
The Eigenvalue Problem
The Basic problem :
For A ∈ ℜn×n determine λ ∈ C and x ∈ ℜn,

x 6= 0 such that:

Ax = λx.

λ is an eigenvalue and x is an eigenvector of A.

An eigenvalue and corresponding eigenvector, (λ, x) is called an
eigenpair.

The spectrum of A is the set of all eigenvalues of A.

To make the definition of a eigenvector precise we will often normalize
the vector so it has ‖x‖2 = 1.
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Alternative Definition
Note that the definition of eigenvalue is equivalent to finding
λ and x 6= 0 such that,

(A− λI)x = 0.

But the linear system Bx = 0 has a nontrivial solution iff B is
singular. Therefore we have that λ is an eigenvalue of A iff
(A− λI) is singular iff det(A− λI) = 0.
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Properties (From Lin. Alg.)
For A ∈ ℜn×n, det(A− λI) is a polynomial of degree ≤ n in λ, the
characteristic polynomial.

For triangular matrices, L or U ,

det(L) =
n∏

i=1

li i, det(U) =
n∏

i=1

ui i,

and the eigenvalues are the diagonal entries of the matrix (since
det(L− λI) =

∏n
i=1(li i − λ) has only the roots l1 1, l2 2 · · · ln n.)

For an upper triangular matrix with distinct eigenvalues,U , an
eigenvector corresponding to the eigenvalue, ui i, can be determined
by solving the linear system,

[U − ui iI ]y = 0,
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Eigenvectors ofU
That is, 
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This system can be solved using (modified back sub):
-set yn = yn−1 = · · · yi+1 = 0;
-set yi = 1;
-for j = (i− 1), (i− 2) · · · 1,

yj = −[
∑i

r=j+1 uj ryr]/(uj j − ui i);
-end
-normalize by setting x = y/‖y‖2;
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The General Case
Note that this algorithm must be modified for multiple eigenvalues (we
will consider this case later). A similar procedure works for lower
triangular matrices (exercise).

We have shown that the eigenvalue problem is easy, for triangular
matrices, and the eigenvector problem is also easy, for triangular
matrices, when the eigenvalues are distinct. We will now consider
algorithms for the case of general matrices. The basic approach is to
transform the general problem to an equivalent ‘easy’ problem (ie., an
equivalent triangular eigenproblem).

Before we consider this approach we will consider a special technique
that is particularly appropriate if only the largest (or smallest)
magnitude eigenvalue is desired.
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The Power Method
Assume A ∈ ℜn×n has eigenvalues λ1, λ2 · · ·λn, satisfying
|λ1| ≥ |λ2| · · · ≥ |λn| and that A has a complete set of normalized
eigenvectors, (v1, v2 · · · vn), (ie., A is non-defective). These eigenvectors
are linearly independent and any x ∈ ℜn can be expressed as,

x =

n∑

j=1

αjvj .

Therefore
Ax =

n∑

j=1

αjAvj =
n∑

j=1

(αjλj)vj

Akx =
n∑

j=1

αj(λj)
kvj

For any x0 ∈ ℜn we define the normalized sequence xj , j = 1, 2, · · · by,

yj = Axj−1, xj =
yj

‖yj‖
.
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Power Method (cont.)
When |λ1| > |λ2|, we can show,

xj → v1,

and the rate of convergence is O(ρj) where ρ = |λ2|
|λ1|

.

further more, since ‖xj‖ = 1 and yj → λ1xj , we have,

‖yj‖ → |λ1|.
We then have that λ1 can be determined from the observation that
λ1 ∈ ℜ (since |λ1| > |λ2| and non-real eigenvalues must appear as
conjugate pairs). This implies,

λ1 = ± lim
j→∞

‖yj‖,

where the correct sign can be determined by comparing the first
non-zero components of xj and yj .
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Power Method – Observations
The choice of norm used in the definition of xj and yj leads to different
sequences but the term Power Method is used to refer to any method
based on such a sequence. The text uses the l∞ norm which is
efficient but makes the discussion more difficult to follow. In many
cases the l2 norm is used for discussion but is slightly more expensive
to implement since it requires more work to determine ‖yj‖.

Exercise:
For the three norms, l1, l2 and l∞ implement the power method in
MATLAB and verify that for various choices of A and x0 satisfying our
assumptions, the resulting sequences are different but all three
converge with the same rate of convergence.
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Transformational Methods
Recall that, for Linear Equations, triangular systems Rx = b are easy
and the LU and QR algorithms are based on transforming a given
general problem, Ax = b, onto an equivalent triangular system,

Ux = b̃.

A similar approach will be developed for the eigenproblem.

For the general eigenvalue problem, we are given an n× n matrix, A,
and we introduce a sequence of transformations that transform the
eigenproblem for A onto equivalent eigenproblems for matrices Ar,
where Ar → U (U upper triangular) as r → ∞.

This is an Iterative method. We will focus on justifying and developing
an iterative QR method, where (n− 1) Householder reflections are
used to define the transformation on each iteration (defining Ar from
Ar−1).
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Similarity Transformations
The Key Result from linear algebra that justifies this approach is the
Theorem that similarity transformations preserve eigenvalues and
allow us to recover eigenvectors.

That is, given any nonsingular matrix, M , the eigenproblem,

Ax = λx,

has a solution (λ, x) iff the eigenproblem,

MAM−1y = λy,

has a solution (λ, y) where y = Mx.
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Proof
Let (λ, x) be a solution of Ax = λx and B = MAM−1, y = Mx,

By = (MAM−1)(Mx),

= MAx,

= Mλx,

= λy.

To see the converse, let (λ, y) be an eigenpair for B = MAM−1, with x

the solution to Mx = y. With w = Ax = AM−1y,

Mw = MAx,

= MAM−1y,

= λy,

= λMx,

or, after multiplying both sides by M−1,

Ax = λx,
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Key Idea

The ‘trick’ then is to choose the sequence of nonsingular
matrices, M1,M2 · · ·Mr such that,

A0 = A,

A1 = M1A0M
−1
1

,

...
...

...
Ar = MrAr−1M

−1
r ,

for r = 1, 2 · · ·, and Ar → a triangular matrix. One such
choice leads to the QR Algorithm for eigenproblems.
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QR Based Method
This is a stable and efficient technique first introduced and analyzed by
Rutishauser and Francis in the late 1950’s. The basic idea is,

Factor Ar = QrRr, where Qr is orthogonal and Rr is upper triangular.
Recall that Qr ≡ Q1Q2 · · ·Qn−1 the cost of this decomposition is
2/3n3 flops.

Set Ar+1 = RrQr. This can be accomplished, after factoring
Ar = QrRr, by forming QT

r RT
r as a sequence of n− 1 Householder

reflections applied to RT
r and then taking the transpose to recover

RrQr at a cost of 1/6n3 flops. That is,

AT
r+1 = QT

r RT
r = [Qn−1Qn−2 · · ·Q1]RT

r

CSCD37H – Analysis of Numerical Algorithms – p.83/183



Why Does it Work?
Ar+1 is similar to Ar since,

Q−1
r ArQr = QT

r (QrRrQr) = (QT
r Qr)RrQr = Ar+1.

To recover the eigenvector we must ‘remember’ each Qr and note that
each is a product of n− 1 Householder reflections.

Let Qr = Q1Q2 · · · Qr and Rr = RrRr−1 · · ·R1 then we have,

Ar+1 = (Q1Q2 · · ·Qr)
TAQ1Q2 · · · Qr,

= Qr
T
AQr.

This result follows from the first observation and induction. (Note that
we will never need to save Rr, and will only need to save Qr if the
eigenvectors are required.)

Rutishauser proved that with this iteration the Ar converge to an upper

triangular matrix.
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Why DoesAr Converge?
For insight into why this is true consider,
QrRr = Qr−1(QrRr)Rr−1 = Qr−1(Ar)Rr−1.
and From the 2nd observation above,

QT

r−1AQr−1 = Ar or Qr−1Ar = AQr−1.

We then have, from these 2 equations,

QrRr = Qr−1ArRr−1 = AQr−1Rr−1,

which by induction implies the key observation,

QrRr = Ar.

That is we have the QR decomposition of the rth power of A. There is then

a close relationship then between the sequence Ar and the power method.

As the power method is known to converge, under some mild assumptions,

it can be shown that this QR iteration will also converge.
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Rate of Convergence
The rate of convergence depends on ratios (λj/λi)

r for j 6= i, where r

is the iteration number and λj and λi are the jth and ith eigenvalues
of A. Thus we will observe slow convergence for complex eigenvalues
since such eigenvalues appear as complex conjugate pairs and have
equal magnitudes.

If the magnitudes of the largest eigenvalues are not well separated one
can apply a ‘shifted QR’ to accelerate convergence. The Shifted QR:

(Ar − krI) = QrRr,

where,

Ar+1 = RrQr + krI.
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