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Abstract

We consider the problem of minimizing a sum of n functions via projected iterations onto
a convex parameter set C C RP where n > p > 1. In this regime, algorithms which utilize
sub-sampling techniques are known to be effective. In this paper, we use sub-sampling techniques
together with eigenvalue thresholding to design a new randomized batch algorithm which possesses
comparable convergence rate to Newton’s method, yet has much smaller per-iteration cost. The
proposed algorithm is robust in terms of starting point and step size, and enjoys a composite
convergence rate, namely, quadratic convergence at start and linear convergence when the iterate
is close to the minimizer. We develop its theoretical analysis which also allows us to select near-
optimal algorithm parameters. Our theoretical results can be used to obtain convergence rates
of previously proposed sub-sampling based algorithms as well. We demonstrate how our results
apply to well-known machine learning problems. Lastly, we evaluate the performance of our
algorithm on several datasets under various scenarios.

1 Introduction

We consider the problem of minimizing an average of n functions f; : R? — R,
1 n
inimi 0) = — (0 1.1
minnie £(0) = 32 5(0). (11)

in a batch setting, where n is assumed to be much larger than p. Most machine learning models
can be expressed as above, where each function f; corresponds to an observation. Examples include
logistic regression, support vector machines, neural networks and graphical models.

Many optimization algorithms have been developed to solve the above minimization problem
using iterative methods [Bis95, BV04, Nes04]. In this paper, we consider the iterations of the
following form

ot = 0t — 1, Q' f(6Y), (1.2)

where 7, is the step size and Q! is a suitable scaling matrix that provides curvature information (For
simplicity, we drop the projection throughout the introduction, i.e., we assume C = RP).
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Updates of the form Eq. have been extensively studied in the optimization literature. The
case where Q! is equal to the identity matrix corresponds to Gradient Descent (GD) which, un-
der smoothness assumptions, achieves linear convergence rate with O(np) per-iteration cost. More
precisely, GD with ideal step size yields

16 = Oull2 < & 6o l16° — Oull2

where, as lim; o &f o, = 1 — (A5/A]), and A is the i-th largest eigenvalue of the Hessian of f(6) at
minimizer 0,.

Second order methods such as Newton’s Method (NM) and Natural Gradient Descent (NGD)
[Ama98| can be recovered by taking Q! to be the inverse Hessian and the Fisher information evaluated
at the current iterate, respectively. Such methods may achieve quadratic convergence rates with
O(np? + p?®) per-iteration cost [Bis95, Nes04]. In particular, for ¢ large enough, Newton’s Method
yields

16" = 6.ll2 < & xnallf" — 6413,

and it is insensitive to the condition number of the Hessian. However, when the number of samples
grows large, computation of Q! becomes extremely expensive.

A popular line of research tries to construct the matrix Q! in a way that the update is com-
putationally feasible, yet still provides sufficient second order information. Such attempts resulted
in Quasi-Newton methods, in which only gradients and iterates are used in the construction of ma-
trix Q!, resulting in an efficient update at each step t. A celebrated Quasi-Newton method is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [Bro70, [Fle70l [Gol70l [Sha70] which requires
O(np + p?) per-iteration cost [Bis95), Nes04].

An alternative approach is to use sub-sampling techniques, where scaling matrix Q! is based on
randomly selected set of data points [Marl0, BCNN11) [VP12]. Sub-sampling is widely used in the
first order methods, but is not as well studied for approximating the scaling matrix. In particular,
theoretical guarantees are still missing.

A key challenge is that the sub-sampled Hessian is close to the actual Hessian along the directions
corresponding to large eigenvalues (large curvature directions in f()), but is a poor approximation
in the directions corresponding to small eigenvalues (flatter directions in f(6)). In order to overcome
this problem, we use low-rank approximation. More precisely, we treat all the eigenvalues below the
r-th as if they were equal to the (r 4+ 1)-th. This yields the desired stability with respect to the
sub-sample: we call our algorithm NewSamp. In this paper, we establish the following:

1. NewSamp has a composite convergence rate: quadratic at start and linear near the minimizer,
as illustrated in Figure[ll Formally, we prove a bound of the form

16 = 0.]l2 < €5110" — 6.]|2 + 510" — 0.3
with coefficient that are explicitly given (and are computable from data).

2. The asymptiotic behavior of the linear convergence coefficient is limy o0 £ = 1— (X5 /A5, 1)+,
for ¢ small. The condition number (A7/A;) which controls the convergence of GD, has been
replaced by the milder (Ay,;/A7). For datasets with strong spectral features, this can be a
large improvement, as shown in Figure

3. The above results are achived without tuning the step-size, in particular, by setting 7, = 1.



4. The complexity per iteration of NewSamp is O(np + |S|p?) with |S| the sample size.

5. Our theoretical results can be used to obtain convergence rates of previously proposed sub-
sampling algorithms.

We demonstrate the performance of NewSamp on four datasets, and compare it to the well-known
optimization methods.

The rest of the paper is organized as follows: Section[I.I|surveys the related work. In Section[2] we
describe the proposed algorithm and provide the intuition behind it. Next, we present our theoretical
results in Section [3] i.e., convergence rates corresponding to different sub-sampling schemes, followed
by a discussion on how to choose the algorithm parameters. Two applications of the algorithm are
discussed in Section [4 We compare our algorithm with several existing methods on various datasets
in Section [5} Finally, in Section [6] we conclude with a brief discussion.

1.1 Related Work

Even a synthetic review of optimization algorithms for large-scale machine learning would go beyond
the page limits of this paper. Here, we emphasize that the method of choice depends crucially on the
amount of data to be used, and their dimensionality (i.e., respectively, on the parameters n and p). In
this paper, we focus on a regime in which p is large but not so large as to make matrix manipulations
(of order p? to p3) impossible. Also n is large but not so large as to make batch gradient computation
(of order np) prohibitive. On the other hand, our aim is to avoid O(np?) calculations required by
standard Newton method. Examples of this regime are given in Section

In contrast, online algorithms are the option of choice for very large n since the computation per
update is independent of n. In the case of Stochastic Gradient Descent (SGD), the descent direction
is formed by a randomly selected gradient [RM51]. Improvements to SGD have been developed
by incorporating the previous gradient directions in the current update [SRB13l, SHRY13, Botl0}
DHS11].

Batch algorithms, on the other hand, can achieve faster convergence and exploit second order
information. They are competitive for intermediate n. Several methods in this category aim at
quadratic, or at least super-linear convergence rates. In particular, Quasi-Newton methods have
proven effective [Bis95, Nes04]. Another approach towards the same goal is to utilize sub-sampling
to form an approximate Hessian [Marl0, BCNN11, VP12, (QRTF15, [EM15, Erd15a]. If the sub-
sampled Hessian is close to the true Hessian, these methods can approach NM in terms of convergence
rate, nevertheless, they enjoy much smaller complexity per update. No convergence rate analysis
is available for these methods: this analysis is the main contribution of our paper. To the best of
our knowledge, the best result in this direction is proven in [BCNNTI] that estabilishes asymptotic
convergence without quantitative bounds (exploiting general theory from [GNS09]).

Further improvements have been suggested either by utilizing Conjugate Gradient (CG) methods
and/or using Krylov sub-spaces [Marl0, BCNNT1l, VP12]. Sub-sampling can be also used to obtain
an approximate solution, if an exact solution is not required [DLFUI3]. Lastly, there are various
hybrid algorithms that combine two or more techniques to gain improvement. Examples include,
sub-sampling and Quasi-Newton [SYGO07, [SDPG13|, BHNS14], SGD and GD [FS12], NGD and NM
[RF10], NGD and low-rank approximation [RaMBO0S].



Algorithm 1 NewSamp
Input: 69, 7,¢, {n¢,|S¢|}e, t = 0.

1. Define: P¢(6) = argming ¢ |6 — 0'||2 is the Euclidean projection onto C,
[Ug, Ax] = TruncatedSVDy (H) is the rank-k truncated SVD of H with (Ag)ii = Ai.

2. while |01 — ||, < e do
Sub-sample a set of indices Sy C [n].
Let Hg, = Fld ZiGSt ngi(ﬁt), and  [U,y1, Apj1] = TruncatedSVD, 4 (Hsg, ),

Q' =N4HL + U (A - AL UL
o+l = pe (ét - UtQtvef(ét)>,
t<+—t+ 1.

3. end while

Output: 6.

2 NewSamp: A Newton method via sub-sampling and eigenvalue
thresholding

In the regime we consider, n > p > 1, there are two main drawbacks associated with the classi-
cal second order methods such as Newton’s method. The predominant issue in this regime is the
computation of the Hessian matrix, which requires O(np?) operations, and the other issue is find-
ing the inverse of the Hessian, which requires O(p®) computation. Sub-sampling is an effective and
efficient way of addressing the first issue, by forming an approximate Hessian to exploit curvature
information. Recent empirical studies show that sub-sampling the Hessian provides significant im-
provement in terms of computational cost, yet preserves the fast convergence rate of second order
methods [Marl0, VP12, [Erd15b]. If a uniform sub-sample is used, the sub-sampled Hessian will
be a random matrix with expected value at the true Hessian, which can be considered as a sample
estimator to the mean. Recent advances in statistics have shown that the performance of various
estimators can be significantly improved by simple procedures such as shrinkage and/or thresholding
[CCS10, DGJ13, IGD14l IGD14]. To this extent, we use a specialized low-rank approximation as the
important second order information is generally contained in the largest few eigenvalues/vectors of
the Hessian. We will see in Section 3| how this procedure provides faster convergence rates compared
to the bare sub-sampling methods.

NewSamp is presented as Algorithm At iteration step ¢, the sub-sampled set of indices,
its size and the corresponding sub-sampled Hessian is denoted by Sy, |S;| and Hg,, respectively.
Assuming that the functions f;’s are convex, eigenvalues of the symmetric matrix Hg, are non-
negative. Therefore, singular value (SVD) and eigenvalue decompositions coincide. The operation
TruncatedSVDy(Hg,) = [Ug, Ag] is the best rank-k approximation, i.e., takes Hg, as input and
returns the largest k eigenvalues in the diagonal matrix Aj;, € R¥** with the corresponding k eigen-
vectors Uy, € RP**. This procedure requires O(kp?) computation using a standard method, though
there are faster randomized algorithms which provide accurate approximations to the truncated SVD
problem with much less computational cost [HMTTI]. To construct the curvature matrix [Q!]~},
instead of using the basic rank-r approximation, we fill its 0 eigenvalues with the (r+1)-th eigenvalue
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Figure 1: Left plot demonstrates convergence rate of NewSamp , which starts with a quadratic rate
and transitions into linear convergence near the true minimizer. The right plot shows the effect of
eigenvalue thresholding on the convergence coefficients. x-axis shows the number of kept eigenvalues.
Plots are obtained using Covertype dataset.

of the sub-sampled Hessian which is the largest eigenvalue below the threshold. If we compute a
truncated SVD with & = r + 1 and (Ax)i = Ai, the described operation can be formulated as the
following,

Q' =N 4L + U (AT = A LL) U (2.1)

which is simply the sum of a scaled identity matrix and a rank-r matrix. Note that the low-rank
approximation that is suggested to improve the curvature estimation has been further utilized to
reduce the cost of computing the inverse matrix. Final per-iteration cost of NewSamp will be
O (np + (|S¢| + 7)p?) = O (np + |S¢|p?). NewSamp takes the parameters {n, |S¢|}+ and r as inputs.
We discuss in Section [3.4] how to choose these parameters near-optimally, based on the theory we
develop in Section

Operator P¢ projects the current iterate to the feasible set C using Euclidean projection. Through-
out, we assume that this projection can be done efficiently. In general, most unconstrained optimiza-
tion problems do not require this step, and can be omitted. The purpose of projected iterations in
our algorithm is mostly theoretical, and will be clear in Section

By the construction of Q!, NewSamp will always be a descent algorithm. It enjoys a quadratic
convergence rate at start which transitions into a linear rate in the neighborhood of the minimizer.
This behavior can be observed in Figure [l The left plot in Figure 1 shows the convergence behavior
of NewSamp over different sub-sample sizes. We observe that large sub-samples result in better
convergence rates as expected. As the sub-sample size increases, slope of the linear phase decreases,
getting closer to that of quadratic phase at the transition point. This phenomenon will be explained
in detail in Section [3] by Theorems and The right plot in Figure [I] demonstrates how the
coefficients of linear and quadratic phases depend on the thresholded rank. Note that the coefficient
of the quadratic phase increases with the rank threshold, whereas for the linear phase, relation is
reversed.



3 Theoretical results

In this section, we provide the convergence analysis of NewSamp based on two different sub-sampling
schemes:

S1: Independent sub-sampling: At each iteration ¢, S; is uniformly sampled from [n] = {1,2,...,n},
independently from the sets {S;}r<¢, with or without replacement.

S2: Sequentially dependent sub-sampling: At each iteration ¢, S; is sampled from [n], based
on a distribution which might depend on the previous sets {S; } r<¢, but not on any randomness
in the data.

The first sub-sampling scheme is simple and commonly used in optimization. Omne drawback is
that the sub-sampled set at the current iteration is independent of the previous sub-samples, hence
does not consider which of the samples were previously used to form the approximate curvature
information. In order to prevent cycles and obtain better performance near the optimum, one might
want to increase the sample size as the iteration advances [Marl0], including previously unused
samples. This process results in a sequence of dependent sub-samples which falls into the sub-
sampling scheme S2. In our theoretical analysis, we make the following assumptions:

Assumption 1 (Lipschitz continuity). For any subset S C [n], there exists a constant M, 15| depending
on the size of S, such that V6,0’ € C,

[Hs(0) — Hs (0|, < Mis) [0 —0'l]2-

Assumption 2 (Bounded Hessian). Vi = 1,2,...,n, the Hessian of the function fi(6), Vaf;(0), is
upper bounded by an absolute constant K, i.e.,

ma [ V350, < K

3.1 Independent sub-sampling

In this section, we assume that S; C [n] is sampled according to the sub-sampling scheme S1. In fact,
many stochastic algorithms assume that S; is a uniform subset of [n], because in this case the sub-
sampled Hessian is an unbiased estimator of the full Hessian. That is, V0 € C, E [Hg, (0)] = Hy,)(0),
where the expectation is over the randomness in S;. We next show that for any scaling matrix Q? that
is formed by the sub-samples S;, iterations of the form Eq. will have a composite convergence
rate, i.e., combination of a linear and a quadratic phases.

Lemma 3.1. Assume that the parameter set C is convexr and Sy C [n] is based on sub-sampling
scheme S1. Further, let the Assumptions[1] and [9 hold and 0. € C. Then, for an absolute constant
¢ > 0, with probability at least 1 — 2/p, the updates of the form Eq. satisfy

16" — .|z < €7116° — Oull2 + 516" — 6413,

for coefficients & and &} defined as

A 1 M,
6 = 1= nams )], ek Q1) [ <EP &=m=" 1,



Remark 1. If the initial point 69 is close to 0., the algorithm will start with a quadratic rate of
convergence which will transform into linear rate later in the close neighborhood of the optimum.

The above lemma holds for any matrix Q. In particular, if we choose Q! = Hgtl, we obtain a
bound for the simple sub-sampled Hessian method. In this case, the coefficients £ and & depend
on || Q|2 = 1/X, where A is the smallest eigenvalue of the sub-sampled Hessian. Note that Al can
be arbitrarily small which might blow up both of the coefficients. In the following, we will see how
NewSamp remedies this issue.

Theorem 3.2. Let the assumptions in Lemma hold. Denote by \!, the i-th eigenvalue of Hst(ét)
where 0! is given by NewSamp at iteration step t. If the step size satisfies

2

< — 1

then we have, with probability at least 1 —2/p,
16" = 0ull2 < €5116" — 0.2 + €5116" — 6.3,

for an absolute constant ¢ > 0, for the coefficients £ and & are defined as

M cK [log(p) M,
§=1—m—+m ) & = M
' AN A |19 LT,

NewSamp has a composite convergence rate where ¢! and & are the coefficients of the linear
and the quadratic terms, respectively (See the right plot in Figure . We observe that the sub-
sampling size has a significant effect on the linear term, whereas the quadratic term is governed by
the Lipschitz constant. We emphasize that the case n; = 1 is feasible for the conditions of Theorem
In the case of quadratic functions, since the Lipschitz constant is 0 , we obtain & = 0 and the
algorithm converges linearly. Following corollary summarizes this case.

Corollary 3.3 (Quadratic functions). Let the assumptions of Thgorem hold. Further, assume
that Vi € [n], the functions 0 : R? — f;(0) are quadratic. Then, for 6' given by NewSamp at iteration
step t, for the coefficient & defined as in Theorem with probability at least 1 — 2/p, we have

16" = 0ul2 < £110" — 6. (3.2)

3.2 Sequentially dependent sub-sampling

Here, we assume that the sub-sampling scheme S2 is used to generate {S;},>;. Distribution of
sub-sampled sets may depend on each other, but not on any randomness in the dataset. Examples
include fixed sub-samples as well as sub-samples of increasing size, sequentially covering unused data.
In addition to Assumptions we assume the following.

Assumption 3 (i.i.d. observations). Let z1, 22, ..., 2, € Z be i.i.d. observations from a distribution
D. For a fized 0 € RP and Vi € [n], we assume that the functions { fi}I, satisfy fi(0) = ¢(zi,0), for
some function ¢ : 7 x RP — R.



Most statistical learning algorithms can be formulated as above, e.g., in classification problems,
one has access to i.i.d. samples {(y;,z;)};_; where y; and z; denote the class label and the covariate,
and ¢ measures the classification error (See Section {4 for examples). For the sub-sampling scheme
S2, an analogue of Lemma [3.1]is stated in Appendix as Lemma which immediately leads to the
following theorem.

Theorem 3.4. Assume that the parameter set C is convex and Sy C [n] is based on the sub-sampling
scheme S2. Further, let the Assumptions [1, [4 and [3 hold, almost surely. Conditioned on the event
E = {0, € C}, if the step size satisfies Eq. then for 0 given by NewSamp at iteration t, with
probability at least 1 — cg P for cg = ¢/P(E), we have

107! — 0.2 < €1110" — Oull2 + €5]16" — 6.3,
for the coefficients & and & defined as

. 2
55 =1- Uti)\é + ﬁt*C/K . log <d1am(C)2 (Mn : MlSt‘) |St|) féz UtiMn
)‘i—i-l )‘5-5-1 |5t K2 ’ 2)‘;{4-1 ,

where ¢, > 0 are absolute constants and X! denotes the i-th eigenvalue of Hst(ét).

Compared to the Theorem we observe that the coefficient of the quadratic term does not
change. This is due to Assumption [I} However, the bound on the linear term is worse, since we use
the uniform bound over the convex parameter set C. The same order of magnitude is also observed
by [Erd15b], which relies on a similar proof technique. Similar to Corollary we have the following
result for the quadratic functions.

Corollary 3.5 (Quadratic functions). Let the assumptions of Theorem hold. Further assume that
Vi € [n], the functions O — f;(0) are quadratic. Then, conditioned on the event £, with probability
at least 1 — cg e P, NewSamp iterates satisfy

107" = 0. ]l2 < €1110" — Oull2,
for coefficient £ defined as in Theorem .

3.3 Dependence of coefficients on ¢ and convergence guarantees

The coefficients & and & depend on the iteration step which is an undesirable aspect of the above
results. However, these constants can be well approximated by their analogues £ and &5 evaluated
at the optimum which are defined by simply replacing )\3 with A7 in their definition, where the latter
is the j-th eigenvalue of full-Hessian at 6,. For the sake of simplicity, we only consider the case where
the functions 8 — f;(f) are quadratic.

Theorem 3.6. Assume that the functions f;(0) are quadratic, Sy is based on scheme S1 and n, = 1.
Let the full Hessian at 0, be lower bounded by a constant k. Then for sufficiently large | S|, we have,
with probability 1 — 2/p

aklg®)/IS]
k=K \/log0)/1S])

lai—ﬁi‘lsk(

for some absolute constants cy, cs.



Theorem implies that, when the sub-sampling size is sufficiently large, & will concentrate
around ;. Generalizing the above theorem to non-quadratic functions is straightforward, in which
case, one would get additional terms involving the difference ||6 — 6,]|2. In the case of scheme S2,
if one uses fixed sub-samples, i.e., V¢, S; = S, then the coefficient & does not depend on t. The
following corollary gives a sufficient condition for convergence. A detailed discussion on the number
of iterations until convergence and further local convergence properties can be found in Appendix

Corollary 3.7. Assume that & and & are well- approxzmated by & and & with an error bound of
8, d.e., & <& +6 fori=1,2, asin Theorem . For the initial point 90, a sufficient condition for
convergence is

R 1—-&—46
00— 0, < —2L —.
| l|2 &40

3.4 Choosing the algorithm parameters

Algorithm parameters play a crucial role in most optimization methods. Based on the theoretical
results from previous sections, we discuss procedures to choose the optimal values for the step size
n¢, sub-sample size |S¢| and rank threshold.

o Step size: For the step size of NewSamp at iteration ¢, we suggest

2
LA/ +y

ne(y) = (3.3)

where v = O(log(p)/|St|). Note that 7:(0) is the upper bound in Theorems and and it
minimizes the first component of &i. The other terms in £ and & linearly depend on 7. To
compensate for that, we shrink 7,(0) towards 1. Contrary to most algorithms, optimal step
size of NewSamp is larger than 1. See Appendix [C] for a rigorous derivation of Eq.

e Sample size: By Theorem a sub-sample of size O((K/A5)?log(p)) should be sufficient
to obtain a small coefficient for the linear phase. Also note that sub-sample size |S;| scales
quadratically with the condition number.

e Rank threshold: For a full-Hessian with effective rank R (trace divided by the largest eigen-
value), it suffices to use O(Rlog(p)) samples [Verl0l Verl2]. Effective rank is upper bounded
by the dimension p. Hence, one can use plog(p) samples to approximate the full-Hessian and
choose a rank threshold which retains the important curvature information.

4 Examples

4.1 Generalized Linear Models

Finding the maximum likelihood estimator in Generalized Linear Models (GLMs) is equivalent to
minimizing the negative log-likelihood f(#),

minimize f(6) = - S [®((z:,0)) ~ il )], (1.1)
=1



where @ is the cumulant generating function, y; € R denotes the observations, x; € RP denotes the
rows of design matrix X € R™*P_and 6 € RP is the coefficient vector. Note that this formulation only
considers GLMs with canonical links. Here, (x,0) denotes the inner product between the vectors x,
f. The function ® defines the type of GLM. Well known examples include ordinary least squares
(OLS) with ®(z) = 22, logistic regression (LR) with ®(z) = log(1 +¢?), and Poisson regression (PR)
with ®(z) = €”.
The gradient and the Hessian of the above function can be written as:
Vof(6) = - i [®0 (@, 0))2s —yias| . V3F0) =+ ié(z)(@:i Mol (42)
" 7 7 i ’ '

i=1

We note that the Hessian of the GLM problem is always positive definite. This is because the second
derivative of the cumulant generating function is simply the variance of the observations. Using the
results from Section [} we perform a convergence analysis of our algorithm on a GLM problem.

Corollary 4.1. Let S; C [n] be a uniform sub-sample, and C be a convex parameter set. Assume that
the second derivative of the cumulant generating function, ®2 is bounded by 1, and it is Lipschitz
continuous with Lipschitz constant L. Further, assume that the covariates are contained in a ball
of radius \/ Ry, i.e. max;epy||zill2 < VRs. Then, for 6! given by NewSamp with constant step size
ne = 1 at iteration t, with probability at least 1 — 2/p, we have

167! — 6.2 < 1116° — Oull2 + E5116° — 6113,

for constants & and & defined as

. A cR; [log(p) ' LR?;;/ 2
51 =1- n + n ) 52 =Nt
)‘r+1 )‘r+1 |St‘ 2)‘r+1

where ¢ > 0 is an absolute constant and \! is the ith eigenvalue of Hgt(ét).

Proof of Corollary [£.1] can be found in Appendix [A] Note that the bound on the second derivative
is quite loose for Poisson regression due to exponentially fast growing cumulant generating function.

4.2 Support Vector Machines

A linear Support Vector Machine (SVM) provides a separating hyperplane which maximizes the mar-
gin, i.e., the distance between the hyperplane and the support vectors. Although the vast majority
of the literature focuses on the dual problem [Vap98|, [SS02], SVMs can be trained using the primal
as well. Since the dual problem does not scale well with the number of data points (some approaches
get O(n?) complexity, [WGII]), the primal might be better-suited for optimization of linear SVMs
IKDO5, [Cha07].

The primal problem for the linear SVM can be written as

L I T B
minimize f(8) = 5|19z + QC;%Z, (0,24)) (4.3)

where (y;,x;) denote the data samples, 6 defines the separating hyperplane, C' > 0 and ¢ could be
any loss function. The most commonly used loss functions include Hinge-p loss, Huber loss and their

10



smoothed versions [Cha07]. Smoothing or approximating such losses with more stable functions is
sometimes crucial in optimization. In the case of NewSamp which requires the loss function to be
twice differentiable (almost everywhere), we suggest either smoothed Huber loss, i.e.,

0, if y(0,z) > 3/2,
Uy, (0,)) = § BLOAE i 1 —y(0,2) < 1/2,
1—y(f,x), otherwise.

or Hinge-2 loss, i.e.,

Uy, (0,z)) = max {0,1 — y(6,z)}>.

For the sake of simplicity, we will focus on Hinge-2 loss. Denote by SV;, the set of indices of all the
support vectors at iteration ¢, i.e.,

SVe = {i: yi(0',2;) < 1}.

When the loss is set to be the Hinge-2 loss, the Hessian of the SVM problem, normalized by the
number of support vectors, can be written as

1
V2f(0) = EA {I+Ci§‘/}$¢x?}.

When [SV;| is large, the problem falls into our setup and can be solved efficiently using NewSamp .
Note that unlike the GLM setting, Lipschitz condition of our Theorems do not apply here. However,
we empirically demonstrate that NewSamp works regardless of such assumptions.

5 Experiments

In this section, we validate the performance of NewSamp through extensive numerical studies. We
experimented on two optimization problems, namely, Logistic Regression (LR) and Support Vector
Machines (SVM) with quadratic loss. LR minimizes Eq. for the logistic function, whereas SVM
minimizes Eq. for the Hinge-2 loss.

In the following, we briefly describe the algorithms that are used in the experiments:

1. Gradient Descent (GD), at each iteration, takes a step proportional to negative of the full
gradient evaluated at the current iterate. Under certain regularity conditions, GD exhibits a
linear convergence rate.

2. Accelerated Gradient Descent (AGD) is proposed by Nesterov [Nes83|, which improves over
the gradient descent by using a momentum term. Performance of AGD strongly depends of
the smoothness of the function f and decreasing step size adjustments may be necessary for
convergence.

3. Newton’s Method (NM) achieves a quadratic convergence rate by utilizing the inverse Hessian
evaluated at the current iterate. However, the computation of Hessian makes it impractical for
large-scale datasets.
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Figure 2: Performance of various optimization methods on different datasets. NewSamp is repre-

sented with red color .

4. Broyden-Fletcher-Goldfarb-Shanno (BFGS) is the most popular and stable Quasi-Newton method.

Scaling matrix is formed by accumulating the information from iterates and gradients, satis-
fying Quasi-Newton rule. The convergence rate is locally super-linear and per-iteration cost is
comparable to first order methods.

Limited Memory BFGS (L-BFGS) is a variant of BFGS, which uses only the recent iterates
and gradients to form the approximate Hessian, providing significant improvement in terms of
memory usage.

Stochastic Gradient Descent (SGD) is a simplified version of GD where, at each iteration,
instead of the full gradient, a randomly selected gradient is used. Per-iteration cost is indepen-
dent of n, yet the convergence rate is significantly slower compared to batch algorithms. We

follow the guidelines of [Bot10), [SHRY13| for the step size,, i.e.,

V= T
T4t/
for constants v, c > 0.

Adaptive Gradient Scaling (AdaGrad) is an online algorithm which uses an adaptive learning
rate based on the previous gradients. AdaGrad significantly improves the performance and
stability of SGD [DHSTI]. This is achieved by scaling each entry of gradient differently. , i.e.,
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at iteration step t, step size for the j-th coordinate is

(

B y
V)i = —,
VoS (Vo f(8);

for constants 6,y > 0.

For each of the batch algorithms, we used constant step size, and for all the algorithms, we choose the
step size that provides the fastest convergence. For the stochastic algorithms, we optimized over the
parameters that define the step size. Parameters of NewSamp are selected following the guidelines
described in Section [3.4l

We experimented over various datasets that are given in Table The real datasets are down-
loaded from the UCI repository [LicI3]. Each dataset consists of a design matrix X € R"*P and
the corresponding observations (classes) y € R™. Synthetic data is generated through a multivariate
Gaussian distribution with a randomly generated covariance matrix. As a methodological choice, we
selected moderate values of p, for which Newton’s Method can still be implemented, and nevertheless
we can demonstrate an improvement. For larger values of p, comparison is even more favorable to
our approach.

The effects of sub-sampling size |S;| and rank threshold are demonstrated in Figure[l] A thorough
comparison of the aforementioned optimization techniques is presented in Figure[2] In the case of LR,
we observe that stochastic algorithms enjoy fast convergence at start, but slows down later as they get
close to the true minimizer. The algorithm that comes close to NewSamp in terms of performance
is BFGS. In the case of SVM, Newton’s method is the closest algorithm to NewSamp, yet in all
scenarios, NewSamp outperforms its competitors. Note that the global convergence of BFGS is not
better than that of GD [Nes04]. The condition for super-linear rate is Y, [|6" — 64| < oo for which,
an initial point close to the optimum is required [DMT77]. This condition can be rarely satisfied in
practice, which also affects the performance of the other second order methods. For NewSamp , even
though the rank thresholding provides a certain level of robustness, we observed that the choice of
a good starting point is still an important factor. Details about Figure [2| can be found in Table [3|in
Appendix. For additional experiments and a detailed discussion, see Appendix D]

Dataset n P r Reference
CT slices || 53500 | 386 | 60 [GKS*’llr
Covertype || 581012 | 54 | 20 [BD99]
MSD 515345 | 90 | 60 | [BMEWLII]
Synthetic || 500000 | 300 | 3 -

Table 1: Datasets used in the experiments.

6 Conclusion

In this paper, we proposed a sub-sampling based second order method utilizing low-rank Hessian
estimation. The proposed method has the target regime n > p and has O (np +1S \p2) complexity
per-iteration. We showed that the convergence rate of NewSamp is composite for two widely used
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sub-sampling schemes, i.e., starts as quadratic convergence and transforms to linear convergence
near the optimum. Convergence behavior under other sub-sampling schemes is an interesting line of
research. Numerical experiments on both real and synthetic datasets demonstrate the performance
of the proposed algorithm which we compared to the classical optimization methods.
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A Proofs of Theorems and Lemmas

Proof of Lemma[3.1. We write,
0. nQVf () = 8 0.~ [ G50+ 70~ 0@~ 0. ar
= <I - Q' /01 V2f(0. 4 7(6" - 0*))617) (0" —0,).
Since the projection P¢ in step 2 of NewSamp can only decrease the £o distance, we obtain

1
18+ — 6,11, < HI ~nQ [ V3. + @ - 0.)dr
0

16" — 6. ]l2.
2

Note that the first term on the right hand side governs the convergence behavior of the algorithm.
Next, for an index set S C [n], define the matrix Hg(6) as

Hs(0) = |;| > Hi(0)

i€S

where |S| denotes the size of the set. Denote the integral in the above equation by INI, that is,

H = /1 V20, +7(0° —6.,))dr.
0

By the triangle inequality, the governing term that determines the convergence rate can be
bounded as

I ) A
R R )

which holds, regardless of the choice of Q.

In the following, we will use some matrix concentration results to bound the right hand side
of Eq. . The result for sampling with replacement can be obtained by matrix Hoeffding’s
inequality given in [Trol2]. Note that this explicitly assumes that the samples are independent. For
the concentration bounds under sampling without replacement (see i.e. [GNI0, [Grolll, MJC™14]),
we will use the Operator-Bernstein inequality given in [GN10] which is provided in Section [Ef as
Lemma [E.3] for convenience.

Using any indexing over the elements of sub-sample S, we denote the each element in S by s;,
i.e.,

S = {51,582, ..., 5|5/}

For 0 € C, we define the centered Hessians, W;(0) as
WZ(9> =H,, (9) -k [Hsz(e)] )

where the E [Hg, (0)] is just the full Hessian at 6.
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By the Assumption , we have

max [L,(0) |2 = [ V3£0)], < K. (A2)
I?SachWng < 2K =7, I}lg&g(”sz‘b <4K? = o2

Next, we apply the matrix Bernstein’s inequality given in Lemma [E.3] For e < 4K, and 0 € C,

P (HHS(9) - H[n}(O)HQ > 6) < 2pexp {—16?[?2 } . (A.3)

Therefore, to obtain a convergence rate of O(1/p), we let

log(p)

e=C ,
5]

where C = 6K is sufficient. We also note that the condition on € is trivially satisfied by our choice
of € in the target regime.
For the last term, we may write,

9

| B (0%) — 1] :HH[R](ét)—/Ol Vi (6. +7(6" ~ )|

1
< /0 1098 ~ 356, + 70— 0| ar
1
g/ My(1— )8 — 0. |adr,
0
M, A
=—16" — 0.||o.
10— 0]
First inequality follows from the fact that norm of an integral is less than or equal to the integral
of the norm. Second inequality follows from the Lipschitz property.

Combining the above results, we obtain the following for the governing term in Eq.(A.1): For
some absolute constants ¢, C' > 0, with probability at least 1 — 2/p, we have

|1 mQ b @), < 1 = mms(@)], Q1 {or) <52 + 5 10 - 0.1}

Hence, the proof is completed. O
Proof of Theorem[3.3 Using the definition of Q' in NewSamp, we immediately obtain that

B\

t
)‘r+1

|1~ nerrts @], = max{f1 -

i>r

} , (A.4)

and that HQtHQ =1/\ +1- Then the proof follows from Lemma and by the assumption on the
step size. [
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Lemma A.1. Assume that the parameter set C is conver and Sy C [n] is based on sub-sampling
scheme S2. Further, let the Assumptions[1], [4 and [3 hold, almost surely. Then, for some absolute
constants ¢, C' > 0, with probability at least 1 —e™P, the updates of the form stated in Eq. satisfy

16" — .|z < €7116° — Oull2 + 516" — 6413,

for coefficients &, &L defined as

D (diam(c)2 (Mn+MISt)2|St|>
— 108 )

€ = |1 = mQHs @), + Q] > ey 1o 2

M,
=02 Q]

Proof of Lemma[A.1 The first part of the proof is the same as Lemma [3.1] We carry our analysis
from Eq.(A.1). Note that in this general set-up, the iterates are random variables that depend on
the random functions. Therefore, we use a uniform bound for the right hand side in Eq.(A.1]). That

is,

|- na], < 7 - nams@],
Q1 {sup [ FLs(6) = i 0)], + 55216 - 6]}

By the Assumption |1} given 6,6 € C such that [|§ — 6|2 < A, we have,

[HLs(6) — Hpy (0)]], < [[Fs(8") — Hy (]|, + (M + Mys)) 10 — 0]
<|Hs(0') — Hyy(0)||, + (Mn + Mg)) A.
Next, we will use a covering net argument to obtain a bound on the matrix empirical process.

Note that similar bounds on the matrix forms can be obtained through other approaches like chaining
as well [DE15]. Let Ta be a A-net over the convex set C. By the above inequality, we obtain

sup [[Hs(6) — Hip (0)]], < max [|Hs(6") — Hyg(¢)[], + (M + Mg)) A. (A.5)

Now we will argue that the right hand side is small with high probability using the matrix
Hoeffding’s inequality from [Trol2|]. By the union bound over Ta, we have

P <0Hé%_>i |ELs(0") — (@), > e> <I7al P ([Hs(0) — Hyy (@), > ).

For the first term on the right hand side, by Lemma we write:

diam(C) )p |

’TA‘ < (W
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As before, let S = {s1, 59, ..., S|S|}, that is, s; denote the different indices in S. For any 6 € C and
i=1,2,...,n, we define the centered Hessians W;(0) as

Wi(0) = Hs, (0) — Hpy (6).

By the Assumption ([2), we have the same bounds as in Eq.(A.2). Hence, for € > 0 and 6 € C, by
the matrix Hoeffding’s inequality [Tro12],

P (HHS(H) — H[n](@)H2 > E) < 2pexp {—;5‘;22} .

We would like to obtain an exponential decay with a rate of at least O(p). Hence, we require,

diam(C 4diam(C
plog diam(C) /P +log(2p) +p < plog Adiam(C) v ,
2A A
|5]e?
<
~32K2’

which gives the optimal value of € as

5 :
. \/32@ oy <4d1am(C)\/i)> |

A

Therefore, we conclude that for the above choice of €, with probability at least 1 — e™P, we have

32K2p 4diam(C),/p
gxg_}; |Hs(0) — H[n](9)||2 < \/ 5 log < A )

Applying this result to the inequality in Eq.(A.5]), we obtain that with probability at least 1—e P,

32K (4diam(C)\/p
sup |[Hs(0) — Hiy (0)]], < \/ o7 Los ( A ) + (M + Mig)) A.

The right hand side of the above inequality depends on the net covering diameter A. We optimize
over A using Lemma which provides for

A=4

. 2
K2p log diam(C)? (M, + Mg)" |S]
(Mn+M‘S‘)2|S| K

we obtain that with probability at least 1 — e™P,

. 2 2
sup |[Hs(6) — Hpy(0)|, < 8K || - log (dlam“) (M + Mys)) ISI)
oeC

S| K?
Combining this with the bound stated in Eq.(A.1]), we conclude the proof. O

21



Proof of Theorem[3.0,.

A A log(p) | 1 1
&)= — 5| ek -
‘ ‘ )\£+1 )‘r+1 ‘St’ Ai—l—l )\7’+1
<K’)\i+1 —/\:f+1|+K|>\f;_/\;| LK 10g(P) |/\$=+1 _)‘:+1‘
N )‘i+1)‘f«+1 S| /\:+1>\fn+1

By the Weyl’s and matrix Hoeffding’s [Trol2] inequalities (See Eq. (A.3]) for details), we can write

log(p)
S|

X = X5 < ||FLs, (6%) — Hy62)

<cK
2

with probability 1 — 2/p. Then,

1§ [ 1os(p) 2o (p)

et —g] < - |5t| [St]
T+

i

t * t
1)\7“+1 Ar—i—l)\r—f—l

" log(p)
c"K 5]

k(1 ek R

<

for some constants ¢ and ¢”. O

Proof of Corollary[f-1. Observe that f;(6) = ®((x;,0)) — yi{xi,0), and V3f;(0) = zia] @@ ((x;,0)).
For an index set S, we have V6,0’ € C

LN 2T (6@ (s 0)) — 0@ (2. '
EPRE (0@ ((1,6)) — ) ((2:,0'))]
< Lmax laif|§ 10— 0'll2 < LRY? 10— 0'].

)

2

[Hs(0) — Hs(6))]], =

Therefore, the Assumption |1| is satisfied with the Lipschitz constant Mg, = LRi/ 2, Moreover, by
the inequality

[V3£0)], = i1} @2 ((a1,6)) < B, = |

wial @) ((a:.0)) |

the Assumption [2]is satisfied for K := R,. We conclude the proof by applying Theorem O

B Properties of composite convergence

In the previous sections, we showed that NewSamp gets a composite convergence rate, i.e., the £y
distance from the current iterate to the optimal value can be bounded by the sum of a linearly and
a quadratically converging term. We study such convergence rates assuming the coefficients do not
change at each iteration t. Denote by Ay, the aforementioned 5 distance at iteration step t, i.e.,

A =0" = O.]l2, (B.1)
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and assume that the algorithm gets a composite convergence rate as
vt >0, A1 < G0+ EA7,

where £1,& > 0 denote the coefficients of linearly and quadratically converging terms, respectively.

B.1 Local asymptotic rate

We state the following theorem on the local convergence properties of compositely converging algo-
rithms.

Lemma B.1. For a compositely converging algorithm as in Eq. with coefficients 1 > £1,& > 0,
if the initial distance Ao satisfies Ay < (1 — &1) /&2, then we have

1
limsup —— log(A¢) < —log(&1).

t—o00

The above theorem states that the local convergence of a compositely converging algorithm will
be dominated by the linear term.

Proof of Lemma[B.1l The condition on the initial point implies that A; — 0 as ¢ — co. Hence, for
any given 0 > 0, there exists a positive integer T' such that V¢t > T, we have A; < §/&. For such
values of ¢, we write

§1+&A <&+,
and using this inequality we obtain
Appr < (&1 +0)As.

The convergence of above recursion gives

1 1
—glog(At) < —log(& +6) — n log(Ao).

Taking the limit on both sides concludes the proof. O

B.2 Number of iterations

The total number of iterations, combined with the per-iteration cost, determines the total complexity
of an algorithm. Therefore, it is important to derive an upper bound on the total number of iterations
of a compositely converging algorithm.

Lemma B.2. For a compositely converging algorithm as in Eq. with coefficients &1,&2 € (0,1),
assume that the initial distance Ao satisfies Ag < (1 —&1)/&2 and for a given tolerance €, define the

nterval QA
D = | max<e, 10} ,A ) .
< { 1 — &40 0

Then the total number of iterations needed to approximate the true minimizer with € tolerance is
upper bounded by T(d.), where

0, = argming. pT'(9)

23



and

T(5)210g2< log (&1 + 662) ) L los(5)

log (52(&1 +06&2)) ) log(&1 + &20)

Proof of Lemma[B.4. We have A; — 0 as t — oo by the condition on initial point Ag. Let § € D be
a real number and t; be the last iteration step such that A; > §. Then Vt > ¢4,

Ap1 <64+ szf,

< (%1 + 52) A7

Therefore, in this regime, the convergence rate of the algorithm is dominated by a quadratically
converging term with coefficient (£1/9 + &2). The total number of iterations needed to attain a
tolerance of § is upper bounded by

log (¢1 + 0¢2) ) |

I
= o8 (bg(%()(ma&))

When A; < §, namely t > t1, we have

Apy1 <EAL+ AL
< (&1 +620) Ay

In this regime, the convergence rate is dominated by a linearly converging term with coefficient
(&1 + &20). Therefore, the total number of iterations since ¢ until a tolerance of € is reached can be
upper bounded by

log (5)
2= ogE + &0)

Hence, the total number of iterations needed for a composite algorithm as in Eq. to reach a
tolerance of € is upper bounded by

T((S) =t ty = 10g2 ( log (51 + 552) ) + loglog (§>

log (52 (&1 + 6&2)) (&1 +&20)

The above statement holds for any 6 € D. Therefore, we minimize T'(d) over the set D. O

C Choosing the step size 7,

In most optimization algorithms, step size plays a crucial role. If the dataset is so large that one
cannot try out many values of the step size. In this section, we describe an efficient and adaptive
way for this purpose by using the theoretical results derived in the previous sections.
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In the proof of Lemma we observe that the convergence rate of NewSamp is governed by the
term

1= @]], < [1=nQt @], Q0 [0 ®) @)

where Q! is defined as in Algorithm 1. The right hand side of the above equality has a linear
dependence on 7;. We will see later that this term has no effect in choosing the right step size. On
the other hand, the first term on the right hand size can be written as,

HI — Q! Hy, (ét)H2 — max {1 — A min(Q iy (09)), 1 A (QF iy (09)) — 1} .

If we optimize the above quantity over 7., we obtain the optimal step size as

n = 2 (C.1)
T Ain(QUH (09)) + Ammax (QF Hipy (67)) '

It is worth mentioning that for the Newton’s method where Q' = H [n}(ﬁt) 1. the above quantity is
equal to 1.

Since NewSamp does not compute the full Hessian Hy, ](é ) (which would take O(np?) computa-
tion), we will relate the quantity in Eq. ( to the first few eigenvalues of Qt. Therefore, our goal
is to relate the eigenvalues of Q' H, (6 to that of Q.

By the Lipschitz continuity of eigenvalues , we write

1 A @ Hy (8)] < Q1 [ 158 - 11,08

1 log(p)
o). o

Similarly, for the minimum eigenvalue, we can write

1 log(p)
= )\r+10 ( 5| ) . (©3)

One might be temped to use 1 and A / AL 41 for the minimum and the maximum eigenvalues of

t

A\t b — )‘miH(QtH[n} (ét))
r+1

Q'H, [n](Qt), but the optimal values might be slightly different from these values if the sample size is
chosen to be small. On the other hand, the eigenvalues A% 41 and )\; can be computed with O(p?)
cost and we already know the order of the error term. That is, one can calculate X.,; and A, and
use the error bounds to correct the estimate.

The eigenvalues of the sample covariance matrix will concentrate around the true values, spreading
to be larger for large eigenvalues and smaller for the small eigenvalues. That is, if we will we will
overestimate if we estimate A\; with Af. Therefore if we use 1 we will always underestimate the

value of )\maX(QtH ] (ét)), which, based on Eq. and Eq. , suggests a correction term of
O <\/W ) Further, the top r+1 elgenvalues of [Q!]! are close to the eigenvalues of H| n }(0 ),
but shifted upwards if p/2 > r. When p/2 < r, we see an opposite behavior. Hence, we add
or subtract a correction term of order O <\/w> to )\2/)\1{“ whether p/2 > r or p/2 < r,
respectively. The corrected estimators could be written as
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Ammax (Qtﬂ[n](ét)) =1+0 ( log(p)) ’

5|
_ . A log(p .
Amin (QtHM(Ot)) = )\Ti + 0O ( |S(’ )> it p/2 >,
Ap log(p) :
— fp/2 .
p— (@) ( S| if p/2 <r

We are more interested in the case where p/2 > r. In this case, we suggest the step size for the
iteration step t as

2
e o (VRP)

r4+1

m =

which uses the eigenvalues that are already computed to construct Q. Contrary to the most algo-
rithms, the optimal step size of NewSamp is generally larger than 1.

D Further experiments and details

In this section, we present the details of the experiments presented in Figure[2] and provide additional
simulation results.

We first start with additional experiments. The goal of this experiment is to further analyze
the effect of rank in the performance of NewSamp . We experimented using r-spiked model for
r = 3,10,20. The case r = 3 was already presented in Figure [2| which is included in Figure (3] to
ease the comparison. The results are presented in Figures|3|and the details are summarized in Table
In the case of LR optimization, we observe through Figure [3| that stochastic algorithms enjoy
fast convergence in the beginning but slows down later as they get close to the true minimizer. The
algorithms that come closer to NewSamp in terms of performance are BFGS and LBFGS. Especially
when r = 20, performance of BFGS and that of NewSamp are similar, yet NewSamp still does better.
In the case of SVM optimization, the algorithm that comes closer to NewSamp is Newton’s method.

We further demonstrate how the algorithm coefficients & and & between datasets in Figure

E Useful lemmas

Lemma E.1. Let C be convex and bounded set in RP and T, be an e-net over C. Then,
: P
T < (dlam(C)> .
2¢/\/p

Proof of Lemma[E. 1. A similar proof appears in [VAVW96]. The set C can be contained in a p-
dimensional cube of size diam(C). Consider a grid over this cube with mesh width 2¢/,/p. Then C
can be covered with at most (diam(C)/(2¢/,/p))? many cubes of edge length 2¢/,/p. If ones takes
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Figure 3: The plots demonstrate the behavior of several optimization methods on a synthetic data
set for training SVMs. The elapsed time in seconds versus log of fs-distance to the true minimizer
is plotted. Red color represents the proposed method NewSamp .

the projection of the centers of such cubes onto C and considers the circumscribed balls of radius e,
we may conclude that C can be covered with at most

(5ve)

many balls of radius e. O

Lemma E.2 ([Verl0]). Let X be a symmetric p x p matriz, and let T, be an e-net over SP~1. Then,

Xllo <
1X] < T

sup [(Xv,v)|.
’L)GTe

Lemma E.3 ([GN10]). Let X be a finite set of Hermitian matrices in RP*P where VX; € X, we have

E[X;] =0, 1 Xill, <7, HE[XZZ]H2 <o®.

Given its size, let S denote a uniformly random sample from {1,2,...,|X|} with or without replace-

ment. Then we have
P —1 Xi|| > <2 —|S| mi —62 -
E - € ex min .

i€S 2
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Logistic Regression

Rank=3 Rank=10 Rank=20
Method Elapsed(sec) Iter | Elapsed(sec) Iter | Elapsed(sec) Iter
NewSamp | 26.412 12 | 32.059 15 | 55.995 26
BFGS 50.699 22 | 54.756 31 56.606 34
LBFGS 103.590 47 | 64.617 37 | 107.708 67
Newton 18235.842 449 | 35533.516 941 | 31032.893 o
GD 345.025 198 | 322.671 198 | 311.946 197
AGD 449.724 233 | 436.282 272 | 450.734 290
Support Vector Machines
Rank=3 Rank=10 Rank=20
Method Elapsed(sec) Iter | Elapsed(sec) Iter | Elapsed(sec) Iter
NewSamp | 47.755 8 02.767 9 124.989 22
BFGS 13352.254 2439 | 10672.657 2219 | 21874.637 4290
LBFGS 326.526 67 218.706 44 275.991 95
Newton 775.191 16 734.480 16 4159.486 106
GD 1512.305 238 | 1089.413 237 | 1518.063 269
AGD 1695.44 239 | 1066.484 238 | 1874.75 294

Table 2: Details of the simulations presented in Figures

Lemma E.4. Let Z be a random variable with a density function f and cumulative distribution
function F. If F¢ =1 — F, then,

E[Z1{z150]| < tP(1Z] > 1) +/ P(|Z| > 2)dz.
t

Proof. We write,

—t

E[Zﬂ{|z|>t}] = /too zf(z)dz —l—/ z2f(z)dz.

— 00

Using integration by parts, we obtain

/zf(z)dz = —2F%2)+ | F9(2)dz,

=2F(z) — | F(2)d=.
Since lim, o 2F(2) = lim,_, o 2F(2) = 0, we have
/ 2f(2)dz =tF°(t) + FC(2)dz,
- b
/ Sf(2)ds = —tF(—t) — | P(2)dz,

=—tF(-t) — /oo F(—z)dz.
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CT Slices Dataset

LR SVM
Method Elapsed(sec) | Iter | Elapsed(sec) | Iter
NewSamp | 9.488 19 22.228 33
BFGS 9.568 38 2094.330 5668
LBFGS 51.919 217 | 165.261 467
Newton 14.162 ) 58.562 25
GD 350.863 2317 | 1660.190 4828
AGD 176.302 915 | 1221.392 3635

MSD Dataset

LR SVM
Method Elapsed(sec) | Tter | Elapsed(sec) | Iter
NewSamp | 25.770 38 71.755 49
BFGS 43.537 75 9063.971 6317
LBFGS 81.835 143 | 429.957 301
Newton 144.121 30 100.375 18
GD 642.523 1129 | 2875.719 1847
AGD 397.912 701 | 1327.913 876

Synthetic Dataset

LR SVM
Method Elapsed(sec) | Iter | Elapsed(sec) | Iter
NewSamp | 26.412 12 | 47.755 8
BFGS 50.699 22 13352.254 2439
LBFGS 103.590 47 | 326.526 67
Newton 18235.842 449 | 775.191 16
GD 345.025 198 | 1512.305 238
AGD 449.724 233 | 1695.44 239

Table 3: Details of the experiments presented in Figure
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Hence, we obtain the following bound,

9

[E[Z1gz54]| = ’tFC(t) + /too FO(2)dz — tF(—t) — /too F(—2)dz

<t (FO(t) + F(-1)) + </:o FC(z) + F(—z)dz) ,

<tP(|Z| >t)+/ P(|Z] > 2)dz.
t

Lemma E.5. For a,b > 0, and € satisfying
262\ 1 '/2 2
€= {a log ()} and b > e,
2 a a

Proof. Since a,b > 0 and x — e* is a monotone increasing function, the above inequality condition
is equivalent to

we have €2 > alog(b/e).

2¢2 22 202
—e a R

a a

Now, we define the function f(w) = we" for w > 0. f is continuous and invertible on [0, c0). Note
that f~! is also a continuous and increasing function for w > 0. Therefore, we have

2b>
71 “v
(%)
Observe that the smallest possible value for € would be simply the square root of af~! (2b2 / a) /2.
For simplicity, we will obtain a more interpretable expression for e. By the definition of f~!, we have

log(f~H(y)) + f(y) = log(y).

Since the condition on a and b enforces f~!(y) to be larger than 1, we obtain the simple inequality
that

622

VRIS

FH(y) < log(y).

Using the above inequality, if € satisfies

we obtain the desired inequality. O
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CT-Slice dataset

Spiked—-model dataset
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Figure 4: The plots demonstrate the behavior of £ and & over several datasets.
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