is also consistent with the correlational statistical
query (CSQ) lower bound [DLS22, ABAM23], which relates to the hardness of learning via gradient descent.
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Related works. Related to our problem setting, [GMMM20] studied the sample complexity of
KRR and NNs in a spiked covariance model, and showed that both models indeed benefit from a
stronger low-dimensional structure (i.e., larger spike). However, their analysis assumed the number
of spikes to be diverging and cannot cover the proportional regime we consider. More importantly,
the NN analysis is limited to approximation, and gradient-based optimization guarantee is not given.
In [RGKZ21], the authors presented a non-rigorous analysis on classifying XOR mixtures using an
RF model and a two-layer NN trained with online SGD and showed that the NN can learn the task
under smaller spike magnitude. Such a task is parallel to the information exponent k = 2 setting
(see [ABAM23]); our results rigorously demonstrate that similar separation exists for a different
class of target functions with potentially higher degree and information exponent.

2 Preliminaries: Problem Setting and Assumptions

Notations. ∥ · ∥ denotes the ℓ2 norm for vectors and the ℓ2 → ℓ2 operator norm for matrices, and
∥ · ∥F is the Frobenius norm. Od(·) and od(·) stand for the standard big-O and little-o notations,
where the subscript highlights the asymptotic variable; we write Õ(·) when (poly-)logarithmic fac-
tors are ignored. Od,P(·) (resp. od,P(·)) represents big-O (resp. little-o) in probability as d → ∞.
Ω(·),Θ(·), ω(·) are defined analogously. Denote γ as the standard Gaussian distribution in R. Given
f : Rd → R, we denote its Lp-norm with respect to the data distribution as ∥f∥Lp .

2.1 Basic Assumptions

We consider Gaussian input data with a spiked covariance:

x ∼ N (0, Id + θµµ⊤), θ ≍ dβ for some β ∈ [0, 1), (2.1)
where the signal direction µ ∈ Rd satisfies ∥µ∥ = 1, and the spike magnitude θ is allowed to grow
with the input dimensionality d as specified by the exponent β: as β gets larger, the spike magnitude
increases and hence the data exhibits stronger low-dimensional structure. Following the terminology
in [GMMM20], we may define the effective dimensionality of the input data as deff ≍ d1−β , which
captures the intuition that a larger spike renders the features more low-dimensional. As we will see,
the sample complexity of KRR and two-layer NN is decided by this effective dimensionality.

Teacher model. We consider a student-teaching setting, where the labels y are generated from a
teacher model (target function) f∗ : Rd → R. In the spiked covariance model (2.1), it is known that
input directions with large variations are often good predictors of the labels — indeed, this is the
main reason that principal component analysis is used in practice [HTFF09]. We therefore consider
the following single-index target function where the index features align with the spike direction µ:

y = f∗(x) = σ∗

(
1√
1+θ
⟨x,µ⟩

)
, (2.2)

where the link function σ∗ ∈ L2(γ) is centered such that E[σ∗(z)] = 0 for z ∼ N (0, 1) (this can
be achieved by subtracting the mean from the training labels as in [DLS22]), and the normalization
factor (1 + θ)−1/2 ensures that the L2 norm of f∗ remains constant. We remark that given the prior
knowledge of low-dimensional structure, we may efficiently learn f∗ by first performing PCA on the
input features; our goal, however, is not to construct an optimal learning algorithm, but to understand
the behavior of KRR and two-layer NN without such data preprocessing, similar to [GMMM20].
We also assume σ∗ is a degree-p polynomial with information exponent (IE) k defined below.
Definition 1 (Information exponent). Let {hj}∞j=0 denote the normalized Hermite polynomials. The
information exponent of f ∈ L2(γ), which we denote by k, is the index of the first non-zero Hermite
coefficient of f , that is, given the Hermite expansion f =

∑∞
j=0 αjhj , k := min{j > 0 : αj ̸= 0}.

It is clear that by definition, we always have k ≤ p, and equality is only achieved when σ∗ is a “pure”
degree-k Hermite polynomial. Intuitively, IE measures the magnitude of information contained in
the gradient, and larger k implies increased gradient descent complexity [AGJ21, BBSS22]. Such
definition is also related to the recently introduced leap complexity [ABA22].
Remark. In (2.2) we do not corrupt the training labels y with i.i.d. label noise, meaning that,
in light of the bias-variance decomposition, we analyze the bias term describing the extent f∗ is
learned by the student model. If label noise is introduced, the additional variance term (describing
the “overfitting” due to noise) can be handled by standard concentration argument.
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2.2 Learning Objective and Training Procedure

Given training examples {(xi, yi)}ni=1, where xi
i.i.d.∼ N (0, Id + θµµ⊤) and yi = f∗(xi), we con-

sider two student models obtained via the following training procedure in the proportional regime:

Proportional asymptotic limit: n, d→∞, n/d→ ψ ∈ (0,∞). (2.3)

Student model I: Kernel ridge regression. We focus on the inner-product kernel: k(x,y) =

g
( ⟨x,y⟩

d

)
for some g ∈ L2(γ) (similar argument can also apply to rotationally invariant kernels as in

[EK10, DWY21]). Denoting the associated reproducing kernel Hilbert space (RKHS) with H, the
kernel ridge regression estimator is given by

f̂ker = argmin
f∈H

{ 1

n

n∑
i=1

(yi − f(xi))2 + λ∥f∥2H
}
⇒ f̂ker(x) = k(x,X)⊤(K + λI)

−1
y, (2.4)

where λ > 0 is the ridge parameter, and K ∈ Rn×n is the kernel Gram matrix with entries Ki,j =
k(xi,xj). Spectral properties of the kernel matrix and the prediction risk of KRR have been exten-
sively studied in various high-dimensional settings [EK10, GMMM21, BMR21, XHM+22, LY22].
Since the kernel function is fixed before seeing the data, we intuitively expect that KRR cannot
effectively adapt to a low-dimensional structure in the learning problem.

Student model II: Two-layer neural network. We aim to learn the following width-N network:

fNN(x) =
1√
N

N∑
i=1

aiσ(⟨x,wi⟩+ bi) =
〈
a, N−1/2σ(W⊤x+ b)

〉
, (2.5)

where σ : R → R is a nonlinear activation, and the trainable parameters W ∈ Rd×N ,a, b ∈ RN
are initialized from standard Gaussian distribution. We require the network width to be N = Ω(dε)
for some small ε > 0. Such a choice entails that it is sufficient to have Θ(d1+ε) total training
parameters, which is almost proportional to the sample size n ≍ d; in contrast, for KRR we need to
store the kernel Gram matrix with n2 entries, which is less computationally efficient at test time.
It is known that NNs can adapt to the learning problem via representation learning, in which the
trained features encode relevant information of the target function. To realize this advantage, we up-
date the parameters in (2.5) via the two-stage procedure introduced in [BES+22, DLS22, BEG+22],
where we first learn the representation by taking one gradient descent step on the first-layer param-
eters W , and then estimate the second-layer parameters a separately (which is a convex problem).
This procedure is summarized as follows (see Algorithm 1 in Appendix for more details).

1. Feature learning for the 1st layer. We optimize the representation of the NN via gradient de-
scent, where the training objective is the empirical squared loss L(f) = 1

n

∑n
i=1(f(xi) − yi)2.

Specifically, denote the i-th column of the initialized weight matrix W 0 as w(0)
i ∈ Rd, and the

initialized NN as f0NN, we take one GD step with learning rate η as follows,

w
(1)
i ← w

(0)
i − η

√
N · ∇

w
(0)
i
L
(
f
(0)
NN

)
.

Due to the anisotropic input data, the pre-activation ⟨x,w(1)
i ⟩ may blow up if the trained param-

eter w(1)
i aligns with the signal direction µ. To circumvent this issue, we normalize each neuron

to have (roughly) unit pre-activation, i.e., for i ∈ [N ], we perform the weight normalization:

w
(1)
i ← w

(1)
i ·

(
1
n

∑n
j=1

〈
xj ,w

(1)
i

〉2)−1/2

.

At high level, this resembles the often-used normalization layers in deep learning [IS15, BKH16].

2. Ridge regression for the 2nd layer. After obtaining the updated first-layer parameters W 1 ∈
Rd×N , we optimize the second-layer a by solving the ridge regression objective – this can be
done by using GD to solve an ℓ2-penalized least squares. To circumvent the dependence be-
tween the training data X and the learned W 1, we follow [BES+22] and estimate the regression
coefficients â using a new set of training data {x̃i, ỹi}ni=1 with the same sample size n.
Denoting the feature matrix on the fresh training set {X̃, ỹ} as Φ := 1√

N
σ(X̃W 1+b) ∈ Rn×N ,

the ridge regression estimator can be obtained by: â = argmina
{

1
n∥ỹ −Φa∥2 + λ∥a∥2

}
.
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Learning in the proportional limit. Given a target function f∗ and a learned (student) model f̂ ,
we evaluate the model performance using the prediction risk:

R(f̂) := Ex[(f̂(x)− f∗(x))2] = ∥f̂ − f∗∥2L2 ,

where the expectation is taken over the (anisotropic) Gaussian data distribution. To benchmark the
model performance in the proportional limit (2.3), we introduce the following notion of learnability.
Definition 2 (Learnability in the proportional regime). We say an algorithm learns the target func-
tion f∗ in the proportional regime if, for any (small) constant ϵ > 0, there exists some constant
ψ∗ > 0 such that when n/d→ ψ ≥ ψ∗, the algorithm constructs f̂ using n i.i.d. training examples,
and achievesR(f̂) = ∥f̂ − f∗∥2L2 ≤ ϵ with probability 1 when n, d→∞ proportionally.

Based on this definition, in order for a student model f̂ (e.g., KRR or two-layer NN) to learn the
teacher f∗ in the proportional regime, it needs to achieve arbitrarily small prediction risk with high
probability, and with linear sample complexity (i.e., using n ≍ d training samples).

3 Kernel Ridge Regression

For an inner-product kernel, the performance of KRR depends on the behavior of the pairwise inner-
product of the training examples ⟨xi,xj⟩. Intuitively speaking, since the inner-products concentrate
in high dimensions, the kernel matrix can be approximated in operator norm via low-degree Taylor
expansion, and thus KRR can only learn f∗ that is low-degree (e.g., see [DWY21, WZ23]). In-
troducing a low-dimensional structure to the data is one way to counteract such near-orthogonality
in high dimensions. Hence we expect that KRR can achieve better performance when the spike
magnitude θ becomes larger – this intuition will be made rigorous in the following subsections.

3.1 Sharp Analysis of the Prediction Risk

In this section, we study the prediction risk of KRR defined in (2.4) with a positive semidefinite
kernel given by k(xi,xj) = g(⟨xi,xj⟩/d), i.e., g(k)(0) ≥ 0 for all k (see [SS02, Section 13.1]).
Recall that the strength of the low-dimensional component is determined by the spike magnitude
θ ≍ dβ ; in the following, we characterize how the exponent β ∈ [0, 1) affects the performance of
KRR.
We denote by P≤ℓ : L

2 → L2 the orthogonal projector onto the subspace of polynomials of degree
at most ℓ for any ℓ ∈ N. Similarly, we denote by P>ℓ = Id − P≤ℓ the projector to the orthogonal
complement where Id is the identity operator. To illustrate this notion, consider ℓ = 1, then we have

f∗(x) = P≤1f∗(x) + P>1f∗(x) = a∗ + ⟨b∗,x⟩+ P>1f∗(x),

where a∗, b∗ = argmina,b Ex[(f∗(x) − a − ⟨b,x⟩)2]. Note that any polynomial f∗ with degree at
most ℓ satisfies P>ℓf∗ = 0. Denoting the KRR model as f̂ker, we have the following sharp analysis
of the asymptotic prediction risk.
Theorem 3. Given any fixed ℓ ∈ N. Suppose that g(k)(0) > 0 for all k ≤ ℓ, and the spike magnitude
scales as θ ≍ dβ for β ∈

(
1− 1

ℓ , 1−
1
ℓ+1

)
. Then as n, d→∞, n/d→ ψ ∈ (0,∞), the prediction

risk of the KRR estimator f̂ker with λ = Od(1) satisfies the following with probability 1,

R(f̂ker)− ∥P>ℓf∗∥2L2 = od(1).

As a corollary of Theorem 3, based on Definition 2, we can obtain a sharp threshold of β for learning
a degree-p polynomial link function in the proportional regime (Definition 2).
Corollary 4. Assume σ∗ is a degree-p polynomial with p ≥ 1 defined in (2.2). Under the same
assumptions of Theorem 3, if β > 1 − 1

p , then the KRR estimator with λ = Od(1) learns f∗ in the

proportional regime, i.e.,R(f̂ker) = od(1) with probability 1 when n, d→∞ proportionally.

We make the following remarks on Theorem 3 and Corollary 4.

• At a high level, the above theorem aligns with the conclusion of [GMMM20] which assumes
spherical data with a diverging number of spikes. Recall that the effective dimensionality of our
anisotropic Gaussian data is deff ≍ d1−β , and Theorem 3 implies that to extract the signal direction
µ and learn a degree-p teacher model, a sample size of n = ω(dpeff) is required; note that for β > 0,
this implies an improvement over the isotropic setting where the sample complexity is n = ω(dp).
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• While we only state the result for inner-product KRR (similar to [LRZ20, BMR21]), we expect
similar findings for general rotationally invariant kernels: k(xi,xj) = g(⟨xi,xj⟩, ∥xi∥, ∥xj∥),
since the norm term has negligible contribution to the learning of a single-index target (2.2). In
fact, [DWY21] established a lower bound for rotationally invariant KRR, which, when applied to
our setting, gives a necessary sample complexity of n ≍ d

Ω(p)
eff . Although this lower bound may

not be sharp, it illustrates that the required spike magnitude needs to scale with target degree p.

3.2 Intuition behind the Analysis

We briefly summarize the two main ingredients for the proof of Theorem 3. As a preliminary step,
we can rotate the signal µ to the e1 direction due to the rotational invariance of Gaussian distribution.
After such transformation, we have ([xi]1, [xi]2:d)

i.i.d.∼ N (0, 1+θ)⊕N (0, Id−1) with θ = Θ(dβ).

Polynomial approximation of the kernel matrix. Firstly, we approximate the inner-product KRR
with some degree-L polynomial kernel in the form of

k(xi,xj) =
∑L
k=1 ckd

−k⟨xi,xj⟩k.
Such approximation can be used to establish a learning lower bound for KRR. For instance in the
proportional limit, [EK10] showed that for well-conditioned data, the inner-product kernel can be
approximated by the linear kernel, which implies that KRR only learns linear σ∗ [BMR21]. For
general deterministic datasets, similar approximation has been studied in [WZ23] where the “or-
thogonality” of input data determines the polynomial approximation error. In our setting, the inner
product 1

dx
⊤
i xj = Od(dβ−1) depends on the spike magnitude θ ≍ dβ . Consequently, we approxi-

mate our inner-product kernel by some polynomial kernel whose degree depends on β.

Orthogonal polynomial expansion. While the approximation in the preceding step simplifies
the kernel, such analysis is generally not sharp. To refine the result, we expend the polynomial
kernel in the Hermite bases (analogous to the analysis of spherical data in [GMMM21, MMM21]).
After rotation, the teacher model (2.2) can be written as f∗(x) = σ∗(z), for z ∼ N (0, 1) and
[x]1 =

√
(1 + θ)z independent with other entries [x]i for 2 ≤ i ≤ d. In light of the kernel

trick [Ver18, Section 3.7], we write k(xi,xj) = ⟨Φ(xi),Φ(xj)⟩ where the feature vector Φ(x) is
composed of Hermite polynomials of x up to some degree. Importantly, we only need to extract the
Hermite components with respect to the first entry [x]1 to learn a function σ∗(z).

4 Two-layer Neural Network

During the feature learning phase of NN training, we intuitively expect the parameters to align with
the (rank-1) signal direction which allows NN to overcome the “curse of dimensionality”. Indeed,
in this section, we show that the first gradient step on the first-layer weights W enables the model
to “zoom in” to the low-dimensional structure, given that the spike magnitude θ is sufficiently large.

4.1 Upper Bound on the Prediction Risk

We consider the following standard Gaussian initialization for the two-layer NN (2.5):

[W 0]ij
i.i.d.∼ N (0, 1/d), [a0]i

i.i.d.∼ N (0, 1/N), [b0]i
i.i.d.∼ N (0, 1). (4.1)

Denote the NN optimized by the two-stage procedure outlined in Section 2.2 as f̂NN. In the sequel,
we restrict ourselves to σ(z) = ReLU(z) = max{z, 0}. We expect similar characterization to hold
when the student activation σ has non-zero Hermite coefficients up to degree-p (see [ABAM23]).

The following theorem gives a sufficient condition on the spike magnitude θ ≍ dβ in order for f̂NN

to learn the target function f∗ with linear sample complexity (in terms of dimension dependence).
Theorem 5. Consider the NN training procedure in Section 2.2 with Gaussian initialization defined
in (4.1), N = Ω(dε), η = Ω(N1/2+ε), and appropriately chosen ℓ2 regularization dε−1 ≲ λ ≲ d−ε

for small ε > 0. Then, for σ = ReLU, we have

R(f̂NN) = od(1) with probability 1, when β > 1− 1/k,

as n, d → ∞, n/d → ψ. That is, the two-layer ReLU NN can learn the target function with the
information exponent k in the proportional regime.
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The above theorem predicts that a spike magnitude of θ = ω(d1−
1
k ) is sufficient for a GD-trained

two-layer NN to learn f∗ in the n ≍ d regime. Similar to prior works [AGJ21, BBSS22], the infor-
mation exponent k also determines the complexity of the learning problem in our setting: larger k
implies a more “difficult” task for GD, hence we need a larger θ (i.e., stronger low-dimensional sig-
nal) to achieve linear sample complexity. Moreover, in light of the effective dimensionality defined
in [GMMM20], Theorem 5 implies a sample size of n = ω(dkeff) suffices to learn a single-index
target with information exponent k; this contrasts the n = ω(dpeff) complexity of KRR given in
Theorem 3. Such discrepancy will be highlighted and empirically validated in Section 5.

4.2 Intuition behind the Analysis

Theorem 5 is established in two steps: first, we prove that under certain conditions, gradient descent
can align the first-layer parameters W with the signal direction µ; then we show that after achieving
such an alignment, f∗ can be efficiently learned by optimizing the second-layer a.

Spiked covariance amplifies gradient signal. Due to our “mean-field” initialization (i.e., small
second-layer coefficients), the initial NN has small output f (0)NN(x) ≈ 0. Therefore the gradient of
the squared loss is dominated by the correlation between the student and teacher model. Concretely,
consider the population gradient for one parameter vector w ∈ Rd at initialization (for simplicity
we omit the bias unit here):

Ex

[
∇wf

(0)
NN(x)

]
≈ −Ex[xσ

′(⟨x,w⟩)f∗(x)]
(i)
= −ΣEx

[
f ′∗(x)σ

′(⟨x,w⟩) · (1 + θ)−1/2µ+ f∗(x)σ
′′(⟨x,w⟩) ·w

]
(ii)
= −

√
1 + θµ · Ex[σ

′
∗(⟨x,µ⟩)σ′(⟨x,w⟩)] + residual terms,

where (i) is due to multivariate Stein’s lemma, and (ii) follows from the definition of Σ. Utilizing
the Hermite expansions of the student and teacher nonlinearities,

σ(z) =
∑∞
i=0 αihi(z), σ∗(z) =

∑∞
i=0 α

∗
i hi(z),

we have the following decomposition on the strength of the correlation term,

Ex[σ
′
∗(⟨x,µ⟩)σ′(⟨x,w⟩)] ≈

∞∑
i=0

(i+ 1)2αi+1α
∗
i+1 ·

〈√
1 + θµ,w

〉i
.

This calculation illustrates that the (expected) first gradient step indeed contains the direction of the
signal µ. More importantly, the magnitude of the signal term is affected by two factors: (i) it is
amplified by a larger spike θ, and (ii) it vanishes when the information exponent k is large, since
⟨µ,w⟩ = Θ̃P(d

−1/2) at initialization. The gradient magnitude relates to the sample complexity
because in order to establish learnability in the proportional regime, we need to achieve nontrivial
gradient concentration using n ≍ d samples. Consequently, the sufficient condition in Theorem 5
requires a larger θ when the information exponent k is large, and vice versa.

Remark. One caveat in the above derivation is that the Hermite coefficients of the student nonlin-
earity {αi}∞i=1 need to be non-zero up to degree-k, which is not satisfied by ReLU or most commonly-
used activation functions. We solve this issue by taking into account the bias units bi at initialization
which “diversify” the nonlinearity, similar to [BBSS22] (see Lemma 15 for details).

Nonparametric learning with random biases. After the signal direction is identified via gradient
descent, we need to learn the unknown link function σ∗. We utilize random biases as a resource for
univariate approximation – similar argument has appeared in many prior works [DLS22, BBSS22,
BEG+22, MHPG+23, ABAM23]. Recall that in the representation learning phase, the bias units bi
are not optimized. Therefore, if the weight vectors w align with the signal direction w ≈ µ, then
learning the second-layer coefficients a via ridge regression can be reduced to a univariate kernel
regression problem; specifically, given xi,xj ∈ Rd, the univariate kernel is given by k(zi, zj) =
Ea,b[σ(a · zi + b)σ(a · zj + b)], where zi = ⟨xi,µ⟩, zj = ⟨xj ,µ⟩. For σ = ReLU, it is known that
such kernel can efficiently learn a polynomial link function σ∗ (e.g., see [DLS22, BBSS22]).
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5 Experiments: Comparing KRR and NN

In this section, we empirically validate the theoretical results presented in previous sections. We
construct target functions f∗ with a link of varying degree p and information exponent k and exper-
imentally compute the prediction risk of KRR and that of a two-layer NN.

k = p : NN & KRR are comparable. We first consider the setting where k = p, which indicates
that the link function is a pure degree-p Hermite polynomial: σ∗(z) = hp(z). Recall that θ ≍ dβ ;
Theorem 3 implies that KRR learns the target function in the proportional regime when the spike
magnitude satisfies β > 1− 1

p , which matches the sufficient condition for NN given in Theorem 5.

In the experiments of Figure 2, we compute the prediction risk of KRR and that of two-layer NN
optimized via the two-stage procedure outlined in Section 2, where the link function σ∗ is a pure
degree-2 and degree-3 Hermite polynomial. We observe that both KRR and NN can learn f∗ with
linear sample complexity when the spike magnitude θ exceeds the same threshold predicted by our
theory; intuitively speaking, this means that for the k = p setting, NN and KRR utilize the low-
dimensional structure with the same efficiency. Also, note that while Theorem 5 only provides an
upper bound on the risk, the experiments demonstrate that the predicted scaling of θ is sharp.
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Figure 2: Prediction risk of KRR (a)&(c) and GD-trained two-layer NN (b)&(d) to learn f∗, where the link
function σ∗(z) = h2(z) in (a)&(b), and σ∗(z) = h3(z) in (c)&(d). We set ψ = 5. For KRR we use the
Gaussian RBF kernel and λ = 10−2. For two-layer NN, we set η =

√
N . The experiments are averaged over

50 runs. Darker color corresponds to a smaller prediction risk, and the red lines are predicted by the sufficient
conditions of learnability given by Theorem 3 and 5.

k < p : NN outperforms KRR. Next, we consider a setting where the link function σ∗ is a
mixture of low- and high-degree components: σ∗(z) =

∑
j∈J αjhj(z), with minJ = k,maxJ =

p. In this case, Theorem 3 predicts that KRR requires a spike magnitude of β > 1 − 1
p to learn f∗

with linear sample complexity, whereas Theorem 5 entails that a smaller spike magnitude β > 1− 1
k

is sufficient for the two-layer NN.
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Figure 3 shows that the predictions from Theorem 3 and 5 once again accurately align with the
experimental results. Observe that when k < p, GD-trained NN indeed outperforms KRR, in the
sense that it requires a less prominent low-dimensional structure (i.e., smaller spike magnitude θ)
to attain linear sample complexity. This illustrates the benefit of NN under structured data due to
the presence of representation (feature) learning. Roughly speaking, for target function with k < p,
the sample complexity of representation learning (i.e., finding the signal direction µ via gradient-
based learning) is low compared to directly estimating f∗ on the original input features; therefore
GD-trained NNs achieve better performance than KRR.
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Figure 3: Prediction risk of KRR (a)&(c) and GD-trained two-layer NN (b)&(d) to learn f∗, where the link
function σ∗(z) = h1(z) + h3(z) in (a)&(b), and σ∗(z) = h2(z) + h3(z) in (c)&(d). We use the same
hyperparameters as in Figure 2. The red lines are predicted by the sufficient conditions in Theorem 3 and 5.

6 Conclusion and Future Directions

We investigated the performances of KRR and GD-trained NNs in the proportional asymptotic limit.
We analyzed the prediction risk of these models in learning a nonlinear single-index model (2.2),
where the index feature in the teacher model only relies on the spike direction µ hidden in the
anisotropic Gaussian input data (2.1). The strength θ (signal-to-noise ratio) of this spike determines
the level of low dimensionality, which affects the learnability of both NNs and KRR. Our results
clearly demonstrate that both NNs and KRR benefit from this additional structure in the covariance;
yet, NNs adapt to the low-dimensional patterns more efficiently.
It is worth noting that our theoretical analysis focuses on the “well-specified” scenario where the
input spike perfectly aligns with the index features of f∗. In a companion work [MHWSE23], we
investigate a more general setting where the spiked covariance data only provides partial information
of f∗ (i.e. the “misaligned” scenario), and show that feature learning (via gradient flow) also benefits
from such structured data. Finally, extending our results to multi-index teacher models [CM20,
DLS22, ABAM23] and considering more general training dynamics (e.g., beyond the first gradient
step) applied to multiple-layer NNs are interesting directions left for future studies.
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A Analysis of Kernel Ridge Regression

In this section, we analyze the performance of KRR defined in Section 2. Recall that

xi ∼ N (0, Id + θµµ⊤), ∥µ∥2 = 1, (A.1)

where θ ≍ dβ , and β ∈ [0, 1). Let Σ = I + θµµ⊤ and xi = Σ1/2zi, where zi ∼ N (0, I), and
Σ1/2 = I + (

√
1 + θ − 1)µµ⊤. Then, the training label yi can be equivalently expressed as

yi = f∗(xi) = σ∗(⟨zi,µ⟩),

for i ∈ [n]. Recall X⊤ = [x, . . .xn] ∈ Rd×n. We define the nonlinear kernel matrix by K =

g( 1dXX⊤) ∈ Rn×n, where smooth function g : R → R is applied to each entry of the matrix.
Additionally, we write

K(x,X) =
[
g
(
x⊤x1/d

)
, . . . , g

(
x⊤xn/d

)]
.

We analyze the kernel ridge regression estimator:

f̂ker(x) = K(x,X)(K + λI)
−1

y.

Specifically, we aim to compute the prediction risk in the proportional regime:

R(f̂ker) = Ex(f̂ker(x)− f∗(x))2,

where x ∈ Rd is an independent copy of xi sampled from (A.1). Since the kernel K is rotationally
invariant, i.e.,

k(Sxi,Sxj) = k(xi,xj),

for any orthogonal matrix S ∈ Rd×d and i, j ∈ [n], we may apply an orthogonal matrix O ∈ Rd×d
for each data sample such that

Oxi ∼ N (0, Id + θe1e
⊤
1 ), Ox ∼ N (0, Id + θe1e

⊤
1 ),

where e1 is the standard coordinate vector. It is clear that in distribution, f̂ker(x) and f∗(x) re-
main unchanged before and after the transformation. Therefore, without loss of generality, we will
consider the case that µ = e1 for the proofs in this section, that is, we write

Σ = Id + θe1e
⊤
1 (A.2)

and training label yi = f∗(xi) only depends on the first entry of the data xi for i ∈ [n].

A.1 Polynomial Approximation of Kernel Matrix

Denote the concatenation of x and X as X̃
⊤
:= [x,X⊤] ∈ Rd×(n+1), and the enlarged nonlinear

kernel matrix by K̃ = g( 1dX̃X̃
⊤
) ∈ R(n+1)×(n+1). First we present a preliminary approximation

of K̃ by a proper polynomial kernel.
Lemma 6. Suppose that β ≤ 1 − 1

p for some p ∈ N. Under the assumptions of Theorem 3, as
n, d→∞ proportionally, we have

∥H̃p + σpIn+1 − K̃∥ = od,P(1),

where
H̃p := Pp

(
X̃X̃

⊤
/d
)
,

and Pp(x) =
∑2p
k=1 g

(k)(0)xk, σp := g(1)− Pp(1).

Proof. For simplicity, we denote x = x0 and x⊤
i = [x1

i , x̄
⊤
i ], where x1

i is the first entry of xi, and
x̄i the remaining entries for 0 ≤ i ≤ n. Notice that 1

dx
⊤
i xj =

1
dziΣzj , for any 0 ≤ i, j ≤ n. By

Bernstein inequality [Ver18, Corollary 2.8.3], we have

P
(∣∣∣∣1dx⊤

i xj

∣∣∣∣ > t

)
≤ P

(∣∣∣∣1d x̄⊤
i x̄j

∣∣∣∣ > t/2

)
+ P

(∣∣∣∣1dx1
ix

1
j

∣∣∣∣ > t/2

)
≤ exp (−cdmin{t2, t}) + exp (−ctd1−β),

14



for any i ̸= j and t > 0. Therefore,
∣∣ 1
dx

⊤
i xj

∣∣ = od,P(d
β−1 log d) for β ∈ [1/2, 1) and

∣∣ 1
dx

⊤
i xj

∣∣ =
od,P(d

−1/2 log d) for β ∈ [0, 1/2]. Then we have

∥offdig(H̃p − K̃)∥2 ≤ ∥offdig(H̃p − K̃)∥2F

≤
∑
i̸=j

∞∑
k=2p+1

∣∣∣∣1dx⊤
i xj

∣∣∣∣k = õd,P(d
− 1

p ).

Here, offdig(·) denotes setting the diagonal entries of the matrix to be zero. In addition, following
the same proof as Theorem 1 of [EK10], we can obtain a similar approximation for the diagonal
part dig(H̃p − K̃), the details of which we omit.

A.2 Hermite Expansion of Polynomial Kernel

Equipped with the above polynomial expansion of the kernel matrix, we now introduce a further
approximation using orthogonal polynomials. Recall that

R(f̂ker) = ∥f∗∥2L2 − 2y⊤(K + λI)−1E + y⊤(K + λI)−1M(K + λI)−1y,

where

E := Ex[f∗(x)k(x,X)]⊤ ∈ Rn

M := Ex[k(X,x)k(x,X)] ∈ Rn×n.

From Lemma 6 we know that for some p ∈ N,

K = Hp +∆K ,

k(x,X) = Hp(x,X) + σpIn+1 +∆K′ ,

for ∥∆K∥ = od,P(1) and
∥∥∆′

K

∥∥ = od,P(1), where σp is defined in Lemma 6, Hp := Pp(
1
dXX⊤),

and Hp(x,X) := Pp(
1
dXx)⊤ is a row vector. Then following from Lemmas A.3, A.8 and A.13 in

[BMR21], we can conclude thatR(f̂ker) = Rp + od,P(1), where

Rp := ∥f∗∥2L2 − 2y⊤(Hp + λI)−1Ep + y⊤(Kp + λI)−1Mp(Kp + λI)−1y, (A.3)

and

Ep := Ex[f∗(x)Hp(x,X)]⊤ ∈ Rn

Mp := Ex[Hp(X,x)Hp(x,X)] ∈ Rn×n.

Now we analyze the asymptotic behavior ofRp by utilizing the Hermitian polynomials to reorganize
kernel Hp. Since Σ now is a diagonal matrix in (A.2), from [Rah17], we know the multivariate
Hermite polynomials with respect to N (0, 1dΣ) in Rd are strongly orthogonal, each of which is the
product of univariate Hermite polynomials on each coordinate. More precisely, for any k ∈ N and
multi-index I := (i1, i2, . . . , id) ∈ [k]d with i1 + i2 + · · ·+ id = k, we define the k-th multivariate
Hermite polynomial with respect to I by hk,I(x) :=

∏d
j=1 hij (xj) where x = (x1, . . . , xd) and

hij (·) is the ij-the univariate Hermite polynomials (note that the variance for the first coordinate and
the remaining coordinates are different). Hence, any L-degree polynomial of x ∈ Rd has the form

f(x) =

L∑
k=0

∑
|I|=k

I={i1,i2,...,id}

ck,Ihk,I(x), (A.4)

for some coefficients ck,I ∈ R. Similar expansions using Gegenbauer polynomials for uniform unit
sphere distribution have been used in [GMMM21, MMM21, GMMM20]. The decomposition we
consider is specifically related to the Hermite expansions of σ∗:

f∗(x) =

p∑
i=k

αjhj(µ
⊤z) =

p∑
i=k

αjhj(z
1), (A.5)
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where hj(·) is the j-th Hermite polynomial with z ∼ N (0, I). Notice that E[hk,I(x)hl,J (x)] =
δk,lδI,J for x sampled from the spiked model (2.1).
By the kernel trick (e.g., see Section 3.7 of [Ver18]), a k-th monomial kernel satisfies

⟨xi,xj⟩k = ⟨x⊗k
i ,x⊗k

j ⟩,

where each entry of x⊗k
i ∈ Rdk is a k-th degree monomial of xi. Hence we can rewrite the above

inner product based on Hermite expansions of each entry of x⊗k
i and x⊗k

j . Therefore, for kernel
Hp(xi,xj), there exists a Hermite polynomial feature map Φ : Rd → RL where

L :=

2p∑
k=0

(
d+ k − 1

k

)
B(d, k) :=

(
d+ k − 1

k

)
such that

Hp(x
⊤
i xj/d) = Φ(xi/

√
d)D2Φ(xi/

√
d)⊤,

where each row vector Φ(·) is the concatenation of orthogonal polynomials hk,I(·) for 0 ≤ k ≤ L
and D is the diagonal matrix where the diagonal entries are the Hermite coefficients corresponding
to Hp which will be specified in the sequel. We define

Φ :=


Φ(x1/

√
d)

Φ(x2/
√
d)

· · ·
Φ(xn/

√
d)

 ∈ Rn×L, (A.6)

which gives Hp = ΦΦ⊤. Furthermore, since the variance of the first entry of xi is different
from the other entries and the label yi only depends on the first entry, we will separate the Hermite
polynomials depending on x1

i and the terms depending on the remaining entries x̄i ∈ Rd−1. That
is, we further decompose each Φ(xi/

√
d) = [Φ0(xi/

√
d),Φ(x̄i/

√
d)], where Φ0(xi/

√
d) ∈ RL0

and

L0 :=

2p∑
k=0

(
d+ k − 2

k − 1

)
B0(d, k) :=

(
d+ k − 2

k − 1

)
,

where B0(d, k) is the total number of multivariate Hermite polynomials of xi with degree k, whose
components with respect to x1

i is not vanishing. Based on this decomposition, we also write

Φ̄ :=


Φ(x̄1/

√
d)

Φ(x̄2/
√
d)

· · ·
Φ(x̄n/

√
d)

. (A.7)

Lemma 7. Let deff := d1−β . Under the assumptions of Theorem 3, we know that

Hp(x
⊤
i xj/d) = Φ(xi/

√
d)D2Φ(xi/

√
d)⊤,

where D2 is a diagonal matrix with entries

ζ(d, k,m) =
g(k)(0)

dk−mdmeff
+ od(d

−k+m−1d−meff ), (A.8)

for m ∈ [k] and k ∈ [2p]. Furthermore, based on the definition of Φ0 as above, we have
Hp = Φ0D

2
0Φ

⊤
0 + H̄p,

where each entry of H̄p(x̄i, x̄j) := Pp(
1
d x̄

⊤
i x̄j), and D2

0 is a diagonal matrix defined analogously
as D2 but with m > 0 in (A.8). Note that H̄p is an inner-product polynomial kernel matrix of
X̄ := [x̄1, . . . , x̄n] ∈ R(d−1)×n.

Proof. This lemma follows from properties of multivariate Hermite polynomials [Chi11]. Recall
Var(x1

i ) = 1 + θ = Θ(dβ).

By re-normalizing the variables, we obtain

Pp(x
⊤
i xj/d) =

2p∑
k=0

k∑
m=0

∑
|I|=k,i1=m

ζ(d, k,m)hk,I(xi), hk,I(xj),

where I = (i1, . . . , id). As for Φ0, the diagonals of D0 correspond to m ̸= 0 above.

16



A.3 Analysis of Prediction Risk

The next lemma shows that H̄p is approximated by a linear kernel which does not aid the learning of
f∗; this entails that we may focus on the term involving Φ0. Notice that H̄p is a rotationally invariant
kernel on isotropic Gaussian data X̄ whose limiting global law has been analyzed in [CS13].
Lemma 8. Under the assumptions of Theorem 3, as n, d→∞ proportionally, we have∥∥H̄p + σpIn −K lin

∥∥ = od,P(1),

where
K lin :=

c1
d
X̄

⊤
X̄ + c2In +

c3
d
11⊤

and ∥K lin∥ = Od,P(1). Here, c1, c2 and c3 are some positive constants that only depend on g(k)(0)
for k = 0, 1 and 2.

The above lemma is a consequence of Theorem 1 of [EK10], and hence we omit the detailed proof;
for the formulae of constants c1, c2 and c3, we refer to Equation (57) of [BMR21]. We remark that in
the following concentration analysis, the exact limiting spectral distribution of K lin does not appear,
since we do not consider the exact setting of β = 1− 1

ℓ for ℓ ∈ N.
Lemma 9. Under the assumptions of f∗ in Theorem 3, we have that

y = Φ0Pα,

for some vector α = [0, . . . , 0, αk, . . . , αp, 0, . . . , 0]
⊤ ∈ R2p, where P ∈ RL0×2p is a projector

onto the Hermite components with I = (i1, 0, . . . , 0).

Here α represents the Hermite coefficients of the function f∗. Lemma 9 directly follows from (A.5)
since y only depends on x1

i for i ∈ [d]. Notice that here P selects hk(x1
i ) for i ∈ [d] and k ∈ [2p]

from all multivariate Hermite polynomials.
Next, we prove the following concentration statements, parallel to existing results in [GMMM21,
MMM21] for spherical data. For any ℓ ∈ [2p], we decompose Φ0 = [Φ0,≤ℓ,Φ0,>ℓ] where Φ0,≤ℓ are
composed of all Hermite polynomials hk,I with k ≤ ℓ, and Φ0,>ℓ collects all Hermite polynomials
hk,I with k > ℓ. Similarly, we define D0,≤ℓ and D0,>ℓ corresponding to Φ0,≤ℓ ∈ Rn×m and
Φ0,>ℓ ∈ Rn×(L0−m), respectively. Here we denote by m the number of all Hermite polynomials
hk,I with k ≤ ℓ where m≫ n.
Lemma 10. Under the assumptions of Theorem 3, we have

Φ⊤
0,≤ℓΦ0,≤ℓ = Im + od,P(1).

This lemma shows the concentration of the Gram matrix since E[Φ⊤
0,≤ℓΦ0,≤ℓ] = Im. The proof of

this lemma can be derived from the concentration result [Zhi21]; see also Lemma 11 in [GMMM21].
The following two lemmas are the crucial ingredients of the proof of Theorem 3, which have been
established in Lemmas 13 and 14 in [GMMM21] for the spherical setting.
Lemma 11. Under the assumptions of Theorem 3 with 1 − 1

ℓ < β < 1 − 1
ℓ+1 for some ℓ ∈ N, as

n, d→∞ proportionally, we have∥∥∥∥n(Hp + λIn)
−1Mp(Hp + λIn)

−1 − 1

n
Φ0,≤ℓΦ

⊤
0,≤ℓ

∥∥∥∥ = od,P(1).

Proof. Recall the definition of Φ in (A.6). From Lemma 7, we can obtain that Mp = ΦD4Φ⊤

due to the orthogonal polynomial decomposition in (A.4). Hence,

M = Φ0,≤ℓD
4
0,≤ℓΦ

⊤
0,≤ℓ +Φ>ℓD

4
>ℓΦ

⊤
>ℓ,

where Φ>ℓ is defined similarly as Φ0,>ℓ which is formed by all orthogonal components of Φ0,≤ℓ.
In general, Φ>ℓ is composed by Φ0,>ℓ and Φ̄ defined in (A.7). Therefore,

n(Hp + λIn)
−1M(Hp + λIn)

−1

= n(Hp + λIn)
−1Φ0,≤ℓD

4
0,≤ℓΦ

⊤
0,≤ℓ(Hp + λIn)

−1

+ n(Hp + λIn)
−1Φ>ℓD

4
>ℓΦ

⊤
>ℓ(Hp + λIn)

−1.
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Recall that Hp = ΦD2Φ⊤. By Lemma 7 we know that with high probability∥∥∥n(Hp + λIn)
−1Φ>ℓD

4
>ℓΦ

⊤
>ℓ(Hp + λI)−1

∥∥∥ ≤ Cnd−ℓ−1
eff = od(1).

For the second part, we let A := Φ>ℓD
4
>ℓΦ

⊤
>ℓ+ λIn and apply the Sherman-Morrison-Woodbury

formula to obtain

n(Hp + λIn)
−1Φ0,≤ℓD

4
0,≤ℓΦ

⊤
0,≤ℓ(Hp + λIn)

−1

= nA−1Φ0,≤ℓ

(
D−2
>ℓ +Φ⊤

0,≤ℓA
−1Φ0,≤ℓ

)−2

Φ⊤
0,≤ℓA

−1

= A−1Φ0,≤ℓB
2Φ⊤

0,≤ℓA
−1,

where

B :=

(
(nD>ℓ)

−2 +
1

n
Φ⊤

0,≤ℓA
−1Φ0,≤ℓ

)−1

.

Following the proof of Lemma 13 in [GMMM21], we can show that
∥∥A−1 − In

∥∥ = od,P(1) and
∥B − In∥ = od,P(1) due to assumption that 1− 1

ℓ < ℓ and Lemma 10.

Lemma 12. Recall the definition of Φ0,≤ℓ above. Under the assumptions of Theorem 3 with 1− 1
ℓ <

β < 1− 1
ℓ+1 for some ℓ ∈ N, when n, d→∞ proportionally, we have∥∥∥Φ⊤

0,≤ℓ(Hp + λIn)
−1Φ0,≤ℓD0,≤ℓ − Im

∥∥∥ = od,P(1).

The proof of Lemma 12 is analogous to Lemma 11, the details of which we omit.
From (A.3), let us denote by

T1 := y⊤(Hp + λI)−1Ep

T2 := y⊤(Hp + λI)−1Mp(Hp + λI)−1y.

Now we aim to control T1 and T2 based on Lemmas 11 and 12. We define the projection of y onto
the Hermite components with degree less than or equals to ℓ and components with degree larger
than ℓ as: y = y1 + y2, where y1 = Φ0,≤ℓP≤ℓα and y2 = Φ0,>ℓP>ℓα. Here P≤ℓ projects onto
the Hermite components with I = (i1, 0, . . . , 0) and degree no greater ℓ, and P>ℓ = P − P≤ℓ.
Similarly, we decompose Ep as Ep = Ep,1 +Ep,2, where we denote

Ep,1 := Φ0,≤ℓD0,≤ℓP≤ℓα,

Ep,2 := Φ0,>ℓD0,>ℓP>ℓα.

Lemma 13. Under the assumptions of Theorem 3, we have

T1 = ∥P≤ℓf∗∥2L2 + od,P(1), T2 = ∥P≤ℓf∗∥2L2 + od,P(1).

Proof. For simplicity, we first control T2 and then apply some of these results to bound T1. Let
T2 = T21 + 2T22 + T23, where

T21 := y⊤
1 (Hp + λI)−1Mp(Hp + λI)−1y1,

T22 := y⊤
1 (Hp + λI)−1Mp(Hp + λI)−1y2,

T23 := y⊤
2 (Hp + λI)−1Mp(Hp + λI)−1y2.

Based on Lemmas 9, 11 and (A.8), we know that

T21 =
1

n2
α⊤P⊤

≤ℓΦ
⊤
0,≤ℓΦ0,≤ℓΦ

⊤
0,≤ℓΦ0,≤ℓP≤ℓα

= ∥P≤ℓf∗∥2L2 + od,P(1).

For T23, following from (23) in [GMMM21], when dℓ+1
eff < 1, by Markov’s inequality, we have

T23 =
1

n2
α⊤P⊤

>ℓΦ
⊤
0,>ℓΦ0,≤ℓΦ

⊤
0,≤ℓΦ0,>ℓP>ℓα+ od,P(1),

=
dℓ+1

eff

n
∥P>ℓf∗∥2L2 + od,P(1) = od,P(1), (A.9)
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since polynomials in Φ0,≤ℓ are orthogonal to polynomials in Φ0,>ℓ. Notice that

|T22| ≤ 2T
1/2
21 T

1/2
23 = od,P(1).

This finishes the proof for T2.
Now let us consider T1 = T11 + T12 + T13, where

T11 := y⊤
1 (Hp + λI)−1E1,p,

T12 := y⊤
2 (Hp + λI)−1E1,p,

T13 := y⊤(Hp + λI)−1E2,p.

From Lemmas 9 and 12, we directly have that

T11 = α⊤P≤ℓα+ od,P(1)

= ∥P≤ℓf∗∥2L2 + od,P(1).

Applying (A.9) from above, we have T12 ≤ T23∥P≤ℓf∗∥2L2 = od,P(1). Lastly, we know that

|T13| ≤ ∥y∥
∥∥(K + λI)−1

∥∥∥E2∥

≤ Cn∥f∗∥2L2

1

dℓ+1
eff

= od,P(1),

based on the effective dimension deff = d1−β . This completes the proof of this lemma.

Combining all the above lemmas together, Theorem 3 can be established by considering (A.3) and
the following approximation

R(fker) = ∥f∗∥L2 − 2T1 + T2 = ∥P>ℓf∗∥2L2 + od,P(1)

= ∥P>ℓf∗∥2L2 + od,P(1),

where P>ℓ is defined by in Section 3.

B Analysis of Neural Network

For the two-layer neural network, we perform the gradient-based optimization procedure outlined in
Algorithm 1. This algorithm is almost identical to the two-stage representation learning procedure
analyzed in recent works [BES+22, DLS22, BEG+22], with the only difference being the additional
normalization step (B.2) to handle the anisotropy of the input data.

B.1 Hermite Expansion of Population Gradient

We first consider one parameter vector at random initialization wi
i.i.d.∼ N (0, d−1Id). In the follow-

ing, we restrict ourselves to parameters in a subset defined as

Eτ =

{
i ∈ [N ]

∣∣∣ 1

τ
√
d
≤ |⟨µ,wi⟩| ≤

τ√
d

}
,

where the positive scalar τ = O(polylog(d)) will be appropriately selected in the sequel. Note that
due to the Gaussian initialization, setting τ = Θ(1) ensures that a constant fraction of neurons wi

falls into the set Eτ . The gradient of wi with respect to the population squared loss can be written as

∇wi

[
Ex

(
f∗(x)− f (0)NN(x)

)2]
= Ex

[
1√
N
ai
(
f
(0)
NN(x)− f∗(x)

)
σ′(⟨x,wi⟩+ bi)x

]
.

Due to our specific choice of parameter initialization (4.1), we know that the output of the student
model at initialization f (0)NN can be ignored (see Lemma 18 for justification). We, therefore, focus on
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Algorithm 1: Gradient-based training for two-layer ReLU neural network.
Hyperparameters: learning rate η, ℓ2 regularization strength λ
Normalized gradient descent on 1st layer: Given i.i.d. training examples {(xj , yj)}nj=1.

w
(1)
i ← w

(0)
i − η

√
N · ∇

w
(0)
i

(
1
n

∑n
j=1

(
yj − f (0)NN (xj)

)2)
(B.1)

w
(1)
i ←

1√
1
n

∑n
j=1⟨xj ,w

(1)
i ⟩2

·w(1)
i (B.2)

Ridge regression for 2nd layer: Given i.i.d. training examples {(x̃j , ỹj)}nj=1.

â← argmina

{
1
n

∑n
j=1

(
ỹj − ⟨ϕj ,a⟩

)2
+ λ∥a∥2

}
,

where [ϕj ]i :=
1√
N
σ
(〈
x̃j ,w

(1)
i

〉
+ b̃i

)
.

return prediction function fNN(x) =
1√
N

∑N
i=1 âiσ

(〈
x,w

(1)
i

〉
+ bi

)

the following term capturing the correlation between the i-th student neuron and the teacher model:

g(wi) := Ex[f∗(x)σ
′(⟨x,wi⟩+ bi)x] (B.3)

(i)
= ΣEx

[
f ′∗(x)σ

′(⟨x,wi⟩+ bi) ·
1√
1 + θ

µ+ f∗(x)σ
′′(⟨x,wi⟩+ bi) ·wi

]
,

=
√
1 + θµ · E[f ′∗(x)σ′(⟨x,wi⟩+ bi)]︸ ︷︷ ︸

(I)

+(I + θµµ⊤)wi · E[f∗(x)σ′′(⟨x,wi⟩+ bi)]︸ ︷︷ ︸
(II)

.

where (i) is due to Stein’s lemma. Note that
∥∥∥ 1√

1+θ
Σ1/2µ

∥∥∥ = 1. Therefore, if ∥Σ1/2wi∥ ≈ 1

(which is entailed by the defined event Eτ ), we may decompose the first term in the last equation via
the Hermite expansion as follows (e.g., see [BBSS22]):

(I) =
√
1 + θµ · E[f ′∗(x)σ′(⟨x,wi⟩+ bi)]

(i)
≈
√
1 + θµ ·

∞∑
j=0

(j + 1)2αbij+1α
∗
j+1 ·

〈√
1 + θµ,wi

〉j
, (B.4)

where αbi , α∗ are the Hermite coefficients of the (shifted) student and teacher nonlinearities:

σ(z + bi) =

∞∑
j=0

αbij hj(z), σ∗(z) =

∞∑
j=0

α∗
jhj(z).

The following lemma controls the error in (i) due to the norm fluctuation of wi.

Lemma 14. Define w̃i = wi/∥Σ1/2wi∥ for i ∈ E(τ), then we have

∆ := |Ex[f
′
∗(x)σ

′(⟨x,wi⟩+ bi)]− Ex[f
′
∗(x)σ

′(⟨x, w̃i⟩+ bi)]| ≲
1√
d
+

τ

d1−β
.

Proof. By Cauchy-Schwarz inequality, we have

|E[f ′∗(x)σ′(⟨x,wi⟩+ bi)]− E[f ′∗(x)σ′(⟨x, w̃i⟩+ bi)]|

≤
√
∥f ′∗(x)∥

2
L2 · ∥σ′(⟨x,wi⟩+ bi)− σ′(⟨x, w̃i⟩+ bi)∥2L2 .

Note that ∥f ′∗(x)∥L2 = E[σ′
∗(ξ)

2]1/2 = O(1), where ξ ∼ N (0, 1).

∥σ′(⟨x,wi⟩+ bi)− σ′(⟨x, w̃i⟩+ bi)∥L2 ≤ |∥Σ1/2wi∥ − 1| ≤ 1√
d
+

τ

d1−β
,
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which concludes the proof.

Similarly, for the second term, we have

(II) = (Id + θµµ⊤)wi · E[f∗(x)σ′′(⟨x,wi⟩)]
(i)
≈ θ⟨µ,wi⟩µ ·

∞∑
j=0

(j + 1)(j + 2)αj+2α
∗
i ·
〈√

1 + θµ,wi

〉j
+wi ·

∞∑
j=0

(j + 1)(j + 2)αj+2α
∗
i ·
〈√

1 + θµ,wi

〉j
, (B.5)

where (i) can be justified using the same argument from Lemma 14, the details of which we omit.

Random bias units “diversify” the gradient update. Importantly, the shift introduced by the
bias term bi ensures almost all neurons will have a non-vanishing Hermite coefficient at the given
degree, as shown by the following lemma.

Lemma 15. Given degree p ∈ N, for all b ∈ R such that hp−2(b) ̸= 0 when p ≥ 2, we have that
the p-th Hermite coefficient of f(z) = σ(z + b) is non-zero, i.e.,

∣∣Ez∼N (0,1)[σ(z + b)hp(z)]
∣∣ > 0.

Proof. First note that when p = 1, we have∫
R
ReLU(x+ b)xe−

x2

2 dx =
1

2

(
erf
(

b√
2

)
+ 1
)
> 0.

For b ≥ 2, we divide the computation based on the parity of p. When p is even, i.e., p = 2s, for any
b ∈ R, the Hermite coefficients are given by∫

R
ReLU(x+ b)h2s(x)e

− x2

2 dx = e−
b2

2 h2s−2(b),

for all s ∈ N. As for odd p = 2s+ 1, the odd-order Hermite coefficients are given by∫
R
ReLU(x+ b)h2s+1(x)e

− x2

2 dx = −e− b2

2 h2s−1(b).

Therefore, as long as b is not the zero of the Hermite polynomial of degree p − 2, the Hermite
coefficients of ReLU(x+ b) would be nonzero.

Approximation of population gradient. Note that for fixed p ∈ N, the condition hp−2(b) ̸= 0
excludes less than p possible values of bias bi. Combining (B.4) and (B.5), we have the following
characterization of the correlation term (B.3). Now given k ∈ N as the information exponent of σ∗,
we restrict ourselves to bi such that the corresponding degree-k Hermite coefficient of the shifted
ReLU αbik = Ez∼N (0,1)[σ(z + bi)hk(z)] is at least of order 1

logC d
for some constant C > 0. In

Section B.3.1 we show that such a condition is satisfied by a sufficiently large set of bi.

Proposition 16. Given fixed k ∈ N and θ ≍ dβ where β ∈ [0, 1), consider neurons wi where the

index i ∈ Eτ for τ = O
(
logC d

)
ensures that

∣∣∣αbik ∣∣∣ = Ω
(

1
logC d

)
. Then we have

∥(I)∥2 = Θ
(
αbik ⟨µ,wi⟩2(k−1) · (1 + θ)k

)
+O(∆).

∥(II)∥2 = O
(
poly(τ) ·

(
d−k−1(1 + θ)k+2 + d−k(1 + θ)k

))
+O(∆).

Where ∆ ≲ 1
d1/2

+ τ
d1−β is defined in Lemma 14.

Proof. Since the link function σ∗ has information exponent k, by definition, we know that α∗
i = 0

for all i < k. Also, since αbik = Ω
(

1
logC d

)
, under event Ei(τ) with τ = O

(
logC d

)
, the expected
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gradient is dominated by the term involving α∗
k in the summation. For (I) we have∥∥∥∥∥∥√1 + θµ ·

∞∑
j=0

(j + 1)2αbij+1α
∗
j+1 ·

〈√
1 + θµ,wi

〉j∥∥∥∥∥∥
= (1 + od(1))

∥∥∥∥√1 + θµ · αbik α
∗
k ·
〈√

1 + θµ,wi

〉k−1
∥∥∥∥

= Θ
(
αbik ⟨µ,wi⟩k−1(1 + θ)

k
2

)
.

The computation of ∥(II)∥ follows from the exact same procedure. Finally, the proof is complete
by including the norm fluctuation error ∆ in Lemma 14.

Proposition 16 establishes that (I) is the dominating term in the correlation g(wi) for any β > 1− 1
k

as shown in the following corollary.
Corollary 17. Under the same assumptions as Proposition 16, if β > 1− 1

k , we have

∥g(wi)− (I)∥ ≲ d−ε∥g(wi)∥,
for some small constant ε > 0.

B.2 Finite-sample Concentration

Given n training examples {(xi, yi)}ni=1, denote the matrix of training data X ∈ Rn×d, and the
vector of labels y ∈ Rn. Similarly, we denote the initial first-layer parameters as W 0 ∈ Rd×N , b0 ∈
RN ,a0 ∈ Rn. We first show that the initial gradient (B.1) is dominated by the correlation term (B.3).
Lemma 18. When n, d,N →∞ proportionally, there exist some constants c, C > 0 such that

P
(∥∥∥ 1

n

∑n
j=0 f

(0)
NN(xj)σ

′(⟨xj ,wi⟩+ bi)xj

∥∥∥ ≥ C√
1+θ
d

)
≤ exp

(
−c log2 d

)
.

Proof. Using the matrix & vector notation,

1

n

n∑
j=0

f
(0)
NN(xj)σ

′(⟨xj ,wi⟩+ bi)xj =
1

n
X⊤(f

(0)
NN(X)⊙ σ′(Xwi + bi1n)).

Since σ′ is bounded, we know that∥∥∥∥∥∥
n∑
j=0

f
(0)
NN(xj)σ

′(⟨xj ,wi⟩+ bi)xj

∥∥∥∥∥∥ ≲ ∥X∥
∥∥∥f (0)NN(X)

∥∥∥ =
1√
N
∥X∥∥σ(XW 0 + b0)a0∥.

To control the RHS, we first recall that the operator norm of X is bounded as follows,

P
(
∥X∥ ≥ C

√
(1 + θ)d

)
≤ exp(−cd), (B.6)

for some constants c, C > 0. Next, we consider the event that the norm of each training example xj
can be controlled as follows: B :=

{∣∣∣∥xj∥/√d− 1
∣∣∣ ≤ 1/2, j ∈ [n]

}
. Recall that xj = Σ1/2zj ;

hence ∥xj∥2 ≤ ∥zj∥2 + (1 + θ)|⟨zj ,µ⟩|2, which is clearly dominated by ∥zj∥2 when β < 1.
Consequently, [Ver18, Theorem 3.1.1] implies that

P(B) ≥ 1− n exp(−cd). (B.7)

Under event B, we know that fj := ⟨a0, σ(W
⊤
0 xj + b0)⟩ =

∑N
k=0 ajσ(⟨xj ,wk⟩ + bk) is a sum

of independent sub-exponential random variables, where the sub-exponential norm can be bounded
as ∥fj∥ψ1

≤ ∥aj∥ψ2
∥σ(⟨xj ,wk⟩+ bk)∥ψ2

≲ N−1/2 conditioning on event B. Therefore, for each
j ∈ [n], we have

P(|fj | ≥ C log d) ≤ exp
(
−c log2 d

)
. (B.8)

Combining (B.6), (B.7) and taking a union bound over all fj in (B.8) establishes the lemma.

The following proposition establishes the finite-sample concentration of the correlation term g(wi).
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Proposition 19. Define the empirical correlation term

gn(wi) :=
1

n

n∑
j=1

xjf∗(xj)σ
′(⟨xj ,wi⟩+ bi),

and recall the population counterpart

g(wi) = Ex[f∗(x)σ
′(⟨x,wi⟩+ bi)x].

Then for any fixed wi and bi, and any p-degree polynomial σ∗ with information exponent k, if
β ∈ [0, 1), we have

P

(
∥gn(wi)− g(wi)∥ ≥ log4p(n)

√
d

n

)
≤ n exp

(
−c log2 n

)
, (B.9)

for some constant c > 0. Moreover, when i ∈ Eτ and αbik = Ω
(

1
logC d

)
, we have

P

(
∥gn(wi)− g(wi)∥ ≥ C∥g(wi)∥ · polylog(n, d)

√
dkeff
n

)
≤ n exp

(
−c log2 n

)
, (B.10)

for any 1 > β > 1− 1
k , where deff := d1−β .

Proof. Define the projection P := Id − µµ⊤, we have the following decomposition

Σ1/2zi = Pzi +
√
1 + θµµ⊤zi,

where Gaussian random vectors Pzi and (µ⊤zi)µ are centered and independent with each other.
With this decomposition, we further decompose gn(wi) by

gn(wi) =
1

n

n∑
i=1

Σ1/2ziσ∗(µ
⊤zi)σ

′(w⊤Σ1/2zi + b)

=

(
1

n

n∑
i=1

Pziσ∗(µ
⊤zi)σ

′(w⊤Σ1/2zi + b)

)
︸ ︷︷ ︸

I1

+ µ

(√
1 + θ

n

n∑
i=1

µ⊤ziσ∗(µ
⊤zi)σ

′(w⊤Σ1/2zi + b)

)
︸ ︷︷ ︸

I2

.

Therefore, for any t > 0 and q ∈ (0, 1), we have

P(∥gn(wi)− g(wi)∥ > t)

≤ inf
q∈(0,1)

{P(∥I1 − EI1∥ ≥ qt) + P(∥I2 − EI2∥ ≥ (1− q)t)}. (B.11)

In the following, we present the concentration inequalities of I1 and I2 separately.
Now we first consider the concentration of I2. Notice that for any s > 0,

P(∥I2 − EI2∥ ≥ s) = P
(√

1 + θ
∣∣ 1
n

∑n
i=1 f(zi)− E[f(zi)]

∣∣ ≥ s),
where function f : Rd → R is defined by f(z) := µ⊤zσ∗(µ

⊤z)σ′(w⊤Σ1/2z + b). Based on
[Sam23], we next estimate the Orlicz norm of f(zi). Recall that the α-exponential Orlicz norm of a
random variable is defined by

∥X∥ψα
= inf
t>0
{t : E[exp (|X|α/tα)] ≤ 2}.

For any m ∈ N and z ∼ N (0, Id), since σ∗ is any polynomial with degree at most p, we have

∥f(z)∥Lm = E[|f(z)|m]1/m ≤ Eξ∼N (0,1)[|ξσ∗(ξ)|m]1/m

≤ m
p+1
2 ∥ξσ∗(ξ)∥L2 ,
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where the last inequality is due to Gaussian hypercontractivity [MMM21, Lemma 20]. Thus, random
variable f(z) has a finite Orlicz norm of order α := 2

p+1 : there exists some universal constantC > 0

such that ∥f(z)∥ψα
≤ C. Then by Theorem 1.5 of [GSS21], we can obtain that

P(∥I2 − EI2∥ ≥ s) ≤ 2 exp

(
−c
(
s

√
n

1 + θ

) 2
p+1

)
, (B.12)

for any s > 0 and some universal constant c > 0.

Next, we prove the concentration of I1. Let ui := Pziσ∗(µ
⊤zi)σ

′(w⊤Σ1/2zi + b) for i ∈ [n].
Consider a matrix A ∈ Rd×n where the i-th column of A is ūi := ui − Eui for i ∈ [n]. Then, for
any s > 0 we have,

P(∥I1 − EI1∥ ≥ s) ≤ P
(

1√
n
∥A∥ ≥ s

)
which implies that it is sufficient to analyze the concentration of ∥A∥. Notice that A is composed of
independent centered columns ūi with a population covariance S := E[ūiū⊤

i ]. We can check that

∥S∥ = sup
∥v∥=1

Var(v⊤ui) = sup
∥v∥=1, v⊥µ

Var(v⊤ui)

≤ sup
∥v∥=1, v⊥µ

E[(v⊤ui)
2] = sup

∥v∥=1, v⊥µ

E[(v⊤Pzi)
2] · E[σ∗(ξ)2] ≤ C,

for some universal constant C > 0. Meanwhile,

∥ūi∥ ≤ ∥Pzi∥ · |σ∗(µ⊤zi)|+ E[∥Pzi∥]E[|σ∗(µ⊤zi)|]
≤ ∥zi∥ · |σ∗(µ⊤zi)|+ E[∥zi∥] · E[|σ∗(ξ)|]

≤ ∥zi∥ · |σ∗(µ⊤zi)|+ C ′
√
d, (B.13)

where the inequality is due to the sub-Gaussian tail of the norm of the Gaussian random vector.
Applying Theorem 3.1.1 of [Ver18], we know that ∥zi∥ ≤ c′

√
d almost surely, for some universal

constant c′ > 0. Since σ∗ is a polynomial with degree p, we know that ∥σ∗(ξ)∥ψα
is uniformly

bounded by some constant for α = 1/p and ξ ∼ N (0, 1). Hence, |σ∗(ξ)| ≤ log2p(n) almost
surely. Together with (B.13), we can conclude that ∥ūi∥ ≤ C log2p(n)

√
d almost surely as n→∞.

Therefore, by Theorem 5.44 in [Ver10], we have that with probability at least 1− n exp (−cs2),

1√
n
∥A∥ ≤ (C + s log2p(n))

√
d

n
.

Combining (B.12) and choosing q = 1
2 and t = log4p(n)

√
d
n in (B.11), one can easily obtain (B.9)

for any β ∈ [0, 1). As a corollary of (B.9), applying Proposition 16, we can directly obtain (B.10).
This completes the proof of the proposition.

B.3 Learning f∗ with Neural Network Features

Univariate approximation. We first adapt an argument from [DLS22] showing that a ReLU non-
linearity can approximate a polynomial function in one dimension with the aid of random bias units.
Lemma 20 (Corollary 3 in [DLS22], adapted). Let σ(z) = ReLU(z), s ∼ Unif({−1, 1}) and
b ∼ N (0, 1). Then given twice-differentiable f : R→ R, there exists some υ(s, b) such that for any
|z| ≤ C with some constant C > 0,

E[υ(s, b)σ(sz + b)] = f(z), and sups,b|v(s, b)| ≲ exp(C).

Proof. Let v(s, b) = ec
2/2

√
2π

1−e−3c2/2
1b∈[c,2c], for any c > 0. Then we have

E[υ(s, b)σ(sz + b)] = 1,

24



for all |z| ≤ c. Now let v(s, b) = s
f(c)1b∈[c,2c], for any c > 0, where f(c) :=

∫ 2c

c
1√
2π
e−b

2/2db. For
similar reasons, we may verify that

E[υ(s, b)σ(sz + b)] = z,

for all |z| ≤ c. Let v(s, b) = 2
√
2πf ′′(−sb)eb2/21b∈[0,c], for any c > 0, where f ∈ C2(R) . Then

we can easily check that

E[υ(s, b)σ(sz + b)] = f(z) + F (c) +G(c)z,

for all |z| ≤ c, where

F (c) = c(f ′(−c) + f ′(c)) + f(0)− 2f(c),

G(c) = f ′(0)− 2f ′(c).

Notice that this construction of v(s, b) approximates the function f(z) using some constant and
linear function perturbations. Now recalling the first two cases, we know that we can approximate
any constant and linear functions on this interval, and hence we obtain the desired claim by
combining all three cases together.

B.3.1 Analysis of the Learned Feature Map

Recall the training procedure in Algorithm 1. The following lemma shows that after the first-layer
parameters are optimized for one (normalized) gradient step, there exist some second-layer coeffi-
cients that achieve small prediction risk with high probability.
Proposition 21. Given fixed k ∈ N and β > 1− 1

k , let W 1 be the weight matrix optimized via one
normalized gradient descent step defined in Algorithm 1, there exists some second-layer coefficients
ã ∈ RN such that f̃(x) = 1√

N
σ(W⊤

1 x+ b)ã = 1√
N

∑N
i=1 ãiσ(ai⟨x,w

(1)
i ⟩+ bi) achieves

∥f∗ − f̃∥2L2 ≲ 1/ logC d, and ∥ã∥ ≲ logC d,

for some large constantC > 0, with probability 1−exp
(
−c log2N

)
when n, d→∞ proportionally

and N = Ω(dϵ).

Proof. We follow an argument similar to [BES+22, Appendix D] by selecting a suitable set of
neurons that can approximate f∗. Throughout this proof, we take ε > 0 to be some small non-
vanishing constant and C > 0 to be some large constant. At a high level, we select the neurons
following the univariate approximation result in Lemma 20 to fit a polynomial target function. To
this end, we need to show that after one gradient descent step, there exists a sufficiently large set of
neurons w(1)

i that align with the signal direction, i.e.,
∣∣∣√1 + θ⟨w(1)

i ,µ⟩
∣∣∣ ≈ 1.

We first restrict ourselves to the “average-case” neurons around the equator wi where the indices
i ∈ Eτ . Due to the Gaussian initialization, setting τ = log2 d entails P(i /∈ Eτ ) ≲ exp

(
− log2 d

)
.

Now we consider the subset of bias units that gives an “informative” gradient update, i.e., the k-th
Hermite coefficient is not vanishing: αbik = Ω

(
1

logC d

)
for some large constant C > 0. Recall that

Lemma 15 implies that for bias unit satisfying hp−2(bi) ̸= 0, the degree-k Hermite coefficient of
f(z) = σ(z + bi) is non-zero. Therefore, we define the index set

Bε =
{
i ∈ [N ]

∣∣ |hp−2(bi)| ≥ ε, if p ≥ 2
}
, (B.14)

Notice that all the zeros of Hermite polynomials are real and distinct, see Theorem 3.3.1 in [Sze39].
Additionally, from Theorem 3.3.2 in [Sze39], the zeros of hp+1(x) are interlacing between the zeros
of hp(x). From the recurrence relation of Hermite polynomials, namely,

hp+1(x) = xhp(x)− h′p(x),

we know that h′p(x) ̸= 0 if x is a root of hp. Thus, applying the implicit function theorem, we

can deduce that by choosing ε ≍ 1
logC d

for some large C > 0, we attain αbik = Ω
(

1
logC d

)
, for

any i ∈ Bε. Due to the Gaussian initialization of bi, we know what the expected size of the set
E|Bε| = Ω(N1−ε′) for some small ε′ > 0. Therefore, Hoeffding’s inequality implies that for large
enough N = Ω(dϵ), we have

∣∣∣ |Bε|
E|Bε| − 1

∣∣∣ ≤ N−1/2+ε′ with probability 1− exp
(
−c log2N

)
.
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Gradient approximation. For the subset of neurons with indices i ∈ Bε, we introduce a sequence
of approximations to the gradient update given as

gn(w
(0)
i ) =

1

n
X⊤(f (0)NN(X)− f∗(X)

)
⊙ σ′(Xw

(0)
i + bi1n),

where we dropped the factor ai√
N

for convenience. First recall that by Lemma 18, we can ignore the
initial NN output as follows:∥∥∥gn(w(0)

i )− 1
nX

⊤(f∗(X)⊙ σ′(Xw
(0)
i + bi1n))

∥∥∥ ≲
√
1+θ
d , (B.15)

with probability 1 − exp
(
−c log2 d

)
for some constant c > 0. Note that since β < 1, the RHS can

always be upper-bounded by d−ε for some small ε > 0. Next, we take into account the concentration
and truncation error in Propositions 19 and 16, respectively. Define the population gradient (again
omitting the scalar ai√

N
),

g(w
(0)
i ) = Ex

[
xf∗(x)σ

′(⟨x,w(0)
i ⟩+ bi)

]
.

(B.10) in Proposition 19 implies that for any fixed p ∈ N, β > 1 − 1
k , and large enough n, d, with

probability 1− exp
(
−c log2 d

)
, we have∥∥∥∥ 1nX⊤(f∗(X)⊙ σ′(Xw

(0)
i + bi1n))− g(w(0)

i )

∥∥∥∥ ≲ d−ε
∥∥∥g(w(0)

i )
∥∥∥, (B.16)

for some ε > 0. As for the population counterpart, Corollary 17 implies that for neurons with
indices i ∈ Eτ ∩ Bε, if β > 1− 1

k , then we have∥∥∥∥g(w(0)
i

)
− αbik α

∗
k

√
1 + θ

〈√
1 + θµ,w

(0)
i

〉k−1

µ

∥∥∥∥ ≲ d−ε
(
1 +

∥∥∥g(w(0)
i

)∥∥∥), (B.17)

where
∥∥∥g(w(0)

i

)∥∥∥ ≍ (1 + θ)
k
2

∣∣∣∣〈w(0)
i ,µ

〉k−1
∣∣∣∣ = Θ̃

(
(1 + θ)

k
2 d

1−k
2

)
due to the condition i ∈ Eτ

for τ = logC d. Combining (B.15), (B.16), and (B.17), we know that the gradient vector gn(w
(0)
i )

achieves significant alignment with the target direction µ when β > 1− 1
k .

Normalization step. Now we consider the normalization procedure (B.2). When β > 1 − 1
k ,

(B.15), (B.16), and (B.17) imply that for neurons wi in the subset i ∈ Eτ ∩ Bε, we have

w
(1)
i = w

(0)
i − ηai ·

1

n
X⊤(f (0)NN(X)− f∗(X)

)
⊙ σ′(Xw

(0)
i + bi1n)

(i)
= w

(0)
i + ηai ·

(
αbik α

∗
k

√
1 + θ

〈√
1 + θµ,w

(0)
i

〉k−1

(µ+∆)

)
,

where ∥∆∥ ≲ d−ε for some ε > 0, with probability 1− exp
(
−c log2 d

)
. Now recall that we select

a sufficiently large learning rate η = Ω(N1/2+ε) for some small ε > 0. Since ai ∼ N (0, 1/N),∥∥∥w(1)
i − κiµ

∥∥∥ ≲ d−ε|κi|, (B.18)

where κi = ηaiα
bi
k α

∗
k

√
1 + θ

〈√
1 + θµ,w

(0)
i

〉k−1

= Θ̃
(
Nε(1 + θ)

k
2 d

1−k
2

)
by the choice of τ ≍

logC d and αbik ≍
1

logC d
. Define the normalization factor

χi =
(

1
n

∑n
j=1⟨xj ,w

(1)
i ⟩2

)1/2
=

1√
n

∥∥∥Xw
(1)
i

∥∥∥,
by (B.18) we know that

|χi − κi∥Xµ∥| = 1√
n

∣∣∣∥∥∥Xw
(1)
i

∥∥∥− κi∥Xµ∥
∣∣∣

≤ 1√
n

∥∥∥X(w(1)
i − κiµ

)∥∥∥ ≲ d−ε(1 + θ)1/2|κi|,
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with high probability, where we used the proportional scaling of n, d in the last inequality. Now note
that 1√

n
∥Xµ∥ →

√
1 + θ almost surely when n, d→∞ proportionally, we have∣∣∣∣χ−1

i −
(
κi
√
1 + θ

)−1
∣∣∣∣ =

∣∣χi − κi(1 + θ)1/2
∣∣∣∣χiκi(1 + θ)1/2
∣∣ ≲ d−ε(1 + θ)−1/2

∣∣κ−1
i

∣∣.
Combining the above calculations and recalling N = Ω(dϵ), we arrive at the following characteri-
zation of the normalized weight vector:∥∥∥∥( 1

n

∑n
j=1⟨xj ,w

(1)
i ⟩2

)−1/2

·w(1)
i − sign(κi)(1 + θ)−1/2µ

∥∥∥∥
≤ χ−1

i

∥∥∥w(1)
i − κiµ

∥∥∥+ ∣∣∣sign(κi)(1 + θ)−1/2 − κiχ−1
i

∣∣∣ ≲ d−ε(1 + θ)−1/2, (B.19)

with probability 1− exp
(
−c log2 d

)
. Observe that (B.19) entails that after the normalization step:

w
(1)
i ←

(
1
n

∑n
j=1⟨xj ,w

(1)
i ⟩2

)−1/2

·w(1)
i ,

the updated weight vector with index i ∈ Eτ ∩Bε approximates the target direction in the sense that∥∥∥√1 + θ ·w(1)
i − sign(κi)µ

∥∥∥ ≲ d−ε with high probability, for some small ε > 0.

Approximation of link function. Now we construct certain second-layer coefficients ãi on a sub-
set of neurons with indices i ∈ I such that the (sub)network approximates the link function σ∗.
Roughly speaking, we wish to find some collection of neurons that utilizes the univariate approxi-
mation result in Lemma 20:

f̃(x) :=
∑
i∈I

ãi√
N
σ(⟨x,w(1)

i ⟩+ bi) ≈ E[υ(s, b) · σ(s⟨x, (1 + θ)−1/2µ⟩+ b)].

First, we consider the ideal setting where wi is exactly in the direction of µ up to sign flip, that is,
we may write wi = si(1 + θ)−1/2µ for si ∼ Unif({+1,−1}). This allows us to reparameterize
⟨x, (1 + θ)−1/2µ⟩ =: z ∈ R, and choose the second-layer coefficients ã according to Lemma 20
on domain |z| ≤ log log d. This implies that |υ(s, b)| = O(exp(log log d)) = O(log d). The
corresponding “infinite-width” neural network is written as

f∞(z) = Es∼Unif({+1,−1}),b∼N (0,1)[υ(s, b) · σ(sz + b)].

From Lemma 20 we know that for |z| ≤ log log d, we have f∞(z) = σ∗(z).
Now we control the difference between the ideal model and the finite-width network of interest. First
we restrict ourselves to b ∈ B′ε defined as a “continuous” analogue of (B.14): B′ε =

{
b
∣∣ |hp−2(b)| ≥

ε, if p ≥ 2
}

, with ε ≍ 1
logC d

for large C > 0, and write the corresponding infinite-width model as

fε∞(z) = Es,b[υ(s, b)σ(sz + b) · 1b∈B′
ε
].

By the Lipschitz property of σ, we have |f∞(z)− fε∞(z)| ≲ sup |υ(s, b)| · 1
logC d

= od(1).

Next, we bound the error due to truncation at the interval |z| ≤ log log d. Recall that ⟨x, (1 +
θ)−1/2µ⟩ =: z ∼ N (0, 1); hence we have the following evaluation

Ez∼N (0,1)

[(
σ∗(z)− fε∞(z)

)2] ≤ Ez
[(
σ∗(z)− f∞(z)

)2]
+ Ez

[(
f∞(z)− fε∞(z)

)2]
≲

1

logC d
+ Ez

[
(σ∗(z)− f∞(z))21|z|≥log log d

]
. (B.20)

To upper-bound the above expectation, observe that

Ez[σ∗(z)21|z|≥log log d] ≲
∫
|z|>log log d

σ∗(z)
2 exp

(
−z2/2

)
dz ≲

1

logC d
, (B.21)

for large C > 0, where we used the fact that σ∗ is a degree-p polynomial with bounded L2 norm in
the last inequality. On the other hand, by Cauchy-Schwarz we have

|f∞(z)| ≤
√

E[υ(s, b)2] · E[σ(sz + b)2] ≲ sup|υ(s, b)| ·
√
E[σ(sz + b)2].
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Therefore, by the Lipschitz property of σ and the fact that sup|υ(s, b)| ≍ log d,

Ez[f∞(z)21|z|≥log log d] ≲
√

E[f∞(z)4] · E[1|z|≥log log d] ≲
1

logC d
. (B.22)

Combining (B.20), (B.21), and (B.22) yields Ez∼N (0,1)

[(
σ∗(z)− fε∞(z)

)2]
≲ 1

logC d
= od(1) for

some large C > 0. Now consider the finite-width model

f̂(z) =
∑
i∈I

ãi√
N
σ(siz + bi)1i∈Bε ,

where si
i.i.d.∼ Unif({+1,−1}) and bi

i.i.d.∼ N (0, 1). Similar to above, we set the second-layer ã
according to Lemma 20, that is, ãi =

√
N

|I| υ(si, bi).

To establish the concentration of f̂ around fε∞, we first restrict |z| ≤ log d. Let ϕ(s, b) = σ(sz+ b).
Then ∥∇ϕ(s, b)∥∞ ≤ 1 + log d. Hence, applying Lipschitz concentration inequality for s and b,
we have ∥ϕ(s, b)∥ψ2

≤ 1 + log d. Since uniformly ∥v(s, b)∥∞ ≤ log d, we know that the sub-
exponential norm ∥v(s, b)ϕ(s, b)∥ψ1

≤ 2 log2 d. Thus, utilizing the Bernstein’s inequality [Ver18,
Theorem 2.8.1], we know that

P
(∣∣∣ 1

|I|
∑
i∈I v(si, bi)σ(zsi + bi)1i∈Bε − fε∞(z)

∣∣∣ > t
∣∣∣ |z| ≤ log d

)
≤ 2 exp

(
− c|I|

log4 d
min{t2, t}

)
,

for any t > 0. By construction, we can construct a subset of neurons I ⊂ Eτ ∩Bε with |I| = Θ(N),
with probability at least 1− exp

(
−c log2 d

)
. Since we choose N = Ω(dϵ), we may take t ≍ 1

logC d

for large C, and a union bound yields
∣∣∣f̂(z)− fε∞(z)

∣∣∣ ≲ 1
logC d

with probability 1−exp
(
−c log2 d

)
as d,N → ∞, under the event that |z| ≤ log d. Then by the tail bound of the standard Gaussian
random variable z, we have

Ez∼N (0,1)

[
(f̂(z)− fε∞(z))2

]
≲ Ez

[
(f̂(z)− fε∞(z))21|z|≤log d

]
+ Ez

[
(f̂(z)2 + fε∞(z)2)1|z|>log d

]
≲

1

logC d
, (B.23)

with probability 1− exp
(
−c log2 d

)
when d,N →∞.

To control the deviation from the ideal setting, we consider neurons w
(1)
i where i ∈ Eτ ∩ Bε for

τ ≍ logC d and ε ≍ 1
logC d

. Recall that for this subset of neurons, with at least probability 1 −

exp
(
−c log2 d

)
we have

∥∥∥√1 + θ ·w(1)
i − sign(κi)µ

∥∥∥ ≲ d−ε, where sign(κi) ∼ Unif({+1,−1})
due to the Gaussian initialization of ai (note that wi, ai, bi are independent). Therefore,

Ex

(∑
i∈I

1√
N
ãiσ
(〈
x,w

(1)
i

〉
+ bi

)
−
∑
i∈I

1√
N
ãiσ
(
sign(κi)

〈
x, (1 + θ)−1/2µ

〉
+ bi

))2

(i)

≤ 1

N
∥ã∥2 · Ex

[∑
i∈I
〈
x,w

(1)
i − sign(κi)(1 + θ)−1/2µ

〉2]
≲
∥ã∥2|I|
Ndε

, (B.24)

for small constant ε > 0, where we used the Lipschitz property of σ in (i).
Finally, recall that with high probability we can construct I such that |I| = |Eτ ∩ Bε| ≍ N . This
implies the following ℓ2-norm control of the chosen coefficients,∑

i∈I ã
2
i ≲ |I| · (|I|

−1
log d
√
N)2 = N log2 d · |I|−1 ≲ logC d, (B.25)

This entails that the RHS of (B.24) can be bounded as d−ε logC N = od(1).
Combining (B.20), (B.23), (B.24), and (B.25), we know that there exists some second-layer coeffi-
cients ã such that as n, d,N →∞, there exists some some large constant C > 0 such that

Ex

[
(f∗(x)− f̃(x))2

]
≲

1

logC d
, where f̃(x) =

1√
N

N∑
i=1

ãiσ
(
⟨x,w(1)

i ⟩+ bi
)
, ∥ã∥ ≲ logC d,

with probability 1− exp
(
−c log2 d

)
. Note here here we simply set ãi = 0 for i /∈ Eτ ∩ Bε.

28



B.3.2 Ridge Regression Estimator

Proposition 21 suggests there exists some second-layer coefficients with small ℓ2 norm can achieve
small prediction risk. Based on a standard concentration argument, we can show that the ridge
regression estimator with appropriately chosen λ also achieves low risk (e.g., see [Bac23]). Here we
briefly sketch an argument following [BES+22, Appendix D.3].

Given feature map x → 1√
N
σ(W⊤

1 x + b) conditioned on first-layer weights W 1, b, we de-

note the associated Hilbert space as H. We define the optimal predictor in the RKHS as f̌ :=
argminf∈H Ex(f(x)− f∗(x))2, which takes the form of f̌(x) =

〈
1√
N
σ(W⊤

1 x+ b), ǎ
〉

for some
ǎ ∈ RN . We have the orthogonal decomposition of f∗ in L2:

f∗(x) = f̌(x) + f⊥(x).

Given fresh training data {(x̃i, ỹi)}ni=1, it is known that the prediction risk of ridge regression admits
the following decomposition:

R = Ex

((
f∗(x)− f̌(x)

)
+

(
f̌(x)− 1

n
ϕx

(
Σ̂Φ + λI

)−1

Φ⊤ỹ

))2

≲ Ex

(
f∗(x)− f̌(x)

)2︸ ︷︷ ︸
R1

+Ex

(
f̌(x)− 1

n
ϕx

(
Σ̂Φ + λI

)−1

Φ⊤f̌

)2

︸ ︷︷ ︸
R2

+
1

n2
f⊤
⊥Φ
(
Σ̂Φ + λI

)−1

ΣΦ

(
Σ̂Φ + λI

)−1

Φ⊤f⊥︸ ︷︷ ︸
R3

,

where ϕx := 1√
N
σ(W⊤

1 x + b) for x ∈ Rd, which gives Φ⊤ = [ϕ⊤
x̃1
, . . . ,ϕ⊤

x̃i
, . . . ,ϕ⊤

x̃n
], where

x̃i is the i-th row of X̃; we denoted Σ̂Φ := 1
nΦ

⊤Φ, ΣΦ := 1
NEx

[
σ(W⊤

1 x+ b)σ(W⊤
1 x+ b)⊤

]
.

Also, the i-th entry of vector f̌ and f⊥ are given by [f̌ ]i = f̌(x̃i), [f⊥]i = f⊥(x̃i), respectively.

Concentration of feature covariance. We first establish the concentration of the kernel matrix in
the proportional regime. The following lemma provides an estimate of the norm of the features.

Lemma 22. Given the weight matrix after one gradient step W 1 as specified in Algorithm 1, then we
have

∥∥∥Σ1/2W 1

∥∥∥
F
≲
√
N, with probability 1− exp

(
−c log2 d

)
, as n, d,N →∞, n/d→ ψ > 1.

Proof. Write vi = Σ1/2(w
(0)
i − ηai · gn(w

(0)
i )), by definition x = Σ1/2z for z ∼ N (0, Id), and∥∥∥Σ1/2w

(1)
i

∥∥∥−2

=
1
nv

⊤Z⊤Zv

∥v∥2
≥ λmin

(
1

n
Z⊤Z

)
,

which implies that
∥∥∥Σ1/2w

(1)
i

∥∥∥2 ≤ λ−1
min

(
1
nZ

⊤Z
)

≲ 1 almost surely as n, d → ∞, n/d > 1.

Summing over w(1)
i yields the desired claim.

Observe that the feature vector ϕx = 1√
N
σ(W⊤

1 x+b) = 1√
N
σ(W⊤

1 Σ
1/2z+b) is a sub-Gaussian

vector with parameter 1√
N

∥∥∥Σ1/2W 1

∥∥∥
F
≲ 1 due to the Lipschitzity of σ; hence we may apply the

following sub-Gaussian concentration result.

Lemma 23. Under the same assumption as Lemma 22, as d → ∞, we have ∥ϕx∥ ≤ log d almost
surely.

Proof. Notice that ∥·∥ and σ(·) are 1-Lipschitz convex functions. Following [WZ21, Section 3], we
can utilize the convex concentration inequality (see [Ver18, Chapter 5]) to obtain

P(|∥ϕx∥ − Ex[∥ϕx∥]| > t) ≤ 2 exp (−ct2), (B.26)
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for any t > 0, conditioning on the event that
∥∥∥Σ1/2W 1

∥∥∥ ≤ ∥∥∥Σ1/2W 1

∥∥∥
F
≲
√
N . From Lemma 22,

we know this event that
∥∥∥Σ1/2W 1

∥∥∥
F
≲
√
N occurs with probability at least 1 − exp (−c log2 d).

Furthermore, under this event, we have

Ex[∥ϕx∥]2 ≤ E[∥ϕx∥
2
] =

1

N

∥∥∥Σ1/2W 1

∥∥∥2
F
E[σ(ξ)2] ≲ 1.

Thus, we can take t = log d and combine Lemma 22 and (B.26) to attain the assertion.

Lemma 24 ([Min17], adapted). Under the same assumption as Lemma 22, given nλ ≥ c log2 d for
some constant c > 0, we have

P
(∥∥∥(ΣΦ + λI)

−1/2
(ΣΦ − Σ̂Φ)(ΣΦ + λI)

−1/2
∥∥∥ ≥ t) ≤ Cn exp(− nλt2

2(1 + t/3) log2 d

)
,

if t2 ≥ log2 d · (1 + t/3)/λn.

Proof. Let us denote

Gi =
1

n
(ΣΦ + λI)

−1/2
(ϕxi

ϕ⊤
xi
−ΣΦ)(ΣΦ + λI)

−1/2
.

Notice that E[Gi] = 0. From Lemma 23, we know that ∥[Gi∥ ≤ log2 d/λn almost surely. More-
over, we may verify that E[G2

i ] ≼
1
n

log2 d
λn IN and

TrE[G2
i ] ≤

1

n

log2 d

λn
Tr(ΣΦ + λI)

−1
ΣΦ ≤

log2 d

λn
.

Here we use the fact that all the eigenvalues of (ΣΦ + λI)
−1

ΣΦ are between 0 and 1. Thus, we
can apply Matrix Bernstein bound (see (3.9) in [Min17]) to conclude this concentration result.

With Lemma 24 we have the following useful corollary.
Corollary 25. Given nλ≫ log4 d, for any t ∈ (0, 1), for sufficiently large d,∥∥∥(ΣΦ + λI)

−1/2
(ΣΦ − Σ̂Φ)(ΣΦ + λI)

−1/2
∥∥∥ = od(1),

with probability at least 1− n exp
(
−c log2 d

)
.

Prediction risk of ridge regression. We upper-bound the prediction risk of the ridge regression
estimator by controlling the decomposed error terms separately.
Proposition 26. Under the training procedure described in Algorithm 1 with N = Ω(dε) and
dε−1 ≲ λ ≲ dε for small ε > 0, if β > 1 − 1

k , then we have R(f̂NN) = od(1) with probability 1
when n, d→∞, n/d→ ψ.

Proof. First note that R1 = Ex

(
f∗(x)− f̌(x)

)2
= ∥f⊥∥2L2 by definition. For R2, [BES+22,

Appendix D.3] showed that R2 ≲ ∥f∗− f̃∥2L2 +λ∥f̃∥2H. Finally, for R3 due to the concentration in
Corollary 25, we have the following evaluation,

R3 =
1

n2
f⊤
⊥Φ
(
Σ̂Φ + λI

)−1

ΣΦ

(
Σ̂Φ + λI

)−1

Φ⊤f⊥

≤ 1

n

∥∥∥∥ 1√
n
f⊤
⊥Φ
(
Σ̂Φ + λI

)−1/2
∥∥∥∥2 · ∥∥∥∥(Σ̂Φ + λI

)−1/2

(ΣΦ − Σ̂Φ)
(
Σ̂Φ + λI

)−1/2
∥∥∥∥

+
1

n

∥∥∥∥ 1nf⊤
⊥Φ
(
Σ̂Φ + λI

)−1

Φ⊤
∥∥∥∥2 ≤ 1

n
∥f⊥∥

2
,

Recall that in Proposition 21 we constructed some f̃ that achieves ∥f∗ − f̃∥2L2 ≲ 1/ logC d and
∥f̃∥2H ≲ logC d. This implies that ∥f⊥∥2L2 ≲ 1/ logC d and hence R1 = od,P(1). Similarly, for
λ = O(d−ε), we have R2 = od,P(1). The proof is completed by Markov’s inequality on R3.
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