
Can We Predict the Election Outcome from Sampled Votes?

Evi Micha and Nisarg Shah
University of Toronto

{emicha,nisarg}@cs.toronto.edu

Abstract

In the standard model of voting, it is assumed that a voting
rule observes the ranked preferences of each individual over a
set of alternatives and makes a collective decision. In practice,
however, not every individual votes. Is it possible to make a
good collective decision for a group given the preferences of
only a few of its members?
We propose a framework in which we are given the ranked
preferences of k out of n individuals sampled from a distribu-
tion, and the goal is to predict what a given voting rule would
output if applied on the underlying preferences of all n indi-
viduals. We focus on the family of positional scoring rules,
derive a strong negative result when the underlying prefer-
ences can be arbitrary, and discover interesting phenomena
when they are generated from a known distribution.

1 Introduction
The aim of voting is to make a good collective decision for a
group of individuals based on the preferences of its mem-
bers over a set of alternatives. In the vast literature pub-
lished on voting since the work of Condorcet [1785], nu-
merous voting rules have been proposed which intuitively
provide different notions of what makes an outcome best for
the group. Additionally, the literature offers several frame-
works that define which collective decisions are good, and
allow evaluating as well as systematically designing vot-
ing rules; examples include the axiomatic approach (Arrow
1951; Moulin 1988), distance rationalizability (Meskanen
and Nurmi 2008; Elkind, Faliszewski, and Slinko 2015),
noisy voting (Young 1988; Caragiannis, Procaccia, and Shah
2016), and implicit utilitarian voting (Procaccia and Rosen-
schein 2006; Boutilier et al. 2015). However, most of this
literature assumes that the voting rule in question is able to
observe the preferences of every individual in the group.

In most real-world applications, only a fraction of the
members actually participate in voting. The goal of the
decision-making system is then to predict what the right col-
lective decision is for the whole group (including individuals
whose preferences are not observed) given the preferences
of some of its members. In this work, we assume that there
are n individuals (a.k.a. voters), and we are given a voting
rule f1 which can make the desired collective decision given

the preferences of all n voters. Instead, we observe the pref-
erences of only k out of n voters, and our goal is to design a
voting rule f2 which, when applied on the k observed pref-
erences, predicts the outcome of f1 on all n preferences.

This framework has two immediate motivations. As de-
scribed so far, we could think of f1 as the idealized vot-
ing rule we would like to implement if every individual
votes, and f2 as the voting rule we should really implement
if only a fraction of individuals are expected to vote. Al-
ternatively, we can imagine a setting where voting rule f1

is implemented for an upcoming election, and we would
like to conduct a poll to observe a subset of preferences
and use f2 to predict the outcome of the upcoming elec-
tion. Predicting outcomes of political elections using sur-
veys has been extensively studied (Tumasjan et al. 2010;
Rothschild and Wolfers 2011; Walther 2015; Graefe 2014;
Lewis-Beck and Tien 1999; Lewis-Beck 2005; Dey and
Bhattacharyya 2015).

One question still lingers: Which k out of n voters would
participate? If they are adversarially chosen, it is not diffi-
cult to see that predicting the election outcome is impossible.
For instance, if 49 out of 100 voters report that they prefer
alternative a over alternative b, it is impossible to know if
this is in fact the majority opinion. In the worst case, each of
the remaining 51 voters might prefer b over a. However, we
can argue that this is an unlikely scenario.

In this work, we assume that the k voters are sampled
from a distribution.1 This raises a number of questions:
Which voting rule f2, given the k observed votes, would
best predict the outcome of f1 on all n votes? When is it
optimal to simply apply the same voting rule on the ob-
served votes (i.e. f2 = f1)? Which voting rules f1 can be
predicted well? If we have stochastic information about the
unobserved votes, how do we incorporate it into the predic-
tion rule f2? Such questions are the focus of this work.

Our Results
We study a setting with m alternatives and n voters who
have ranked preferences over the alternatives. A voting rule

1Our main results hold for all possible distributions, but we pro-
vide additional results for the special case where the k voters are
sampled uniformly at random from all n voters.



takes as input a set of rankings and returns a societal ranking.
In case of ties, it may return a set of societal rankings.

We use ~σn to denote the profile of all n ranked votes, and
~πk to denote the sample of k votes. For simplicity, assume
for now that the k votes are selected uniformly at random.
We focus on the family of positional scoring rules, which
includes popular voting rules such as plurality, Borda count,
harmonic rule, k-approval, and veto. Given positional scor-
ing rules f1 and f2, we are interested in the probability that
f2(~πk) ⊆ f1(~σn), i.e., that f2 predicts the outcome of f1 on
~σn by producing a refinement of this outcome.

This probability depends on the underlying profile ~σn. In
Section 3, we consider the prediction accuracy in the worst
case over ~σn. We show that for a positional scoring rule f1

other than plurality and veto, no positional scoring rule f2

can predict its outcome with a positive probability in the
worst case (Theorems 1 and 2). This holds for any distri-
bution from which the k observed votes are sampled. When
f1 is plurality or veto, and the distribution of samples is
uniform, we show that f1 is the optimal predictor of itself
among all positional scoring rules (Theorem 3), but its pre-
diction accuracy is still small when the number of alterna-
tives is large (Theorems 4 and 5). In summary, it is impos-
sible to predict the outcome of any positional scoring rule
with a reasonable accuracy when no additional information
is known about ~σn.2

In Section 4, we consider the expected prediction accu-
racy when ~σn is drawn from a known prior. Using the sim-
plest case of two alternatives, where our goal is to predict
the majority rule f1, we show that the knowledge of prior
can have little to significant effect on the optimal prediction
rule f2, depending on how large k is compared to n and how
concentrated the prior is (Theorem 6).

Our experiments in Section 5 show that when ~σn is drawn
from a concentrated prior (the Mallows model with ϕ =
1/3), most voting rules can be predicted with at least 98%
accuracy given only 3% of the votes. However, when ~σn is
drawn from the uniform prior, most voting rules cannot be
predicted with accuracy more than 4% given only 3% of the
votes, although the accuracy increases with more observed
votes. We also curiously discover that, in certain settings,
the harmonic rule predicts other voting rules better than they
predict themselves.

Related Work
Most closely related to ours is the work of Dey and Bhat-
tacharyya [2015]. They consider voting rules which output
a single alternative instead of a ranking, and study the prob-
lem of predicting the output of a given voting rule on an un-
known election by sampling votes. Their work differs from
ours in two key aspects. First, they sample with replacement
and allow the prediction rule to determine how many votes
to sample. In contrast, our sampling is without replacement
(which becomes dramatically different when k is compara-

2This is partly due to the fact that we want to predict the entire
ranking of alternatives returned by the rule. In Appendix C, we
consider the weaker requirement of predicting only the winning
alternative, and present a mix of positive and negative results.

ble to n) and the sampled votes are given. But more impor-
tantly, they assume that the underlying election has a margin
of victory that is at least a constant fraction of n, that is, the
underlying election is such that changing a constant fraction
of the votes cannot change the outcome of the voting rule.
We do not make this assumption. In fact, our negative re-
sults are derived precisely by considering elections that are
borderline. In that sense, our results complement the results
of Dey and Bhattacharyya [2015] by showing that their posi-
tive results are replaced by strong negative results when their
margin of victory assumption is dropped.

Our results also have a surprising connection to the work
of Borodin et al. [2019]. They consider an implicit utilitarian
voting framework, in which voters and alternatives are em-
bedded in an underlying metric space, each voter ranks the
alternatives, and the social cost of an alternative is measured
by its total distance from the voters. One of their results (in-
formally) shows that given a voting rule and an arbitrary set
of k votes, where k = Θ(n), it is possible to produce an al-
ternative that is almost as good as the alternative that would
be produced by the voting rule with all n votes. That is, in
their framework, it is possible to do almost as well as the
idealized voting rule even if the sampled votes are adversar-
ially. This is fundamentally impossible in our setting.

A bit further afield, there is also work on predicting elec-
tion outcomes under different types of uncertainty such
as partial preferences (Doucette, Larson, and Cohen 2014;
Baumeister et al. 2012; Lang et al. 2012; Aziz et al. 2015),
uncertainty about which voters or candidates would partic-
ipate in the election (even if all preferences are known up-
front) (Wojtas and Faliszewski 2012), or distributional un-
certainty about each voter’s preferences (Hazon et al. 2012).

2 Preliminaries
For k ∈ N, let [k] = {1, . . . , k}. We consider a set A =
{a1, . . . , am} of m alternatives and a set N = {1, . . . , n}
of n voters. We denote by L(A) the set of all rankings over
A. We use a �σ b to denote that alternative a is preferred to
alternative b under ranking σ. Each voter i has a preference
ranking (vote), denoted σi ∈ L(A). The (preference) profile
~σn = (σ1, . . . , σn) is the collection of all n votes.

A voting rule (technically, a social welfare function) is a
function f : L(A)n → 2L(A), which takes as input a pro-
file and outputs a set of tied rankings. In this work, we fo-
cus on the family of positional scoring rules, denoted F . A
positional scoring rule f~s is characterized by a scoring vec-
tor ~s = (s1, . . . , sm) ∈ Rm, where st ≥ st+1 for each
t ∈ [m − 1] and s1 > sm. Given a profile ~σn, f~s assigns st
points to the tth alternative in voter i’s vote, for each i ∈ N
and t ∈ [m]. Let sc~s(a, ~σn) =

∑n
i=1 sσi(a) denote the total

score of a ∈ A, where σi(a) is the rank of a in voter i’s
vote. Then, f~s returns the set of rankings where the alterna-
tives are sorted in a non-ascending order of their scores.

We partition F into three subfamilies, F1, F2 and F3.
FamilyF1 consists of all rules f~s for which s2 > sm−1. This
includes the well known Borda rule (~s = (m,m−1, . . . , 1))
and harmonic rule (~s = (1, 1/2, . . . , 1/m)). The remaining
rules f~s satisfy s2 = s3 = . . . = sm−1. Among these,



family F2 consists of rules for which s1 > s2 = . . . =
sm−1 > sm, while family F3 contains the two remaining
rules: s1 > s2 = . . . = sm is equivalent to plurality, and
s1 = . . . = sm−1 > sm is equivalent to veto.

The Mallows model is a distribution over L(A),
parametrized by a central ranking σ∗ ∈ L(A) and a noise
parameter ϕ ∈ [0, 1]. Under this model, the probability of a
ranking σ is proportional to ϕd(σ,σ∗), where d is the Kendall
tau distance. When ϕ = 0, the distribution puts all the prob-
ability mass on σ∗. When ϕ = 1, the distribution becomes
the uniform distribution, also known as impartial culture.

3 Worst-Case Predictability
Given a positional scoring rule f1 ∈ F , our goal in this
paper is to study how accurately one can predict its out-
come on a profile ~σn given a sample of k votes from the
profile. Specifically, let Sk(~σn) denote the set of all sub-
sets of ~σn of size k, and let Uk(~σn) be the uniform distri-
bution over Sk(~σn). Define the accuracy of predicting f1

using a positional scoring rule f2 ∈ F on profile ~σn as
acc(f1, f2, ~σn) = Pr~πk∼Uk(~σn)[f2(~πk) ⊆ f1(~σn)]. Note
that f2(~πk) ⊆ f1(~σn) allows f2 to break some of the ties
produced by f1 on ~σn. This makes our negative results
stronger than if we had required f2(~πk) = f1(~σn). Sim-
ilarly, although we defined accuracy for πk sampled from
the uniform distribution Uk(~σn), our main negative results
(Theorems 1 and 2) hold for all distributions since they es-
tablish zero accuracy.

We then define the worst-case accuracy of predicting f1

using f2 as acc(f1, f2) = min~σn
acc(f1, f2, ~σn). Taking

this one step further, we define the worst-case predictability
of f1 as acc(f1) = supf2∈F acc(f1, f2), which is the worst-
case accuracy of predicting f1 using the best positional scor-
ing rule f2. Note that these quantities depend on n, m, and
k, which are fixed in our framework. Motivated by political
applications, we are interested in cases where n is large but
k and m are relatively smaller.

Predicting a Rule from F1 or F2

We begin by establishing a strong negative result: every po-
sitional scoring rule in F1 and F2 has zero worst-case pre-
dictability. That is, such a rule cannot be predicted by any
positional scoring rule with positive worst-case accuracy.
The strength of the result lies in two observations. First, as
we argued above, zero predictability implies that the out-
come of the rule cannot be predicted given any subset of
k votes; thus, the negative result holds for any distribution
from which the k observed votes are drawn, and not only for
the uniform distribution. Second, while the impossibility of
prediction may be intuitive for small values of k, the result
holds even when k = n − 1, i.e., when all but one of the
votes are observed.

Theorem 1. Let n ≥ 2, m ≥ 7, and k ∈ [n− 1] such that n
and k have different parity. Then, for any positional scoring
rules f1 ∈ F1 and f2 ∈ F , we have acc(f1, f2) = 0.

Proof. Fix positional scoring rules f1 ∈ F1 and f2 ∈ F . Let
~r and ~s denote their scoring vectors, respectively. Because

f1 ∈ F1, we have r2 > rm−1. We consider cases of even
and odd k, and for each case, construct a profile on which f2

predicts f1 with zero accuracy.

Odd n, even k: We start with the case where n is odd and k
is even. Consider the following profile ~σn. Each row repre-
sents a ranking where alternatives are listed from left to right
in the most preferred to least preferred order. The first two
rankings appear (n− 1)/2 times each, and the third ranking
appears once. Alternatives not shown appear in an arbitrary
order in the middle.

n−1
2 votes a1 � a2 � a3 � . . . � am−2 � am−1 � am

n−1
2 votes am � am−1 � am−2 � . . . � a3 � a2 � a1

1 vote a1 � am−1 � a3 � . . . � am−2 � a2 � am

We denote with σ1, σ2 and σ3 the ranking of the first,
second and third rows, respectively. Because f1 ∈ F1, it
is easy to check that for every σ∗ ∈ f1(~σn), a1 �σ∗ am
and am−1 �σ∗ a2. We show that for every sample ~πk ∈
Sk(~σn), f2(~πk) 6⊆ f1(~σn), i.e., for some σ̂ ∈ f2(~πk) at least
one of a1 �σ̂ am and am−1 �σ̂ a2 fails to hold. Suppose
for contradiction that there exists ~πk for which this does not
happen.

Case 1: σ3 /∈ ~πk. First, suppose σ3 does not appear in ~πk.
Let x1 and x2 denote the number of times σ1 and σ2 appear
in ~πk, respectively. To have a1 �σ̂ am for every σ̂ ∈ f2(~πk),
we need

x1 · s1 + x2 · sm > x1 · sm + x2 · s1.

Because s1 > sm, this implies x1 > x2. On the other hand,
to have am−1 �σ̂ a2 for every σ̂ ∈ f2(~πk), we must have

x1 · sm−1 + x2 · s2 > x1 · s2 + x2 · sm−1.

Given that s2 ≥ sm−1, this implies x2 > x1, which is a
contradiction.

Case 2: σ3 ∈ ~πk. Next, suppose σ3 appears in ~πk. Again,
let x1 and x2 denote the number of times σ1 and σ2 appear
in ~πk. Now, to have a1 �σ̂ am for every σ̂ ∈ f2(~πk), we
need

x1 · s1 + x2 · sm + s1 > x1 · sm + x2 · s1 + sm

⇒ (x1 + 1) · (s1 − sm) > x2 · (s1 − sm).

Given that s1 > sm, this implies x1 + 1 > x2, i.e., x1 ≥ x2.
On the other hand, to have am−1 �σ̂ a2 for every σ̂ ∈

f2(~πk), we need

x1 · sm−1 + x2 · s2 + s2 > x1 · s2 + x2 · sm−1 + sm−1

⇒ (x2 + 1) · (s2 − sm−1) > x1 · (s2 − sm−1).

Given s2 ≥ sm−1, this implies x2 + 1 > x1, i.e., x2 ≥ x1.
We thus conclude that x1 = x2. However, then |~πk| =

x1 + x2 + 1 is odd, which contradicts the fact that k is even.

Even n, odd k: We now consider the case of even n and
odd k. We begin by establishing the following property of
f1. Recall that for the scoring vector ~r of f1 ∈ F1, we have
r2 > rm−1.



Lemma 1. There exists a t ∈ {3, . . . ,m− 3} such that r2−
rm−1 > rt − rt+1.

Proof. First, suppose there exists a p ∈ {2, . . . ,m− 2}
such that r2 = rp > rp+1 = rm−1 (i.e., in going from
r2 to rm−1, the score drops only once). If p ≥ 4, then we set
t = 3. In this case, we have rt − rt+1 = 0 < r2 − rm−1,
as desired. If p ≤ 3, then we set t = 4. Because m ≥ 7,
we have t ≤ m − 3. Also, we again have rt − rt+1 = 0 <
r2 − rm−1.

Next, suppose there exist distinct p, q ∈ {2, . . . ,m− 2}
such that rp > rp+1 and rq > rq+1 (i.e., in going from r2 to
rm−1, the score drops at least twice). Then, we can simply
set t = 3. This ensures that rt−rt+1 < r2−rm−1 (if it were
equal, then the score would drop only once in going from r2

to rm−1). This completes the proof.

Let us fix t ∈ {3, . . . ,m− 3} for which Lemma 1 holds.
Consider the following profile ~σn.

n−2
2

votes a1 � a2 � a3 � a4 � . . . � am−2 � am−1 � am
n−2
2

votes am � am−1 � am−2 � . . . � a4 � a3 � a2 � a1
1 vote a1 � a3 � . . . � a2 � am−1 � . . . � am−2 � am
1 vote a3 � am−1 � . . . � am � a1 � . . . � a2 � am−2

We again denote with σ1, σ2, σ3 and σ4 the rankings in
rows 1, 2, 3 and 4, respectively. In ranking σ3, a2 is at po-
sition t and am−1 is at position t + 1. In the ranking σ4,
am is at position t and a1 is at position t + 1. In each rank-
ing, alternatives not shown appear in the unfilled positions
arbitrarily.

First, we argue about the outcome of f1 on this profile.
From the Lemma 1, it is obvious that r1−rm ≥ r2−rm−1 >
rt − rt+1. Using this, it is easy to see that for every σ∗ ∈
f1(~σn), a1 �σ∗ am and am−1 �σ∗ a2. We now argue that
for every sample ~πk ∈ Sk(~σn), there exists σ̂ ∈ f2(~πk)
which violates at least one of a1 �σ̂ am and am−1 �σ̂ a2.
Suppose for contradiction that there exists a sample ~πk for
which this does not happen. Here, we have to take four cases
depending on whether each of σ3 and σ4 appears in ~πk.

Case 1: σ3, σ4 /∈ ~πk. This case is identical to Case 1 in
the proof for odd n and even k because ~πk consists of only
copies of rankings σ1 and σ2, and these are the same rank-
ings σ1 and σ2 that we used in the proof for odd n and even
k. Hence, we have already derived a contradiction in this
case.

Case 2: σ3 ∈ ~πk ∧ σ4 /∈ ~πk. Suppose ~πk consists of x1

copies of σ1, x2 copies of σ2, and a single copy of σ3. To
have a1 �σ̂ am for every σ̂ ∈ f2(~πk), we must have

x1 · s1 + x2 · sm + s1 > x1 · sm + x2 · s1 + sm

⇒ (x1 + 1) · (s1 − sm) > x2 · (s1 − sm).

Given that s1 > sm, this implies x1 + 1 > x2, i.e., x1 ≥ x2.
On the other hand, to have am−1 �σ̂ a2 for every σ̂ ∈

f2(~πk), we must have
x1 · sm−1 + x2 · s2 + st+1 > x1 · s2 + x2 · sm−1 + st

⇒ x2 · (s2 − sm−1) > x1 · (s2 − sm−1) + (st − st+1).

Given that st ≥ st+1 and s2 ≥ sm−1, this implies that we
must have x2 > x1, which is a contradiction.

Case 3: σ3 /∈ ~πk ∧ σ4 ∈ ~πk. This case leads to a contra-
diction in a manner similar to Case 2, so we omit the details.

Case 4: σ3, σ4 ∈ ~πk. Suppose σ1 and σ2 appear x1 and x2
times in ~πk, respectively. In this case, to have a1 �σ̂ am for
every σ̂ ∈ f2(~πk), it must be the case that

x1 · s1 + x2 · sm + s1 + st+1 > x1 · sm + x2 · s1 + sm + st

⇒ (x1 + 1) · (s1 − sm) > x2 · (s1 − sm) + (st − st+1).

Given that s1 ≥ sm and st ≥ st+1, this implies x1+1 > x2,
i.e., x1 ≥ x2. On the other hand, to have am−1 �σ̂ a2 for
every σ̂ ∈ f2(~πk), we need

x1 · sm−1 + x2 · s2 + st+1 + s2

> x1 · s2 + x2 · sm−1 + st + sm−1

⇒ (x2 + 1) · (s2 − sm−1) > x1 · (s2 − sm−1) + (st − st+1).

Again, given that s2 ≥ sm−1 and st ≥ st+1, this implies
x2 + 1 > x1, i.e., x2 ≥ x1.

Thus, we must have x1 = x2. This implies |~πk| = x1 +
x2 + 2 is even, which contradicts the fact that k is odd.

Unfortunately, the proof of Theorem 1 does not directly
work when f1 ∈ F2. However, a similar proof with some-
what more intricate profiles works, yielding the following
result. Its proof is given in Appendix A.
Theorem 2. Let n ≥ 4, m ≥ 5, and k ∈ [n− 1] such that n
and k have different parity. Then, for any positional scoring
rules f1 ∈ F2 and f2 ∈ F , we have acc(f1, f2) = 0.

Predicting a Rule from F3

The remaining family F3 contains exactly two voting rules:
plurality (denoted fplu) and veto (denoted fveto). These two
rules are special within the family of positional scoring
rules. While Theorems 1 and 2 establish that every other po-
sitional scoring rule has zero worst-case predictability, it is
easy to show that this is not the case with plurality or veto.
Proposition 1. Let k ≥ m(m − 1)/2. Then, we have
acc(fplu, fplu) > 0 and acc(fveto, fveto) > 0.

Proof. We provide a proof for plurality. The proof for veto is
similar. Consider any profile ~σn. Let xi denote the number of
times alternative ai is ranked first. Without loss of generality,
assume xi ≥ xi+1 for all i ∈ [m − 1]. Now, we construct a
sample ~πk ∈ Sk(~σn) such that fplu(~πk) ⊆ fplu(~σn).

Let yi = |{j ∈ [i,m− 1] : xj > xj+1}| for each i ∈
[m − 1], and ym = 0. We begin by choosing yi arbitrary
rankings from ~σn which rank ai first, for each i, and adding
them to the sample. It is easy to see that yi = yi+1 if and
only if xi = xi+1 and yi > yi+1 if and only if xi > xi+1,
for all i ∈ [m − 1]. Further,

∑m
i=1 yi ≤ m(m − 1)/2 ≤ k.

If we ran plurality on the sample constructed so far, the set
of rankings it returns would be precisely fplu(~σn). However,
this sample may contain fewer than k votes.

We complete the sample ~πk by adding any remaining
votes which rank a1 first, then adding any remaining votes
which rank a2 first, etc, until the sample size becomes k.
Let zi denote the final number of votes in the sample which



rank ai first. Then, for all i, j ∈ [m], xi > xj implies
yi > yj , which in turn implies zi > zj . Thus, fplu(~πk) ⊆
fplu(~σn).

Proposition 1 raises two important questions: a) How well
can plurality or veto predict itself?; and b) Can some posi-
tional scoring rule predict plurality (resp. veto) better than
plurality (resp. veto) itself?

We begin by answering the latter question negatively. We
show that among all positional scoring rules, the best pre-
dictor of plurality (resp. veto) is plurality (resp. veto) itself.

Theorem 3. For every positional scoring rule f2 ∈ F , we
have that acc(fplu, f2) ≤ acc(fplu, fplu) and acc(fveto, f2) ≤
acc(fveto, fveto).

Proof. Fix f2 ∈ F . We show acc(fplu, f2) ≤ acc(fplu, fplu).
The proof for acc(fveto, f2) ≤ acc(fveto, fveto) is similar.

Specifically, we show that for every profile ~σn, there
exists a profile ~τn such that acc(fplu, fplu, ~σn) ≥
acc(facc, f2, ~τn). It is easy to see that this implies the de-
sired result.

Consider any profile ~σn. Fix σ∗ ∈ fplu(~σn). We construct
the profile ~τn as follows. In each ranking τi, the alternative
ranked first in σi is also ranked first, and the remaining alter-
natives are in the opposite order of how they appear in σ∗.
Because we do not change the alternatives in the first posi-
tion, we have that acc(fplu, fplu, ~σn) = acc(fplu, fplu, ~τn).
We now show that acc(fplu, fplu, ~τn) ≥ acc(facc, f2, ~τn).
More specifically, we show that for every sample ~πk ∈
Sk(~τn), fplu(~πk) 6⊆ fplu(~τn) implies f2(~πk) 6⊆ fplu(~τn). It
is easy to check that this implies the desired result.

Consider any sample ~πk ∈ Sk(~τn). Let xi and yi denote
the number of times ai is ranked first in ~τn and ~πk, respec-
tively. Suppose fplu(~πk) 6⊆ fplu(~τn). Then, there exist alter-
natives ai, aj ∈ A such that xi > xj but yi ≤ yj . Note that
xi > xj implies that ai �σ∗ aj . Hence, in every ranking in
~τn (and therefore in ~πk) where ai or aj is not ranked first,
aj must appear before ai (since we order them in the oppo-
site order of σ∗). This, together with yj ≥ yi, implies that
under ~πk, f2 assigns at least as much score to aj as to ai.
Hence, there exists σ̂ ∈ f2(~πk) for which aj �σ̂ ai, and
thus σ̂ /∈ fplu(~τn). Hence, we have f2(~πk) 6⊆ fplu(~τn), as
desired.

From Theorem 3, an upper bound on the worst-case accu-
racy of predicting plurality using plurality gives us an upper
bound on the worst-case predictability of plurality. The same
holds for veto. While Proposition 1 shows that this quantity
is non-zero for k ≥ m(m − 1)/2, we show that it is still
exponentially small in m when k is small compared to n.

Theorem 4. For n ≥ (m−1)(m−2)/2 and k ≤ cn, where
c < 1 is a constant, we have acc(fplu) = acc(fplu, fplu) ≤
cΩ(m2) and acc(fveto) = acc(fveto, fveto) ≤ cΩ(m2).

Proof. We provide a proof for plurality. The proof for veto
is similar. Note that acc(fplu) = acc(fplu, fplu) follows from
Theorem 3. We now show that there exists a profile ~σn for
which acc(fplu, fplu) ≤ acc(fplu, fplu, ~σn) ≤ cm.

Consider the profile ~σn in which alternative ai appears
first in exactly i − 1 rankings, for each i ∈ [m − 1].
In every other ranking, alternative am appears first. This
is feasible because n ≥ (m − 1)(m − 2)/2. Note that
for fplu(~πk) ⊆ fplu(~σn), sample ~πk must at least contain
all of t = (m − 1)(m − 2)/2 rankings in which an al-
ternative from {a1, . . . , am−1} is ranked first. For k <
(m − 1)(m − 2)/2, this happens with zero probability. For
k ≥ (m − 1)(m − 2)/2, this happens with probability at
most

(
n−t
k−t
)
/
(
n
k

)
≤ (k/n)t ≤ ct.

We conjecture that even when k = n − o(n),
acc(fplu, fplu) and acc(fveto, fveto) are stillO(1/m). For k =
n− 1, it is easy to see that they are in fact Θ(1/m).
Theorem 5. For k = n − 1, acc(fplu) = acc(fplu, fplu) =
Θ(1/m) and acc(fveto) = acc(fveto, fveto) = Θ(1/m).

Proof. Once again, we provide a proof for plurality. The
proof for veto is similar. Assume n� m. Given Theorem 3,
we simply need to show that acc(fplu, fplu) = Θ(1/m).

First, we show the upper bound. For all i ∈ [m], define

xi =


dn/me+ 1 if i = 1

dn/me if 2 ≤ i ≤ n mod m

bn/mc if n mod m ≤ i ≤ m− 1

bn/mc − 1 if i = m

Note that this satisfies xm < xi for all i ∈ [m − 1] and∑m
i=1 xi = n. Now, consider a profile ~σn in which al-

ternative ai is in the top position in xi rankings, for each
i ∈ [m]. For every σ∗ ∈ fplu(~σn), we have ai �σ∗ am for
all i ∈ [m − 1]. Consider a sample ~πn−1 ∈ Sn−1(~σn). To
have ai �σ̂ am for all i ∈ [m − 1] and σ̂ ∈ fplu(~πn−1),
~πn−1 must contain all rankings of ~σn except a ranking
in which am appears first. This happens with probabil-
ity (bn/mc − 1)/n = O(1/m). Hence, acc(fplu, fplu) ≤
acc(fplu, fplu, ~σn) = O(1/m).

Next, we show the lower bound. Consider any profile ~σn.
For i ∈ [m], let xi denote the number of times alternative ai
appears first. Without loss of generality, assume xi ≥ xi+1

for i ∈ [m− 1]. Let i∗ be the smallest index such that xi∗ ≥
xi∗+1 + 2 (if xi ≤ xi+1 + 1 for all i ∈ [m − 1], then let
i∗ = m). It is easy to see that xi∗ = Ω(n/m), and for any
~πn−1 ∈ Sn−1(~σn) which is obtained by removing one of the
rankings in which ai∗ appears first, fplu(~πn−1) ⊆ fplu(~σn).
Hence, acc(fplu, fplu) = Ω(n/m)/n = Ω(1/m).

4 Average-Case Predictability
In the previous section, we considered the accuracy of pre-
dicting the outcome of a voting rule f1 using a voting rule f2

in the worst case over the underlying profile ~σn, and defined
acc(f1, f2) = min~σn

acc(f1, f2, σn).
In this section, we take a less pessimistic view-

point, assume that the underlying profile ~σn is drawn
from a known prior D, and define accD(f1, f2) =
E~σn∼D[acc(f1, f2, ~σn)], where ~σn ∼ D denotes that ~σn is
drawn from D.

We show that this leads to interesting phenomena even in
the simplest setting with two alternatives. Let A = {a, b}.



Without loss of generality, suppose D generates a � b with
probability p ≥ 1/2 and b � a with probability 1 − p.
This coincides with the Mallows model with central rank-
ing σ∗ = a � b and noise parameter ϕ = (1−p)/p ∈ [0, 1].

For two alternatives, all reasonable voting rules (including
all positional scoring rules) coincide with plurality, which
is simply the majority rule. Hence, we fix the target voting
rule as plurality (f1 = fplu). Our goal is to predict which
of a � b and b � a appears more frequently in the under-
lying profile ~σn. Without any distributional information, we
cannot outperform running plurality on the sample ~πk, i.e.,
using f2 = fplu (Theorem 3). With the knowledge of the
prior, it is easy to show that the optimal rule f2 which max-
imizes accD(f1, f2) computes the posterior distribution of
~σn given both sample ~πk and prior D, and returns the more
likely outcome of plurality on ~σ drawn from the posterior.

When the sample contains at least as many a � b as b � a,
it is easy to show that the optimal rule would also return
a � b. However, when the sample contains more b � a than
a � b, there is tension between the sample and the prior, and
the output of the optimal rule is less clear.

Consider the extreme case in which the sample ~πk con-
sists of k copies of b � a. If k ≥ n/2, the optimal rule
safely returns b � a. When k < n/2, the optimal rule re-
turns b � a if Pr[fplu(~σn) = b � a|~πk] > Pr[fplu(~σn) =
a � b|~πk], but returns a � b otherwise. It is easy to show
that Pr[fplu(~σn) = a � b|~πk] is monotonically decreasing
in k and in ϕ. Hence, there exists a unique ϕ∗k such that the
optimal rule returns a � b when ϕ < ϕ∗k and returns b � a
when ϕ > ϕ∗k. Further, ϕ∗k is monotonically decreasing in k.
The next result sheds more light on the relation between ϕ∗k
and k. Its proof is provided in Appendix B.

Theorem 6. Let n ≥ 5 and n − 1 be divisible by 4. Given
a sample ~πk which consists of k copies of b � a, let ϕ∗k be
such that the optimal predictor returns a � b if ϕ < ϕ∗k and
b � a if ϕ > ϕ∗k. Then the following hold.

1. For k = 1, ϕ∗k ≥ 1− 4 lnn
n+1 .

2. For k = (n− 1)/2, ϕ∗k ≤ 2
n+1 .

3. For k = (n− 1)/4, ϕ∗k ∈ [1/4, 2/3].

Let us consider the implications of Theorem 6 as n →
∞. The first part implies that if we observe only a single
b � a sample, we should predict a � b for any ϕ < 1.
This makes sense because the n−1 unobserved votes vastly
overshadow the single observed vote, and the prior places at
least somewhat more probability on a � b than on b � a.

The second part implies that if we observe (n−1)/2 votes
(just a little less than a majority), we should predict b � a for
any ϕ > 0. This again makes sense because the probability
that there is at least one b � a in the remaining (n + 1)/2
votes — sufficient to make b � a the plurality outcome on
the original profile — approaches 1.

The final part shows that the transition between ϕ∗k ≈ 0
and ϕ∗k ≈ 1 is not sudden; for k = (n− 1)/4, the transition
happens at ϕ∗k that is not arbitrarily close to either endpoint
when n is large.

5 Experiments
In this section, we conduct experiments to measure the pre-
dictability of popular voting rules in the average case. We
consider profiles ~σn with n = 1, 000 voters and m = 5 al-
ternatives. We use two distributions to draw i.i.d. rankings
in ~σn: the Mallows model with ϕ = 1/3 (in short, “Mal-
lows distribution”) and the uniform distribution. The former
is more concentrated than the latter. We average our results
across 106 draws of profile ~σn.

Figure 1 shows the average predictability of different vot-
ing rules f1 (rows) using different voting rules f2 (columns),
under the uniform distribution (tables on the top) and under
the Mallows distribution (tables on the bottom), with k = 50
(tables on the left) and with k = 500 (tables on the right).3
The entries in the table indicate the percentage of instances
on which prediction was successful. Generally, we observe
that prediction accuracy increases as the prior becomes more
concentrated and as the number of samples k increases, as
expected. We also note a few peculiarities. Under the uni-
form distribution with k = 50, the harmonic rule is the best
predictor of every voting rule (except Bucklin), although the
prediction accuracy is small. As k increases to 500, however,
each voting rule (except Copeland and maximin) becomes
the best predictor of itself. Under the Mallows distribution, it
is evident that Borda, Bucklin, Copeland, and the harmonic
rule predict other voting rules well — often because they re-
turn fewer ties — while maximin, plurality, STV, and veto
perform worse.

Figure 2 shows the average-case predictability of differ-
ent voting rules f1 (using the best voting rule f2 from the
same list) as a function of the number of samples, under the
Mallows distribution (left) and under the uniform distribu-
tion (right). Once again, more concentrated prior and more
samples allow greater predictability. The effect of the prior
is significant: under the Mallows distribution, observing just
3% of the votes allows predicting every voting rule with at
least 98% accuracy, while the same number of samples un-
der the uniform distribution does not allow predicting any
voting rule with more than 4% accuracy.

6 Discussion
Predicting election outcomes using limited information is a
broad research agenda, and while our work makes progress
towards painting the full picture, there are a number of ar-
eas yet unexplored. The most immediate direction is to fill
the gaps in our results, e.g., extending the analysis of the
accuracy of plurality and veto predicting themselves (Theo-
rems 4 and 5) to all values of k, and extending the average-
case analysis to heterogeneous samples, all values of k, and
more than two alternatives. The next step would be to extend
our theoretical results to other voting rules (e.g. Copeland’s
or Kemeny’s method) and to other models of sampling votes

3For the Bucklin rule, we define the Bucklin score of an al-
ternative as the smallest t such that a majority of voters rank the
alternative in the first t positions. Alternatives are first compared
by their Bucklin score (lower is better), and alternatives with the
same Bucklin score t are compared by the number of voters who
rank them in the first t positions (higher is better).
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Borda 1.40 1.26 0.43 1.65 0.59 0.61 0.79 0.59

Bucklin 1.27 1.39 0.38 1.37 0.53 0.46 0.65 0.54

Copeland 4.18 3.81 2.46 4.48 2.64 2.61 3.01 2.55

Harmonic 1.22 1.04 0.36 1.67 0.52 0.67 0.79 0.44

Maximin 1.59 1.47 0.51 1.82 0.77 0.73 0.90 0.71

Plurality 1.30 1.05 0.43 1.88 0.61 0.89 0.98 0.51

STV 1.36 1.16 0.49 1.86 0.62 0.84 1.19 0.54

Veto 1.33 1.23 0.45 1.35 0.59 0.52 0.66 0.89
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8.32 5.73 3.83 6.49 4.93 3.12 4.03 3.32

5.67 8.16 2.67 3.54 3.55 1.59 2.24 2.54

15.67 11.75 12.10 12.99 10.40 7.81 10.44 8.16

5.90 3.02 2.72 8.43 3.80 5.70 5.46 1.60

6.77 5.05 3.03 5.73 6.59 3.13 4.17 3.12

4.08 1.97 2.08 7.99 2.93 8.12 5.76 1.20

5.01 2.76 3.13 7.21 3.77 5.46 10.66 1.54

4.48 3.63 2.19 2.56 3.01 1.31 1.78 8.34

Borda 99.84 99.80 99.95 98.69 62.54 40.35 40.65 40.43

Bucklin 99.84 99.80 99.95 98.69 62.54 40.35 40.65 40.43

Copeland 99.84 99.80 99.95 98.69 62.54 40.35 40.65 40.43

Harmonic 99.84 99.80 99.95 98.69 62.54 40.35 40.65 40.43

Maximin 99.84 99.80 99.95 98.69 62.54 40.35 40.65 40.43

Plurality 99.64 99.60 99.75 98.52 62.50 40.42 40.72 40.34

STV 99.64 99.60 99.75 98.52 62.50 40.42 40.72 40.34

Veto 99.84 99.80 99.95 98.69 62.54 40.35 40.65 40.55

100 100 100 100 99.87 97.35 97.35 97.60

100 100 100 100 99.87 97.35 97.35 97.60

100 100 100 100 99.87 97.35 99.35 97.60

100 100 100 100 99.87 97.35 97.35 97.60

100 100 100 100 99.87 97.35 97.35 97.60

99.9 99.9 99.9 99.9 99.77 97.66 97.66 97.50

99.9 99.9 99.9 99.9 99.77 97.66 97.66 97.50

99.9 99.9 99.9 99.9 99.77 97.25 97.25 97.75

Figure 1: Average-case predictability of different voting rules f1 (rows) using different voting rules f2 (columns) under the uniform distribu-
tion (top) and the Mallows model with ϕ = 1/3 (bottom) with k = 50 (left) and k = 500 (right).
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Figure 2: Average-case predictability of different voting rules as a function of the number of samples k, under the Mallows model with
ϕ = 1/3 (left) and under the uniform distribution (right).

(e.g. when each voter i independently participates in the poll
with probability pi).

While Theorems 1 and 2 paint an extremely pessimistic
picture of predictability of positional scoring rules, this
could be because we want to predict the entire ranking of
alternatives returned by the rule. This is indeed what is re-
quired in several real-world applications, e.g., Borda count
is used to rank college football teams in the Associated
Press poll (Levin and Nalebuff 1995) or to rank students in
MOOCs (Caragiannis et al. 2019). However, in some cases,
simply predicting the top alternative might suffice. Could
this perhaps lead to more optimistic results? In Appendix C,

we argue that the answer is yes and no: while predicting
the winner under k-approval rules seems plausible, predict-
ing the Borda winner is still difficult. Tracing the exact pre-
dictability of winner under positional scoring rules remains
an interesting direction for future work.

Finally, we can also consider the use of limited infor-
mation to make good collective decisions in other frame-
works of voting. For example, in the implicit utilitarian vot-
ing framework (Procaccia and Rosenschein 2006; Boutilier
et al. 2015), where the goal is to find an alternative with
small distortion, how small can we make the expected dis-
tortion given only sampled votes?
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Appendix
A Proof of Theorem 2

Proof. Fix positional scoring rules f1 ∈ F2 and f2 ∈ F .
Let ~r and ~s denote their scoring vectors, respectively. Be-
cause f1 ∈ F2, we have r1 > r2 = rm−1 > rm. We con-
sider cases of even and odd k, and for each case, construct a
profile on which f2 predicts f1 with zero accuracy.

Odd n, even k: We start with the case where n is odd and k
is even. Consider the following profile ~σn. Alternatives not
shown appear in an arbitrary order in the middle.

n−1
2 votes a1 � am � a3 � . . . � am−2 � a2 � am−1

n−1
2 votes am � a1 � a3 � . . . � am−2 � am−1 � a2

1 vote a1 � am � a3 � . . . � am−2 � am−1 � a2

We denote with σ1, σ2 and σ3 the ranking of the first,
second and third rows, respectively. Because f1 ∈ F2, it
is easy to check that for every σ∗ ∈ f1(~σn), a1 �σ∗ am
and am−1 �σ∗ a2. We show that for every sample ~πk ∈
Sk(~σn), f2(~πk) 6⊆ f1(~σn), i.e., for some σ̂ ∈ f2(~πk) at least
one of a1 �σ̂ am and am−1 �σ̂ a2 fails to hold. Suppose
for contradiction that there exists ~πk for which this does not
happen.

Case 1: σ3 /∈ ~πk. First, suppose σ3 does not appear in ~πk.
Let x1 and x2 denote the number of times σ1 and σ2 appear
in ~πk, respectively. To have a1 �σ̂ am for every σ̂ ∈ f2(~πk),
we need

x1 · s1 + x2 · s2 > x1 · s2 + x2 · s1.

Because s1 ≥ s2, this implies x1 > x2. On the other hand,
to have am−1 �σ̂ a2 for every σ̂ ∈ f2(~πk), we must have

x1 · sm + x2 · sm−1 > x1 · sm−1 + x2 · sm.

Given that sm−1 ≥ sm, this implies x2 > x1, which is a
contradiction.

Case 2: σ3 ∈ ~πk. Next, suppose σ3 appears in ~πk. Again,
let x1 and x2 denote the number of times σ1 and σ2 appear
in ~πk. Now, to have a1 �σ̂ am for every σ̂ ∈ f2(~πk), we
need

x1 · s1 + x2 · s2 + s1 > x1 · s2 + x2 · s1 + s2

⇒ (x1 + 1) · (s1 − s2) > x2 · (s1 − s2).

Given that s1 ≥ s2, this implies x1 + 1 > x2, i.e. x1 ≥ x2.
On the other hand, to have am−1 �σ̂ a2 for every σ̂ ∈

f2(~πk), we need

x1 · sm + x2 · sm−1 + sm−1 > x1 · sm−1 + x2 · sm + sm

⇒ (x2 + 1) · (sm−1 − sm) > x1 · (sm−1 − sm).

Given sm−1 ≥ sm, this implies x2 + 1 > x1, i.e., x2 ≥ x1.
We thus conclude that x1 = x2. However, then |~πk| =

x1 + x2 + 1 is odd, which contradicts the fact that k is even.

Even n, odd k: We now consider the case of even n and
odd k. Consider the following profile ~σn.

n−2
2

votes a1 � am � a3 � . . . � am−2 � a2 � am−1

n−2
2

votes am � a1 � a3 � . . . � am−2 � am−1 � a2
1 vote a1 � am � . . . � a2 � am−1 � . . . � am−2 � a3
1 vote a3 � a4 � . . . � am � a1 � . . . � am−1 � a2

We again denote with σ1, σ2, σ3 and σ4, the rankings in
rows 1, 2, 3 and 4, respectively. Fix an arbitrary t such that
2 < t < m − 2. In ranking σ3, alternative a2 is at some
position t and alternative am−1 is at position t+1. In ranking
σ4, alternative am is at position t and alternative a1 is at
position t+1. In each ranking, alternatives not shown appear
in the unfilled positions arbitrarily.

First, we argue about the outcome of f1 on this profile.
Recall that for the scoring vector ~r of f1 ∈ F2, we have r1 >
r2 and rm−1 > rm, while rt = rt+1,∀t ∈ [2,m− 2]. Using
this, it is easy to see that for every σ∗ ∈ f1(~σn), a1 �σ∗ am
and am−1 �σ∗ a2. We now argue that for every sample ~πk ∈
Sk(~σn), there exists σ̂ ∈ f2(~πk) which violates at least one
of a1 �σ̂ am and am−1 �σ̂ a2. Suppose for contradiction
that there exists a sample ~πk for which this does not happen.
Here, we have to take four cases depending on whether each
of σ3 and σ4 appears in ~πk.

Case 1: σ3, σ4 /∈ ~πk. This case is identical to Case 1 in
the proof for odd n and even k because ~πk consists of only
copies of rankings σ1 and σ2, and these are the same rank-
ings σ1 and σ2 that we used in the proof for odd n and even
k. Hence, we have already derived a contradiction in this
case.

Case 2: σ3 ∈ ~πk ∧ σ4 /∈ ~πk. Suppose ~πk consists of x1

copies of σ1, x2 copies of σ2, and a single copy of σ3. To
have a1 �σ̂ am for every σ̂ ∈ f2(~πk), we must have

x1 · s1 + x2 · s2 + s1 > x1 · s2 + x2 · s1 + s2

⇒ (x1 + 1) · (s1 − s2) > x2 · (s1 − s2).

Given that s1 ≥ s2, this implies x1 + 1 > x2, i.e. x1 ≥ x2.
On the other hand, to have am−1 �σ̂ a2 for every σ̂ ∈

f2(~πk), we must have
x1 · sm + x2 · sm−1 + st+1 > x1 · sm−1 + x2 · sm + st
⇒ x2 · (sm−1 − sm) > x1 · (sm−1 − sm) + (st − st+1).

Given that st ≥ st+1 and sm−1 ≥ sm, this implies that we
must have x2 > x1, which is a contradiction.

Case 3: σ3 /∈ ~πk ∧ σ4 ∈ ~πk. This case leads to a contra-
diction in a manner similar to Case 2, so we omit the details.
Case 4: σ3, σ4 ∈ ~πk. Suppose σ1 and σ2 appear x1 and x2
times in ~πk, respectively. In this case, to have a1 �σ̂ am for
every σ̂ ∈ f2(~πk), it must be the case that
x1 · s1 + x2 · s2 + s1 + st+1 > x1 · s2 + x2 · s1 + s2 + st

⇒ (x1 + 1) · (s1 − s2) > x2 · (s1 − s2) + (st − st+1).

Given that s1 ≥ s2 and st ≥ st+1, this implies x1 +1 > x2,
i.e., x1 ≥ x2. On the other hand, to have am−1 �σ̂ a2 for
every σ̂ ∈ f2(~πk), we need
x1 · sm + x2 · sm−1 + st+1 + sm−1

> x1 · sm−1 + x2 · sm + st + sm

⇒ (x2 + 1) · (sm−1 − sm) > x1 · (sm−1 − sm) + (st − st+1).



Again, given that sm−1 ≥ sm and st ≥ st+1, this implies
x2 + 1 > x1, i.e., x2 ≥ x1.

Thus, we must have x1 = x2. This implies |~πk| = x1 +
x2 + 2 is even, which contradicts the fact that k is odd.

B Proof of Theorem 6
Proof. We begin by examining the probability of each pos-
sible underlying plurality outcome given the samples. Recall
that under the prior, the probability of generating a � b is
p ∈ [1/2, 1], and we have ϕ = (1 − p)/p. Given a sample
~πk which consists of k copies of b � a, we get

Pr[fplu(~σn) = a � b|~πk]

=
Pr[fplu(~σn) = a � b ∧ ~πk]

Pr[~πk]

=

∑
~σn

Pr[~σn] · Pr[fplu(~σn) = a � b ∧ ~πk|~σn]
Pr[~πk]

=

∑
~σn

Pr[~σn] · Pr[fplu(~σn)) = a � b|~σn] · Pr[~πk|~σn]
Pr[~πk]

=

∑
~σn:fplu(~σn)=a�b Pr[~σn] · Pr[~πk|~σn]

Pr[~πk]

=

∑n−1
2

i=k

(
n
i

)
pn−i(1− p)i (

i
k)
(nk)

Pr[~πk]

=

∑n−1
2

i=k

(
i
k

)(
n
i

)
ϕipn(

n
k

)
Pr[~πk]

. (1)

Similarly, we conclude that:

Pr[fplu(~σn) = b � a|~πk] = =

∑n

i=n+1
2

(
i
k

)(
n
i

)
ϕipn(

n
k

)
Pr[~πk]

. (2)

Recall that ϕ∗k is the unique value which satisfies
Pr[fplu(~σn) = a � b|~πk] = Pr[fplu(~σn) = b � a|~πk],
i.e.,

n−1
2∑
i=k

(
i

k

)(
n

i

)
(ϕ∗k)i =

n∑
i= n+1

2

(
i

k

)(
n

i

)
(ϕ∗k)i.

Case 1: k = 1. We want to show that ϕ∗k ≥ 1 − 4 lnn
n+1 .

Hence, it is sufficient to show that for all ϕ < 1− 4 lnn
n+1 ,

n−1
2∑
i=k

(
i

k

)(
n

i

)
ϕi >

n∑
i= n+1

2

(
i

k

)(
n

i

)
ϕi.

For k = 1, this reduces to
n−1
2∑
i=1

(
n

i

)
· i · ϕi >

n∑
i= n+1

2

(
n

i

)
· i · ϕi

⇔

n−1
2∑
i=1

(
n

i

)
·
(
iϕi − (n− i)ϕn−i

)
> nϕn.

A sufficient condition for this to hold is that

iϕi − (n− i)ϕn−i > 0,∀i ∈ [(n− 1)/2]

and
n− 1

2
ϕ

n−1
2 − n+ 1

2
ϕ

n+1
2 ≥ nϕn.

For the former condition, it is sufficient to have
n− 1

2
ϕ

n−1
2 − n+ 1

2
ϕ

n+1
2 > 0

⇔ ϕ <
(n− 1)/2

(n+ 1)/2
= 1− 2

n+ 1
.

This is true because ϕ < 1−4 lnn/(n+1). We can simplify
the latter condition to

n− 1

2
≥ n+ 1

2
ϕ+ nϕ

n+1
2 .

For ϕ ≤ 1− 4 lnn
n+1 , we have

n+ 1

2
ϕ+ nϕ

n+1
2 ≤ n+ 1− 4 lnn

2
+ ne−

4 lnn
n+1 ·

n+1
2

=
n+ 1− 4 lnn

2
+ 1 ≤ n− 1

2
,

where the first transition holds because 1 − x ≤ e−x for all
x, and the last transition holds when lnn ≥ 1, which is true
for n ≥ 3.

Case 2: k = (n − 1)/2. In this case, we want to show
ϕ∗k ≤ 2/(n + 1). It is sufficient to show that for all ϕ >
2/(n+ 1),

n−1
2∑
i=k

(
i

k

)(
n

i

)
ϕi <

n∑
i= n+1

2

(
i

k

)(
n

i

)
ϕi.

For k = (n− 1)/2, this reduces to(
n
n−1

2

)
ϕ

n−1
2 <

n∑
i= n+1

2

(
i

n−1
2

)(
n

i

)
ϕi.

It suffices to show that(
n
n−1

2

)
ϕ

n−1
2 <

(n+1
2

n−1
2

)(
n
n+1

2

)
ϕ

n+1
2 .

Upon simplification, it is easy to see that this is true when
ϕ > 2

n+1 .

Case 3: k = (n− 1)/4. In this case, we want to show that
ϕ∗k ∈ [1/4, 2/3]. It is sufficient to show that
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4

(
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n−1
4
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i

)
ϕi >
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)
ϕi, ∀ϕ < 1/4,

(3)
and
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4

(
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n−1
4

)(
n

i

)
ϕi <

n∑
i= n+1

2

(
i

n−1
4

)(
n

i

)
ϕi, ∀ϕ > 2/3.

(4)



We show each inequality separately.

Case 3a: ϕ < 1/4. For Equation (3), it suffices to show
that for all ϕ < 1/4 and i ∈

{
0, 1, . . . , n−1

4

}
, we have(

n−1
2
− i

n−1
4

)(
n

n−1
2
− i

)
ϕ

n−1
2

−i >(
n+1
2

+ 2i
n−1
4

)(
n

n+1
2

+ 2i

)
ϕ

n+1
2

+2i

+

(
n+1
2

+ 2i+ 1
n−1
4

)(
n

n+1
2

+ 2i+ 1

)
ϕ

n+1
2

+2i+1

⇐ 1 >
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2
+ i+ 1) · · · (n−1

2
− 2i+ 1)

(n−1
4

+ 2i+ 1) · · · (n−1
4
− i+ 1)

(
1

4

)3i+1

+
(n−1

2
+ i+ 1) · · · (n−1

2
− 2i)

(n−1
4

+ 2i+ 2) · · · (n−1
4
− i+ 1)

(
1

4

)3i+2

We show that both terms of the right hand side are
less than 1/2 and the inequality follows. First, for i ∈{

0, . . . , n−1
4

}
, we have(

n− 1

4
+ 2i+ 1

)
· 1

2
>

(
n− 1

2
+ i+ 1

)
· 1

4
,

and for i ∈
{

0, . . . , n−1
4

}
and j ∈ [3i], we have

n− 1

4
+ 2i+ 1− j >

(
n− 1

2
+ i+ 1− j

)
· 1

4
.

This shows that the first term is less than 1/2. To show that
the second term is less than 1/2, it is sufficient to notice that
for i ∈

{
0, . . . , n−1

4

}
,(

n− 1

4
+ 2i+ 2

)
· 1

2
>

(
n− 1

2
+ i+ 1

)
· 1

4
,

and for i ∈
{

0, . . . , n−1
4

}
and j ∈ [3i+ 1],

n− 1

4
+ 2i+ 2− j >

(
n− 1

2
+ i+ 1− j

)
· 1

4
.

Case 3b: ϕ > 2/3. We now show Equation (4) for ϕ =
2/3. Then, the equation clearly holds for ϕ > 2/3. First,
note that for i ∈

{
0, . . . , n−1

4 − 1
}

, it holds that(n+1
2 + i
n−1

4

)(
n

n+1
2 + i

)(
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. . .
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)(
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)
. . .
(
n−1
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) .

This is because for each j ∈ {0, . . . , 2i}, we have

2

3
·
(
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2
+ i+ 1− j

)
≥ n− 1

4
+ i+ 1− j.

Next, we argue that(
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4
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(
n
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⇔
(
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)
. . .
(
n+1
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+ 1
)

(n−1
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)!
(
2

3
)
n+1
2

+

(
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)
. . .
(
n+1
2

+ 2
)

(n−1
4
− 1)!

(
2

3
)
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+1 > 1.

To prove this, we show that the first term on the LHS is
greater than 7/8, and the second term on the LHS is greater
than 1/8. First, we notice that(

2

3

)3

· 3n+ 1

4
>

7

8
·
(
n− 1

4

)
.

Next, for each j ∈ [n−1
4 − 1],(

2

3

)2

·
(

3n+ 1

4
− j
)
>
n− 1

4
− j.

This is sufficient to show that the first term is greater than
7/8. For the second term, note that(

2

3

)6

· 3n+ 1

4
>

1

8
·
(
n− 1

4
− 1

)
,

and for each j ∈ [n−1
4 − 2],(

2

3

)2(
3n+ 1

4
− j
)
>
n− 1

4
− 1− j.

Thus, the second term is greater than 1/8. This concludes
the proof.

C Predicting the Winner
For the purpose of this section, we define a voting rule as
a function f : L(A)n → 2A, which, given a profile of n
ranked votes, returns a winning alternative (or a set of tied
winning alternatives). Positional scoring rules are assumed
to output the set of alternatives with the highest score.

The accuracy of predicting the outcome of rule f1 using
rule f2 on profile ~σn is still defined as acc(f1, f2, ~σn) =
Pr~πk∼Uk(~σn)[f2(~πk) ⊆ f1(~σn)], and similarly, the worst-
case accuracy of predicting the outcome of rule f1 using rule
f2 is still defined as acc(f1, f2) = min~σn

acc(f1, f2, ~σn).
In this section, we show that the worst-case accuracy of

predicting Borda count using itself is zero, while the same
statement is not true for r-approval rule for any r.
Theorem 7. Let n ≥ 2, m ≥ 4, and k ∈ [n − 1] such that
n and k have different parity. Then, acc(fBorda, fBorda) = 0,
where fBorda denotes Borda count.

Proof. We consider cases of even and odd k and for each
case we construct a profile on which Borda count cannot
predict its own winner.



Odd n, even k: We start with the case where n is odd and k
is even. Consider the following profile ~σn. Each row repre-
sents a ranking where alternatives are listed from left to right
in the most preferred to least preferred order. The first two
rankings appear (n− 1)/2 times each, and the third ranking
appears once. Alternatives not shown appear in an arbitrary
order in the bottom.

n−1
2 votes a1 � a3 � a2 � a4 � . . .

n−1
2 votes a4 � a2 � a3 � a1 � . . .

1 vote a3 � a1 � a4 � a2 � . . .

We denote with σ1, σ2 and σ3 the ranking of the first, sec-
ond and third rows, respectively. Under Borda rule, clearly
winner is a3.

We show that for every sample ~πk ⊂ ~σn of size k,
fBorda(~πk) 6= {a3}. We consider two cases for the possible
choices of ~πk.
Case 1: σ3 /∈ ~πk. First, suppose σ3 does not appear in ~πk.
Let x1 and x2 denote the number of times σ1 and σ2 appear
in ~πk, respectively. In order for a3 to be the unique winner
under fBorda on ~πk, it must defeat a2. Hence, we need

x1 · (m− 2) + x2 · (m− 3) > x1 · (m− 3) + x2 · (m− 2)

⇒ x1 > x2.

Similarly, it must also defeat a1. Hence, we also need

x1 · (m− 2) + x2 · (m− 3) > x1 · (m− 1) + x2 · (m− 4)

⇒ x2 > x1.

This is a contradiction.
Case 2: σ3 ∈ ~πk. Next, suppose σ3 appears in ~πk. Again,
let x1 and x2 denote the number of times σ1 and σ2 appear in
~πk, respectively. For a3 to be the unique winner under fBorda
on ~πk, it must defeat a1. Hence, we need

x1 · (m− 2) + x2 · (m− 3) + (m− 1)

> x1 · (m− 1) + x2 · (m− 4) + (m− 2)

⇒ x2 + 1 > x1.

Similarly, it must also defeat a4. Hence, we also need

x1 · (m− 2) + x2 · (m− 3) + (m− 1)

> x1 · (m− 4) + x2 · (m− 1) + (m− 3)

⇒ x1 + 1 > x2.

We thus conclude that x1 = x2. However, then |~πk| = x1 +
x2 + 1 is odd, which contradicts the fact that k is even.

Even n, odd k: We now consider the case of even n and
odd k. Consider the following profile ~σn.

n−1
2 votes a1 � a3 � a2 � a4 � . . .

n−1
2 votes a4 � a2 � a3 � a1 � . . .

1 vote a3 � a2 � a1 � a4 � . . .
1 vote a4 � a2 � a1 � a3 � . . .

We again denote with σ1, σ2, σ3 and σ4 the rankings in rows
1, 2, 3 and 4, respectively. When Borda count is applied on
~σn, clearly a2 is the unique winner.

We now argue that for every sample ~πk ⊂ ~σn of size k,
fBorda(~πk) 6= {a2}. Here, we have to take four cases depend-
ing on whether each of σ3 and σ4 appears in ~πk.

Case 1: σ3, σ4 /∈ ~πk. Let x1 and x2 denote the number of
times σ1 and σ2 appear in ~πk, respectively. In order for a2

to be the unique winner under Borda count on ~πk, it must
defeat a3. Hence, we need

x1 · (m− 3) + x2 · (m− 2) > x1 · (m− 2) + x2 · (m− 3)

⇒ x2 > x1.

Similarly, it must also defeat a4. Hence, we also need

x1 · (m− 3) + x2 · (m− 2) > x1 · (m− 4) + x2 · (m− 1)

⇒ x1 > x2.

This is a contradiction.

Case 2: σ3 ∈ ~πk ∧ σ4 /∈ ~πk. Suppose ~πk consists of x1

copies of σ1, x2 copies of σ2, and σ3. Again, for a2 to defeat
a3 under Borda count on ~πk, we need

x1 · (m− 3) + x2 · (m− 2) + (m− 2)

> x1 · (m− 2) + x2 · (m− 3) + (m− 1)

⇒ x2 > x1 + 1.

Similarly, for a2 to defeat a4, we also need

x1 · (m− 3) + x2 · (m− 2) + (m− 2)

> x1 · (m− 4) + x2 · (m− 1) + (m− 4)

⇒ x1 + 2 > x2.

This is a contradiction given that x1 and x2 are integers.

Case 3: σ3 /∈ ~πk ∧ σ4 ∈ ~πk. Suppose ~πk consists of x1

copies of σ1, x2 copies of σ2, and σ4. For a2 to defeat a4

under Borda count on ~πk, we need

x1 · (m− 3) + x2 · (m− 2) + (m− 2)

> x1 · (m− 4) + x2 · (m− 1) + (m− 1)

⇒ x1 > x2 + 1.

Similarly, for a2 to defeat a1, we also need

x1 · (m− 3) + x2 · (m− 2) + (m− 2)

> x1 · (m− 1) + x2 · (m− 4) + (m− 3)

⇒ x2 + 1/2 > x1.

This is again a contradiction.

Case 4: σ3, σ4 ∈ ~πk. Suppose σ1 and σ2 appear x1 and
x2 times in ~πk, respectively. In this case, for a2 to defeat a3

under Borda count in ~πk, we need

x1 · (m− 3) + x2 · (m− 2) + (m− 2) + (m− 2)

> x1 · (m− 2) + x2 · (m− 3) + (m− 1) + (m− 4)

⇒ x2 + 1 > x1.



Similarly, for a2 to defeat a4, we also need

x1 · (m− 3) + x2 · (m− 2) + (m− 2) + (m− 2)

> x1 · (m− 4) + x2 · (m− 1) + (m− 4) + (m− 1)

⇒ x1 > x2 − 1.

Thus, we must have x1 = x2. This implies |~πk| = x1+x2+2
is even, which contradicts the fact that k is odd.

Theorem 8. For r ∈ [m − 1] and k ≥ r, we have
acc(fr-app, fr-app) > 0, where fr-app denotes the r-approval
voting rule.

Proof. Fix r ∈ [m− 1] and k ≥ r. Consider any profile ~σn.
Let W = fr-app(~σn) denote the set of winners under fr-app

on ~σn, and let W̄ = A \W . Let xi denote the r-approval
score of ai in ~σn for each i ∈ [m].

We now show that there exists a sample ~πk ∈ Sk(~σn)
such that fr-app(~πk) ⊆ fr-app(~σn). Without loss of general-
ity, assume that a1 ∈ W . Hence, we have x1 > xj for all
aj ∈ W̄ .

Let ~ρ ⊆ ~σn denote the subset of votes in which a1 is
approved (i.e. it appears in the top r positions). If k ≥ |~ρ|,
then we can simply choose an arbitrary ~πk ∈ Sk(~σn) such
that ~ρ ⊆ ~πk. In this case, the score of a1 would be exactly
equal to x1 = |~ρ|, while the score of any aj ∈ W̄ will be at
most xj < x1. This implies fr-app(~πk) ⊆W , as desired.

Now, suppose r ≤ k ≤ |~ρ|. Note that the previous argu-
ment establishes that for k = |~ρ|, we can use ~πk = ~ρ, and
have fr-app(~πk) ⊆ W . For k < |~ρ|, we show that one can
start from ~ρ, and iteratively remove one vote at a time — un-
til k votes remain — such that the set of winners is always a
subset of W .

More specifically, we show that given k ≥ r, and any
~πk+1 ⊆ ~ρ with |~πk+1| = k + 1 and fr-app(~πk+1) ⊆ W ,
there exists ~πk ⊂ ~πk+1 with |~πk| = k and fr-app(~πk) ⊆W .

Suppose this is false for some ~πk+1. That is, removing
any single ranking from ~πk+1 results in at least one alterna-
tive from W̄ becoming a winner. For each σ ∈ ~πk+1, let us
denote ~πσk = ~πk+1 \{σ} and S(σ) = fr-app(~πσk )∩W̄ . Then,
our assumption implies that S(σ) 6= ∅ for each σ ∈ ~πk+1.

We further show that S(σ)∩S(σ′) = ∅ for distinct σ, σ′ ∈
~πk+1.4 Note that for each aj ∈ S(σ), aj is a winner under
~πσk but not under ~πk+1. Also, note that the r-approval score
of a1 under ~πσk and ~πk+1 is k and k + 1, respectively, since
~πk+1 ⊆ ~ρ. Hence, it must be the case that aj is approved
in every ranking in ~πσk but not in σ. Hence, aj /∈ S(σ′) for
every other ranking σ′ in ~πk+1.

Finally, let us partition W̄ into two sets Swin and Slose
such that Swin = ∪σ∈~πk+1

S(σ) and Slose = W̄ \ Swin. Let
t = minσ∈~πk+1

|S(σ)|. Then, |Swin| ≥ t · (k + 1). Fur-
ther, consider a ranking σ ∈ ~πk+1 under which exactly
t of the unapproved alternatives are in Swin. In this rank-
ing, the remaining m − r − t unapproved alternatives must
be in Slose. Hence, |Slose| ≥ m − r − t. Thus, we have
W̄ ≥ t · (k + 1) + m − r − t. However, since a1 ∈ W ,

4Here, even two copies of the same ranking are referred to as
distinct.

we also have W̄ ≤ m − 1. Combining the two inequalities,
we get

t · (k + 1) +m− r − t ≤ m− 1⇒ t · k ≤ r − 1

⇒ k ≤ r − 1,

where the last inequality holds because t ≥ 1 (since S(σ) 6=
∅ for each σ ∈ ~πk+1). However, this is a contradiction since
we assumed k ≥ r.

It is easy to notice that the lower bound of r is tight. For
example, consider the following preference profile with n
alternatives and r votes.

Approved Not Approved

a1 � a2 � a3 � . . . � ar ar+1 � ar+2 � . . . � am
a1 � ar+1 � a2 � . . . � ar−1 ar � ar+2 � . . . � am
...

...

a1 � a3 � a4 � . . . � ar+1 a2 � ar+2 � . . . � am

Basically, alternative a1 is approved in each vote, and in
each of the r votes, a distinct subset of r − 1 alternatives
from the set {a2, . . . , ar+1} of r alternatives is approved. It
is easy to check that a1 is the unique r-approval winner on
this profile. However, there is no subset of r − 1 (or fewer)
votes under which a1 is the unique r-approval winner.


