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Abstract

We study the fundamental problems of variance and risk estimation in high di-
mensional statistical modeling. In particular, we consider the problem of learning
a coefficient vector θ0 ∈ Rp from noisy linear observations y = Xθ0 + w ∈ Rn
(p > n) and the popular estimation procedure of solving the `1-penalized least
squares objective known as the LASSO or Basis Pursuit DeNoising (BPDN). In
this context, we develop new estimators for the `2 estimation risk ‖θ̂ − θ0‖2 and
the variance of the noise when distributions of θ0 and w are unknown. These can
be used to select the regularization parameter optimally. Our approach combines
Stein’s unbiased risk estimate [Ste81] and the recent results of [BM12a][BM12b]
on the analysis of approximate message passing and the risk of LASSO.
We establish high-dimensional consistency of our estimators for sequences of ma-
trices X of increasing dimensions, with independent Gaussian entries. We es-
tablish validity for a broader class of Gaussian designs, conditional on a certain
conjecture from statistical physics.
To the best of our knowledge, this result is the first that provides an asymptotically
consistent risk estimator for the LASSO solely based on data. In addition, we
demonstrate through simulations that our variance estimation outperforms several
existing methods in the literature.

1 Introduction

In Gaussian random design model for the linear regression, we seek to reconstruct an unknown
coefficient vector θ0 ∈ Rp from a vector of noisy linear measurements y ∈ Rn:

y = Xθ0 + w, (1.1)

where X ∈ Rn×p is a measurement (or feature) matrix with iid rows generated through a multivari-
ate normal density. The noise vector, w, has iid entries with mean 0 and variance σ2. While this
problem is well understood in the low dimensional regime p � n, a growing corpus of research
addresses the more challenging high-dimensional scenario in which p > n. The Basis Pursuit De-
noising (BPDN) or LASSO [CD95, Tib96] is an extremely popular approach in this regime, that
finds an estimate for θ0 by minimizing the following cost function

CX,y(λ, θ) ≡ (2n)−1 ‖y −Xθ‖22 + λ‖θ‖1 , (1.2)

with λ > 0. In particular, θ0 is estimated by θ̂(λ;X, y) = argminθ CX,y(λ, θ). This method is
well suited for the ubiquitous case in which θ0 is sparse, i.e. a small number of features effectively
predict the outcome. Since this optimization problem is convex, it can be solved efficiently, and fast
specialized algorithms have been developed for this purpose [BT09].

Research has established a number of important properties of LASSO estimator under suitable con-
ditions on the design matrix X , and for sufficiently sparse vectors θ0. Under irrepresentability
conditions, the LASSO correctly recovers the support of θ0 [ZY06, MB06, Wai09]. Under weaker
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conditions such as restricted isometry or compatibility properties the correct recovery of support fails
however, the `2 estimation error ‖θ̂−θ0‖2 is of the same order as the one achieved by an oracle esti-
mator that knows the support [CRT06, CT07, BRT09, BdG11]. Finally, [DMM09, RFG09, BM12b]
provided asymptotic formulas for MSE or other operating characteristics of θ̂, for Gaussian design
matrices X .

While the aforementioned research provides solid justification for using the LASSO estimator, it is
of limited guidance to the practitioner. For instance, a crucial question is how to set the regularization
parameter λ. This question becomes even more urgent for high-dimensional methods with multiple
regularization terms. The oracle bounds of [CRT06, CT07, BRT09, BdG11] suggest to take λ =
c σ
√

log p with c a dimension-independent constant (say c = 1 or 2). However, in practice a factor
two in λ can make a substantial difference for statistical applications. Related to this issue is the
question of estimating accurately the `2 error ‖θ̂ − θ0‖22. The above oracle bounds have the form
‖θ̂− θ0‖22 ≤ C kλ2, with k = ‖θ0‖0 the number of nonzero entries in θ0, as long as λ ≥ cσ

√
log p.

As a consequence, minimizing the bound does not yield a recipe for setting λ. Finally, estimating
the noise level is necessary for applying these formulae, and this is in itself a challenging question.

The results of [DMM09, BM12b] provide exact asymptotic formulae for the risk, and its dependence
on the regularization parameter λ. This might appear promising for choosing the optimal value of
λ, but has one serious drawback. The formulae of [DMM09, BM12b] depend on the empirical
distribution1 of the entries of θ0, which is of course unknown, as well as on the noise level2. A step
towards the resolution of this problem was taken in [DMM11], which determined the least favorable
noise level and distribution of entries, and hence suggested a prescription for λ, and a predicted risk
in this case. While this settles the question (in an asymptotic sense) from a minimax point of view,
it would be preferable to have a prescription that is adaptive to the distribution of the entries of θ0

and to the noise level.

Our starting point is the asymptotic results of [DMM09, DMM11, BM12a, BM12b]. These provide
a construction of an unbiased pseudo-data θ̂u that is asymptotically Gaussian with mean θ0. The
LASSO estimator θ̂ is obtained by applying a denoiser function to θ̂u. We then use Stein’s Unbiased
Risk Estimate (SURE) [Ste81] to derive an expression for the `2 risk (mean squared error) of this
operation. What results is an expression for the mean squared error of the LASSO that only depends
on the observed data y and X . Finally, by modifying this formula we obtain an estimator for the
noise level.

We prove that these estimators are asymptotically consistent for sequences of design matrices X
with converging aspect ratio and iid Gaussian entries. We expect that the consistency holds far
beyond this case. In particular, for the case of general Gaussian design matrices, consistency holds
conditionally on a conjectured formula stated in [JM13] on the basis of the “replica method” from
statistical physics.

For the sake of concreteness, let us briefly describe our method in the case of standard Gaussian
design that is when the design matrixX has iid Gaussian entries. We construct the unbiased pseudo-
data vector by

θ̂u = θ̂ +XT (y −Xθ̂)/[n− ‖θ̂‖0] . (1.3)

Our estimator of the mean squared error is derived from applying SURE to unbiased pseudo-data.
In particular, our estimator is R̂(y,X, λ, τ̂) where

R̂(y,X, λ, τ) ≡ τ2
(

2‖θ̂‖0/p− 1
)

+ ‖XT (y −Xθ̂)‖22
/[
p(n− ‖θ̂‖0)2

]
(1.4)

Here θ̂(λ;X, y) is the LASSO estimator and τ̂ = ‖y −Xθ̂‖2/[n− ‖θ̂‖0].

Our estimator of the noise level is

σ̂2/n = τ̂2 − R̂(y,X, λ, τ̂ )/δ

where δ = n/p. Although our rigorous results are asymptotic in the problem dimensions, we show
through numerical simulations that they are accurate already on problems with a few thousands of

1The probability distribution that puts a point mass 1/p at each of the p entries of the vector.
2Note that our definition of noise level σ corresponds to σ

√
n in most of the compressed sensing literature.

2



●

●

●
● ●

●

● ●
● ● ●

●

●
●

●

●
●

●
● ●

0.0

0.1

0.2

0.3

0.0 0.5 1.0 1.5 2.0

λ

M
S

E

Results in a Single Run
● Estimated MSE

True MSE

90% Confidence Bands
Estimated MSE
True MSE

Asymptotics
Asymptotic MSE

MSE Estimation

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0.0

0.2

0.4

0.6

0.0 0.5 1.0 1.5 2.0

λ

σ̂2
n

● AMP.LASSO
N.LASSO
PMLE
RCV.LASSO
SCALED.LASSO
TRUE

Noise Level Estimation

Figure 1: Red color represents the estimated values by our estimators and green color represents the
true values to be estimated. Left: MSE versus regularization parameter λ. Here, δ = 0.5, σ2/n =
0.2, X ∈ Rn×p with iid N1(0, 1) entries where n = 4000. Right: σ̂2/n versus λ. Comparison of
different estimators of σ2 under the same model parameters. Scaled Lasso’s prescribed choice of
(λ, σ̂2/n) is marked with a bold x.

variables. To the best of our knowledge, this is the first method for estimating the LASSO mean
square error solely based on data. We compare our approach with earlier work on the estimation of
the noise level. The authors of [NSvdG10] target this problem by using a `1-penalized maximum
log-likelihood estimator (PMLE) and a related method called “Scaled Lasso” [SZ12] (also studied by
[BC13]) considers an iterative algorithm to jointly estimate the noise level and θ0. Moreover, authors
of [FGH12] developed a refitted cross-validation (RCV) procedure for the same task. Under some
conditions, the aforementioned studies provide consistency results for their noise level estimators.
We compare our estimator with these methods through extensive numerical simulations.

The rest of the paper is organized as follows. In order to motivate our theoretical work, we start with
numerical simulations in Section 2. The necessary background on SURE and asymptotic distribu-
tional characterization of the LASSO is presented in Section 3. Finally, our main theoretical results
can be found in Section 4.

2 Simulation Results

In this section, we validate the accuracy of our estimators through numerical simulations. We also
analyze the behavior of our variance estimator as λ varies, along with four other methods. Two of
these methods rely on the minimization problem,

(θ̂, σ̂) = argminθ,σ

{
‖y −Xθ‖22
2nh1(σ)

+ h2(σ) + λ
‖θ‖1

23 h3(σ)

}
,

where for PMLE h1(σ) = σ2, h2(σ) = log(σ), h3(σ) = σ and for the Scaled Lasso h1(σ) = σ,
h2(σ) = σ/2, and h3(σ) = 1. The third method is a naı̈ve procedure that estimates the variance in
two steps: (i) use the LASSO to determine the relevant variables; (ii) apply ordinary least squares
on the selected variables to estimate the variance. The fourth method is Refitted Cross-Validation
(RCV) by [FGH12] which also has two-stages. RCV requires sure screening property that is the
model selected in its first stage includes all the relevant variables. Note that this requirement may
not be satisfied for many values of λ. In our implementation of RCV, we used the LASSO for
variable selection.

In our simulation studies, we used the LASSO solver l1 ls [SJKG07]. We simulated across 50
replications within each, we generated a new Gaussian design matrix X . We solved for LASSO
over 20 equidistant λ’s in the interval [0.1, 2]. For each λ, a new signal θ0 and noise independent
from X were generated.
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Figure 2: Red color represents the estimated values by our estimators and green color represents
the true values to be estimated. Left: MSE versus regularization parameter λ. Here, δ = 0.5,
σ2/n = 0.2, rows of X ∈ Rn×p are iid from Np(0,Σ) where n = 5000 and Σ has entries 1
on the main diagonal, 0.4 on above and below the main diagonal. Right: Comparison of different
estimators of σ2/n. Parameter values are the same as in Figure 1. Scaled Lasso’s prescribed choice
of (λ, σ̂2/n) is marked with a bold x.

The results are demonstrated in Figures 1 and 2. Figure 1 is obtained using n = 4000, δ = 0.5 and
σ2/n = 0.2. The coordinates of true signal independently get values 0, 1,−1 with probabilities 0.9,
0.05, 0.05 respectively. For each replication, we used a design matrix X where Xi,j

iid∼ N1(0, 1).
Figure 2 is obtained with n = 5000 and same values of δ and σ2 as in Figure 1. The coordinates
of true signal independently get values 0, 1, −1 with probabilities 0.9, 0.05, 0.05 respectively. For
each replication, we used a design matrix X where each row is independently generated through
Np(0,Σ) where Σ has 1 on the main diagonal and 0.4 above and below the diagonal.

As can be seen from the figures, the asymptotic theory applies quite well to the finite dimensional
data. We refer reader to [BEM13] for a more detailed simulation analysis.

3 Background and Notations

3.1 Preliminaries and Definitions

First, we need to provide a brief introduction to approximate message passing (AMP) algorithm
suggested by [DMM09] and its connection to LASSO (see [DMM09, BM12b] for more details).

For an appropriate sequence of non-linear denoisers {ηt}t≥0, the AMP algorithm constructs a se-
quence of estimates {θt}t≥0, pseudo-data {yt}t≥0, and residuals {εt}t≥0 where θt, yt ∈ Rp and
εt ∈ Rn. These sequences are generated according to the iteration

θt+1 = ηt(y
t) , yt = θt +XT εt/n , εt = y −Xθt +

1

δ
εt−1

〈
η′t(y

t−1)
〉
, (3.1)

where δ ≡ n/p and the algorithm is initialized with θ0 = ε0 = 0 ∈ Rp. In addition, each denoiser
ηt(·) is a separable function and its derivative is denoted by η′t( · ). Given a scalar function f and a
vector u ∈ Rm, we let f(u) denote the vector (f(u1), . . . , f(um)) ∈ Rm obtained by applying f
component-wise and 〈u〉 ≡ m−1

∑m
i=1 ui is the average of the vector u ∈ Rm.

Next, consider the state evolution for the AMP algorithm. For the random variable Θ0 ∼ pθ0 ,
a positive constant σ2 and a given sequence of non-linear denoisers {ηt}t≥0, define the sequence
{τ2
t }t≥0 iteratively by

τ2
t+1 = Ft(τ

2
t ) , Ft(τ

2) ≡ σ2 +
1

δ
E{ [ηt(Θ0 + τZ)−Θ0]2} , (3.2)

where τ2
0 = σ2 + E{Θ2

0}/δ and Z ∼ N1(0, 1) is independent of Θ0. From Eq. 3.2, it is apparent
that the function Ft depends on the distribution of Θ0. It is shown in [BM12a] that the pseudo-data
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yt has the same asymptotic distribution as Θ0 + τtZ. This result can be roughly interpreted as the
pseudo-data generated by AMP is the summation of the true signal and a normally distributed noise
which has zero mean. Its variance is determined by the state evolution. In other words, each iteration
produces a pseudo-data that is distributed normally around the true signal, i.e. yti ≈ θ0,i+N1(0, τ2

t ).
The importance of this result will appear later when we use Stein’s method in order to obtain an
estimator for the MSE and the variance of the noise.

We will use state evolution in order to describe the behavior of a specific type of converging sequence
defined as the following:

Definition 1. The sequence of instances {θ0(n), X(n), σ2(n)}n∈N indexed by n is said to be a
converging sequence if θ0(n) ∈ Rp, X(n) ∈ Rn×p, σ2(n) ∈ R and p = p(n) is such that n/p →
δ ∈ (0,∞), σ2(n)/n→ σ2

0 for some σ0 ∈ R and in addition the following conditions hold:

(a) The empirical distribution of {θ0,i(n)}pi=1, converges in distribution to a probability measure
pθ0 on R with bounded 2nd moment. Further, as n→∞, p−1

∑p
i=1 θ0,i(n)2 → Epθ0 {Θ

2
0}.

(b) If {ei}1≤i≤p ⊂ Rp denotes the standard basis, then n−1/2 maxi∈[p] ‖X(n)ei‖2 → 1,
n−1/2 mini∈[p] ‖X(n)ei‖2 → 1, as n→∞ with [p] ≡ {1, . . . , p}.

We provide rigorous results for the special class of converging sequences when entries of X are iid
N1(0, 1) (i.e., standard gaussian design model). We also provide results (assuming Conjecture 4.4 is
correct) when rows of X are iid multivariate normal Np(0,Σ) (i.e., general gaussian design model).

In order to discuss the LASSO connection for the AMP algorithm, we need to use a specific class of
denoisers and apply an appropriate calibration to the state evolution. Here, we provide briefly how
this can be done and we refer the reader to [BEM13] for a detailed discussion.

Denote by η : R× R+ → R the soft thresholding denoiser where

η(x; ξ) =

{
x− ξ if x > ξ
0 if −ξ ≤ x ≤ ξ .
x+ ξ if x < −ξ

Also, denote by η′( · ; · ), the derivative of the soft-thresholding function with respect to its first
argument. We will use the AMP algorithm with the soft-thresholding denoiser ηt( · ) = η( · ; ξt )
along with a suitable sequence of thresholds {ξt}t≥0 in order to obtain a connection to the LASSO.

Let α > 0 be a constant and at every iteration t, choose the threshold ξt = ατt. It was shown in
[DMM09] and [BM12b] that the state evolution has a unique fixed point τ∗ = limt→∞ τt, and there
exists a mapping α 7→ τ∗(α), between those two parameters. Further, it was shown that a function
α 7→ λ(α) with domain (αmin(δ),∞) for some constant αmin, and given by

λ(α) ≡ ατ∗
(
1− 1

δ
E
[
η′(Θ0 + τ∗Z;ατ∗)

])
,

admits a well-defined continuous and non-decreasing inverse α : (0,∞) → (αmin,∞). In particu-
lar, the functions λ 7→ α(λ) and α 7→ τ∗(α) provide a calibration between the AMP algorithm and
the LASSO where λ is the regularization parameter.

3.2 Distributional Results for the LASSO

We will proceed by stating a distributional result on LASSO which was established in [BM12b].

Theorem 3.1. Let {θ0(n), X(n), σ2(n)}n∈N be a converging sequence of instances of the standard
Gaussian design model. Denote the LASSO estimator of θ0(n) by θ̂(n, λ) and the unbiased pseudo-
data generated by LASSO by θ̂u(n, λ) ≡ θ̂ +XT (y −Xθ̂)/[n− ‖θ̂‖0].
Then, as n → ∞, the empirical distribution of {θ̂ui , θ0,i}pi=1 converges weakly to the joint distri-
bution of (Θ0 + τ∗Z,Θ0) where Θ0 ∼ pθ0 , τ∗ = τ∗(α(λ)), Z ∼ N1(0, 1) and Θ0 and Z are
independent random variables.

The above theorem combined with the stationarity condition of the LASSO implies that the empiri-
cal distribution of {θ̂i, θ0,i}pi=1 converges weakly to the joint distribution of

(
η(Θ0 + τ∗Z; ξ∗),Θ0

)
5



where ξ∗ = α(λ)τ∗(α(λ)). It is also important to emphasize a relation between the asymptotic
MSE, τ2

∗ and the model variance. By Theorem 3.1 and the state evolution recursion, almost surely,

lim
p→∞

‖θ̂ − θ0‖22/p = E
[

[η(Θ0 + τ∗Z; ξ∗)−Θ0]
2
]

= δ(τ2
∗ − σ2

0) , (3.3)

which will be helpful to get an estimator for the noise level.

3.3 Stein’s Unbiased Risk Estimator

In [Ste81], Stein proposed a method to estimate the risk of an almost arbitrary estimator of the mean
of a multivariate normal vector. A generalized form of his method can be stated as the following.
Proposition 3.2. [Ste81]&[Joh12] Let x, µ ∈ Rn and V ∈ Rn×n be such that x ∼ Nn(µ,V ).
Suppose that µ̂(x) ∈ Rn is an estimator of µ for which µ̂(x) = x + g(x) and that g : Rn → Rn is
weakly differentiable and that ∀i, j ∈ [n], Eν [|xigi(x)|+ |xjgj(x)|] < ∞ where ν is the measure
corresponding to the multivariate Gaussian distribution Nn(µ,V ). Define the functional

S(x, µ̂) ≡ Tr(V ) + 2Tr(V Dg(x)) + ‖g(x)‖22 ,
where Dg is the vector derivative. S(x, µ̂) is an unbiased estimator of the risk, i.e.
Eν‖µ̂(x)− µ‖22 = Eν [S(x, µ̂)].

In the literature of statistics, the above estimator is called “Stein’s Unbiased Risk Estimator” or
SURE. The following remark will be helpful to build intuition about our approach.
Remark 1. If we consider the risk of soft thresholding estimator η(xi; ξ) for µi when xi ∼
N1(µi, σ

2) for i ∈ [m], the above formula suggests the functional

S(x, η( · ; ξ))
m

= σ2 − 2σ2

m

m∑
i=1

1{|xi|≤ξ} +
1

m

m∑
i=1

[min{|xi|, ξ}]2 ,

as an estimator of the corresponding MSE.

4 Main Results

4.1 Standard Gaussian Design Model

We start by defining two estimators that are motivated by Proposition 3.2.
Definition 2. Define

R̂ψ(x, τ) ≡ −τ2 + 2τ2〈ψ′(x)〉+ 〈 (ψ(x)− x)2〉 ,
where x ∈ Rm, τ ∈ R+, and ψ : R → R is a suitable non-linear function. Also for y ∈ Rn and
X ∈ Rn×p denote by R̂(y,X, λ, τ), the estimator of the mean squared error of LASSO where

R̂(y,X, λ, τ) ≡ τ2

p
(2‖θ̂‖0 − p) +

‖XT (y −Xθ̂)‖22
p(n− ‖θ̂‖0)2

.

Remark 2. Note that R̂(y,X, λ, τ) is just a special case of R̂ψ(x, τ) when x = θ̂u and ψ( · ) =

η( · ; ξ ) for ξ = λ/(1− ‖θ̂‖0/p).

We are now ready to state the following theorem on the asymptotic MSE of the AMP:
Theorem 4.1. Let {θ0(n), X(n), σ2(n)}n∈N be a converging sequence of instances of the standard
Gaussian design model. Denote the sequence of estimators of θ0(n) by {θt(n)}t≥0, the pseudo-
data by {yt(n)}t≥0, and residuals by {εt(n)}t≥0 produced by AMP algorithm using the sequence
of Lipschitz continuous functions {ηt}t≥0 as in Eq. 3.1.

Then, as n→∞, the mean squared error of the AMP algorithm at iteration t+1 has the same limit
as R̂ηt(y

t, τ̂) where τ̂t = ‖εt‖2/n. More precisely, with probability one,

lim
n→∞

‖θt+1 − θ0‖22/p(n) = lim
n→∞

R̂ηt(y
t, τ̂t) . (4.1)

In other words, R̂ηt(y
t, τ̂t) is a consistent estimator of the asymptotic mean squared error of the

AMP algorithm at iteration t+ 1.
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The above theorem allows us to accurately predict how far the AMP estimate is from the true signal
at iteration t+ 1 and this can be utilized as a stopping rule for the AMP algorithm. Note that it was
shown in [BM12b] that the left hand side of Eq. (4.1) is E[(ηt(Θ0 + τtZ)−Θ0)2]. Combining this
with the above theorem, we easily obtain,

lim
n→∞

R̂ηt(y
t, τ̂t) = E[(ηt(Θ0 + τtZ)−Θ0)2] .

We state the following version of Theorem 4.1 for the LASSO.

Theorem 4.2. Let {θ0(n), X(n), σ2(n)}n∈N be a converging sequence of instances of the standard
Gaussian design model. Denote the LASSO estimator of θ0(n) by θ̂(n, λ). Then with probability
one,

lim
n→∞

‖θ̂ − θ0‖22/p(n) = lim
n→∞

R̂(y,X, λ, τ̂) ,

where τ̂ = ‖y − Xθ̂‖2/[n − ‖θ̂‖0]. In other words, R̂(y,X, λ, τ̂) is a consistent estimator of the
asymptotic mean squared error of the LASSO.

Note that Theorem 4.2 enables us to assess the quality of the LASSO estimation without knowing
the true signal itself or the noise (or their distribution). The following corollary can be shown using
the above theorem and Eq. 3.3.

Corollary 4.3. In the standard Gaussian design model, the variance of the noise can be accurately
estimated by σ̂2/n ≡ τ̂2 − R̂(y,X, λ, τ̂)/δ where δ = n/p and other variables are defined as in
Theorem 4.2. In other words, we have

lim
n→∞

σ̂2/n = σ2
0 , (4.2)

almost surely, providing us a consistent estimator for the variance of the noise in the LASSO.

Remark 3. Theorems 4.1 and 4.2 provide a rigorous method for selecting the regularization pa-
rameter optimally. Also, note that obtaining the expression in Theorem 4.2 only requires solving
one solution path to LASSO problem versus k solution paths required by k-fold cross-validation
methods. Additionally, using the exponential convergence of AMP algorithm for the standard gaus-
sian design model, proved by [BM12b], one can use O(log(1/ε)) iterations of AMP algorithm and
Theorem 4.1 to obtain the solution path with an additional error up to O(ε).

4.2 General Gaussian Design Model

In Section 4.1, we devised our estimators based on the standard Gaussian design model. Motivated
by Theorem 4.2, we state the following conjecture of [JM13].

Let {Ω(n)}n∈N be a sequence of inverse covariance matrices. Define the general Gaussian design
model by the converging sequence of instances {θ0(n), X(n), σ2(n)}n∈N where for each n, rows
of design matrix X(n) are iid multivariate Gaussian, i.e. Np(0,Ω(n)−1).

Conjecture 4.4 ([JM13]). Let {θ0(n), X(n), σ2(n)}n∈N be a converging sequence of instances
under the general Gaussian design model with a sequence of proper inverse covariance matri-
ces {Ω(n)}n∈N. Assume that the empirical distribution of {(θ0,i,Ωii}pi=1 converges weakly to
the distribution of a random vector (Θ0,Υ). Denote the LASSO estimator of θ0(n) by θ̂(n, λ)

and the LASSO pseudo-data by θ̂u(n, λ) ≡ θ̂ + ΩXT (y − Xθ̂)/[n − ‖θ̂‖0]. Then, for some
τ ∈ R, the empirical distribution of {θ0,i, θ̂

u
i ,Ωii} converges weakly to the joint distribution of

(Θ0,Θ0 + τΥ1/2Z,Υ), where Z ∼ N1(0, 1), and (Θ0,Υ) are independent random variables. Fur-
ther, the empirical distribution of (y −Xθ̂)/[n− ‖θ̂‖0] converges weakly to N(0, τ2).

A heuristic justification of this conjecture using the replica method from statistical physics is offered
in [JM13]. Using the above conjecture, we define the following generalized estimator of the linearly
transformed risk under the general Gaussian design model. The construction of the estimator is
essentially the same as before i.e. apply SURE to unbiased pseudo-data.
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Definition 3. For an inverse covariance matrix Ω and a suitable matrix V ∈ Rp×p, letW = V ΩV T

and define an estimator of ‖V (θ̂ − θ)‖22/p as

Γ̂Ω(y,X, τ, λ, V ) =
τ2

p

(
Tr (WSS)− Tr (WS̃S̃)− 2Tr

(
WS̃SΩSS̃Ω−1

S̃S̃

))
+
‖V ΩXT (y −Xθ̂)‖22

p(n− ‖θ̂‖0)2

where y ∈ Rn and X ∈ Rn×p denote the linear observations and the design matrix, respectively.
Further, θ̂(n, λ) is the LASSO solution for penalty level λ and τ is a real number. S ⊂ [p] is the
support of θ̂ and S̃ is [p] \ S. Finally, for a p × p matrix M and subsets D,E of [p] the notation
MDE refers to the |D| × |E| sub-matrix of M obtained by intersection of rows with indices from D
and columns with indices from E.

Derivation of the above formula is rather complicated and we refer the reader to [BEM13] for a
detailed argument. A notable case, when V = I , corresponds to the mean squared error of LASSO

for the general Gaussian design and the estimator R̂(y,X, λ, τ) is just a special case of the estimator
Γ̂Ω(y,X, τ, λ, V ). That is, when V = Ω = I , we have Γ̂I(y,X, τ, λ, I) = R̂(y,X, λ, τ).

Now, we state the following analog of Theorem 4.2.
Theorem 4.5. Let {θ0(n), X(n), σ2(n)}n∈N be a converging sequence of instances of the general
Gaussian design model with the inverse covariance matrices {Ω(n)}n∈N. Denote the LASSO esti-
mator of θ0(n) by θ̂(n, λ). If Conjecture 4.4 holds, then, with probability one,

lim
n→∞

‖θ̂ − θ0‖22/p(n) = lim
n→∞

Γ̂Ω(y,X, τ̂ , λ, I)

where τ̂ = ‖y−Xθ̂‖2/[n−‖θ̂‖0]. In other words, Γ̂Ω(y,X, τ̂ , λ, I) is a consistent estimator of the
asymptotic MSE of the LASSO.

We will assume that a similar state evolution holds for the general design. In fact, for the general
case, replica method suggests the relation

lim
n→∞

‖Ω− 1
2 (θ̂ − θ)‖22/p(n) = δ(τ2 − σ2

0).

Hence motivated by the Corollary 4.3, we state the following result on the general Gaussian design
model.
Corollary 4.6. Assume that Conjecture 4.4 holds. In the general Gaussian design model, the vari-
ance of the noise can be accurately estimated by

σ̂2(n,Ω)/n ≡ τ̂2 − Γ̂Ω(y,X, τ̂ , λ,Ω−
1
2 )/δ ,

where δ = n/p and other variables are defined as in Theorem 4.5. Also, we have

lim
n→∞

σ̂2/n = σ2
0 ,

almost surely, providing us a consistent estimator for the noise level in LASSO.

Corollary 4.6, extends the results stated in Corollary 4.3 to the general Gaussian design matrices.
The derivation of formulas in Theorem 4.5 and Corollary 4.6 follows similar arguments as in the
standard Gaussian design model. In particular, they are obtained by applying SURE to the distri-
butional result of Conjecture 4.4 and using the stationary condition of the LASSO. Details of this
derivation can be found in [BEM13].
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[CRT06] E. Càndes, J. K. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate
measurements, Communications on Pure and Applied Mathematics 59 (2006), 1207–1223.
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Supplementary Material for

Estimating LASSO Risk and Noise Level

5 Proof of Main Results

The proof of main results will be build on the techniques developed in [BM12a] and [BM12b].

We start by proving Theorem 4.1. Then we will proceed to the main theorem on LASSO. Note that proof for
the auxilary lemmas appear in Section 6.

Proof of Theorem 4.1. For any t ≥ 1, n ∈ N, we have∣∣∣∣R̂ηt(yt(n), τ̂t)−
‖ηt(yt)− θ0‖22

p

∣∣∣∣ =
∣∣∣− τ̂2t + 2τ̂2t 〈η′t(yt)〉+ 〈ηt(yt)− yt, ηt(yt)− yt〉

− 〈ηt(yt), ηt(yt)〉+ 2〈ηt(yt), θ0〉 − 〈θ0, θ0〉
∣∣∣

=
∣∣∣− τ̂2t + 2τ̂2t 〈η′t(yt)〉 − 2〈ηt(yt), yt〉+ 〈yt, yt〉

+ 2〈ηt(yt), θ0〉 − 〈θ0, θ0〉
∣∣∣, (5.1)

with probability one. We will prove that the right hand side of Eq. 5.1 converges to 0 almost surely. We take
a moment to state some useful results that are easily obtained by using Lemma 9.5. We have the following
asymptotic results for the AMP outputs:

lim
n→∞

〈θ0 − yt, ηt(yt)〉
a.s.
= − lim

n→∞

(
〈θ0 − yt, θ0 − yt〉〈η′t(yt)〉

)
(5.2)

lim
n→∞

〈θ0 − yt, θ0 − yt〉
a.s.
= τ2t

a.s.
= lim

n→∞
τ̂2t (5.3)

lim
n→∞

〈yt, yt〉 a.s.
= τ2t + E[θ20] (5.4)

Eq. 5.2 can be obtained by applying Lemma Lemma 9.5d to the function ϕ(a, b) = ηt(b−a) when r = s = t.
Similarly, first equality in Eq. 5.3 and Eq. 5.4 can be obtained by applying Lemma 9.5a to the functions
φh(a, b) = a2 and φh(a, b) = (b− a)2. Lastly, the second equality in Eq. 5.3 can be obtained by Lemma 9.3.
Now we are ready to bound the right hand side of Eq. 5.1.∣∣∣∣R̂ηt(yt(n), τ̂t)−

‖ηt(yt)− θ0‖22
p

∣∣∣∣ ≤∣∣∣τ2t − τ̂2t ∣∣∣+
∣∣∣〈θ0, θ0〉 − E[θ20]

∣∣∣+
∣∣∣〈yt, yt〉 − τ2t − E[θ20]

∣∣∣
+ 2
∣∣∣〈ηt(yt), θ0 − yt〉+ 〈θ0 − yt, θ0 − yt〉〈η′t(yt)〉

∣∣∣
+ 2

∣∣〈η′t(yt)〉∣∣ ∣∣∣〈θ0 − yt, θ0 − yt〉 − τ2t ∣∣∣
By using the definition of converging sequences and comparing the right-hand side of the above inequality with
the Eqs. 5.2-5.4, we easily conclude that as n→∞, the right-hand side converges to 0 almost surely.

Before we proceed to prove the main theorem, we will state two simple lemmas that are going to be used when
we derive the main result. Proofs for the lemmas can be found in Section 6.
Lemma 5.1. Let {θ0(n), w(n), A(n)}n∈N be a converging sequence of instances of the standard Gaussian
design model. Denote the sequence of estimators of θ0 produced by AMP by {xt(n)}t≥1. Then with probability
one,

lim
n→∞

‖y −Axt‖22
n(1− ωt(n))2

= τ2t

where ωt(n) ≡ 1
δ
〈η′(yt−1; θt−1)〉 and τ2t is determined by the state evolution.

The following lemma shows that the mean squared errors of the AMP algorithm and the LASSO are asymp-
totically the same.
Lemma 5.2. Let {θ0(n), w(n), A(n)}n∈N be a converging sequence of instances of the standard Gaussian
design model. Denote the sequence of estimators of θ0 produced by AMP calibrated for λ by {xt(n)}t≥1. Also
denote the LASSO estimator by x̂(n, λ). Then with probability one,

lim
n→∞

‖y −Ax̂‖2

n
= lim
t→∞

lim
n→∞

‖y −Axt‖2

n
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Now we are ready to prove the main theorem.

Proof of Theorem 4.2. First note that τ̂ , ξ̂ and bn are random variables and we have

b∞ = lim
n→∞

bn =
1

δ
E
[
η′(θ0 + τ∗Z; θ∗)

]
(5.5)

where the convergence takes place almost surely. This follows from weak convergence of the empirical dis-
tribution of the LASSO solution and the fact that θ0 + τ∗Z has a density. Then we can approximate the
discontinuous zero-“norm”, with smooth pseudo-Lipschitz functions3 and obtain Eq. 5.5. This result immedi-
ately implies

lim
n→∞

ξ̂(n) = θ∗ =
λ

1− b∞
=

λ

1− 1
δ
E
[
η′(θ0 + τ∗Z; θ∗

] . (5.6)

almost surely. It is also important to point out that as a simple application of dominated convergence theorem,
we have b∞ = ω∞∗ = limt→∞ limn→∞ ωt(n) almost surely (See Eq. 7.4).

By using Lemmas 5.1 and 5.2, we obtain

lim
n→∞

τ̂(n)2 = lim
n→∞

‖y −Ax̂‖2

n(1− bn)2
= τ2∗

(1− ω∞∗ )2

(1− b∞)2
= τ2∗ (5.7)

almost surely. This proves the convergence of the first term.

For the second term, we define random variables Yn and Y as the following: Denote the empirical distribution
of {θ̂ui }pi=1 with Fn. By Theorem 3.1 Fn converges weakly to F where F is the distribution function of the
random variable θ0 + τ∗Z. By the Skorohod’s Theorem, there exists random variables on the same probability
space, namely Yn and Y so that Yn follows distribution Fn and Y follows distribution F . Now we can apply
Lemma 6.2 to Fn(ξ̂(n)) and with probability one, we obtain

lim
p→∞

1

p

p∑
i=1

1{|ŷi|≤ξ̂} = F (θ∗)− F (−θ∗) = E
[
η′(θ0 + τ∗Z; θ∗)

]
.

where we used the absolute continuity of the density of Y .

Combining with the previous result, the second term in the estimator R̂η(θ̂u(n, λ), τ̂ , ξ̂) converges almost
surely to 2τ2∗E

[
η′(θ0 + τ∗Z; θ∗)

]
.

For the last term, first note that ξ̂(n) is a random variable that depends on n whereas θ∗ is a deterministic
constant. As n → ∞, we have almost surely ξ̂(n)2 → θ2∗ (See Eq. 5.5 and Eq. 5.6). By using Theorem 3.1
with the Portmanteau theorem on the bounded function (a, b)→ min{a2, θ2∗}, we get

lim
p→∞

1

p

p∑
i=1

[
min{|θ̂ui |, θ2∗}

]2
= E[min{(τ∗Z − θ0)2, θ2∗}]

almost surely. Now we continue by writing the following inequality:∣∣∣∣∣1p
p∑
i=1

min{(θ̂ui )2, ξ̂2} − 1

p

p∑
i=1

min{(θ̂ui )2, θ2∗}

∣∣∣∣∣ =

∣∣∣∣∣1p
p∑
i=1

[
min{(θ̂ui )2, ξ̂2} −min{(θ̂ui )2, θ2∗}

]∣∣∣∣∣
≤
∣∣∣ξ̂2 − θ2∗∣∣∣

For the inequality, we used the fact that when a and b are any Real numbers, we have
|min{a, b} −min{a, c}| ≤ |b− c|.

By Eq. 5.6, we have limn→∞ ξ̂(n) = θ∗ almost surely. Hence the right-hand side converges to 0, implying

lim
p→∞

1

p

p∑
i=1

[
min{|θ̂ui |, ξ̂}

]2
= E[min{(τ∗Z − θ0)2, θ2∗}] (5.8)

3A function f : Rm → R is called pseudo-Lipschitz if for all x, y ∈ Rm we have |f(x) − f(y)| ≤
L(1 + ‖x‖2 + ‖y‖2)‖x− y‖2 for a universal positive constant L.
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almost surely.

By combining our results, we get on the right-hand side,

lim
n→∞

R̂η(θ̂u(n, λ), τ̂ , ξ̂) = τ2∗ − 2τ2∗E
[
η′(θ0 + τ∗Z; θ∗)

]
+ E[min{|τ∗Z − θ0|, θ∗}2]

almost surely.

On the left-hand side, using Theorem 3.1 and the remark after it, we get

lim
p→∞

‖θ̂ − θ0‖22
p

= E[(η(θ0 + τ∗Z; θ∗)− θ0)2]

as written explicitly in [BM12b]. Now by applying Lemma 6.1, we conclude the proof.

6 Proof of Auxiliary Lemmas

6.1 Useful Probability Facts

The following elementary probability theory results will be useful.

Lemma 6.1. For any random variable X with bounded second moment, Z ∼ N1(0, 1) independent of X , we
have

E[(η(X + τZ; θ)−X)2] = τ2 − 2τ2E
[
η′(X + τZ; θ)

]
+ E[min{|τZ −X|, θ}2],

where τ and θ are arbitrary positive constants.

Proof. This lemma is just an elemantary application of Proposition 3.2. If we start by conditioning on X , on
the left-hand side, we get a random variable that is normally distributed around X with variance τ2 (Note that
X and Z are independent random variables). Given X , if we proceed by applying Stein’s Proposition to one
dimensional random variable X + τZ ∼ N1(X, τ2), we immediately get,

E[(η(X + τZ; θ)−X)2|X] = τ2 − 2τ2E
[
η′(X + τZ; θ)|X

]
+ E[min{|τZ −X|, θ}2|X].

The proposition is applicable since the soft thresholding function satisfies the constraints. Finally, the proof
follows by taking expectation on both sides.

Lemma 6.2. Let µn and µ be probability measures on (R1,R1) and µn → µ weakly. Let Xn be a random
variable on a probability space (Ω,F ,P) and Xn → c < ∞ almost surely where c is a constant and a
continuity point of µ(−∞, x]. Then, µn(−∞, Xn]→ µ(−∞, c] almost surely.

Proof. Define the subset of Ω,
A = {ω ∈ Ω : Xn(ω)→ c},

where P(A) = 1 by construction. Since µ is a probability measure, the function x → µ(−∞, x] has at most
countably many discontinuities. Hence for an ε > 0, there exists c1 and c2 continuity points of µ(−∞, x] such
that c1 < c < c2 and

µ(−∞, c2]− µ(−∞, c1] < ε/2.

Now for every ω ∈ A, there exists Nω ∈ N such that ∀n > Nω , we have c1 < Xn(ω) < c2,
|µn(−∞, c2]− µ(−∞, c2]| < ε/2 and |µn(−∞, c1]− µ(−∞, c1]| < ε/2.

Now on the left-hand side we have,

µ(−∞, c]− ε < µ(−∞, c1]− ε/2 < µn(−∞, c1] ≤ µn(−∞, Xn(ω)]

and on the right-hand side we have,

µ(−∞, c] + ε > µ(−∞, c2] + ε/2 > µn(−∞, c2] ≥ µn(−∞, Xn(ω)]

which implies |µ(−∞, c]− µn(−∞, Xn(ω)]| < ε. Hence we have ∀ω ∈ A, we have µn(−∞, Xn(ω)] →
µ(−∞, c] which concludes the proof.
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6.2 Proof of Lemmas 5.1 and 5.2

Proof of Lemma 5.1. For any t ≥ 0 and n ∈ N, we have

‖y −Axt‖22
n(1− ωt)2

=
‖y −Axt + ωtz

t−1 − ωtzt−1‖22
n(1− ωt)2

=
‖zt − ωtzt−1‖22
n(1− ωt)2

=
1

(1− ωt)2

(
1

n
‖zt‖22 +

1

n
ω2
t ‖zt−1‖22 − 2ωt〈zt, zt−1〉

)
Then , as n→∞, by Lemmas 9.3 and 9.4, the terms ‖zt‖22/n and 〈zt, zt−1〉 on the right-hand side, converges
to τ2t . Hence the proof is completed.

Proof of Lemma 5.2. The proof simply follows from Theorem 9.2. For any t ≥ 0 and n ∈ N,

1

n

∣∣‖y −Ax̂‖22 − ‖y −Axt‖22∣∣ =
1

n

∣∣∣(xt − x̂)T [2AT y +ATA(xt − θ̂)− 2ATAxt]
∣∣∣

≤ 1

n

[
2‖xt − θ̂‖2‖AT y‖2 + ‖A(xt − θ̂)‖22 + 2‖xt − θ̂‖2‖ATAxt‖2

]
≤ 2

n
σmax(A)‖xt − θ̂‖2‖y‖2 +

1

n
σ2
max(A)‖xt − θ̂‖22 +

2

n
σ2
max(A)‖xt − θ̂‖2‖xt‖2

First inequality follows from Cauchy-Schwartz and the second one follows from Proposition 10.1. Note that as
t and n goes to∞, by Theorem 9.2, ‖xt − x̂‖2/n→ 0. By using standard asymptotic estimate on the singular
values of random matrices, together with the fact that {θ0(n), w(n), A(n)}n∈N is a converging sequence, all
the other terms are bounded. Hence the right hand side converges to 0 almost surely.

7 Proof of Normality for the Pseudo-data

In this section, we will prove the distributional result for the LASSO pseudo-data. For the greater convenience
of the reader, we start by stating the following theorem which was first established in [BM12a].

Theorem 7.1. [BM12a] Let {θ0(n), w(n), A(n)}n∈N be a converging sequence of instances of the standard
Gaussian design model. Denote by zt the residual and by yt the pseudo-data at iteration step t produced by
the AMP algorithm, given as in Eq. 3.1.

Then for a fixed t, as n → ∞, the empirical distribution of {x0,i, yt+1
i }pi=1 weakly converges to the joint

distribution of (X0, X0 + τtZ) where θ0 ∼ pθ0 , Z ∼ N1(0, 1) and θ0 and Z are independent random
variables in the same probability space. τt is determined by the state evolution given in Eq. 3.2. Also, the
empirical distribution of {zti}ni=1 weakly converges to N1(0, τ2t ).

Note that the above theorem is quite intuitive about its LASSO connection. We now state the following theo-
rem.

Theorem 7.2. Let {yt}t≥1 be the sequence of pseudo-data produced by AMP calibrated for λ and θ̂u(n, λ) ≡
θ̂ +AT (y −Aθ̂)/(1− bn) where θ̂(n, λ) is the LASSO solution and bn = ‖x̂‖0/n. Then,

lim
t→∞

lim
n→∞

1

n
‖yt(n)− θ̂u(n, λ)‖22 = 0

almost surely.

Proof. For any t ≥ 0, n ∈ N,

1

n
‖yt − θ̂u‖22 =

1

n
‖xt +AT zt − θ̂ −AT (y −Aθ̂)/(1− bn)‖22 (7.1)

≤ 2

n

(
‖xt − θ̂‖22 +

∥∥∥AT(zt − y −Aθ̂
1− bn

)∥∥∥2
2

)
(7.2)

By Theorem 9.2, first term on the right hand site converges to 0 as t, n→∞. If the second term also converges
to 0, the proof will be completed. But obviously,
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1

n

(∥∥∥AT(zt − y −Aθ̂
1− bn

)∥∥∥2
2

)
≤ 1

n
σ2
max(A)

∥∥∥zt − y −Aθ̂
1− bn

∥∥∥2
2

=
σ2
max(A)

(1− bn)2
1

n

∥∥zt(1− bn)− y +Aθ̂
∥∥2
2

=
σ2
max(A)

(1− bn)2
1

n

∥∥zt − ωtzt−1 + ωtz
t−1 − bnzt − y +Aθ̂

∥∥2
2

=
σ2
max(A)

(1− bn)2
1

n

∥∥ωtzt−1 − bnzt +Aθ̂ −Axt
∥∥2
2

≤ σ2
max(A)

(1− bn)2

(
2

n
b2n
∥∥ωt
bn
zt−1 − zt

∥∥2
2

+
2

n

∥∥A(xt − θ̂)
∥∥2
2

)
(7.3)

First, note that by Lemma 9.5, we have

lim
n→∞

ωt(n) = ω∞t ≡
1

δ
E
[
η′(θ0 + τt−1Z; θt−1)

]
(7.4)

Notice that the function η′( · ; θt) is discontinuous and therefore Theorem 7.1 does not apply immediately. On
the other hand, Lemma 9.5 implies that the empirical distribution of {(A∗zt−1

i + xt−1
i , x0,i)}1≤i≤p converges

weakly to the distribution of (θ0 + τt−1Z, θ0). The claim follows from the fact that θ0 + τt−1Z has a density,
together with the standard properties of weak convergence.

Similar to Eq. 7.4, we state the following equation to show right hand side of Eq. 7.8 converges to 0. Note that
this equation appeared before when we were proving the main theorem.

Under the conditions of Theorem 7.2, we have

lim
n→∞

bn =
1

δ
E
[
η′(θ0 + τ∗Z; θ∗)

]
(7.5)

almost surely. The proof of is a simple exercise of convergence in distribution. It appears immediately when one
approximates η′( · ; θ∗ ) with nice pseudo-Lipschitz functions. The above equation proves that limn→∞ bn =
limt→∞ limn→∞ ωt(n) where the limit simply follows from dominated convergence theorem. Since the soft
thresholding denoiser will produce a point mass at 0, right-hand side of Eq. 7.5 will be greater than 0 almost
surely. Now on the right-hand side of Eq. 7.3, as t→∞, n→∞, the first term goes to 0 by Lemmas 9.3 and
7.5.

For the second term, we have

1

n

∥∥A(xt − θ̂)
∥∥2
2
≤ σ2

max(A)
1

n
‖xt − θ̂

∥∥2
2

(7.6)

where σ2
max(A) is bounded and the other term converges to 0 by Theorem 9.2. Hence the proof is completed.

Now the proof for Theorem 3.1 will follow immediately from Theorem 7.2.

Proof of Theorem 3.1. By Lemma 9.5b, we have the following result. For any t ≥ 0 and any pseudo-Lipschitz
function ψ : R2 → R of order 2, we have

lim
p→∞

1

p

p∑
i=1

ψ
(
yti , x0,i

)
= E

[
ψ(θ0 + τtZ, θ0)

]
, (7.7)

almost surely. This result follows by considering the iterations 9.4 and applying Lemma 9.5b to the function
(ht+1
i , x0,i)→ ψ(x0,i − ht+1

i , x0,i).
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Now for any ε > 0 and t ≥ 0, for some L > 0 we have,∣∣∣∣∣1p
p∑
i=1

ψ
(
yti , x0,i

)
− 1

p

p∑
i=1

ψ
(
θ̂ui , x0,i

)∣∣∣∣∣ ≤ L

p

p∑
i=1

|yti − θ̂ui |
(
1 + 2|x0,i|+ |yti |+ |θ̂ui |

)

≤ L

p
‖yt − θ̂u‖2

√√√√ p∑
i=1

(
1 + 2|x0,i|+ |yti |+ |θ̂ui |

)2
≤ L‖y

t − θ̂u‖2√
p

√
4 +

8‖θ0‖22
p

+
4‖yt‖22
p

+
4‖θ̂u‖22
p

, (7.8)

where the first inequality follows from the pseudo-Lipschitz property of ψ, and the second one follows from
Cauchy-Schwarz inequality. As t → ∞, n → ∞, the first term on the right-hand side goes to 0 by Theorem
7.2. We need the following lemma to conclude the proof.

Lemma 7.3. Under the conditions of 7.2, there is a constant B <∞, such that

lim
t→∞

lim
p→∞

1

p
‖yt‖22 <B,

lim
p→∞

1

p
‖θ̂u‖22 <B,

with probability one.

Proof of this lemma will appear later in this section.
For the second term in Eq. 7.8, we have ‖θ0‖22/p bounded by definition, |θ̂u‖22/p and ‖yt‖22/p are bounded by
the lemma above.

Finally, the distributional result follows from Portmanteau Theorem and the fact that any Lipschitz continuous
function is also pseudo-Lipschitz continuous.

Proof of Lemma 7.3. We will use the definition of pseudo-data and state evolution to obtain a bound for pseudo-
data. The first one has already appeared in the proof of main theorem. By equation 5.4, we have,

lim
n→∞

〈yt, yt〉 = τ2t + E[θ20]

almost surely. limt→∞ limn→∞〈yt, yt〉 is bounded since the right hand side is bounded by definition.

For the pseudo-data generated by LASSO, we have,

1

p
‖θ̂u‖22 =

1

p

∥∥∥∥∥θ̂ +
AT (y −Aθ̂)

1− bn

∥∥∥∥∥
2

2

≤ 2

p
‖θ̂‖22 +

2

p

‖AT (y −Aθ̂)‖22
(1− bn)2

.

By Theorem 3.1, ‖θ̂‖22/p converges to E
[
η(θ0 + τ∗Z, θ∗)

2
]

almost surely, as p→∞. But,

E
[
η(θ0 + τ∗Z, θ∗)

2] ≤ E
[
(θ0 + τ∗Z)2

]
= τ2∗ + E[θ20].

Since the right hand side is bounded by definition, we have limp→∞ ‖θ̂‖22/p bounded almost surely. For the
second term, we have

1

2p
‖y −Aθ̂‖22 ≤

1

p
C(θ̂) ≤ 1

p
C(0) =

1

2p
‖y‖22

=
1

2p
‖Aθ0 + w‖22

≤ ‖w‖
2
2

p
+
σmax(A)2‖θ0‖22

p
.

‖θ0‖22/p and ‖w‖22/p are bounded by definition. σmax(A)2 is bounded by Theorem 10.1. We finalize the proof
by taking B the maximum of two bounds obtained for two pseudo-data.
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8 Calibrating AMP for the LASSO

In order to establish the LASSO connection for the AMP algorithm, we need an appropriate calibration to the
state evolution.

Denote by η : R× R+ → R the soft thresholding denoiser

η(x; θ) =

 x− θ if x > θ,
0 if −θ ≤ x ≤ θ,
x+ θ if x < −θ,

(8.1)

and denote by η′( · ; · ), the derivative of the soft thresholding function with respect to its first argument. We
will use the AMP algorithm with the soft-thresholding denoiser ηt( · ) = η( · ; θt ) with a suitable sequence of
thresholds {θt}t≥0 in order to obtain a connection to the LASSO problem.

This modifies the state evolution formula as

τ2t+1 = F(τ2t , θt) , (8.2)

F(τ2, θ) ≡ σ2 +
1

δ
E{ [η(θ0 + τZ; θ)− θ0]2} , (8.3)

where the dependence of Ft to t in Eq. 3.2 is undertaken by θt. Now, at every iteration t in AMP, we apply the
threshold θt = ατt to the pseudo-data. We have the following proposition from [DMM09].
Proposition 8.1. [DMM09] Let φ(x) and Φ(x) be the standard Gaussian density and distribution functions,
respectively. Let αmin = αmin(δ) be the unique non-negative solution of the equation

(1 + α2)Φ(−α)− αφ(α) =
δ

2
. (8.4)

Then for any σ2 > 0, α > αmin(δ), the fixed point equation τ2 = F(τ2, ατ) admits a unique solution where
F is as in Eq. 8.2. Denote the fixed point by τ∗ = τ∗(α). Then we have limt→∞ τt = τ∗(α). Further the
convergence takes place for any initial condition and is monotone. Finally

∣∣ dF
dτ2

(τ2, ατ)
∣∣ < 1 at τ = τ∗.

The above proposition relates τ∗ to α. Next, define the function α 7→ λ(α) on (αmin(δ),∞), by

λ(α) ≡ ατ∗
(

1− 1

δ
E
[
η′(θ0 + τ∗Z;ατ∗)

])
. (8.5)

This equation defines a calibration between the threshold θ∗ ≡ ατ∗ and the regularization parameter λ. Now,
we will invert this function in order to obtain a mapping from λ to α. Define α : (0,∞) → (αmin,∞) such
that

α(λ) ∈
{
a ∈ (αmin,∞) : λ(a) = λ

}
. (8.6)

The following proposition from [?] states that the above mapping λ 7→ α(λ) is well defined.
Proposition 8.2. [?] The function α 7→ λ(α) is continuous on the interval (αmin,∞) with λ(αmin+) = −∞
and limα→∞ λ(α) =∞. Hence the function λ 7→ α(λ) satisfying Eq. (8.6) exists.

Note that the definition of α(λ) does not imply uniqueness. But this property will simply follow from Theorem
3.1 which was stated in [BM12b]. Hence we get the following result:
Proposition 8.3. [BM12b] For any λ, σ2 > 0 there exists a unique α > αmin such that λ(α) = λ (with the
function α→ λ(α) defined as in Eq. (8.5).

Hence the function λ 7→ α(λ) is continuous non-decreasing with α((0,∞)) ≡ A = (α0,∞).

The above statements rigorously define the relation between the fixed point of state evolution τ∗ and the regu-
larization parameter λ.

9 Useful Results from [BM12a] and [BM12b]

Our proof uses the results of [BM12a] and [BM12b]. We state copy here the crucial technical lemmas in those
papers.
Theorem 9.1. [BM12a] Let {θ0(n), w(n), A(n)}n∈N be a converging sequence of instances of order k with
the entries of A(n) iid normal with mean 0 and variance 1/n. Let {ηt}t≥0 be a sequence of Lipschitz contin-
uous functions and ψ : R× R→ R be any pseudo-Lipschitz function of order k. Then, almost surely

lim
p→∞

1

p

p∑
i=1

ψ
(
xt+1
i , x0,i

)
= E

{
ψ
(
ηt(θ0 + τtZ), θ0

)}
, (9.1)

where Z ∼ N(0, 1) is independent of θ0 ∼ pθ0 .
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Theorem 9.2. [BM12b] Let {θ0(n), w(n), A(n)}n∈N be a converging sequence of instances of the standard
Gaussian design model. Denote the sequence of estimators of θ0 produced by AMP by {xt(n)}t≥1. Also denote
the LASSO estimator by x̂(n, λ). Then with probability one,

lim
t→∞

lim
n→∞

‖xt − x̂‖2

n
= 0

where yt = xt +A∗zt. θt and τt are determined by state evolution.
Lemma 9.3. [BM12b] Under the condition of Theorem 9.1, if {zt}t≥0 are the AMP residuals, then

lim
n→∞

1

n
‖zt‖22 = τ2t . (9.2)

Lemma 9.4. [BM12b] Under the condition of Theorem 9.1, the estimates {xt}t≥0 and residuals {zt}t≥0 of
AMP almost surely satisfy

lim
t→∞

lim
p→∞

1

p
‖xt − xt−1‖2 = 0 , lim

t→∞
lim
p→∞

1

p
‖zt − zt−1‖2 = 0 . (9.3)

AMP, cf. Eq. (3.1) is a special case of the general iterative procedure given by Eq. (3.1) of [BM12a]. The
general case takes the general form

ht+1 = A∗mt − ξt qt , mt = gt(b
t, w) ,

bt = Aqt − λtmt−1 , qt = ft(h
t, θ0) , (9.4)

where ξt = 〈g′(bt, w)〉, λt = 1
δ
〈f ′t(ht, x0)〉 (both derivatives are with respect to the first argument).

The general state evolution can be written for the quantities {τ2t }t≥0 and {σ2
t }t≥0 via

τ2t = E
{
gt(σtZ,W )2

}
, σ2

t =
1

δ
E
{
ft(τt−1Z, θ0)2

}
, (9.5)

where W ∼ pW and θ0 ∼ pθ0 are independent of Z ∼ N(0, 1).

The connection to the AMP can be seen by defining

ht+1 = θ0 − (A∗zt + xt) , (9.6)

qt = xt − θ0 , (9.7)

bt = w − zt , (9.8)

mt = −zt , (9.9)

where

ft(s, θ0) = ηt−1(θ0 − s)− θ0 , gt(s, w) = s− w , (9.10)

and the initial condition is q0 = −θ0.

Regarding ht, bt as column vectors, the equations for b0, . . . , bt−1 and h1, . . . , ht can be written in matrix
form as: [

h1 + ξ0q
0|h2 + ξ1q

1| · · · |ht + ξt−1q
t−1]︸ ︷︷ ︸

Xt

= A∗ [m0| . . . |mt−1]︸ ︷︷ ︸
Mt

, (9.11)

[
b0|b1 + λ1m

0| · · · |bt−1 + λt−1m
t−2]︸ ︷︷ ︸

Yt

= A [q0| . . . |qt−1]︸ ︷︷ ︸
Qt

. (9.12)

or in short Yt = AQt and Xt = A∗Mt.

Following [BM12a], we define St as the σ-algebra generated by b0, . . . , bt−1, m0, . . . ,mt−1, h1, . . . , ht, and
q0, . . . , qt. The conditional distribution of the random matrix A given the σ-algebra St, is given by

A|St
d
= Et + Pt(Ã). (9.13)

Here Ã d
= A is a random matrix independent of St, and Et = E(A|St) is given by

Et = Yt(Q
∗
tQt)

−1Q∗t +Mt(M
∗
tMt)

−1X∗t −Mt(M
∗
tMt)

−1M∗t Yt(Q
∗
tQt)

−1Q∗t . (9.14)

Further, Pt is the orthogonal projector onto subspace Vt = {A|AQt = 0, A∗Mt = 0}, defined by

Pt(Ã) = P⊥MtÃP
⊥
Qt .

Here P⊥Mt = I−PMt , P⊥Qt = I−PQt , and PQt , PMt are orthogonal projector onto column spaces of Qt and
Mt respectively.
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Lemma 9.5. Let {q0(p)}p≥0 and {A(p)}p≥0 be, respectively, a sequence of initial conditions and a sequence
of matrices A ∈ Rn×p indexed by p with iid entries Aij ∼ N(0, 1/n). Assume n/p → δ ∈ (0,∞). Con-
sider sequences of vectors {θ0(n), w(n)}p≥0, whose empirical distributions converge weakly to probability
measures pθ0 and pW on R with bounded (2k − 2)th moment, and assume:

(i) limp→∞ Ep̂θ0(p)
(θ2k−2

0 ) = Epθ0 (θ2k−2
0 ) <∞.

(ii) limp→∞ Ep̂w(p)
(W 2k−2) = EpW (W 2k−2) <∞.

(iii) limp→∞ Ep̂q0(p)
(X2k−2) <∞.

Let {σt, τt}t≥0 be defined uniquely by the recursion (9.5) with initialization σ2
0 = δ−1 limn→∞〈q0, q0〉. Then

the following hold for all t ∈ N ∪ {0}

(a)

ht+1|St+1,t

d
=

t−1∑
i=0

αih
i+1 + Ã∗mt

⊥ + Q̃t+1~ot+1(1) , (9.15)

bt|St,t
d
=

t−1∑
i=0

βib
i + Ãqt⊥ + M̃t~ot(1) , (9.16)

where Ã is an independent copy of A and the matrix Q̃t (M̃t) is such that its columns form an
orthogonal basis for the column space of Qt (Mt) and Q̃∗t Q̃t = N It×t (M̃∗t M̃t = n It×t).

(b) For all pseudo-Lipschitz functions φh, φb : Rt+2 → R of order k

lim
p→∞

1

p

p∑
i=1

φh(h1
i , . . . , h

t+1
i , x0,i)

a.s.
= E

{
φh(τ0Z0, . . . , τtZt, θ0)

}
, (9.17)

lim
n→∞

1

n

n∑
i=1

φb(b
0
i , . . . , b

t
i, wi)

a.s.
= E

{
φb(σ0Ẑ0, . . . , σtẐt,W )

}
, (9.18)

where (Z0, . . . , Zt) and (Ẑ0, . . . , Ẑt) are two zero-mean gaussian vectors independent of θ0, W ,
with Zi, Ẑi ∼ N(0, 1).

(c) For all 0 ≤ r, s ≤ t the following equations hold and all limits exist, are bounded and have degener-
ate distribution (i.e. they are constant random variables):

lim
p→∞

〈hr+1, hs+1〉 a.s.
= lim

n→∞
〈mr,ms〉 , (9.19)

lim
n→∞

〈br, bs〉 a.s.
=

1

δ
lim
N→∞

〈qr, qs〉 . (9.20)

(d) For all 0 ≤ r, s ≤ t, and for any Lipschitz function ϕ : R2 → R , the following equations hold
and all limits exist, are bounded and have degenerate distribution (i.e. they are constant random
variables):

lim
p→∞

〈hr+1, ϕ(hs+1, θ0)〉 a.s.
= lim

p→∞
〈hr+1, hs+1〉〈ϕ′(hs+1, θ0)〉, (9.21)

lim
n→∞

〈br, ϕ(bs, w)〉 a.s.
= lim

n→∞
〈br, bs〉〈ϕ′(bs, w)〉 . (9.22)

Here ϕ′ denotes derivative with respect to the first coordinate of ϕ.

(e) For ` = k − 1, the following hold almost surely

lim sup
p→∞

1

p

p∑
i=1

(ht+1
i )2` <∞ , (9.23)

lim sup
n→∞

1

n

n∑
i=1

(bti)
2` <∞. (9.24)

(f) For all 0 ≤ r ≤ t:

lim
p→∞

1

p
〈hr+1, q0〉 a.s.

= 0 . (9.25)
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(g) For all 0 ≤ r ≤ t and 0 ≤ s ≤ t − 1 the following limits exist, and there exist strictly positive
constants ρr and ςs (independent of p, n) such that almost surely

lim
N→∞

〈qr⊥, qr⊥〉 > ρr , (9.26)

lim
n→∞

〈ms
⊥,m

s
⊥〉 > ςs . (9.27)

10 Singular values of random matrices

We have used the limit behavior of extreme singular values of Gaussian matrices. The following more general
result from [BY93] can be used to justify our statements. (see also [BS05]).

Theorem 10.1 ([BY93]). Let A ∈ Rn×N be a matrix with iid entries such that E{Aij} = 0, E{A2
ij} = 1/n,

and n = Nδ. Let σmax(A) be the largest singular value of A, and σ̂min(A) be its smallest non-zero singular
value. Then

lim
N→∞

σmax(A)
a.s.
=

1√
δ

+ 1 , (10.1)

lim
N→∞

σ̂min(A)
a.s.
=

1√
δ
− 1 . (10.2)

We have also used the following simple fact that follows from the standard singular value decomposition

min
{
‖Ax‖2 : x ∈ ker(A)⊥, ‖x‖ = 1

}
= σmin(A) . (10.3)
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