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Abstract

We study the performance of empirical risk minimization on the p-norm linear regression problem
for p ∈ (1,∞). We show that, in the realizable case, under no moment assumptions, and up to a
distribution-dependent constant, O(d) samples are enough to exactly recover the target. Otherwise,
for p ∈ [2,∞), and under weak moment assumptions on the target and the covariates, we prove an
in-probability excess risk bound on the empirical risk minimizer whose leading term matches, up to a
constant that depends only on p, the asymptotically exact rate. We extend this result to the case p ∈ (1, 2)
under mild assumptions that guarantee the existence of the Hessian of the risk at its minimizer.

1 Introduction

Real-valued linear prediction is a fundamental problem in machine learning. Traditionally, the square loss
has been the default choice for this problem. The performance of empirical risk minimization (ERM) on
linear regression under the square loss, as measured by the excess risk, has been studied extensively both
from an asymptotic [Whi82; Vaa98; LC06] and a non-asymptotic point of view [AC11; HKZ12; Oli16; LM16;
Sau18; Mou22]. An achievement of the last decade has been the development of non-asymptotic excess risk
bounds for ERM on this problem under weak assumptions, and which match, up to constant factors, the
asymptotically exact rate.

In this paper, we consider the more general family of p-th power losses t 7→ |t|p for a user-chosen p ∈ (1,∞).
Under mild assumptions, the classical asymptotic theory can still be applied to ERM under these losses,
yielding the asymptotic distribution of the excess risk. However, to the best of our knowledge, the problem of
deriving non-asymptotic excess risk bounds for ERM for p ∈ (1,∞) \ {2} remains open, and, as we discuss
below, resists the application of standard tools from the literature.

Our motivation for extending the case p = 2 to p ∈ (1,∞) is twofold. Firstly, the freedom in the choice
of p allows us to better capture our prediction goals. For example, we might only care about how accurate
our prediction is on average, in which case, the choice p = 1 is appropriate. At the other extreme, we might
insist that we do as well as possible on a subset of inputs of probability 1, in which case the choice p = ∞ is
best. A choice of p ∈ (1,∞) therefore allows us to interpolate between these two extremes, with the case
p = 2 offering a balanced choice. Secondly, different choices of p have complementary qualities. On the one
hand, small values of p allow us to operate with weak moment assumptions, making them applicable in more
general cases. On the other, larger values of p yield predictions whose optimality is less sensitive to changes
in the underlying distribution: for p = ∞, the best predictor depends only on the support of this distribution.

To sharpen our discussion, let us briefly formalize our problem. There is an input random vector X ∈ Rd

and output random variable Y ∈ R, and we are provided with n i.i.d. samples (Xi, Yi)
n
i=1. We select our set

of predictors to be the class of linear functions
{
x 7→ ⟨w, x⟩ | w ∈ Rd

}
, and choose a value p ∈ (1,∞) with the

∗Department of Computer Science at University of Toronto, and Vector Institute, aelhan@cs.toronto.edu
†Department of Computer Science, and of Statistics at University of Toronto, and Vector Institute, erdogdu@cs.toronto.edu

1



corresponding loss ℓp(t) := |t|p/[p(p− 1)].1 Using this loss, we define the associated risk and empirical risk by

Rp(w) := E[ℓp(⟨w,X⟩ − Y )], Rp,n(w) :=
1

n

n∑
i=1

ℓp(⟨w,Xi⟩ − Yi).

We perform empirical risk minimization ŵp ∈ argminw∈Rd Rp,n(w), and our goal is to derive in-probability
bounds on the excess risk Rp(ŵp) − Rp(w

∗
p), where w∗

p is the risk minimizer. For efficient algorithms for
computing an empirical risk minimizer ŵp, we refer the reader to the rich recent literature dealing with this
problem [Bub+18; Adi+19; APS19; JLS22].

To see why the problem we are considering is difficult, let us briefly review some of the recent literature.
Most closely related to our problem are the results of [AC11; HKZ12; Oli16; LM16], who derive in probability
non-asymptotic excess risk bounds for the case p = 2. The best such bounds are found in [Oli16] and [LM16],
who both operate under weak assumptions on (X,Y ), requiring at most the existence of fourth moments
of Y and the components Xj of X for j ∈ [d]. Unfortunately, the analysis in [Oli16] relies on the closed
form expression of the empirical risk minimizer ŵ2, and therefore cannot be extended to other values of p.
Similarly, the analysis in Lecué and Mendelson [LM16] relies on an exact decomposition of the excess loss
ℓ2(⟨w,X⟩ − Y )− ℓ2(⟨w∗

p, X⟩ − Y ) in terms of “quadratic” and “multiplier” components, which also does not
extend to other values of p.

To address these limitations, the work of Mendelson [Men18] extends the ideas of Mendelson [Men14] and
Lecué and Mendelson [LM16] to work for loss functions more general than the square loss. Roughly speaking,
the main result of Mendelson [Men18] states that as long as the loss is strongly convex and smooth in a
neighbourhood of 0, then the techniques developed by Mendelson [Men14] can still be applied to obtain in
probability excess risk bounds. Unfortunately, the loss functions ℓp(t) are particularly ill-behaved in precisely
this sense, as ℓ′′p(t) → 0 when t → 0 for p > 2, and |ℓ′′p(t)| → ∞ as t → 0 for p ∈ (1, 2). This makes the
analysis of the excess risk of ERM in the case p ∈ (1,∞) \ {2} particularly challenging using well-established
methods.

Contrary to the non-asymptotic regime, the asymptotic properties of the excess risk of ERM under
the losses ℓp are better understood [Ron84; BRW92; Nie92; Arc96; HS96; LL05], and can be derived from
the more general classical asymptotic theory of M -estimators [VW96; Vaa98; LC06] under mild regularity
conditions. In particular, these asymptotic results imply that the excess risk of ERM with n samples satisfies

E[Rp(ŵp)]−Rp(w
∗
p) =

E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
2n

+ o

(
1

n

)
as n → ∞, (1.1)

where Hp := ∇2Rp(w
∗
p) is the Hessian of the risk at its minimizer. We refer the reader to the discussions

in Ostrovskii and Bach [OB21] and Mourtada and Gäıffas [MG22] for more details. As we demonstrate in
Theorem 2, the rate of convergence of ERM for the square loss derived in Oliveira [Oli16] and Lecué and
Mendelson [LM16] matches the asymptotic rate (1.1) up to constant factors. Ideally, we would like our high
probability excess risk bounds for the cases p ∈ (1,∞) \ {2} to also match the optimal rate (1.1), although it
is not yet clear how to derive any meaningful such bounds.

In this paper, we prove the first high probability excess risk bounds for ERM under the p-th power loss
ℓp(t) for any p ∈ (1,∞) \ {2}. Our assumptions on (X,Y ) are weak, arise naturally from the analysis, and
reduce to the standard ones for the case p = 2. Furthermore, the rate we derive matches, up to a constant
that depends only on p, the asymptotically optimal rate (1.1).

We split the analysis in three cases. The first is when the problem is realizable, i.e. Y = ⟨w∗, X⟩ for some
w∗ ∈ Rd. This edge case is not problematic for the analysis of the case p = 2, but as discussed above, the ℓp
losses are ill-behaved around 0 for p ∈ (1,∞) \ {2}, requiring us to treat this case separately. The second case
is when the problem is not realizable and p ∈ (2,∞). The final case is when the problem is not realizable and
p ∈ (1, 2), which turns out to be the most technically challenging. In Section 2, we present our main results
and in Section 3, we provide their proofs.

Notation. We denote the components of the random vector X ∈ Rd by Xj for j ∈ [d]. We assume the
support of X is not contained in any hyperplane, i.e. P(⟨w,X⟩ = 0) = 1 only if w = 0. This is without loss
of generality as argued in Oliveira [Oli16] and Mourtada [Mou22]. For a positive semi-definite matrix A, we
denote the bilinear form it induces on Rd by ⟨·, ·⟩A, and define ∥·∥A =

√
⟨·, ·⟩A.

1The rescaling of the loss by 1/[p(p− 1)] is motivated by aesthetic reasons we encounter later.
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2 Main results

In this section, we state our main results. We start in Section 2.1 where we introduce constants that help
us formulate our theorems. In Section 2.2, we state the best known results for both the case p = 2 and the
realizable case where Y = ⟨w∗, X⟩. Finally, in Section 2.3, we state our theorems.

2.1 Norm equivalence and small ball constants

To state our results, we will need to define two types of quantities first. The first kind are related to norms
and their equivalence constants, which we will use in the analysis of the non-realizable case. The second are
small ball probabilities, which we will use for the realizable case.

We start by introducing the following functions on our space of coefficients Rd. For p, q ∈ [1,∞), define,
with the convention ∞1/p = ∞ for all p ∈ [1,∞),

∥w∥Lp := E[|⟨w,X⟩|p]1/p, ∥w∥Lq,p := E[∥w∥q∇2ℓp(⟨w∗
p,X⟩−Y )]

1/q. (2.1)

As suggested by the notation, under appropriate assumptions, these are indeed norms on Rd. In that case,
we will be interested in norm equivalence constants between them

Ca→b := sup
w∈Rd\{0}

∥w∥a
∥w∥b

, σ2
p := C4

(L4,p)→(L2,p), (2.2)

where a and b stand for one of Lp or (Lq, p). Let us note that since we work in a finite dimensional vector
space, all norms are equivalent, so that as soon as the quantities defined in (2.1) are indeed norms, the
constants defined in (2.2) are finite. Furthermore, as suggested by the notation, σ2

p may be viewed as the
maximum second moment of the random variables ∥w∥2∇2ℓp(⟨w∗

p,X⟩−Y ) over the unit sphere of ∥·∥L2,p. Finally,

we record the following identities for future use

∥w∥L2,p = ∥w∥Hp
, ∥w∥Lq,2 = ∥w∥Lq , σ2

2 = C4
L4,L2 . (2.3)

The first identity holds by linearity, and the second by noticing that ∇2ℓ2(⟨w,X⟩ − Y ) = XXT .
We now turn to small ball probabilities. We define the following functions on Rd, for q ∈ [1,∞),

ρ0(w) := P(⟨w,X⟩ = 0), ρq(w, κ) := P(|⟨w,X⟩| > κ∥w∥Lq ). (2.4)

Assumptions on the functions ρ0 and ρ2 have been used extensively in the recent literature, see e.g. [Men14;
KM15; LM17a; LM17b; Men18; LM18; Mou22]. In particular, a standard assumption postulates the existence
of strictly positive constants β0, and (β2, κ2) such that ρ0(w) ≤ 1 − β0 and ρ2(w, κ2) ≥ β2 for all w ∈ Rd.
Conditions of this type are usually referred to as small ball conditions. Efforts have been made to understand
when these conditions hold [Men14; RV15; LM17b] as well as reveal the dimension dependence of the constants
with which they do [Sau18]. Here we prove that such conditions always hold for finite dimensional spaces.
We leave the proof of Lemma 1 to the Appendix to not distract from our main development.

Lemma 1. ρ0 is upper semi-continuous. Furthermore, if for some q ∈ [1,∞), E[|Xj |q] < ∞ for all j ∈ [d],
then ρq(·, κ) is lower semi-continuous for any κ ≥ 0. Moreover, for all κ ∈ [0, 1)

ρ := sup
w∈Rd\{0}

ρ0(w) < 1, inf
w∈Rd\{0}

ρq(w, κ) > 0.

2.2 Background

To better contextualize our results, we start by stating the best known high probability bound on ERM for
the square loss, which we deduce from Oliveira [Oli16] and Lecué and Mendelson [LM16].

Theorem 2 (Oliveira [Oli16] and Lecué and Mendelson [LM16]). Assume that E[Y 2] < ∞ and E[(Xj)4] < ∞
for all j ∈ [d], and let δ ∈ (0, 1]. If

n ≥ 196σ2
2(d+ 2 log(4/δ)),
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then, with probability at least 1− δ

R2(ŵ2)−R2(w
∗
2) ≤

16E[∥∇ℓ2(⟨w∗
2 , X⟩ − Y )∥2

H−1
2

]

nδ
.

Up to a constant factor and the dependence on δ, Theorem 2 recovers the optimal bound (1.1). Let us
briefly comment on the differences between Theorem 2 and the comparable statements in the original papers.
First, the finiteness of σ2

2 is deduced from the finiteness of the fourth moments of the components of X,
instead of being assumed as in Oliveira [Oli16] (see the discussion in Section 3.1 in Oliveira [Oli16]). Second
we combine Theorem 3.1 from [Oli16] with the proof technique of Lecué and Mendelson [LM16] to achieve
a slightly better bound that the one achieved by the proof technique used in the proof of Theorem 4.2 in
Oliveira [Oli16], while avoiding the dependence on the small ball-constant present in the bound of Theorem
1.3 in Lecué and Mendelson [LM16], which is known to incur additional dimension dependence in some cases
[Sau18].

We now move to the realizable case, where Y = ⟨w∗, X⟩ so that w∗
p = w∗ for all p ∈ (1,∞). We

immediately note that Theorem 2 is still applicable in this case, and ensures that we recover w∗ exactly
with no more than n = O(σ2

2d) samples. However, we can do much better, while getting rid of all the
moment assumptions in Theorem 2. Indeed, it is not hard to see that ŵp ̸= w∗ only if for some w ∈ Rd \ {0},
⟨w,Xi⟩ = 0 for all i ∈ [n] (taking w = ŵp − w∗

p works). The implicit argument in Theorem 2 then uses the
pointwise bound (see Lemma B.2 in Oliveira [Oli16])

P(∩n
i=1{⟨w,Xi⟩ = 0}) ≤ exp

(
− n

2σ2
2

)
and uniformizes it over the L2 unit sphere in Rd, where the L2 norm is as defined in (2.1). However, we can
use the much tighter bound ρn where ρ is as defined in Lemma 1. To the best of our knowledge, the realizable
case has not been studied explicitly before in the literature. However, with the above considerations in mind,
we can deduce the following result from Lecué and Mendelson [LM17b], which uniformizes the pointwise
bound we just discussed using a VC dimension argument.

Theorem 3 (Corollary 2.5, Lecué and Mendelson [LM17b]). Assume that there exists w∗ ∈ Rd such that
Y = ⟨w∗, X⟩. Let δ ∈ (0, 1]. If

n ≥ O

(
d+ log(1/δ)

(1− ρ)2

)
then for any p ∈ (1,∞), ŵp = w∗ with probability at least 1− δ.

2.3 Results

We are now in position to state our main results. As discussed in Section 1, the ℓp losses have degenerate
second derivatives as t → 0. When the problem is realizable, the risk is not twice differentiable at its minimizer
for the cases p ∈ (1, 2), and is degenerate for the cases p ∈ (2,∞). If we want bounds of the form (1.1), we
must exclude this case from our analysis. This is in part what motivates us to study the realizable case
separately. Our first main result is a strengthening of Theorem 3, and relies on a combinatorial argument to
uniformize the pointwise estimate discussed in Section 2.2.

Theorem 4. Assume that there exists w∗ ∈ Rd such that ⟨w∗, X⟩ = Y . Then for all n ≥ d, and for all
p ∈ (1,∞), we have

P(ŵp ̸= w∗) ≤
(

n

d− 1

)
ρn−d+1.

Furthermore, if

n ≥



O(d+ log(1/δ)/ log(1/ρ)) if 0 ≤ ρ < e−1

O

(
d+ log(1/δ)

1− ρ

)
if e−1 ≤ ρ < e−1/e

O

(
d log(1/(1− ρ)) + log(1/δ)

1− ρ

)
if e−1/e ≤ ρ < 1,

then with probability at least 1− δ, ŵp = w∗.
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Comparing Theorem 3 and Theorem 4, we see that the bound on the number of samples required to reach
a confidence level δ in Theorem 4 is uniformly smaller than the one in Theorem 3. The proof of Theorem 4
can be found in the Appendix.

We now move to the more common non-realizable case. Our first theorem here gives a non-asymptotic
bound for the excess risk of ERM under a p-th power loss for p ∈ (2,∞). To the best of our knowledge, no
such result is known in the literature.

Theorem 5. Let p ∈ (2,∞) and δ ∈ (0, 1]. Assume that no w ∈ Rd satisfies Y = ⟨w,X⟩. Further, assume
that E[|Y |p] < ∞, E[|Xj |p] < ∞, and E[|⟨w∗

p, X⟩ − Y |2(p−2)(Xj)4] < ∞ for all j ∈ [d]. If

n ≥ 196σ2
p(d+ 2 log(4/δ)),

then with probability at least 1− δ

Rp(ŵp)− Rp(w
∗
p) ≤

2048p2 E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
nδ

+

512p4c2p E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
nδ

p/2

,

where we used cp to denote CLp→(L2,p) as defined in (2.2).

Up to a constant factor that depends only on p and the dependence on δ, the bound of Theorem 5 is
precisely of the form of the optimal bound (1.1). Indeed, as p > 2, the second term is o(1/n). At the level
of assumptions, the finiteness of the p-th moment of Y and the components of X is necessary to ensure
that the risk Rp is finite for all w ∈ Rd. The last assumption E[|Y − ⟨w∗

p, X⟩|2(p−2)(Xj)4] < ∞ is a natural
extension of the fourth moment assumption in Theorem 2. In fact, all three assumptions in Theorem 5
reduce to those of Theorem 2 as p → 2. It is worth noting that the constant cp has the alternative expression
supw∈Rd\{0}{∥w∥Lp/∥w∥Hp

} by (2.3), i.e. it is the norm equivalence constant between the Lp norm and the
norm induced by Hp. Using again (2.3), we see that cp → 1 as p → 2. As p → ∞, cp grows, and we suspect
in a dimension dependent way. However, this does not affect the asymptotic optimality of our rate as cp only
enters an o(1/n) term in our bound.

We now turn to the case of p ∈ (1, 2). Here we will need a slightly stronger version of non-realizability to
ensure that the risk is twice differentiable at its minimizer. Our main result follows.

Theorem 6. Let p ∈ (1, 2) and δ ∈ (0, 1]. Assume that P(|⟨w∗
p, X⟩ − Y |2−p > 0) = 1 and E[|⟨w∗

p, X⟩ −
Y |2(p−2)] < ∞. Further, assume that E[|Y |p] < ∞, E[(Xj)2] < ∞, E[|⟨w∗

p, X⟩ − Y |2(p−2)(Xj)4] < ∞ for all
j ∈ [d]. If

n ≥ 196σ2
p(d+ 2 log(4/δ)),

then, with probability at least 1− δ

Rp(ŵp)−Rp(w
∗
p) ≤

8192

p− 1

E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
nδ

+
1

p− 1

524288E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
σ6−2p
p d(2−p)c2−p

p c∗p

nδ

1/(p−1)

where we used c∗p to denote E[|Y − ⟨w∗
p, X⟩|2(p−2)] and cp to denote C2

L2→(L2,p).

Just as in Theorems 2 and 5, Theorem 6 is asymptotically optimal up to a constant factor that depends
on p. Indeed, since 1 < p < 2, 1/(p − 1) > 1, and the second term is o(1/n). From the point of view
of assumptions, we have two additional conditions compared to Theorem 5. First, we require a stronger
version of non-realizability by assuming ⟨w∗

p, X⟩ ≠ Y almost surely. This assumption is necessary to prove
the twice differentiability of the risk at its minimizer using the standard result that allows the exchange of
differentiation and expectation, see e.g. Theorem 2.27 in [Fol13]. It is also known that for the case p ∈ [1, 2),
there are situations where the asymptotic bound (1.1) does not hold, as the limiting distribution of the
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coefficients ŵp as n → ∞ does not necessarily converge to a Gaussian, and depends heavily on the distribution
of ⟨w∗

p, X⟩ − Y , see e.g. Lai and Lee [LL05] and Knight [Kni98]. Overall, we suspect that perhaps a slightly
weaker version of our assumptions is necessary for a fast rate like (1.1) to hold.

The second additional assumption we require is the existence of the 2(2 − p) negative moment of
|⟨w∗

p, X⟩ − Y |. In the majority of applications, one adds an intercept to the original covariates, so that this

negative moment assumption is already implied by the standard assumption E[|Y −⟨w∗
p, X⟩|2(p−2)(Xj)4] < ∞.

In the rare case where an intercept is not included, any negative moment assumption on |⟨w∗
p, X⟩ − Y | can

be used instead, at the cost of a larger factor in the o(1/n) term. Finally, similar to how the constant cp of
Theorem 5 deteriorates as p → ∞, the constant c∗p of Theorem 6 gets worse as p → 1. It is unclear to us
however if it acquires dimension dependence.

3 Proofs

3.1 Proof of Theorem 2

Here we give a detailed proof of Theorem 2. While the core technical result can be deduced by combining
results from [Oli16] and [LM16], here we frame the proof in a way that makes it easy to extend to the cases
p ∈ (1,∞), and differently from either paper. We split the proof in three steps. First notice that as the loss
is a quadratic function of w, we can express it exactly using a second order Taylor expansion around the
minimizer w∗

2

ℓ2(⟨w,X⟩ − Y )− ℓ2(⟨w∗
2 , X⟩ − Y ) = ⟨∇ℓ2(⟨w∗

2 , X⟩ − Y ), w − w∗
2⟩+

1

2
∥w − w∗

2∥2∇2ℓ2(⟨w∗
2 ,X⟩−Y ).

Taking empirical averages and expectations of both sides respectively shows that the excess empirical risk
and excess risk also admit such a decomposition

R2,n(w)−R2,n(w
∗
2) = ⟨∇R2,n(w

∗
2), w − w∗

2⟩+
1

2
∥w − w∗

2∥2H2,n
,

R2(w)−R2(w
∗
2) =

1

2
∥w − w∗

2∥2H2
, (3.1)

where in the second equality we used that the gradient of the risk vanishes at the minimizer w∗
2 . Therefore,

to bound the excess risk, it is sufficient to bound the norm ∥w − w∗
2∥H2

. This is the goal of the second step,
where we use two ideas. First, by definition, the excess empirical risk of the empirical risk minimizer satisfies
the upper bound

R2,n(ŵ2)−R2,n(w
∗
2) ≤ 0. (3.2)

Second, we use the Cauchy-Schwartz inequality to lower bound the excess empirical risk by

R2,n(ŵ2)−R2,n(w
∗
2) ≥ −∥∇R2,n(w

∗
2)∥H−1

2
∥ŵ2 − w∗

2∥H2
+

1

2
∥ŵ2 − w∗

2∥2H2,n
, (3.3)

and we further lower bound it by deriving high probability bounds on the two random terms ∥∇R2,n(w
∗
2)∥H−1

2

and ∥ŵ2 − w∗
2∥2H2,n

. The first can easily be bounded using Chebyshev’s inequality and the elementary fact

that the variance of the average of n i.i.d. random variables is 1/n the variance of the original random variable.
Here we state a slightly more general result. The straightforward proof is relegated to the Appendix.

Lemma 7. Let p ∈ (1,∞). If p ∈ (1, 2), let the assumptions of Theorem 6 hold. Then with probability at
least 1− δ/2

∥∇Rp,n(w
∗
p)∥H−1

p
≤
√
2E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
/(nδ).

For the second random term ∥ŵ2 − w∗
2∥2H2,n

, we use Theorem 3.1 of Oliveira [Oli16], which we restate
here, emphasizing that the existence of fourth moments of the components of the random vector is enough to
ensure the existence of the needed norm equivalence constant.
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Proposition 8 (Theorem 3.1, Oliveira [Oli16]). Let Z ∈ Rd be a random vector satisfying E[Z4
j ] < ∞ for all

j ∈ [d] and assume that P(⟨v, Z⟩ = 0) = 1 only if v = 0. For p ∈ [1,∞) and v ∈ Rd, define

∥v∥Lp := E[(⟨v, Z⟩)p]1/p, σ2 :=

(
sup

v∈Rd\{0}
∥v∥L4/∥v∥L2

)4

.

Let (Zi)
n
i=1 be i.i.d. samples of Z. Then, with probability at least 1− δ, for all v ∈ Rd,

1

n

n∑
i=1

⟨v, Zi⟩2 ≥

(
1− 7σ

√
d+ 2 log(2/δ)

n

)
∥v∥2L2 .

Using this result we can immediately deduce the required high-probability lower bound on the second
random term ∥ŵ2 − w∗

2∥2H2,n
, we leave the proof to the Appendix.

Corollary 9. Under the assumptions of Theorem 2, if n ≥ 196σ2
2(d+ 2 log(4/δ)), then with probability at

least 1− δ/2, for all w ∈ Rd,

∥w − w∗
2∥2H2,n

≥ 1

2
∥w − w∗

2∥2H2
.

Combining Lemma 7, Corollary 9, and (3.3) yields that with probability at least 1− δ

R2,n(ŵ2)−R2,n(w
∗
2) ≥ −

√
2E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
/(nδ) ∥ŵ2 − w∗

2∥H2
+

1

4
∥ŵ2 − w∗

2∥2H2
. (3.4)

The final step is to combine the upper bound (3.2) and the lower bound (3.4). This gives that with probability
at least 1− δ

∥ŵ2 − w∗
2∥H2 ≤ 4

√
2E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
/(nδ).

Replacing in (3.1) finishes the proof.

3.2 Proof of Theorem 5

The main challenge in moving from the case p = 2 to the case p ∈ (2,∞) is that the second order Taylor
expansion of the loss is no longer exact. The standard way to deal with this problem is to assume that the loss
is upper and lower bounded by quadratic functions, i.e. that it is smooth and strongly convex. Unfortunately,
as discussed in Section 1, the ℓp loss is not strongly convex for any p > 2, so we need to find another way to
deal with this issue. Once this has been resolved however, the strategy we used in the proof of Theorem 2
can be applied almost verbatim to yield the result. Remarkably, a result of [Adi+22] allows us to upper and
lower bound the p-th power loss for p ∈ (2,∞) by its second order Taylor expansion around a point, up to
some residual terms. An application of this result yields the following Lemma.

Lemma 10. Let p ∈ [2,∞). Then:

Rp,n(w)−Rp,n(w
∗
p) ≥

1

8(p− 1)
∥w − w∗

p∥2Hp,n
+ ⟨∇Rp,n(w

∗
p), w − w∗

p⟩, (3.5)

Rp(w)−Rp(w
∗
p) ≤

2p

(p− 1)
∥w − w∗

p∥2Hp
+ pp∥w − w∗

p∥
p
Lp . (3.6)

Up to constant factors that depend only on p and an Lp norm residual term, Lemma 10 gives matching
upper and lower bounds on the excess risk and excess empirical risks in terms of their second order Taylor
expansions around the minimizer. We can thus use the approach taken in the proof of Theorem 2 to derive our
result. The only additional challenge is the control of the term ∥ŵp −w∗

p∥Lp , which we achieve by reducing it
to an ∥ŵp − w∗

p∥Hp
term using norm equivalence. We leave the details to the Appendix.
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3.3 Proof of Theorem 6

The most technically challenging case is when p ∈ (1, 2). Indeed as seen in the proof of Theorem 2, the most
involved step is lower bounding the excess empirical risk with high probability. For the case p ∈ [2,∞), we
achieved this by having access to a pointwise quadratic lower bound, which is not too surprising. Indeed, at
small scales, we expect the second order Taylor expansion to be accurate, while at large scales, we expect the
p-th power loss to grow at least quadratically for p ∈ [2,∞).

In the case of p ∈ (1, 2), we are faced with a harder problem. Indeed, as p → 1, the ℓp losses behave
almost linearly at large scales. This means that we cannot expect to obtain a global quadratic lower bound
as for the case p ∈ [2,∞), so we will need a different proof technique. Motivated by closely related concerns,
Bubeck et al. [Bub+18] introduced the following approximation to the p-th power function

γp(t, x) :=


p

2
tp−2x2 if x ≤ t

xp −
(
1− p

2

)
tp if x > t,

for t, x ∈ [0,∞) and with γp(0, 0) = 0. This function was further studied by [Adi+19], whose results we use
to derive the following Lemma.

Lemma 11. Let p ∈ (1, 2). Under the assumptions of Theorem 6, we have

Rp,n(w)−Rp,n(w
∗
p) ≥

1

4p2
1

n

n∑
i=1

γp
(
|⟨w∗

p, Xi⟩ − Yi|, |⟨w − w∗
p, Xi⟩|

)
+ ⟨∇Rp,n(w

∗
p), w − w∗

p⟩, (3.7)

Rp(w)−Rp(w
∗
p) ≤

4

(p− 1)
∥w − w∗

p∥2Hp
. (3.8)

As expected, while we do have the desired quadratic upper bound, the lower bound is much more
cumbersome, and is only comparable to the second order Taylor expansion when |⟨w−w∗

p, Xi⟩| ≤ |⟨w∗
p, Xi⟩−Yi|.

What we need for the proof to go through is a high probability lower bound of order Ω(∥w − w∗∥2Hp
) on the

first term in the lower bound (3.7). We obtain this in the following result. The rest of the proof of Theorem
6 is left to the Appendix.

Proposition 12. Let δ ∈ (0, 1]. Under the assumptions of Theorem 6, if n ≥ 196σ2
p(d+ 2 log(4/δ)), then

with probability at least 1− δ/2, for all w ∈ Rd,

1

n

n∑
i=1

γp
(
|⟨w∗

p, Xi⟩ − Yi|, |⟨w − w∗
p, Xi⟩|

)
≥ 1

8
min

{
∥w − w∗

p∥2Hp
, ε2−p∥w − w∗

p∥
p
Hp

}
,

where εp−2 := 8σ3−p
p (dcp)

(2−p)/2
√

c∗p, and cp and c∗p are as defined in Theorem 6.

Proof. Let ε > 0 and let T ∈ (0,∞) be a truncation parameter we will set later. Define the truncated vector

X̃ := X · 1[0,T ](∥X∥H−1
p

),

and the constant β := Tε. By Lemma 3.3 in [Adi+19], we have that γp(t, λx) ≥ min{λ2, λp}γp(t, x) for
all λ ≥ 0. Furthermore, it is straightforward to verify that γp(t, x) is decreasing in t and increasing in x.
Therefore, we have, for any w ∈ Rd,

1

n

n∑
i=1

γp
(
|⟨w∗

p, Xi⟩ − Yi|, |⟨w − w∗
p, Xi⟩|

)
≥ min

{
ε−2∥w − wp∥2Hp

, ε−p∥w − wp∥pHp

} 1

n

n∑
i=1

γp

(∣∣⟨w∗
p, Xi⟩ − Yi

∣∣, ∣∣∣∣〈 ε(w − w∗
p)

∥w − w∗
p∥Hp

, Xi

〉∣∣∣∣)

≥ min
{
ε−2∥w − wp∥2Hp

, ε−p∥w − wp∥pHp

}
· inf
∥w∥Hp=ε

1

n

n∑
i=1

γp
(
|⟨w∗

p, Xi⟩ − Yi|, |⟨w,Xi⟩|
)
. (3.9)
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The key idea to control this last infimum is to truncate ⟨w,Xi⟩ from above by using the truncated vector
X̃, and |⟨w∗

p, Xi⟩ − Yi| from below by forcing it to be greater than β. By the monotonicity properties of γp
discussed above, we get that the infimum in (3.9) is lower bounded by

inf
∥w∥Hp=ε

1

n

n∑
i=1

γp(max
{
|⟨w∗

p, Xi⟩ − Yi|, β
}
, |⟨w, X̃i⟩|)

=
ε2p

2
inf

∥w∥Hp=1

1

n

n∑
i=1

max
{
|⟨w∗

p, Xi⟩ − Yi|, β
}p−2|⟨w, X̃i⟩|2,

where the equality follows by the fact that with the chosen truncations, the second argument of γp is less
than or equal to the first. Define the random vector

Z = max
{
|⟨w∗

p, X⟩ − Y |, β
}(p−2)/2

X̃.

Then, by removing the truncations, we see that the components of Z have finite fourth moments by assumption.
Using Proposition 8, and under our constraint on n, we get that with probability at least 1− δ/2,

inf
∥w∥Hp=1

1

n

n∑
i=1

max
{
|⟨w∗

p, Xi⟩ − Yi|, β
}p−2|⟨w, X̃i⟩|2 = inf

∥w∥Hp=1

1

n

n∑
i=1

⟨w,Zi⟩2

≥ 1

2
inf

∥w∥Hp=1
E
[
max

{
|⟨w∗

p, X⟩ − Y |, β
}(p−2)⟨w, X̃⟩2

]
≥ 1

2

(
1− sup

∥w∥Hp=1

E
[
|⟨w∗

p, X⟩ − Y |p−2⟨w,X⟩2
(
1[0,β)(|⟨w∗

p, X⟩ − Y |) + 1(T,∞)(∥X∥H−1
p

)
)])

Finally, we make use of Holder’s inequality and our moment assumptions to bound this last supremum.
Optimizing over the choice of T and ε yields the result. Details of this last step are in the Appendix.
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A Preliminary results

In this section we provide the proof of some basic results we used in the main paper.

A.1 Proof of Lemma 7

Proof. We compute the expectation:

E
[
∥∇Rp,n(w

∗
p)∥2H−1

p

]
= E

[
∥n−1∇ℓp(⟨w∗

p, Xi⟩ − Yi)∥2H−1
p

]
= n−2

n∑
i=1

E
[
∥∇ℓp(⟨w∗

p, Xi⟩ − Yi)∥2H−1
p

]
+ 2n−2

n∑
i=1

i−1∑
j=1

⟨E[∇ℓp(⟨w∗
p, Xi⟩ − Yi)],E[∇ℓp(⟨w∗

p, Xj⟩ − Yj)]⟩H−1
p

= n−1 E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
where in the second line we expanded the inner product of the sums into its n2 terms, used linearity of
expectation, and used the independence of the samples to take the expectation inside the inner product. In
the last line, we used the fact that the samples are identically distributed to simplify the first term. For the
second term, we used the fact that the expectation of the gradient of the loss at the risk minimizer vanishes.
Applying Markov’s inequality finishes the proof.

A.2 Proof of Corollary 9

Proof. We have

∥w − w∗
2∥2H2,n

= (w − w∗
2)

TH2,n(w − w∗
2)

=
1

n

n∑
i=1

(w − w∗
2)

T∇2ℓp(⟨w∗
2 , Xi⟩ − Yi)(w − w∗

2)

=
1

n

n∑
i=1

⟨w − w∗
2 , Xi⟩2.

Now by assumption, the components of the vector X have finite fourth moment so that applying Proposition
8 and using the condition on n yields the result.

A.3 Proof of Lemma 10.

Proof. By Lemma 2.5 in [Adi+22], we have for all t, s ∈ R

ℓp(t)− ℓp(s)− ℓ′p(s)(t− s) ≥ 1

8(p− 1)
ℓ′′p(s)(t− s)2.

Recall that by the chain rule

∇ℓp(⟨w,X⟩ − Y ) = ℓ′p(⟨w,X⟩ − Y )X ∇2ℓp(⟨w,X⟩ − Y ) = ℓ′′p(⟨w,X⟩ − Y )XXT .

Replacing t and s by ⟨w,Xi⟩ − Yi and ⟨w∗
p, Xi⟩ − Yi respectively, and using the formulas for the gradient and

Hessian we arrive at

ℓp(⟨w,Xi⟩ − Yi)− ℓp(⟨w∗
p, Xi⟩ − Yi) ≥

1

8(p− 1)
(w − w∗

p)
T∇2ℓp(⟨w∗

p, Xi⟩ − Yi)(w − w∗
p)

+ ⟨∇ℓp(⟨w∗
p, Xi⟩ − Yi), w − w∗

p⟩

Averaging over i ∈ [n] yields the first inequality. The proof of the second inequality proceeds in the same way
and uses instead the upper bound of Lemma 2.5 in [Adi+22]. We omit it here.
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A.4 Proof of Lemma 11

Proof. Both inequalities follow from Lemma 4.5 in Adil et al. [Adi+19]. (3.7) follows from a straightforward
calculation using the lower bound of Lemma 4.5 in Adil et al. [Adi+19]; we omit it here. The upper bound
requires a bit more work. We have by the quoted Lemma

ℓp(t)− ℓp(s)− ℓ′p(s)(t− s) ≤ 4

p(p− 1)
γp(|s|, |t− s|).

Now assume that |s| > 0. If |t− s| ≤ |s|, we have

γp(|s|, |t− s|) = p

2
|s|p−2(t− s)2 ≤ |s|p−2(t− s)2 = ℓ′′p(s)(t− s)2.

Otherwise, if |t− s| > |s|, then we have

γp(|s|, |t− s|) = |t− s|p − (1− p/2)|s|p ≤ (t− s)2|t− s|p−2 ≤ |s|p−2(t− s)2 = ℓ′′p(s)(t− s)2.

Therefore in both cases we have γp(|s|, |t − s|) ≤ ℓ′′p(s)(t − s)2 as long as |s| > 0. Replacing t and s by
⟨w,X⟩ − Y and ⟨w∗

p, X⟩ − Y respectively we get, on the event that ⟨w∗
p, X⟩ − Y ̸= 0

ℓp(⟨w,X⟩ − Y )− ℓp(⟨w∗
p, X⟩ − Y )− ⟨∇ℓp(⟨w∗

p, X⟩ − Y ), w − w∗
p⟩ ≤

4

p(p− 1)
∥w − w∗

p∥∇2ℓp(⟨w∗
p,X⟩−Y )

Recalling that by assumption P
(
⟨w∗

p, X⟩ − Y ̸= 0
)
= 1, taking expectation of both sides, and bounding

1/p ≤ 1 finishes the proof of (3.8).

B Differentiability of the risk

In this section, we study the differentiability properties of the risk. We start by showing that under a subset
of our assumptions, the risk is differentiable everywhere on Rd.

Lemma 13. Let p ∈ (1,∞) and assume that E[|Y |p] < ∞ and E[|Xj |p] < ∞ for all j ∈ [d]. Then Rp is
differentiable on Rd, and

∇Rp(w) = E[∇ℓp(⟨w,X⟩ − Y )].

Proof. Let w ∈ Rd. We want to show that

lim
∆→0

|Rp(w +∆)−Rp(w)− E[⟨∇ℓp(⟨w,X⟩ − Y ),∆⟩]|
∥∆∥

= 0,

where, for convenience, we take the norm ∥·∥ to be the Euclidean norm. Define the function ϕ(w,X, Y ) :=
ℓp(⟨w,X⟩ − Y ) and note that by the chain rule ϕ is differentiable as a function of w on all of Rd. Now let
(∆k)

n
k=1 be a sequence in Rd such that limk→∞∥∆k∥ = 0. Then

lim
k→∞

|Rp(w +∆k)−Rp(w)− E[⟨∇ϕ(w,X, Y ),∆k⟩]|
∥∆k∥

= lim
k→∞

|E[ϕ(w +∆k, X, Y )− ϕ(w,X, Y )− ⟨∇ϕ(w,X, Y ),∆k⟩]|
∥∆k∥

≤ lim
k→∞

E

[
|ϕ(w +∆k, X, Y )− ϕ(w,X, Y )− ⟨∇ϕ(w,X, Y ),∆k⟩|

∥∆k∥

]
. (B.1)

Our goal is to interchange the limit and expectation. For that, we will use the dominated convergence
theorem. We construct our dominating function as follows. Let R := supk∈N∥∆k∥, and note that R < ∞
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since ∥∆k∥ → 0 as k → ∞. Then we have

|ϕ(w +∆k, X, Y )− ϕ(w,X, Y )− ⟨∇ϕ(w,X, Y ),∆k⟩|
∥∆k∥

≤ |ϕ(w +∆k, X, Y )− ϕ(w,X, Y )|
∥∆k∥

+
|⟨∇ϕ(w,X, Y ),∆k⟩|

∥∆k∥

≤

〈∫ 1

0
∇ϕ(w + t∆k, X, Y )dt,∆k

〉
∥∆k∥

+ ∥∇ϕ(w,X, Y )∥

≤
∥∥∥∥∫ 1

0

∇ϕ(w + t∆k, X, Y )dt

∥∥∥∥+ ∥∇ϕ(w,X, Y )∥

≤
∫ 1

0

∥∇ϕ(w + t∆k, X, Y )∥dt+ ∥∇ϕ(w,X, Y )∥

≤ 2 sup
∆∈B(0,R)

∥∇ϕ(w +∆, X, Y )∥

≤ 2

p− 1
∥X∥ sup

∆∈B(0,R)

|⟨w +∆, X⟩ − Y |p−1

≤ 2

p− 1
∥X∥ sup

∆∈B(0,R)

max{2p−1, 1}
(
|⟨w,X⟩ − Y |p−1

+ |⟨∆, X⟩|p−1
)

=
2p

p− 1

{
|⟨w,X⟩ − Y |p−1∥X∥+Rp−1∥X∥p

}
=: g(X,Y ),

where the second line follows by triangle inequality, the third from the fundamental theorem of calculus
applied component-wise, the fourth by Cauchy-Schwartz inequality, the fifth by Jensen’s inequality and the
convexity of the norm, and the eighth by the inequality |a+ b|q ≤ max{2q−1, 1}(|a|q + |b|q) valid for q > 0. It
remains to show that g(X,Y ) is integrable. We have

E[g(X,Y )] =
2p

p− 1
E
[
|⟨w,X⟩ − Y |p−1∥X∥+Rp−1∥X∥p

]
=

2p

p− 1


d∑

j=1

E
[
|⟨w,X⟩ − Y |p−1|Xj |

]
+Rp−1 E

 d∑
j=1

|Xj |

p
≤ 2p

p− 1


d∑

j=1

E[|⟨w,X⟩ − Y |p]
p−1
p E[|Xj |p]1/p +Rp−1dp

d∑
j=1

E
[
|Xj |p

]
< ∞,

where in the second line we used that the Euclidean norm is bounded by the 1-norm, in the third we used
Holder’s inequality, and the last line follows from our assumptions. Applying the dominated convergence
theorem, we interchange the limit and the expectation in (B.1). Recalling that ϕ is differentiable finishes the
proof.

We now turn to the twice differentiability of the risk. We start with the easy case p ∈ [2,∞). The proof
is very similar to that of Lemma 13 and we omit it here.

Lemma 14. Let p ∈ [2,∞) and assume that E[|Y |p] < ∞ and E[|Xj |p] < ∞ for all j ∈ [d]. Then Rp is twice
differentiable on Rd, and

∇2Rp(w) = E[∇2ℓp(⟨w,X⟩ − Y )].

The case p ∈ (1, 2) is more complicated. The following lemma establishes the twice differentiability of the
risk at its minimizer under a subset of the assumptions of Theorem 6.

Lemma 15. Let p ∈ (1, 2). Assume that P
(
|⟨w∗

p, X⟩ − Y | = 0
)
= 0 and E[|⟨w∗

p, X⟩ − Y |p−2(Xj)2] < ∞ for
all j ∈ [d]. Then Rp is twice differentiable at w∗

p and

∇2Rp(w
∗
p) = E[∇2ℓp(⟨w∗

p, X⟩ − Y )]
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Proof. The difficulty in the proof compared to Lemma 13 and Lemma 14 stems from the fact that the loss is
not twice differentiable at zero. We still rely on the dominated convergence theorem, but the construction of
the dominating function is slightly more intricate. Using the setup of the proof of Lemma 13, and following
the same line of arguments, we arrive at

lim
k→∞

∥∇Rp(w
∗
p +∆k)−∇Rp(w

∗
p)− E

[
∇2ϕ(w∗

p, X, Y )∆k

]
∥

∥∆k∥

≤ lim
k→∞

E

[
∥∇ϕ(w∗

p +∆k, X, Y )−∇ϕ(w∗
p, X, Y )−∇2ϕ(w∗

p, X, Y )∆k∥
∥∆k∥

]
, (B.2)

where we have used the fact that since P
(
|⟨w∗

p, X⟩ − Y | = 0
)
= 0, ϕ(w,X, Y ) is almost surely twice differen-

tiable at w∗
p. To finish the proof, it remains to construct a dominating function for the above sequence to

justify the interchange of the limit and expectation. We consider two cases.
Case 1: ∥∆k∥ ≥

∣∣⟨w∗
p, X⟩ − Y

∣∣/(2∥X∥) =: R(X,Y ). Then we have

∥∇ϕ(w∗
p +∆k, X, Y )−∇ϕ(w∗

p, X, Y )−∇2ϕ(w∗
p, X, Y )∆k∥

∥∆k∥

≤
∥∇ϕ(w∗

p +∆k, X, Y )∥+ ∥∇ϕ(w∗
p, X, Y )∥+ ∥∇2ϕ(w∗

p, X, Y )∆k∥
∥∆k∥

≤

(∣∣⟨w∗
p +∆, X⟩ − Y

∣∣p−1
+
∣∣⟨w∗

p, X⟩ − Y
∣∣p−1

)
∥X∥

(p− 1)∥∆k∥
+ ∥∇2ϕ(w∗

p, X, Y )∥op

≤
2
∣∣⟨w∗

p, X⟩ − Y
∣∣p−1∥X∥

(p− 1)∥∆k∥
+
∣∣⟨w∗

p, X⟩ − Y
∣∣p−2∥X∥2 + |⟨∆k/∥∆k∥, X⟩|p−1∥X∥

(p− 1)∥∆k∥2−p

≤
4
∣∣⟨w∗

p, X⟩ − Y
∣∣p−2∥X∥2

(p− 1)
+
∣∣⟨w∗

p, X⟩ − Y
∣∣p−2∥X∥2 + ∥X∥p

(p− 1)∥∆k∥2−p

≤
7
∣∣⟨w∗

p, X⟩ − Y
∣∣p−2∥X∥2

(p− 1)

where the second line follows by triangle inequality, the third by definition of the operator norm, the fourth
by |a+ b|q ≤ |a|q + |b|q valid for q ∈ (0, 1), and the fifth and sixth by Cauchy-Schwartz inequality and the
assumed lower bound on ∥∆k∥.

Case 2: ∥∆k∥ < R(X,Y ). We start by noting that, for all ∆ ∈ B(0, R(X,Y )) :=
{
x ∈ Rd | ∥x∥ < R(X,Y )

}
,

we have∣∣⟨w∗
p +∆, X⟩ − Y

∣∣ ≥ ∣∣⟨w∗
p, X⟩ − Y

∣∣− |⟨∆, X⟩| ≥
∣∣⟨w∗

p, X⟩ − Y
∣∣− ∥∆∥∥X∥ >

∣∣⟨w∗
p, X⟩ − Y

∣∣/2 > 0.
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Therefore ϕ(w,X, Y ) is twice differentiable on B(0, R(X,Y )). Now

∥∇ϕ(w∗
p +∆k, X, Y )−∇ϕ(w∗

p, X, Y )−∇2ϕ(w∗
p, X, Y )∆k∥

∥∆k∥

≤
∥∇ϕ(w∗

p +∆k, X, Y )−∇ϕ(w∗
p, X, Y )∥+ ∥∇2ϕ(w∗

p, X, Y )∆k∥
∥∆k∥

≤

∥∥∥(∫ 1

0
∇2ϕ(w∗

p + t∆k, X, Y )dt
)
∆k

∥∥∥
∥∆k∥

+ ∥∇2ϕ(w∗
p, X, Y )∥op

≤
∥∥∥∥∫ 1

0

∇2ϕ(w + t∆k, X, Y )dt

∥∥∥∥
op

+ ∥∇2ϕ(w∗
p, X, Y )∥op

≤
∫ 1

0

∥∇2ϕ(w + t∆k, X, Y )∥opdt+ ∥∇2ϕ(w∗
p, X, Y )∥op

≤ 2 sup
∆∈B(0,R(X,Y ))

∥∇2ϕ(w∗
p +∆, X, Y )∥op

≤ 2∥X∥22 sup
∆∈B(0,R(X,Y ))

∣∣⟨w∗
p +∆, X⟩ − Y

∣∣p−2

≤ 4
∣∣⟨w∗

p, X⟩ − Y
∣∣p−2∥X∥22

where the second line follows from the triangle inequality, the third follows from the twice differentiability of
ϕ on B(0, R(X,Y )) and the fundamental theorem of calculus applied component-wise, the fifth by Jensen’s
inequality, and the last by definition of R(X,Y ) and the above lower bound. We therefore define our
dominating function by

g(X,Y ) := 8
∣∣⟨w∗

p, X⟩ − Y
∣∣p−2∥X∥22.

It is then immediate from our assumptions that g(X,Y ) is integrable. Interchanging the limit and the
expectation in (B.2) and recalling that ϕ is almost surely twice differentiable at w∗

p finishes the proof.

C Proof of Lemma 1

We start with the claim that ρ0 is upper-semicontinuous. We want to show that for any w ∈ Rd and any
sequence (wk)

∞
k=1 converging to w (in the norm topology)

lim sup
k→∞

ρ0(wk) ≤ ρ0(w).

Fix a w ∈ Rd and let (wk)
∞
k=1 be a sequence in Rd satisfying limk→∞∥w − wk∥ = 0, where for convenience

we take ∥·∥ to be the Euclidean norm on Rd. Then we have by (reverse) Fatou’s Lemma

lim sup
k→∞

ρ0(wk) = lim sup
k→∞

E
[
1{0}(⟨wk, X⟩)

]
≤ E

[
lim sup
k→∞

1{0}(⟨wk, X⟩)
]
. (C.1)

Now we bound the inner limsup pointwise. We split this task in two cases. If ⟨w,X⟩ = 0, then

lim sup
k→∞

1{0}(⟨wk, X⟩) ≤ 1 = 1{0}(⟨w,X⟩). (C.2)

Otherwise we have δ := |⟨w,X⟩| > 0. But then, by the convergence of (wk)
∞
k=1 to w, there exists a K ∈ N

such that for all k ≥ K we have ∥wk − w∥ < δ/(2∥X∥). This implies that for all k ≥ K

|⟨wk, X⟩| = |⟨w,X⟩ − ⟨w − wk, X⟩| ≥ |⟨w,X⟩| − |⟨w − wk, X⟩| ≥ δ − ∥wk − w∥2∥X∥ ≥ δ/2 > 0.

We conclude that
lim sup
k→∞

1{0}(⟨wk, X⟩) = lim
k→∞

1{0}(⟨wk, X⟩) = 0 = 1{0}(⟨w,X⟩). (C.3)
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Combining (C.1), (C.2), and (C.3) proves the upper-semicontinuity of ρ0. Essentially the same proof shows
the lower-semicontinuity of ρq(·, κ) for any κ ≥ 0; we omit it here.

For the remaining claims, first notice that the function ρ0 is scale invariant, i.e. for all w ∈ Rd and all
c ∈ R, we have ρ0(cw) = ρ0(w). Therefore

sup
w∈Rd\{0}

ρ0(w) = sup
w∈Sd−1

ρ0(w),

where Sd−1 is the Euclidean unit sphere. By assumption on the random vector X, we know that ρ0(w) < 1 for
all w ∈ Sd−1. Furthermore since ρ0 is upper semicontinuous, and Sd−1 is compact, ρ0 attains its supremum
on Sd−1 at some point w0 ∈ Sd−1. From this we conclude that

ρ = sup
w∈Rd\{0}

ρ0(w) = ρ0(w0) < 1.

Finally, we turn to the claim about ρq. Since E[|Xj |q] < ∞, the function ∥·∥Lq is a norm on Rd, from
which it follows that ρq(w, κ) is also scale invariant for any κ. Therefore

inf
w∈Rd\{0}

ρq(w, κ) = inf
w∈Sq

ρq(w, κ),

where Sq is the unit sphere of the norm ∥·∥Lq . Now fix κ ∈ [0, 1). We claim that ρq(w, κ) > 0 for all w ∈ Sq.
Suppose not. Then there exists a w ∈ Sq such that |⟨w,X⟩| ≤ κ with probability 1, but then we get the
contradiction

1 = ∥w∥Lq = E[|⟨w,X⟩|q]1/q ≤ κ < 1.

therefore ρq(w, κ) > 0 for all w ∈ Sq. Now since ρq(·, κ) is lower-semicontinuous, and Sq is compact, ρq(·, κ)
attains its infimum on Sq at some point wq ∈ Sq. From this we conclude

inf
w∈Rd\{0}

ρq(w, κ) = ρq(wq, κ) > 0.

D Proof of Theorem 4

Fix p ∈ (1,∞), and let ŵ := ŵp. Our goal will be to upper bound the probability P(ŵ ̸= w∗). By assumption,
we have that Y = ⟨w∗, X⟩, so that Yi = ⟨w∗, Xi⟩ for all i ∈ [n]. Since ŵ minimizes the empirical risk, we
must also have ⟨ŵ,Xi⟩ = Yi = ⟨w∗, Xi⟩ for all i ∈ [n]. Let A ∈ Rn×d denote the matrix whose i-th row is Xi.
Then we have the following implications.

ŵ ̸= w∗ ⇒ ⟨ŵ − w∗, Xi⟩ = 0 ∀i ∈ [n] ⇒ ∃w ∈ Rd \ {0} | Aw = 0 ⇔ rowrank(A) < d. (D.1)

Let r := rowrank(A). We claim the following equivalence

rowrank(A) < d ⇔ ∃S ⊂ [n] | |S| = d− 1 ∧ ∀i ∈ [n] \ S Xi ∈ span({Xk | k ∈ S}). (D.2)

Indeed the implication (⇐) follows by definition of the rowrank of A. For the implication (⇒), by definition,
{Xi | i ∈ [n]} is a spanning set for the row space of A, therefore it can be reduced to a basis of it {Xk | k ∈ S1}
for some indices S1 ⊂ [n] with |S1| = r. If r = d− 1, then the choice S = S1 satisfies the right side of (D.2).
Otherwise, let S2 ⊂ [n] \ S1 with |S2| = d− 1− r. Such a subset exists since by assumption n ≥ d > d− 1.
Then the set S := S1 ∪ S2 satisfies the right side of (D.2). Combining (D.1) and (D.2) we arrive at:

P(ŵ ̸= w∗) ≤ P

 ⋃
S⊂[n]

|S|=d−1

{∀i ∈ [n] \ S Xi ∈ span({Xk | k ∈ S})}


≤

∑
S⊂[n]

|S|=d−1

P(∀i ∈ [n] \ S Xi ∈ span({Xk | k ∈ S})) (D.3)
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where the second inequality follows from the union bound. We now bound each of the terms of the sum.
Fix S = {i1, . . . , id−1} ⊂ [n] with |S| = d − 1. Let ZS = n((Xij )

d−1
j=1) be a non-zero vector orthogonal to

span({Xk | k ∈ S}). Such a vector must exist since dim(span({Xk | k ∈ S})) < d; see Lemma 16 below for an

explicit construction of the function n. Denote by PZS
the distribution of ZS and P(Xi)i∈[n]\S =

∏n−d−1
i=1 PX

the distribution of (Xi)i∈[n]\S , where PX is the distribution of X. Note that since ZS is a function of (Xij )
d
j=1

only, it is independent of (Xi)i∈[n]\S . In particular, the joint distribution of (ZS , (Xi)i∈[n]\S) is given by
the product PZS

× P(Xi)i∈[n]\S . Now if Xi ∈ span({Xk | k ∈ S}), then by definition of ZS , ⟨ZS , Xi⟩ = 0.
Therefore

P(∀i ∈ [n] \ S Xi ∈ span({Xk | k ∈ S})) ≤ P(∀i ∈ [n] \ S ⟨ZS , Xi⟩ = 0)

= E

 ∏
i∈[n]\S

1{0}(⟨ZS , Xi⟩)


=

∫  ∏
i∈[n]\S

1{0}(⟨yS , xi⟩)

PZS
(dzS)P(Xi)i∈[n]\S (d(xi)i∈[n]\S)

=

∫
PZS

(dys)

 ∏
i∈[n]\S

∫
1{0}(⟨yS , xi⟩)PX(dxi)


=

∫  ∏
i∈[n]\S

P(⟨zS , X⟩ = 0)

PZS
(dys)

=

∫  ∏
i∈[n]\S

ρ0(ys)

PZS
(dys)

≤ ρn−d+1, (D.4)

where in the third line we used the independence of ZS and (Xi)i∈[n]\S , in the fourth we used the independence
of the (Xi)i∈\S , in the sixth we used the definition of ρ0 in 2.4, and in the last line we used the fact that
zS ̸= 0 and the definition of ρ in Lemma 1. Combining the inequalities (D.3) and (D.4) yields the result.

Lemma 16. Let m ∈ {1, . . . , d− 1} and let (xj)
m
j=1 be a sequence of points in Rd. Denote by A ∈ Rm×d the

matrix whose j-th row is xj and let A+ be its pseudo-inverse. Let (bi)
d
i=1 be an ordered basis of Rd, and define

k := min
{
i ∈ [n] | (I −A+A)bi ̸= 0

}
n((xj)

m
j=1) := (I −A+A)bk

Then n((xj)
m
j=1) is non-zero and is orthogonal to span({xj | j ∈ [m]}).

Proof. We start by showing that k is well defined. First note that I − A+A is the orthogonal projector
onto the kernel of A, which is non-trivial since dim(ker(A)) = d − dim(Im(A)) ≥ d − m ≥ 1. Now we
claim that there exists an i ∈ [d] such that (I − A+A)bi ̸= 0. Suppose not, then for any w ∈ Rd, we

have (I − A+A)w = (I − A+A)(
∑d

i=1 cibi) =
∑d

i=1 ci(I − A+A)bi = 0, implying that I − A+A = 0, but
this contradicts the non-triviality of ker(A). This proves that k is well-defined, which in turn proves that
n((xj)

m
j=1) ̸= 0. It remains to prove the orthogonality claim. Let v ∈ span({xj | j ∈ [m]}). Then there exists

coefficients c ∈ Rm such that v = AT c. Therefore

⟨v, n((xj)
m
j=1)⟩ = ⟨AT c, n((xj)

m
j=1)⟩ = cTA(I −AA+)bk = 0,

where the last equality holds since (I −AA+)bk ∈ ker(A).
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E Detailed proof of Theorem 5

We proceed similarly to the proof of Theorem 2. By definition of the empirical risk minimizer, we have the
upper bound

Rp,n(ŵp)−Rp,n(w
∗
p) ≤ 0. (E.1)

Using (3.5) from Lemma 10 and the Cauchy-Schwarz inequality, we obtain the pointwise lower bound

Rp,n(ŵp)−Rp,n(w
∗
p) ≥ −∥∇Rp,n(w

∗
p)∥H−1

p
∥ŵp − w∗

p∥Hp
+

1

8(p− 1)
∥ŵp − w∗

p∥2Hp,n
. (E.2)

Using Lemma 7 we have that, with probability at least 1− δ/2,

∥∇Rp,n(w
∗
p)∥H−1

p
≤
√
2E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
/(nδ). (E.3)

It remains to control ∥ŵp − w∗
p∥2Hp,n

from below. Define the random vector

Z = |⟨w∗
p, X⟩ − Y |(p−2)/2X

Then, for any w ∈ Rd, we have

∥w − w∗
p∥2Hp,n

= (w − w∗
p)

THp,n(w − w∗
p)

=
1

n

n∑
i=1

(w − w∗
p)

T∇2ℓp(⟨w∗
p, Xi⟩ − Yi)(w − w∗

p)

=
1

n

n∑
i=1

⟨w − w∗
p, Zi⟩2

By assumption, the components of the random vector Z have finite fourth moment. Applying Proposition 8,
and using the condition on n assumed in the statement of Theorem 5, we get that, with probability at least
1− δ/2, for all w ∈ Rd,

∥w − w∗
p∥2Hp,n

≥ 1

2
∥w − w∗

p∥2Hp
. (E.4)

Combining (E.3) and (E.4) with (E.2) gives that with probability at least 1− δ,

Rp,n(ŵp)−Rp,n(w
∗
p) ≥ −

√
2E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
/(nδ) ∥ŵp − w∗

p∥Hp

+
1

16(p− 1)
∥ŵp − w∗

p∥2Hp
. (E.5)

Further combining (E.5) with (E.1) and rearranging yields that with probability at least 1− δ

∥ŵp − w∗
p∥2Hp

≤
512p2 E

[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
nδ

(E.6)

The last step is to bound the excess risk of the empirical risk minimizer using the bound (E.6) and (3.6) from
Lemma 10. For that, we control the Lp norm term in (3.6) as follows

pp∥ŵp − w∗
p∥

p
Lp =

(
p2

∥ŵp − w∗
p∥2Lp

∥ŵp − w∗
p∥2Hp

∥ŵp − w∗
p∥2Hp

)p/2

≤

(
p2 sup

w∈Rd\{0}

{
∥w∥2Lp

∥w∥2Hp

}
∥ŵp − w∗

p∥2Hp

)p/2

=
(
p2c2p∥ŵp − w∗

p∥2Hp

)p/2
. (E.7)

Combining (E.6), (3.6), and (E.7) yields the result.
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F Detailed proof of Theorem 6

In this section, we provide a detailed proof of Theorem 6. We finish the proof of Proposition 12, and conclude
by bringing all the pieces together to prove Theorem 6.

F.1 Rest of the proof of Proposition 12

We continue the proof by bounding the last remaining supremum. We have

sup
∥w∥Hp=1

E
[
|⟨w∗

p, X⟩ − Y |p−2⟨w,X⟩2
(
1[0,β)(|⟨w∗

p, X⟩ − Y |) + 1(T,∞)(∥X∥H−1
p

)
)]

≤ sup
∥w∥Hp=1

{
E
[
|⟨w∗

p, X⟩ − Y |2(p−2)⟨w,X⟩4
]1/2}(

P
(
|⟨w∗

p, X⟩ − Y | < β
)
+ P

(
∥X∥H−1

p
> T

))1/2
=

(
sup

∥w∥Hp=1

∥w∥2L4,p

)(
P
(
|⟨w∗

p, X⟩ − Y | < β
)
+ P

(
∥X∥H−1

p
> T

))1/2
= σp

(
P
(
|⟨w∗

p, X⟩ − Y | < β
)
+ P

(
∥X∥H−1

p
> T

))1/2
,

where the first inequality follows from Cauchy Schwartz inequality, and the subsequent equalities by definitions
of ∥·∥L4,p and σ2

p. It remains to bound the tail probabilities. Recall that β = Tε, so that on the one hand we
have

P
(
|⟨w∗

p, X⟩ − Y | < β
)
= P

(
|⟨w∗

p, X⟩ − Y | < Tε
)

= P
(
|⟨w∗

p, X⟩ − Y |−1 > (Tε)−1
)

= P
(
|⟨w∗

p, X⟩ − Y |2(p−2) > (Tε)2(p−2)
)

≤ E[|⟨w∗
p, X⟩ − Y |2(p−2)](Tε)2(2−p)

= c∗p(Tε)
2(2−p), (F.1)

where we applied Markov’s inequality in the fourth line, and the last follows by definition of c∗p. On the other
hand, we have

E
[
∥X∥2

H−1
p

]
= E

[
XTH−1

p X
]
= E

[
Tr
(
H−1

p XXT
)]

= Tr
(
H−1

p Σ
)

where Σ = E[XXT ]. Define H̃p := Σ−1/2HpΣ
−1/2. Then by the above, we have

E
[
∥X∥2

H−1
p

]
= Tr

(
H̃−1

p

)
≤ dλmax(H̃

−1
p ) =

d

λmin(H̃p)

where λmax(A) and λmin(A) are the largest and smallest eigenvalues of a positive definite matrix A respectively.
Now, using the variational characterization of the smallest eigenvalue, we have

E
[
∥X∥2

H−1
p

]
≤ d sup

v∈Rd\{0}

∥v∥22
vT H̃pv

= d sup
w∈Rd\{0}

wTΣw

wTHpw
= d sup

w∈Rd\{0}

∥w∥2L2

∥w∥2Hp

= dc2p

where the second equality is obtained by the change of variable w = Σ−1/2v, the third by the definition of
∥·∥L2 and ∥·∥Hp

, and the last by definition of cp in Theorem 6. Therefore, by Markov’s inequality, we get

P
(
∥X∥H−1

p
> T

)
≤ dcp

T 2
(F.2)

Combining the inequalities (F.1) and (F.2), we obtain

P
(
|⟨w∗

p, X⟩ − Y | < Tε
)
+ P

(
∥X∥H−1

p
> T

)
≤ c∗pT

2(2−p)ε2(2−p) +
dcp
T 2

(F.3)
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Minimizing over T we get

T ∗ :=

(
dcp

c∗p(2− p)

)1/(6−2p)

which ensures that(
P
(
|⟨w∗

p, X⟩ − Y | < T ∗ε
)
+ P

(
∥X∥H−1

p
> T ∗

))1/2
≤

√
2(c∗p)

1/(6−2p)
(
ε
√
d
√
cp

)(2−p)/(3−p)

Therefore, choosing

ε2−p :=
1

8σ3−p
p
√

c∗p(dcp)
(2−p)/2

,

ensures that the supremum we are bounding is less than 1/2.

F.2 Proof of Theorem 6

We follow the same proof strategy as the one used in the proofs of Theorems 2 and 5. By definition of the
empirical risk minimizer, we have

Rp,n(ŵp)−Rp,n(w
∗
p) ≤ 0. (F.4)

Using (3.7) from Lemma 11 and the Cauchy-Schwarz inequality, we have the lower bound

Rp,n(ŵp)−Rp,n(w
∗
p) ≥ −∥∇Rp,n(w

∗
p)∥H−1

p
∥ŵp − w∗

p∥Hp

+
1

4

1

n

n∑
i=1

γp
(
|⟨w∗

p, Xi⟩ − Yi|, |⟨w − w∗
p, Xi⟩|

)
(F.5)

Using Lemma 7 we have that, with probability at least 1− δ/2,

∥∇Rp,n(w
∗
p)∥H−1

p
≤
√
2E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
/(nδ). (F.6)

On the other hand, by Proposition 12, we have with probability 1− δ/2, for all w ∈ Rd,

1

n

n∑
i=1

γp
(
|⟨w∗

p, Xi⟩ − Yi|, |⟨w − w∗
p, Xi⟩|

)
≥ 1

8
min

{
∥w − w∗

p∥2Hp
, ε2−p∥w − w∗

p∥
p
Hp

}
, (F.7)

where ε is as defined in Proposition 12. We now consider two cases. If ∥ŵp − w∗
p∥2Hp

≤ ε2−p∥ŵp − w∗
p∥

p
Hp

,

then combining (F.4), (F.5), (F.6), and (F.7) gives

∥ŵp − w∗
p∥2Hp

≤
2048E

[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
nδ

. (F.8)

Otherwise, ∥ŵp − w∗
p∥2Hp

> ε2−p∥ŵp − w∗
p∥

p
Hp

, then again combining (F.4), (F.5), (F.6), and (F.7) gives

∥ŵp − w∗
p∥2Hp

≤

2048E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
ε2(p−2)

nδ

1/(p−1)

(F.9)

In either case, we have, using (F.8) and (F.9), with probability at least 1− δ,

∥ŵp − w∗
p∥2Hp

≤
2048E

[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
nδ

+

2048E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
ε2(p−2)

nδ

1/(p−1)

.

(F.10)
Combining this last inequality with (3.8) from Lemma 11 finishes the proof.
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