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In an epidemic, how should an organization with limited testing resources safely return to in-person activities
after a period of lockdown? We study this question in a setting where the population at hand is heterogeneous
in both utility for in-person activities and probability of infection. In such a period of re-integration, tests can
be used as a certificate of non-infection, whereby those in negative tests are permitted to return to in-person
activities for a designated amount of time. Under the assumption that samples can be pooled, the question of
how to allocate a limited testing budget in the population to maximize the aggregate utility (i.e. welfare) of
negatively-tested individuals who return to in-person activities is non-trivial, with a large space of potential
testing allocations.

We show that non-overlapping testing allocations, which are both conceptually and (crucially) logistically
more simple to implement, are approximately optimal, and we design an efficient greedy algorithm for finding
non-overlapping testing allocations with approximately optimal welfare. In computational experiments, we
highlight the efficacy and viability of our greedy algorithm in practice. To the best of our knowledge, we
are also first to implement and provide causal evidence on the benefits of utility-weighted pooled testing
in a real-world setting. Our pilot study at a higher education research institute in Mexico demonstrates—
surprisingly—no worse performance and mental health outcomes of participants in our testing regime than
the first-best counterfactual of full reopening without testing.
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1 INTRODUCTION
Over the course of the ongoing COVID-19 pandemic, it has become abundantly clear that testing is
an indispensable tool for combating the virus. At the same time, the pandemic has underscored the
fact that this very resource can be prohibitively constrained in multiple ways (e.g. lack of reagents,
trained personnel or lab equipment), making it essential to study how to systematically allocate
tests for the benefit of the population at hand [Abera et al., 2020, Binnicker, 2020, De Georgeo
et al., 2021, Dhabaan et al., 2020, Dryden-Peterson et al., 2021, Kavanagh et al., 2020]. In this regard,
pooled testing has emerged as a promising primitive for expanding the reach of limited testing
resources. In a pooled test, the samples of multiple individuals are pooled together, and a single test
is applied to the mixed sample. If the test is positive, at least one individual in the pool is infected,
and if negative, all individuals in the pool are healthy. Indeed, the latter case is precisely where
savings in applying tests occur, as a single test can verify that multiple individuals are healthy.

Ultimately, testing serves twomajor purposes: it prevents infections from occurring by identifying
infected individuals to be isolated, and it provides a means for individuals in a population to return
to in-person activities after being cleared with a negative test result. Our point of departure from
prior work is the observation that different individuals have different utilities for resuming in-
person activities; in a scientific setting, for example, the benefit an experimentalist derives from
being able to work in their lab is typically higher than that of a theoretician who is permitted to go
to the office. The goal, therefore, should be to

... maximize the expected welfare (overall utility) of individuals who are able to resume
in-person activities.

In more detail, we explore the scenario where a population is currently in lockdown and wishes
to begin in-person activities, facilitated by a fixed budget of tests. We assume that the population
is heterogeneous: each individual has their own probability of being infected and (as mentioned
earlier) their own utility for being able to resume in-person activities. Tests are allocated to subsets
of the population as pooled tests, and an individual is allowed to return to in-person activities
(and hence earn their corresponding utility) if any of the tests to which they are assigned results
negative (proving that they are healthy). A testing regime thus obtains a certain expected welfare
(overall utility) with respect to the randomized realization of infections in the population.

Our problem setting is fundamentally motivated and informed by a collaboration with the
Potosinian Institute of Scientific and Technological Research (IPICYT), a higher education research
institution in Mexico, with the goal of providing safe, resource-optimal alternatives to fully easing a
virtual work environment. At IPICYT, a heterogeneous population of 130 individuals participated in
our pilot study, including students, academics, and administrators, whowere largely restricted access
to the campus buildings until September 2022. We have worked closely with epidemiologists at
IPICYT and in the local state of San Luis Potosí to determine accurate estimates of the probabilities of
infection for each member of the population. Furthermore, the National Laboratory of Agricultural,
Medical and Environmental Biotechnology (LANBAMA), housed within IPICYT, maintains a qPCR
testing facility. Three testing constraints exhibited by the LANBAMA are of crucial importance
to our work: i) there are insufficient resources available to regularly test every member of the
population individually, ii) the laboratory strongly prefers pooled testing protocols that do not
include individuals in more than one test at a time, and iii) the laboratory conducts pooled testing
on saliva samples (as opposed to nasopharyngeal sample) with a maximal pool size of 5.
To further elucidate the latter constraint, it is important to note that although pooled testing

increases resource efficiency with regards to testing reagents, this can come at a significant logistical
cost for laboratory personnel when pools are overlapping, especially if the series of tests to be
performed is complicated and requires delicate tab-keeping of results. In this regard, pooled testing
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regimes in which no individual forms part of more than one pooled test are not only conceptually
simpler to study but, more importantly, logistically simpler to implement. We call such testing
regimes “non-overlapping” due to the fact that pooled tests in the allocation do not overlap. By
contrast, the more general overlapping testing regimes allows for the budget of tests to be allocated
arbitrarily, subjecting individuals to arbitrarily many tests.

Our results. Despite these practical considerations that favor non-overlapping testing regimes,
our first research question is whether they may be vastly outperformed by overlapping regimes.
After all, if that is the case then supporting overlaps may be worth the logistical overhead. However,
we show that the worst-case ratio between the welfare of the best overlapping testing regime and
the best non-overlapping regime is at most 4, and in special cases even smaller. While a factor
of 4 is admittedly significant, the worst example we know of gives a ratio of 7/6. Qualitatively,
we interpret these results as a justification to focus on non-overlapping testing regimes. This is
confirmed by our empirical results, which indicate only small gains from overlaps in practice.
Turning to the challenge of computing testing regimes, even without overlaps, the problem of

determining an optimal regime is NP-hard. But we design a greedy polynomial-time algorithm
that (roughly speaking) provides a 5-approximation to the optimal non-overlapping testing regime
in the worst case. We then compare the performance of our greedy algorithm with optimal non-
overlapping testing empirically. In our computational experiments, we choose a population size,
pool size constraints and testing budgets that mirror realities at IPICYT. In order to compute
(approximately) optimal non-overlapping testing regimes, we model the problem as a mixed-integer
linear program (MILP). Our results indicate that the greedy algorithm computes near-optimal
testing regimes, and vastly outperforms the MILP approach with respect to running time.

Finally, we provide empirical evidence in support of our approach to welfare-maximizing pooled
testing in a resource-constrained environment by evaluating a randomized controlled trial at
IPICYT, which we conducted in September 2022. For the pilot, we developed a web application
(released as open source) that formed the center point for participants, administrators and the
LANBAMA testing laboratory, and implemented our greedy algorithm to compute near-optimal
non-overlapping group testing regimes.1 Our trial results show that, compared to a best-case
scenario of free mobility and full access to institutional resources, our testing approach is just
as efficient in terms of performance, learning, and mental health outcomes. At the same time,
our protocol, which ensures that only negatively qPCR-tested individuals have in-person access,
safeguards the population’s health within the institution, unlike a full reopening without testing,
and at a fraction of the cost of an individual qPCR testing regime.2

Related work. Pooled testing dates back to the seminal work of Dorfman [1943] and has since
become a mature field in its own right with a rich literature of protocols typically aimed at solving
the following problem: precisely ascertain the infection status of all individuals in a population
with the minimum number of tests. As mentioned above, our work departs significantly from this
objective, as we instead assume that testing resources are initially limited, and with this provide
welfare-optimizing testing allocations. For general references and recent results in this theoretical
thread of pooled testing, we refer the reader to an in-depth literature review included in Appendix A.
Resource constraints have motivated recent work aimed at optimally utilizing limited testing

capabilities to help local communities. Ely et al. [2021] study a model where a policymaker can
employ tests of different types, each with differential costs and sensitivities. The policymaker has an

1An anonymised demo of the web app is available at https://ec23demo.pythonanywhere.com.
2At the time of reopening, San Luis Potosí had 221,870 cumulative COVID-19 cases, of which 615 were active. KN95 Masks
were mandatory for everyone returning to IPICYT.

https://ec23demo.pythonanywhere.com
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overall budget, and testing allocations are measured with respect to the rate at which they correctly
classify individuals as infected or healthy. Brault et al. [2021] focus on limited pooled tests for early
screening at a non-diagnostic level with high penalties associated with false negatives. Gollier and
Gossner [2020] study pooled tests as a means to estimate infection prevalence and to find healthy
individuals in a population. The main differences between their work and ours is that we consider
a heterogeneous population as well as upper bounds on pool sizes imposed by lab constraints.

Most similar to our paper is the work of Lock et al. [2021] and Jonnerby et al. [2020a,b], in which
the authors consider a limited testing budget to be used over a heterogeneous population as a
means of surveilling and containing viral spread (unlike our work which focuses on testing to find
those who are healthy). The testing allocation problem is treated as a multi-objective optimization
problem aimed at balancing viral spread with the overall cost of self-isolation. Although not cast as
a pooled testing paper, the results of Goldberg and Rudolf [2020] can be interpreted as computing
the optimal allocation of a single (arbitrarily large) pooled test to a heterogeneous population
as in our model setting. The authors show that computing an optimal single test allocation is
NP-hard, and they provide a fully polynomial-time approximation scheme (FPTAS) for finding an
approximately optimal single test allocation; we use their FPTAS as a subroutine in our greedy
algorithm. Finally, Larremore et al. [2021] and Augenblick et al. [2020] study testing frequency as
a crucial factor to limiting viral spread in a pandemic environment, and how pooled testing can
increase the reach of a rapid frequency testing regime when test are limited.

2 MODEL
Let [𝑛] = {1, . . . , 𝑛} denote the population and 𝐵 ∈ N be the testing budget, i.e. the number of
available tests. Each individual in the population has an independent probability of infection given
by 𝑝𝑖 ∈ [0, 1] and a utility 𝑢𝑖 ≥ 0 capturing their gain of returning to in-person activities.3 We also
let 𝑞𝑖 = 1 − 𝑝𝑖 denote the probability that an individual is healthy. A population instance 𝐽 is given
by (𝑞1, . . . 𝑞𝑛, 𝑢1, . . . , 𝑢𝑛).
A single test consists of samples of a subset of the individuals, which we identify with a set

𝑡 ⊆ [𝑛] of the individuals whose samples are included in the test. Test sizes are bounded by a
pool size constraint 𝐺 ≤ 𝑛, so |𝑡 | ≤ 𝐺 for all tests 𝑡 .4 For convenience, we introduce the notation
𝑞𝑆 =

∏
𝑖∈𝑆 𝑞𝑖 , for any 𝑆 ⊆ [𝑛], to express the probability that all individuals in 𝑆 are healthy; hence,

𝑞𝑡 is the probability that test 𝑡 is negative. A testing regime 𝑇 = (𝑡1, . . . , 𝑡𝐵) is a collection of 𝐵 tests
satisfying |𝑡 𝑗 | ≤ 𝐺 for each 𝑗 ∈ [𝐵].
Individuals are allowed to return to in-person activities only if they are included in a negative

test. For a given testing regime 𝑇 , let 𝑃𝑇𝑖 denote the probability that 𝑖 ∈ [𝑛] is included in some
negative test 𝑡 𝑗 ∈ 𝑇 . A testing regime only earns utility from individuals who return to in-person
activities as a result of being in a negative test. We let 𝑢 (𝑇 ) denote the aggregate expected utility, or
welfare, earned under testing regime 𝑇 .5 Linearity of expectation allows us to express the welfare
of 𝑇 as 𝑢 (𝑇 ) = ∑

𝑖∈[𝑛] 𝑢𝑖 · 𝑃𝑇𝑖 . In addition, we let 𝑢 (𝑡) := 𝑢 ((𝑡)) = 𝑞𝑡 (
∑
𝑖∈𝑡 𝑢𝑖 ) for a single pooled

test 𝑡 . A testing regime 𝑇 is optimal (for a given population) if it maximizes welfare. Without loss
of generality, we assume that 𝐵 < 𝑛. If this is not the case, testing every person in the population
individually is optimal.

3Utility might reflect people’s socioeconomic status, the type of occupation, or mental health considerations. See Section 5.1
for details on the utilities in our pilot.
4Pool sizes in pooled tests are limited due to biological constraints. Our partners in Mexico have replicated techniques from
Sanghani et al. [2021] to achieve a maximal pool size of 5 with saliva samples.
5In the following, we will drop the term ‘expected’ for brevity, and assume that all welfares and utilities are determined in
expectation.
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Independence of Infections. In general it may be the case that infections in a population are
correlated. However, we emphasize that our testing model is intended for a regime wherein all
individuals in the given population are assumed to be in full lockdown, hence social interactions at
the workplace do not contribute to potential correlation of infection for two key reasons: Either
individuals who would potentially interact are forcibly at home, and hence no longer interact, or if
the individuals are interacting at the workplace, it is because they are both in a negative test and
hence cannot infect each other. It may be the case that colleagues interact outside of office hours,
but this is not a phenomenon observed often during lockdown with our partners in Mexico.

Non-overlapping testing regimes. As discussed in Section 1, we are particularly interested in non-
overlapping testing regimes that include each individual in at most one test. Formally, testing regime
𝑇 is non-overlapping if 𝑡 ∩ 𝑡 ′ = ∅ for all distinct tests 𝑡, 𝑡 ′ ∈ 𝑇 . In general, 𝑃𝑖,𝑇 can be a complicated
expression due to correlation between overlapping tests. In non-overlapping testing regimes 𝑇 , by
contrast, test results are independent of one another and the welfare of 𝑇 is 𝑢 (𝑇 ) = ∑

𝑡 ∈𝑇 𝑢 (𝑡).

Gain of overlaps. We are interested in quantifying the relative benefit provided by overlapping
testing regimes over non-overlapping regimes, because the latter are not only conceptually simpler
but also more feasible to implement in practice, as discussed in Section 1. Given a population
instance 𝐽 and budget 𝐵, we define the gain of overlaps gain(𝐵, 𝐽 ) as the ratio of the welfare of the
optimal testing regime over the welfare of the optimal non-overlapping testing regime. Formally,
we let T 𝐵 and T̃ 𝐵 respectively denote the space of all testing regimes and all non-overlapping
testing regimes with testing budget 𝐵, and write

gain(𝐵, 𝐽 ) = max𝑇 ∗∈T𝐵 𝑢 (𝑇 ∗)
max

𝑇 ∈ T̃𝐵 𝑢 (𝑇 )
.

The gain of overlaps given a budget 𝐵, denoted gain(𝐵), is the worst-case gain over all possible
instances 𝐽 , that is, gain(𝐵) = sup𝐽 gain(𝐵, 𝐽 ).

3 THEORETICAL RESULTS
In this section, our goal is to provide upper bounds for the gain of overlaps. In order to develop
intuition for cases in which the gain is greater than 1, we first study, as a warm-up, the case where
there are only two available tests (𝐵 = 2), and show that the gain of overlaps is quite small. More
generally, we show that for any value of 𝐵, the gain is at most 4. Motivated by this result and
the aforementioned practical constraints, we then focus on non-overlapping testing regimes and
present a greedy algorithm that achieves a constant-factor approximation with respect to the
optimal non-overlapping testing regime.

3.1 Warm-Up: Gain of Overlaps when 𝐵 = 2
We begin by studying the case in which 𝐵 = 2. This case is particularly interesting for two reasons:
first, we find the exact value of the gain by providing a lower bound and then showing that it is
tight; second, this lower bound is the worst (largest) we know of, for any value of 𝐵.

Proposition 1. For 𝐵 = 2, gain(𝐵) ≥ 7/6.

Proof. Consider a population of three individuals {1, 2, 3} given by 𝑞1 = 𝑞2 = 1/2, 𝑞3 = 1 and
𝑢1 = 𝑢2 = 𝑢3 = 1. We see that individuals 1 and 2 are identical, and therefore there are only four
non-overlapping testing regimes up to symmetries.
• 𝑇 1 = ({1}, {2}) yields welfare 𝑢 (𝑇 1) = 1.
• 𝑇 2 = ({1}, {3}) yields welfare 𝑢 (𝑇 2) = 3/2.
• 𝑇 3 = ({1, 2}, {3}) yields welfare 𝑢 (𝑇 3) = 3/2.
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• 𝑇 4 = ({1, 3}, {2}) yields welfare 𝑢 (𝑇 4) = 3/2.
Now consider the overlapping testing regime 𝑇 ∗ = ({1, 3}, {2, 3}) in which individual 3 is tested
twice. Then we have welfare 𝑢 (𝑇 ∗) = 7/4. □

It is of particular interest in the proof of Proposition 1 that the optimal welfare is achieved by
testing the individual who is definitely healthy twice. This is intuitive, as we can test this individual
many times without reducing the chances that any test is negative. In fact, in the proof of the upper
bound (given in Appendix B), we use the property that the gain of overlaps is maximized when the
probability that the individuals who are tested twice are healthy is maximized.

Proposition 2. For 𝐵 = 2, gain(𝐵) ≤ 7/6.

3.2 Upper Bound on Gain of Overlaps for Any 𝐵 ≥ 2
In this section, we show that the gain of overlaps is a small constant; not only for the case that
there are two tests available, but for any 𝐵. Before doing so, we start with some necessary notation.
Given a testing regime 𝑇 = (𝑡1, . . . , 𝑡𝐵) and individual 𝑖 ∈ [𝑛], we let 𝑇 (𝑖) = {𝑡 𝑗 ∈ 𝑇 | 𝑖 ∈ 𝑡 𝑗 }.
Furthermore, we denote with 𝑇 (𝑖; 𝑗) the set of tests with index less than 𝑗 in which 𝑖 has been
tested, i.e.𝑇 (𝑖; 𝑗) = {𝑡 𝑗 ′ ∈ 𝑇 (𝑖) : 𝑗 ′ < 𝑗}. We say that test 𝑡 𝑗 is pivotal for individual 𝑖 if: 𝑖 is included
in 𝑡 𝑗 , the result of 𝑡 𝑗 is negative, and all tests in 𝑇 (𝑖; 𝑗) are positive. Equivalently, test 𝑡 𝑗 is pivotal
for individual 𝑖 if it is the negative test of smallest index in 𝑇 (𝑖). We let 𝑃𝑇𝑖,𝑗 denote the probability
that 𝑡 𝑗 is pivotal for individual 𝑖 under random infection realizations. In other words:

𝑃𝑇𝑖,𝑗 =

{
Pr[ ∀𝑡 𝑗 ′ ∈ 𝑇 (𝑖; 𝑗), 𝑡 𝑗 ′ is positive and 𝑡 𝑗 is negative] if 𝑡 𝑗 ∈ 𝑇 (𝑖),
0 otherwise.

Individual 𝑖 is in a negative test if and only if a single test 𝑡 𝑗 ∈ 𝑇 is pivotal for 𝑖 , hence 𝑃𝑇𝑖 =
∑
𝑗∈[𝐵 ] 𝑃

𝑇
𝑖,𝑗 .

As previously advertized, our main result of this section is that overlapping testing regimes have
bounded gain over non-overlapping regimes.

Theorem 1. For any 𝐵 ≥ 1, gain(𝐵) ≤ 4.

To prove the theorem, we will show that given an optimal overlapping testing regime𝑇 ∗, we can
find a non-overlapping testing regime 𝑇 such that 𝑢 (𝑇 ∗)/𝑢 (𝑇 ) ≤ 4 in polynomial time. This does
not lead to a polynomial-time algorithm, as it requires access to 𝑇 ∗ to begin with.

The proof requires a two lemmas. The first lemma, whose proof appears in Appendix C, is more
intuitive: There exists an optimal testing regime 𝑇 ∗ = (𝑡∗1 , . . . , 𝑡∗𝐵) such that if 𝑡∗𝑗 ∈ 𝑇 ∗ (𝑖), it must be
the case that the probability that 𝑡∗𝑗 is pivotal for 𝑖 is positive.

Lemma 1. There exists an optimal 𝑇 ∗ = (𝑡∗1 , . . . , 𝑡∗𝐵) such that if 𝑡∗𝑗 ∈ 𝑇 ∗ (𝑖), then 𝑃𝑇
∗

𝑖, 𝑗 > 0.

The second lemma is a non-trivial generalization of Lemma 6 of Goldberg and Rudolf [2020]. At a
high level, we show that if a (non-overlapping) testing regime is optimal, no test within this regime
can be split into two groups which simultaneously have a “low” probability of being healthy. When
the testing regime is non-overlapping, the generalization is straightforward, but for the general
case where the testing regime may be overlapping, novel techniques and arguments are used.

Lemma 2. Suppose that 𝑇 ∗ = (𝑡∗1 , . . . , 𝑡∗𝐵) is an optimal (non-overlapping) testing regime and that
𝛼 ∈ (0, 1). For any 𝑡∗𝑗 and any 𝑆 ⊂ 𝑡∗𝑗 , if 𝑞𝑆 < 𝛼 , then 𝑞𝑡∗

𝑗
\𝑆 ≥ 1 − 𝛼 .

Proof. First note that for any 𝑖 ∈ 𝑡∗𝑗 ,

𝑃𝑇
∗

𝑖, 𝑗 = Pr[ ∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖; 𝑗), 𝑡∗𝑗 ′ is positive and 𝑡∗𝑗 is negative]
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= Pr[ ∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖; 𝑗), 𝑡∗𝑗 ′ is positive | 𝑡∗𝑗 is negative] · Pr[𝑡∗𝑗 is negative]
= Pr[ ∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖; 𝑗), 𝑡∗𝑗 ′ \ 𝑡∗𝑗 is positive | 𝑡∗𝑗 is negative] · Pr[𝑡∗𝑗 is negative]
= Pr[ ∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖; 𝑗), 𝑡∗𝑗 ′ \ 𝑡∗𝑗 is positive ] · Pr[𝑡∗𝑗 is negative]
= Pr[ ∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖; 𝑗), 𝑡∗𝑗 ′ \ 𝑡∗𝑗 is positive ] · 𝑞𝑡∗𝑗

where the third equality follows since 𝑡∗
𝑗 ′ can be positive if and only if some individual in 𝑡∗

𝑗 ′ \ 𝑡∗𝑗 is
infected as given that 𝑡∗𝑗 is negative we conclude that any individual in 𝑡∗𝑗 is healthy, and the fourth
inequality follows since each individual has an independent probability to be infected.
Assume for the sake of contradiction that for some 𝑗 ∈ [𝐵], there exists 𝑆 ⊂ 𝑇 ∗

𝑗∗ such that 𝑞𝑆 < 𝛼

and 𝑞𝑇 ∗
𝑗∗\𝑆 < 1 − 𝛼 . Without loss of generality, we assume that 𝑗∗ = 𝐵. Then, since from Lemma 1

we know that 𝑃𝑡∗𝑖, 𝑗 > 0 for any individual 𝑖 such that 𝑖 ∈ 𝑇 ∗𝑗 , we have that

𝑢 (𝑇 ∗) =
∑︁
𝑖∈[𝑛]

𝑃𝑇𝑖 · 𝑢𝑖

=
∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[𝐵 ]

𝑃𝑇
∗

𝑖, 𝑗 · 𝑢𝑖

=
∑︁

𝑗∈[𝐵−1]

∑︁
𝑖∈[𝑛]

𝑃𝑇
∗

𝑖, 𝑗 · 𝑢𝑖 +
∑︁
𝑖∈[𝑛]

𝐼𝑇
∗

𝑖,𝐵 · 𝑞𝑡∗𝐵 · Pr[∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖;𝐵), 𝑡∗𝑗 ′ \ 𝑡∗𝐵 is positive] · 𝑢𝑖

=
∑︁

𝑗∈[𝐵−1]

∑︁
𝑖∈[𝑛]

𝑃𝑇
∗

𝑖, 𝑗 · 𝑢𝑖 + 𝑞𝑆 · 𝑞𝑡∗𝐵\𝑆 ·
∑︁
𝑖∈𝑡∗

𝐵

Pr[∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖;𝐵), 𝑡∗𝑗 ′ \ 𝑡∗𝐵 is positive] · 𝑢𝑖

=
∑︁

𝑗∈[𝐵−1]

∑︁
𝑖∈[𝑛]

𝑃𝑇
∗

𝑖, 𝑗 · 𝑢𝑖 + 𝑞𝑡∗𝐵\𝑆 ·
(
𝑞𝑆 ·

∑︁
𝑖∈𝑆

Pr[∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖;𝐵), 𝑡∗𝑗 ′ \ 𝑡∗𝐵 is positive] · 𝑢𝑖

)

+ 𝑞𝑆
©­«𝑞𝑡∗𝐵\𝑆 ·

∑︁
𝑖∈𝑡∗

𝐵
\𝑆

Pr[∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖;𝐵), 𝑡∗𝑗 ′ \ 𝑡∗𝐵 is positive] · 𝑢𝑖
ª®¬

≤
∑︁

𝑗∈[𝐵−1]

∑︁
𝑖∈[𝑛]

𝑃𝑇
∗

𝑖, 𝑗 · 𝑢𝑖 + 𝑞𝑡∗𝐵\𝑆 ·
(
𝑞𝑆 ·

∑︁
𝑖∈𝑆

Pr[∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖;𝐵), 𝑡∗𝑗 ′ \ 𝑆 is positive] · 𝑢𝑖

)

+ 𝑞𝑆
©­«𝑞𝑡∗𝐵\𝑆 ·

∑︁
𝑖∈𝑡∗

𝐵
\𝑆

Pr[∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖;𝐵), 𝑡∗𝑗 ′ \ (𝑡∗𝐵 \ 𝑆) is positive] · 𝑢𝑖
ª®¬

<
∑︁

𝑗∈[𝐵−1]

∑︁
𝑖∈[𝑛]

𝑃𝑇
∗

𝑖, 𝑗 · 𝑢𝑖 +max
{
𝑞𝑆 ·

∑︁
𝑖∈𝑆

Pr[∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖;𝐵), 𝑡∗𝑗 ′ \ 𝑆 is positive] · 𝑢𝑖 ,

𝑞𝑡∗
𝐵
\𝑆 ·

∑︁
𝑖∈𝑡∗

𝑗
\𝑆

Pr[∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖;𝐵), 𝑡∗𝑗 ′ \ (𝑡∗𝐵 \ 𝑆) is positive] · 𝑢𝑖


To justify the first inequality, we begin by showing that∑︁
𝑖∈𝑆

Pr[∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖; 𝑗), 𝑡∗𝑗 ′ \ 𝑡∗𝐵 is positive] ≤
∑︁
𝑖∈𝑆

Pr[∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖; 𝑗), 𝑡∗𝑗 ′ \ 𝑆 is positive] .

Since 𝑆 ⊆ 𝑡∗
𝐵
, it follows that for any 𝑡∗

𝑗 ′ ∈ 𝑇 ∗ (𝑖; 𝑗) we have 𝑡∗𝑗 ′ \ 𝑡∗𝐵 ⊆ 𝑡∗𝑗 ′ \ 𝑆 . This in turn implies
that if 𝑡∗

𝑗 ′ \ 𝑡∗𝐵 is positive, it must be the case that 𝑡∗
𝑗 ′ \ 𝑆 is positive. It follows that the event where

∀𝑡∗
𝑗 ′ ∈ 𝑇 ∗ (𝑖 : 𝑗), 𝑡∗

𝑗 ′ \𝑡∗𝐵 is positive implies that∀𝑡∗
𝑗 ′ ∈ 𝑇 ∗ (𝑖 : 𝑗), 𝑡∗

𝑗 ′ \𝑆 is positive, hence the inequality
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follows. Furthermore, the argumentation above can be replicated with 𝑡∗
𝐵
\ 𝑆 rather than 𝑆 to fully

justify the inequality from the main derivation. As for the second inequality, in the derivation, this
follows from the assumption that 𝑞𝑆 < 𝛼 and 𝑞𝑡∗

𝐵
\𝑆 < 1 − 𝛼 .

To reach a contradiction, let 𝑇 be a testing regime with 𝑡 𝑗 = 𝑡∗𝑗 for any 𝑗 ∈ [𝐵 − 1] and 𝑡𝐵 = 𝑆 if

𝑞𝑆 ·
∑︁
𝑖∈𝑆

Pr[∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖;𝐵), 𝑡∗𝑗 ′ \ 𝑆 is positive] · 𝑢𝑖

≥ 𝑞𝑇 ∗
𝐵
\𝑆 ·

∑︁
𝑖∈𝑇 ∗

𝐵
\𝑆

Pr[∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖;𝐵), 𝑡∗𝑗 ′ \ (𝑡∗𝐵 \ 𝑆) is positive] · 𝑢𝑖

and 𝑡𝐵 = 𝑡∗
𝐵
\ 𝑆 , otherwise. Then,

𝑢 (𝑇 ) =
∑︁
𝑖∈[𝑛]

𝑃𝑇𝑖 · 𝑢𝑖

=
∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[𝐵 ]

𝑃𝑇𝑖,𝑗 · 𝑢𝑖

=
∑︁

𝑗∈[𝐵−1]

∑︁
𝑖∈[𝑛]

𝑃𝑇
∗

𝑖, 𝑗 · 𝑢𝑖 +
∑︁
𝑖∈𝑡𝐵

𝑞𝑡𝐵 · Pr[∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖;𝐵), 𝑡∗𝑗 ′ \ 𝑡𝐵 is positive] · 𝑢𝑖

=
∑︁

𝑗∈[𝐵−1]

∑︁
𝑖∈𝑁

𝑃𝑇
∗

𝑖, 𝑗 · 𝑢𝑖 +max
{
𝑞𝑆 ·

∑︁
𝑖∈𝑆

Pr[∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖, 𝐵), 𝑡∗𝑗 ′ \ 𝑆 is positive] · 𝑢𝑖 ,

𝑞𝑡∗
𝐵
\𝑆 ·

∑︁
𝑖∈𝑇𝐵\𝑆

Pr[∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖;𝐵), 𝑡∗𝑗 ′ \ (𝑡∗𝐵 \ 𝑆) is positive] · 𝑢𝑖


> 𝑢 (𝑇 ∗),
which contradicts the optimality of 𝑇 ∗ and completes the proof of our claim. □

We are now ready to prove the theorem.

Proof of Theorem 1. We begin by constructing an intermediate non-overlapping testing regime𝑇
from𝑇 ∗ by simply assigning each individual to only a single test chosen arbitrary among all tests to
which that individual is assigned to in𝑇 ∗. Thus, we have that for each 𝑗 ∈ [𝐵] 𝑡 𝑗 ⊆ 𝑡∗𝑗 which meana
that 𝑞𝑡 𝑗 ≥ 𝑞𝑡∗𝑗 . Now, for each 𝑡 𝑗 , we let 𝑆 𝑗 be the smallest subset of 𝑡 𝑗 such that 𝑞𝑆 𝑗 < 1/2 (if 𝑞𝑡 𝑗 ≥ 1/2,
then 𝑆 𝑗 = ∅). Note that for each 𝑖 ∈ 𝑆 𝑗 , we have 𝑞𝑆 𝑗 \{𝑖 } ≥ 1/2, as 𝑆 𝑗 is the smallest possible set that
has probability less than 1/2 to be negative. In addition, we can show that 𝑞𝑡 𝑗 \𝑆 𝑗 ≥ 1/2. To see
this, notice that 𝑆 𝑗 ⊆ 𝑡 𝑗 ⊆ 𝑡∗𝑗 and 𝑞𝑆 𝑗 < 1/2. From Lemma 2, we know that 𝑞𝑡∗

𝑗
\𝑆 𝑗 ≥ 1/2, but since

𝑡 𝑗 \ 𝑆 𝑗 ⊆ 𝑡∗𝑗 \ 𝑆 𝑗 , it follows that 𝑞𝑡 𝑗 \𝑆 𝑗 ≥ 𝑞𝑡∗𝑗 \𝑆 𝑗 ≥ 1/2 as desired.
Next, consider two disjoint testing regimes given by 𝑇 1 where 𝑡1

𝑗 = 𝑆 𝑗 and 𝑇 2 where 𝑡2
𝑗 = 𝑡 𝑗 \ 𝑆 𝑗 .

Using the properties of 𝑇 from the previous paragraph, we wish to show that for each 𝑖 ∈ 𝑡 ℓ𝑗 where
ℓ ∈ {1, 2}, we have that 𝑃𝑇 ℓ

𝑖 ≥ 𝑞𝑖 ·1/2. To that end, in the case of ℓ = 1, we get 𝑃𝑇 1
𝑖 = 𝑞𝑡1

𝑗
= 𝑞𝑆 𝑗 < 1/2.

However, we also know that 𝑞𝑡1
𝑗
\{𝑖 } = 𝑞𝑆 𝑗 \{𝑖 } ≥ 1/2, and hence 𝑞𝑡1

𝑗
= 𝑞𝑖 ·𝑞𝑡1

𝑗
\{𝑖 } ≥ 𝑞𝑖 · 1/2 as desired.

As for the case where ℓ = 2, we get 𝑃𝑇 2
𝑖 = 𝑞𝑡2

𝑗
= 𝑞𝑡 𝑗 \𝑆 𝑗 . The right hand side can be decomposed as

𝑞𝑡 𝑗 \𝑆 𝑗 = 𝑞𝑖 · 𝑞𝑡2
𝑗
\{𝑖 } . However, as we have shown above, the choice of 𝑆 𝑗 ensures that 𝑞𝑡 𝑗 \𝑆 𝑗 ≥ 1/2,

and it follows that 𝑞𝑖 · 𝑞𝑡2
𝑗
\{𝑖 } ≥ 1/2 ≥ 𝑞𝑖 · 1/2. We conclude that 𝑃𝑇 2

𝑖 ≥ 𝑞𝑖 · 1/2, as desired.
Without loss of generality, assume that

⋃
𝑗∈[𝐵 ] 𝑡

∗
𝑗 = [𝑛′] for some 𝑛′ ≤ 𝑛, i.e., the first 𝑛′

individuals are included in some test under𝑇 ∗. Notice that
⋃
𝑗∈[𝐵 ] 𝑡 𝑗 = [𝑛′], as each individual who



Simon Finster, Michelle González Amador, Edwin Lock, Francisco Marmolejo-Cossío, Evi Micha, and Ariel D. Procaccia8

is included in some test under 𝑇 ∗ is also included in some test under 𝑇 , and no individual who is
not included in some test under 𝑇 ∗ is included in 𝑇 . Thus, we get that

𝑢 (𝑇 ∗) =
∑︁
𝑖∈[𝑛′ ]

𝑃𝑇
∗

𝑖 · 𝑢𝑖 =
∑︁
𝑗∈[𝐵 ]

©­«
∑︁
𝑖∈𝑆 𝑗

𝑃𝑇
∗

𝑖 · 𝑢𝑖 +
∑︁

𝑖∈𝑇𝑗 \𝑆 𝑗

𝑃𝑇
∗

𝑖 · 𝑢𝑖
ª®¬ .

We now consider two cases, depending on whether
∑
𝑗∈[𝐵 ]

∑
𝑖∈𝑆 𝑗 𝑃

𝑇 ∗
𝑖 ·𝑢𝑖 ≥

∑
𝑗∈[𝐵 ]

∑
𝑖∈𝑡 𝑗 \𝑆 𝑗 𝑃

𝑇 ∗
𝑖 ·𝑢𝑖 .

If this is the case, we get that

𝑢 (𝑇 ∗) ≤ 2 ·
∑︁
𝑗∈[𝐵 ]

∑︁
𝑖∈𝑆 𝑗

𝑃𝑇
∗

𝑖 · 𝑢𝑖 ≤ 2 ·
∑︁
𝑗∈[𝐵 ]

∑︁
𝑖∈𝑆 𝑗

𝑞𝑖 · 𝑢𝑖 .

It also holds that

𝑢 (𝑇 1) =
∑︁
𝑗∈[𝐵 ]

∑︁
𝑖∈𝑆 𝑗

𝑃𝑇
1

𝑖 · 𝑢𝑖 ≥
∑︁
𝑗∈[𝐵 ]

∑︁
𝑖∈𝑆 𝑗

1/2 · 𝑞𝑖 · 𝑢𝑖 .

Thus, we conclude that
𝑢 (𝑇 ∗)
𝑢 (𝑇 1) ≤

2
∑
𝑖∈𝑆 𝑗 𝑞𝑖 · 𝑢𝑖∑

𝑖∈𝑆 𝑗 1/2 · 𝑞𝑖 · 𝑢𝑖
≤ 4.

Using similar arguments, we can show that 𝑢 (𝑇 ∗)/𝑢 (𝑇 2) ≤ 4 when
∑
𝑗∈[𝐵 ]

∑
𝑖∈𝑆 𝑗 𝑃

𝑇 ∗
𝑖 · 𝑢𝑖 <∑

𝑗∈[𝐵 ]
∑
𝑖∈𝑇𝑗 \𝑆 𝑗 𝑃

𝑇 ∗
𝑖 · 𝑢𝑖 , and the theorem follows. □

While this proves that the gain of overlaps cannot be larger than 4, the worst known example is
the one illustrated in Proposition 1, providing a lower bound of 7/6. Interestingly, after running
many simulations we were not able to find a better lower bound, and we believe that the gain of
overlaps is less than 4. Moreover, it is possible to show that gain(3) ≤ 7/3 and gain(4) ≤ 15/4; the
details of these bounds are in Appendix D.

3.3 Greedy Algorithm for the Non-Overlapping Testing Regime
In light of the previous result, hereinafter we focus on non-overlapping testing regimes. Consider
the case where 𝐵 = 1. If 𝐺 is a constant, we can efficiently enumerate all 𝑂 (𝑛𝐺 ) potential pooled
tests and find the optimal test 𝑡∗. On the other hand, when 𝐺 = 𝑛, it follows from the work of
Goldberg and Rudolf [2020] that even when there is only one test, it is NP-hard to find the subset
of individuals that maximizes the expected welfare of the test. On the positive side, they provide a
fully polynomial-time approximation scheme (FPTAS) for the same case. Here, we show that we
can adjust the main ideas of their algorithm to obtain an FPTAS for the case where there is one test
with up to 𝐺 ∈ [𝑛] individuals in it; the proof is relegated to Appendix E.

Lemma 3. When 𝐵 = 1, there is an FPTAS for computing approximately optimal (𝑡∗) ∈ T 1.

Our goal is to approximate the optimal non-overlapping testing regime when there are 𝐵 available
tests. Given the FPTAS of Lemma 3 for the single test case, a natural greedy approach is the following:
design a test in each step by applying the FPTAS for the single test case to the remaining individuals.
In other words, in each iteration we greedily find the test that approximates the optimal test
over the available individuals using the FPTAS, add this test to the testing regime, disregard all
individuals that are included in this test and continue to create greedy tests in the same fashion
for the remaining individuals until the budget is exhausted. The above procedure results in an
non-overlapping testing regime with at most 𝐵 tests, as we never consider individuals that have
already been included in a test. We refer this algorithm as 𝜖-Greedy, where 𝜖 is the error tolerance
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used in the FPTAS algorithm6. We show that this algorithm gives a 5/(1 − 𝜖) approximation to the
optimal non-overlapping testing regime.

Theorem 2. 𝜖-Greedy returns a 5/(1 − 𝜖)-approximate non-overlapping testing regime.

Proof. Let 𝑇 be the testing regime that is returned by 𝜖-Greedy and 𝑇 ∗ be an optimal non-
overlapping testing regime. Without loss of generality, let 𝑁 ′ = {1, . . . , 𝑛′} be the set of individuals
that are pooled into a test in 𝑇 . Then,

𝑢 (𝑇 ∗) =
∑︁
𝑗∈[𝐵 ]

𝑢 (𝑡∗𝑗 ) =
∑︁
𝑗∈[𝐵 ]

𝑞𝑡∗
𝑗
·
(∑︁
𝑖∈𝑁 ′

𝐼 𝑡
∗
𝑖, 𝑗 · 𝑢𝑖

)
+

∑︁
𝑗∈[𝐵 ]

𝑞𝑡∗
𝑗
· ©­«

∑︁
𝑖∈[𝑛]\𝑁 ′

𝐼 𝑡
∗
𝑖, 𝑗 · 𝑢𝑖

ª®¬ ,
and

𝑢 (𝑇 ) =
∑︁
𝑗∈[𝐵 ]

𝑢 (𝑡 𝑗 ) =
∑︁
𝑗∈[𝐵 ]

𝑞𝑡 𝑗 ·
(∑︁
𝑖∈𝑁 ′

𝐼𝑇𝑖,𝑗 · 𝑢𝑖

)
=

∑︁
𝑗∈[𝐵 ]

𝑞𝑡 𝑗 ·
©­«
∑︁
𝑖∈𝑡 𝑗

𝑢𝑖
ª®¬ .

Now, let 𝑇 ′ be a testing regime such that 𝑡 ′𝑗 = 𝑡∗𝑗 \ (𝑡∗𝑗 ∩ 𝑁 ′). In other words, 𝑇 ′ is created by
removing from 𝑇 ∗ any individual in 𝑁 ′. Notice that since every 𝑡 ′𝑗 consists of individuals that are
not included in any test in𝑇 , it means that all the individuals in 𝑡 ′𝑗 are available at the 𝑗-th iteration
of the algorithm, and thus we get that for each 𝑗 ∈ [𝐵], 𝑢 (𝑡 𝑗 ) ≥ (1 − 𝜖)𝑢 (𝑡 ′𝑗 ), as otherwise the
algorithm would have chosen 𝑡 ′𝑗 instead of 𝑡 𝑗 , at the 𝑗-th iteration. Thus, we get that

𝑢 (𝑇 ) =
∑︁
𝑗∈[𝐵 ]

𝑢 (𝑡 𝑗 ) ≥ (1 − 𝜖)
∑︁
𝑗∈[𝐵 ]

𝑢 (𝑡 ′𝑗 ) = (1 − 𝜖) · 𝑢 (𝑇 ′),

and also note that

𝑢 (𝑇 ′) =
∑︁
𝑗∈[𝐵 ]

𝑞𝑡 ′
𝑗
· ©­«

∑︁
𝑖∈[𝑛]\𝑁 ′

𝐼𝑇
′

𝑖, 𝑗 · 𝑢𝑖
ª®¬ =

∑︁
𝑗∈[𝐵 ]

𝑞𝑡 ′
𝑗
· ©­«

∑︁
𝑖∈[𝑛]\𝑁 ′

𝐼𝑇
∗

𝑖, 𝑗 · 𝑢𝑖
ª®¬

≥
∑︁
𝑗∈[𝐵 ]

𝑞𝑡∗
𝑗
· ©­«

∑︁
𝑖∈[𝑛]\𝑁 ′

𝐼𝑇
∗

𝑖, 𝑗 · 𝑢𝑖
ª®¬

where the second equality follows from the fact that 𝐼𝑇 ′𝑖, 𝑗 = 𝐼𝑇
∗

𝑖, 𝑗 for any 𝑖 ∈ [𝑛] \ 𝑁 ′ and 𝑗 ∈ [𝐵], and
the last inequality follows from the fact that 𝑞𝑡 ′

𝑗
≥ 𝑞𝑡∗

𝑗
since 𝑡 ′𝑗 ⊆ 𝑡∗𝑗 for any 𝑗 ∈ [𝐵]. Thus,

𝑢 (𝑇 ) ≥ (1 − 𝜖) ·
∑︁
𝑗∈[𝐵 ]

𝑞𝑡∗
𝑗
· ©­«

∑︁
𝑖∈[𝑛]\𝑁 ′

𝐼𝑇
∗

𝑖, 𝑗 · 𝑢𝑖
ª®¬ .

From all the above we have

𝑢 (𝑇 ∗)
𝑢 (𝑇 ) =

∑
𝑗∈[𝐵 ] 𝑞𝑡∗𝑗 ·

(∑
𝑖∈𝑁 ′ 𝐼

𝑇 ∗
𝑖, 𝑗 · 𝑢𝑖

)
+∑

𝑗∈[𝐵 ] 𝑞𝑡∗𝑗 ·
(∑

𝑖∈[𝑛]\𝑁 ′ 𝐼
𝑇 ∗
𝑖, 𝑗 · 𝑢𝑖

)
𝑢 (𝑇 )

≤

∑
𝑗∈[𝐵 ] 𝑞𝑡∗𝑗 ·

(∑
𝑖∈𝑁 ′ 𝐼

𝑇 ∗
𝑖, 𝑗 · 𝑢𝑖

)
+ 𝑢 (𝑇 )1−𝜖

𝑢 (𝑇 )

6When𝐺 is constant, we can efficiently compute optimal 𝑡∗ at each step of the approach above via brute force. We call this
algorithm Greedy.
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=

∑
𝑗∈[𝐵 ] 𝑞𝑡∗𝑗 ·

(∑
𝑖∈𝑡∗

𝑗
∩𝑁 ′ 𝑢𝑖

)
𝑢 (𝑇 ) + 1

1 − 𝜖

≤

∑
𝑗∈[𝐵 ]

(∑
𝑖∈𝑡∗

𝑗
∩𝑁 ′ 𝑞𝑖 · 𝑢𝑖

)
𝑢 (𝑇 ) + 1

1 − 𝜖

=

∑
𝑖∈𝑁 ′ 𝑞𝑖 · 𝑢𝑖
𝑢 (𝑇 ) + 1

1 − 𝜖 (1)

where the second inequality follows since 𝑞𝑖 ≥ 𝑞𝑡 𝑗 when 𝑖 is included in 𝑡 𝑗 .
In what follows, we will show that each test, 𝑡 𝑗 ∈ 𝑇 obtains at least a (1−𝜖 )4 ratio of the maximal

possible utility to be gained from individuals in 𝑡 𝑗 . In other words, we show that the following
holds: 𝑢 (𝑡 𝑗 ) = 𝑞𝑡 𝑗 ·

∑
𝑖∈𝑡 𝑗 𝑢𝑖 >

(1−𝜖 )
4

∑
𝑖∈𝑡 𝑗 𝑞𝑖𝑢𝑖 . To do so, we first consider the case where there

exists 𝑖′ ∈ 𝑡 𝑗 such that 𝑞𝑖′ < 1/2. From the definition of the greedy algorithm, we know that

(1 − 𝜖) · 𝑞𝑡 𝑗 \{𝑖′ } ·
∑︁

𝑖∈𝑡 𝑗 \{𝑖′ }
𝑢𝑖 ≤ 𝑞𝑡 𝑗 ·

∑︁
𝑖∈𝑡 𝑗

𝑢𝑖

otherwise the algorithm would return 𝑡 𝑗 \ {𝑖′} instead of 𝑡 𝑗 at step 𝑗 and also,

(1 − 𝜖) · 𝑞𝑖′ · 𝑢𝑖′ ≤ 𝑞𝑡 𝑗 ·
∑︁
𝑖∈𝑡 𝑗

𝑢𝑖

as otherwise the algorithm would return {𝑖′} instead of 𝑡 𝑗 at the 𝑗-th iteration. Moreover, from
Lemma 2, we know that 𝑞𝑡 𝑗 \{𝑖′ } ≥ 1/2 since 𝑞𝑖′ < 1/2. Thus, we get that

𝑞𝑡 𝑗 ·
∑︁
𝑖∈𝑡 𝑗

𝑢𝑖 ≥
(1 − 𝜖)

2 (𝑞𝑡 𝑗 \{𝑖′ } ·
∑︁

𝑖∈𝑡 𝑗 \{𝑖 }
𝑢𝑖 + 𝑞𝑖′ · 𝑢𝑖′ ) ≥

(1 − 𝜖)
2

©­«1
2 ·

∑︁
𝑖∈𝑡 𝑗 \{𝑖 }

𝑢𝑖 + 𝑞𝑖′ · 𝑢𝑖′ª®¬
=
(1 − 𝜖)

4
©­«

∑︁
𝑖∈𝑡 𝑗 \{𝑖′ }

𝑢𝑖 + 𝑞𝑖′ · 𝑢𝑖′ª®¬
≥ (1 − 𝜖)4

∑︁
𝑖∈𝑡 𝑗

𝑞𝑖𝑢𝑖 .

As a second case, assume that for any 𝑖 ∈ 𝑡 𝑗 , 𝑞𝑖 ≥ 1/2. We show that for each 𝑖 ∈ 𝑡 𝑗 , 𝑞𝑡 𝑗 \{𝑖 } ≥ 1/4. If
𝑞𝑡 𝑗 ≥ 1/2, then indeed 𝑞𝑡 𝑗 \{𝑖 } ≥ 1/4. Otherwise, we do the following: In a set 𝑆 we add individuals
that are included in 𝑡 𝑗 , except for 𝑖 , one at a time until 𝑞𝑆 ≥ 1/2 and 𝑞𝑆∪{𝑖 } < 1/2 (as 𝑞𝑡 𝑗 < 1/2
notice that such an 𝑆 should exist). Then, from Lemma 2, we get that 𝑞𝑡 𝑗 \{𝑆∪𝑖 } ≥ 1/2, and hence
𝑞𝑡 𝑗 \{𝑖 } = 𝑞𝑆 · 𝑞𝑡 𝑗 \{𝑆∪𝑖 } ≥ 1/4. Thus, we have that

𝑞𝑡 𝑗 ·
∑︁
𝑖∈𝑡 𝑗

𝑢𝑖 =
∑︁
𝑖∈𝑡 𝑗

𝑞𝑡 𝑗 \{𝑖 } · 𝑞𝑖 · 𝑢𝑖 ≥
1
4 ·

∑︁
𝑖∈𝑡 𝑗

𝑞𝑖 · 𝑢𝑖 ≥
(1 − 𝜖)

4
∑︁
𝑖∈𝑡 𝑗

𝑞𝑖 · 𝑢𝑖 .

We see that in either case, 𝑞𝑡 𝑗 ·
∑
𝑖∈𝑡 𝑗 𝑢𝑖 >

(1−𝜖 )
4 ·∑𝑖∈𝑡 𝑗 𝑞𝑖 · 𝑢𝑖 hence we get:

𝑢 (𝑇 ) =
∑︁
𝑗∈[𝐵 ]

𝑞𝑡 𝑗 ·
©­«
∑︁
𝑖∈𝑡 𝑗

𝑢𝑖
ª®¬ >

∑︁
𝑗∈[𝐵 ]

©­« (1 − 𝜖)4 ·
∑︁
𝑖∈𝑡 𝑗

𝑞𝑖 · 𝑢𝑖
ª®¬ =
(1 − 𝜖)

4
∑︁
𝑖∈𝑁 ′

𝑞𝑖𝑢𝑖

Along with Equation (1), we get that 𝑢 (𝑇 ∗)/𝑢 (𝑇 ) ≤ 5/(1 − 𝜖) and the theorem follows. □
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Note that one can combine Theorem 1 and Theorem 2 to see that 𝜖-Greedy gives a constant-factor
approximation to the optimal overlapping testing regime. Furthermore, we can also show that
Greedy is optimal in instances where testing budgets are low and individuals can only take utilities
and probabilities from a finite set of values. Specifically, assume that the population at hand can be
partitioned into 𝐶 clusters, where the 𝑖-th cluster has 𝑛𝑖 individuals with identical utility 𝑢𝑖 and
probability of infection 𝑝𝑖7. Moreover, suppose that (𝑡∗) ∈ T 1 is an optimal single pooled test for
this clustered population. In Appendix F we prove the following result, which identifies a natural
setting where greedy is optimal— even with respect to the optimal overlapping testing regime.

Proposition 3. For testing budget 𝐵 > 0, if 𝐵 · |𝑡∗ ∩𝐶𝑖 | ≤ 𝑛𝑖 , Greedy returns an optimal allocation
that applies 𝐵 distinct copies (in terms of composition) of 𝑡∗.

Finally, in Appendix G, we also consider the case where all the individuals have the same utility.
First, we show that when 𝐵 is a constant we can find the optimal testing regime. For general 𝐵,
we design a variant of Greedy which sorts the individuals in decreasing order with respect to
the probability of being healthy and in each step adds individuals to the current test as long as
the expected utility of the test decreases. We show that this algorithm returns an 𝑒-approximate
non-overlapping testing regime and this result is tight.

4 PRACTICAL ALGORITHMIC IMPLEMENTATIONS
As discussed above, even the problem of allocating a single test is computationally hard. In order
to make the computation of testing regimes tractable for our pilot study, we formulate the problem
of non-overlapping testing as optimization problems that we solve using commercial solvers. The
problem of allocating a single test can be formulated as a mixed-integer conic optimization program
(MICP), and solved using a commercial conic solver. This implementation is used by our Greedy
algorithm in our simulations and our pilot study. When multiple tests are to be allocated, we
formulate a mixed-integer linear program (MILP) that approximates an optimal non-overlapping
solution and can be solved by any MILP solver. The MILP formulation approximates existing
exponential constraints with piecewise-linear functions that can be formulated as a collection of
mixed integer linear constraints. The accuracy of this approximation can be adjusted by tuning the
number 𝐾 of segments of the piecewise-linear function, at the cost of introducing more (integer)
variables and thus the time to solve the program. We provide practical (additive) approximation
guarantees for this Approx algorithm depending on parameter 𝐾 .

The optimization program. We state the non-linear program for determining optimal non-
overlapping testing regimes and describe a conic formulation for the single test case as well
as a mixed-integer formulation for approximating optimal non-overlapping with one or more tests.
We can assume that the testing budget 𝐵 is at most the population size 𝑛, and so pool sizes lies
between 1 and𝐺 . For each test 𝑗 ∈ [𝐵], we introduce an indicator vector 𝑥 𝑗 ∈ {0, 1}𝑛 with 𝑥 𝑗

𝑖
= 1 if

individual 𝑖 is included in 𝑗 and 𝑥 𝑗
𝑖
= 0 otherwise, and let variable 𝑤 𝑗 denote its expected utility

𝑤 𝑗 = 𝑢 · 𝑥 𝑗 ∏𝑖∈[𝑛] 𝑞
𝑥
𝑗

𝑖

𝑖
. We impose pool sizes between 1 and 𝐺 with constraints 1 ≤ ∑

𝑖∈[𝑛] 𝑥
𝑗

𝑖
≤ 𝐺

for all 𝑗 ∈ [𝐵], and non-overlapping testing with constraints
∑
𝑗∈[𝐵 ] 𝑥

𝑗

𝑖
≤ 𝐺 for all 𝑖 ∈ [𝑛]. Our

objective is to maximize welfare
∑
𝑗∈[𝐵 ] 𝑤

𝑗 . In order to isolate the non-linear elements of the opti-
mization problem, we reformulate the convex program with additional variables below; variables
𝑙 𝑗 denote the log of𝑤 𝑗 , and variables 𝑦 𝑗 and 𝑧 𝑗 allow us to isolate the non-linear elements of the

7We highlight that clusters are a very natural constraint in terms of population structure which we intend to use in our
pilot with our partner institution in Mexico.
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expressions into constraints (2b) and (2d).

max
∑︁
𝑗∈[𝐵 ]

𝑤 𝑗 (2a)

s.t. 𝑤 𝑗 = exp 𝑙 𝑗 , ∀𝑗 ∈ [𝐵], (2b)

𝑙 𝑗 = 𝑦 𝑗 +
∑︁
𝑖∈[𝑛]

𝑥
𝑗

𝑖
log𝑞𝑖 , ∀𝑗 ∈ [𝐵], (2c)

𝑦 𝑗 = log 𝑧 𝑗 , ∀𝑗 ∈ [𝐵], (2d)
𝑧 𝑗 = 𝑢 · 𝑥 𝑗 , ∀𝑗 ∈ [𝐵], (2e)∑︁

𝑗∈[𝐵 ]
𝑥
𝑗

𝑖
≤ 1, ∀𝑖 ∈ [𝑛], (2f)

1 ≤
∑︁
𝑖∈[𝑛]

𝑥
𝑗

𝑖
≤ 𝐺, ∀𝑗 ∈ [𝐵], (2g)

𝑥
𝑗

𝑖
∈ {0, 1}, 𝑖 ∈ [𝑛],∀𝑗 ∈ [𝐵] (2h)

4.1 A Conic Program for a Single Test
Suppose we wish to allocate a single test. In this setting, we can eliminate the exponential constraint
(2b) by changing the objective to max 𝑙1. The remaining non-linear constraints (2d) can be relaxed
to 𝑦 𝑗 ≤ log 𝑧 𝑗 without affecting the outcome, and formulated as conic constraints (𝑧 𝑗 , 1, 𝑦 𝑗 ) ∈ 𝐾exp,
where 𝐾exp is the exponential cone defined as 𝐾exp = {(𝑥1, 𝑥2, 𝑥3) | 𝑥1 ≥ 𝑥2𝑒

𝑥3/𝑥2 , 𝑥2 > 0} ∪
{(𝑥1, 0, 𝑥3) | 𝑥1 ≥ 0, 𝑥3 ≤ 0}. The resulting mixed-integer conic optimization program can be solved
efficiently8 with conic solvers such as MOSEK (https://mosek.com). In our practical implementation,
the Greedy algorithm repeatedly solves a conic program to allocate a single test.

4.2 A Mixed-Integer Linear Programming Approximation
If we wish to allocate more than one test, the problem no longer admits a conic formulation.
Instead, we formulate a mixed-integer linear program (MILP) that finds an approximately optimal
non-overlapping solution. In order to make the problem tractable, we assume that the utility vector
𝑢 is integral and non-negative. This assumption is benign, as the problem is invariant to scaling
of utilities. We describe how the non-linear constraints (2b) and (2d) can respectively be captured
exactly and approximately by a collection of integer linear constraints. In Appendix H, we also state
the full mixed-integer linear program with an additional refinement that clusters individuals in the
population who have identical utilities and probabilities, speeding up computation in practice.

Handling the logarithmic constraints. We can replace (2d) with integer linear constraints as follows.
Fix some test 𝑗 ∈ [𝐵]. Note that 𝑧 𝑗 takes integral values in the range [𝐿,𝑈 ], where 𝐿 = min𝑖 𝑢𝑖
and 𝑈 = 𝐺 max𝑖 𝑢𝑖 . We introduce an indicator vector 𝛾 𝑗 ∈ {0, 1}[𝐿,𝑈 ] indexed by 𝑘 ∈ [𝐿,𝑈 ] with
constraints

∑
𝑘∈[𝐿,𝑈 ] 𝛾

𝑗

𝑘
= 1 and

∑
𝑘∈[𝐿,𝑈 ] 𝑘 · 𝛾

𝑗

𝑘
= 𝑧 𝑗 to encode which value 𝑧 holds, and ensure

𝑦 𝑗 = log(𝑧 𝑗 ) with the constraint 𝑦 𝑗 =
∑
𝑘∈[𝐿,𝑈 ] log(𝑘) · 𝛾 𝑗

𝑘
.

Approximating the exponential constraints. We now describe how to approximate (2b) from above
by a piecewise-linear function 𝑓 using integer linear constraints. Fix some test 𝑗 ∈ [𝐵]. Note first
that we can relax the equality in (2b) to𝑤 𝑗 ≤ exp(𝑙 𝑗 ) without affecting the outcome. The variable 𝑙 𝑗
takes values between𝐴 = min𝑖 (log𝑢𝑖 ) +𝐺 min𝑖 (log𝑞𝑖 ) and 𝐵 = log(𝐺 max𝑖 𝑢𝑖 ) +max𝑖 (log𝑞𝑖 ) (and
these values will be generically non-integral). We approximate exp from above by a piecewise-linear
8Example running times are shown in Table 1 (Section 5.2) and Table 4 (Appendix I).

https://mosek.com
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function 𝑓 : [𝐴, 𝐵] → R with 𝐾 linear segments. (Here the parameter 𝐾 is given exogenously.)
Partitioning [𝐴, 𝐵] into 𝐾 parts [𝑐𝑘 , 𝑐𝑘+1], 𝑘 ∈ [𝐾], we define the 𝑘-th line segment as the linear
function 𝑓𝑘 (𝑥) = 𝑎𝑘𝑥 + 𝑏𝑘 on domain [𝑐𝑘 , 𝑐𝑘+1] with slope 𝑎𝑘 =

exp𝑐𝑘+1−exp𝑐𝑘
𝑐𝑘+1−𝑐𝑘 and residual 𝑏𝑘 =

exp 𝑐𝑘+1 − 𝑎𝑘𝑐𝑘+1. Note that the number of integer variables in the MILP increases with 𝐾 , so this
parameter must be chosen judiciously. Moreover, given a fixed number of segments 𝐾 , we wish to
determine a partitioning of [𝐴, 𝐵] that minimizes the approximation error 𝜀 = max𝑥∈[𝐴,𝐵 ] (𝑓 (𝑥) −
exp(𝑥)). In our implementation, we apply binary search techniques to numerically determine
the partition of [𝐴, 𝐵] such that the error max𝑥∈[𝑐𝑘−𝑐𝑘+1 ] (𝑓𝑘 (𝑥) − exp(𝑥)) is the same for all parts
[𝑐𝑘 , 𝑐𝑘+1], which minimizes 𝜀. We introduce indicator vectors 𝛿 𝑗 ∈ {0, 1}𝐾 to encode in which part
[𝑐𝑘 , 𝑐𝑘+1] the value of 𝑙 𝑗 lies, as well as the vector 𝑣 𝑗 ∈ R𝐾 whose 𝑘-th entry agrees with 𝑙𝑡 if 𝑙 𝑗 lies
in the 𝑘-th part, and is 0 otherwise. This is guaranteed by constraints

∑
𝑘∈[𝐾 ] 𝛿

𝑗

𝑘
= 1, 𝑙 𝑗 =

∑
𝑘∈[𝐾 ] 𝑣

𝑗

𝑘

and 𝑐𝑘 ·𝛿 𝑗𝑘 ≤ 𝑣
𝑗

𝑘
≤ 𝑐𝑘+1 ·𝛿 𝑗𝑘 ,∀𝑘 ∈ [𝐾]. Finally, we require that𝑤

𝑗 ≤ 𝑓𝑘 (𝑙 𝑗 ) for the 𝑘-th part [𝑐𝑘 , 𝑐𝑘+1]
that 𝑙𝑡 lies in. This is expressed by constraint𝑤 𝑗 ≤ ∑

𝑘∈[𝐾 ] 𝑎𝑘𝑣
𝑗

𝑘
+ 𝑏𝑘 · 𝛿 𝑗𝑘 .

Bounding the approximation error. Recall that the piecewise-function 𝑓 with 𝐾 segments ap-
proximates exp on domain [𝐴, 𝐵] from above with error 𝜀. Let 𝜎 (𝑥) = ∑

𝑗∈[𝐵 ] exp(𝑙𝑡 ) and 𝜎 ′ (𝑥) =∑
𝑗∈[𝐵 ] 𝑓 (𝑙𝑡 ) respectively denote the corresponding objective values of the convex program (2) and

the MILP described above for testing 𝑥 . Let 𝑥∗ denote an optimal non-overlapping testing, so 𝑥∗
maximizes 𝜎 , and 𝑥 ′ be an optimal solution for the MILP. Clearly, 𝑥∗ and 𝑥 ′ are both feasible for
both programs and satisfy 𝜎 (𝑥 ′) ≤ 𝜎 (𝑥∗) as well as 𝜎 ′ (𝑥∗) ≤ 𝜎 ′ (𝑥 ′). By construction of 𝑓 , we have
𝜎 (𝑥) ≤ 𝜎 ′ (𝑥) and 𝜎 (𝑥) ≥ 𝜎 ′ (𝑥) − 𝜀𝐵, which implies 𝜎 (𝑥∗) ≤ 𝜎 ′ (𝑥∗) ≤ 𝜎 ′ (𝑥 ′) ≤ 𝜎 (𝑥 ′) +𝑇𝜀. Here 𝜀
is the additive approximation error of 𝑓 with regard to exp. Hence, 0 ≤ 𝜎 (𝑥∗) − 𝜎 (𝑥 ′) ≤ 𝜀𝐵. This
allows us to compute a bound on the additive gap between the welfare achieved by the optimal
solution of our MILP and the optimal non-overlapping testing.

5 EMPIRICAL RESULTS
In September 2022, we ran a version of our utility-based pooled testing regime in a randomized
control trial at the Potosinian Institute for Scientific and Technological Research (IPICYT), a higher
education research institute in San Luis Potosí, Mexico. At IPICYT, a heterogeneous population of
130 individuals participated in the trial of our testing and reopening strategy, including students,
academics, and administrative staff.9
Shortly before our trial commenced, IPICYT resumed full access for all its members.10 This

enabled us to compare the utility-based pooled testing regime to what one expects to be a normal
working environment (the control group), thus providing a ‘first-best’ benchmark with respect to
productivity, performance and learning at the workplace, as well as mental health and subjective
well-being of individuals. Our trial provides causal evidence that the utility-based pooled testing
regime does no worse than the ‘first-best’ with respect to the above-mentioned outcomes. Moreover,
in contrast with full access, our testing mechanism ensures that everyone with in-person access is
guaranteed to be non-infectious, hence providing a much safer work environment.
Section 5.1 describes how health probabilities and utilities were determined for participants in

our pilot population. The data thus obtained also allows us to run simulations (see Section 5.2) that
demonstrate the performance of the Approx and Greedy algorithms from Section 4.

9At the end of the pilot, we collected between 118 and 122 complete data points, depending on the outcome of analysis.
10IPICYT mandated individuals who had recently traveled out of IPICYT’s home state of San Luis Potosí to provide a
negative lateral flow test upon their return, but in practice this was not enforced.
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5.1 Determining Utilities and Health Probabilities
The crucial input to the problem described in Section 2 is the individuals’ utilities as well as health
probabilities. In our pilot study, we constructed the utilities based on multi-dimensional measures
of (i) the need for in-person access to work/study resources on campus, (ii) socioeconomic status,
and (iii) mental health status.
The premise for developing our utility measure was that an individual’s need for in-person

work or study heavily depends on the nature of their work: e.g., an experimentalist in a lab must
attend their experiments more frequently than a theoretician must visit their office on campus.
The participants’ need for in-person access due to the nature of their work was inferred from
questions about their use of digital media (details in Appendix K.7). These questions were designed
so that subjects would not be immediately able to judge how to answer the question in order to be
prioritized for in-person work. Furthermore, we considered evidence that the closure of learning
environments disproportionately affects vulnerable populations, e.g. individuals with low-income
[Azevedo et al., 2021, Bandiera et al., 2019, Gorgen and McAleavy, 2020, Goudeau et al., 2021,
Hossain, 2021].11 While various protected attributes are associated with vulnerability, we chose to
not discriminate based on those attributes, but obtain self-reported information on a more simple
and direct proxy of vulnerability, socio-economic status.12 Additionally, mental health is known to
be negatively affected by pandemic-induced remote work for younger and and older individuals
[Asanov et al., 2021, Bertoni et al., 2022], and students and employees in Mexico have struggled with
mental health problems associated with COVID-19 [Limón-Vázquez et al., 2020, Martinez Arriaga
et al., 2021].
Our three measures were based on the subjects’ answers to a survey they were given before

the testing period of our trial. 𝑢𝑝𝑟
𝑖

captures the utility subject 𝑖 gains from increased productivity
and 𝑢𝑝𝑠𝑦

𝑖
captures the benefit on subject 𝑖’s mental health from attending in-person; 𝑢𝑠𝑒𝑖 is a utility

bonus for socio-economically disadvantaged individuals, reflecting the fact they are likely to be
disproportionately affected by having to work remotely. The overall utility score is a weighted sum
given by 𝑢𝑖 =

∑
𝑘∈{𝑝𝑟,𝑝𝑠𝑦,𝑠𝑒 } 𝑤

𝑘𝑢𝑘𝑖 .13 We define the composition of 𝑢𝑘𝑖 for category 𝑘 ∈ {𝑝𝑟, 𝑝𝑠𝑦, 𝑠𝑒}.
Let 𝑃𝑘𝑖,𝑧 denote the number of points “achieved” by the answer of subject 𝑖 to question 𝑧, and 𝑍𝑘 the
number of questions relevant in category 𝑘 .14 For each category, the score is 𝑢𝑘𝑖 = 1

𝑍𝑘

∑
𝑧 𝑃

𝑘
𝑖,𝑧 .

Health probabilities are estimated for age and gender categories using Bayesian updates of
local public health data. They remain constant throughout the trial. We computed the probability
of being infected conditional on being in one of the following 6 groups: {male, female} × {age
15-29, 30-59, ≥60}. The baseline probability of infection for a given age group is determined using
Bayesian updates of local public health data and under the guidance of local epidemiologists. More
specifically, we used publicly available epidemiological models from the Institute of Health Metrics
and Evaluation (IHME) to estimate baseline infection rates in San Luis Potosí.15 These estimates
provided us with values for Pr[infection] for all individuals in the population, irrespective of their
category. Furthermore, we estimated the probability an individual belongs to a given category

11While the cited studies of heterogeneous effects on vulnerable populations are conducted with students (ranging from
K-12 to Higher Education), they also document similar issues for teaching staff and may extend to academic research.
12Especially in Mexico, having low income is highly correlated with belonging to an ethnic minority, the elderly, or being
female [Ordóñez Barba, 2018].
13The weights 𝑤𝑝𝑟 , 𝑤𝑝𝑠𝑦 , and 𝑤𝑠𝑒 are chosen by the intervention’s designer and are (1/3, 1/3, 1/3) in our trial.
14Relevance of a question to a specific category is marked in the survey in Appendix K.7 by the corresponding abbreviation
just after the question numbering. Not all questions are relevant for the construction of utilities.
15Estimated infection rates for SLP with IHME models can be found at their dashboard for different public behaviour
regimes: https://covid19.healthdata.org/mexico/san-luis-potosi?view=infections-testing&tab=trend&test=infections.

https://covid19.healthdata.org/mexico/san-luis-potosi?view=infections-testing&tab=trend&test=infections
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given an infection via official national data on testing results.16 These estimates provide us with
values for Pr[category | infected] for each category. Finally, we used census data to compute the
probability of membership in a given category at the state/national level.17 This provides us with an
estimate for Pr[category] for the population. With Bayes’ rule, we compute the desired probability
of infection per category as follows: Pr[infection | category] = Pr[category |infection] Pr[infection]

Pr[category] . The
probabilities of being healthy were approximately 99.5% for each group. The probabilities stay
constant throughout this trial, as it only ran for 4 weeks. If applied over a longer period, the health
probabilities may also be updated.18

5.2 Simulations
We evaluate the accuracy and running times of the Greedy and Approx algorithms on populations
that reflect real-world scenarios. In our first experiments, we run both algorithms on data from our
pilot study with budgets 𝐵 ∈ {2, 4, . . . , 12}.19 As the health probabilities observed during our pilot
study were high, this illustrates the efficacy of Greedy in times of lower disease incidence. In order
to study how well Greedy performs when faced with higher infection rates, we also ran experiments
on synthetic data in which health probabilities range from 0.5 to 1 and budgets 𝐵 ∈ {2, 4, . . . , 10}.
Moreover, while our partnering testing laboratory performed pooled testing with saliva samples,
which has a pool size limit of 𝐺 = 5, we also study outcomes when pool sizes are limited to 𝐺 = 10
(the limit for nasopharyngeal swabs).

In our synthetic experiments, we showcase the average-case behavior of Greedy and Approx by
generating random populations of size 𝑛 = 150. Health probabilities are drawn independently and
uniformly at random from the interval [0.5, 1], and utilities are drawn from a normal distribution
that was fitted to the utilities observed in our pilot study. We then run Greedy and Approx on each
population for each pool size 𝐺 ∈ {5, 10} and for all testing budgets 𝐵 ∈ {2, 4, . . . , 10}, recording
the welfare achieved for both algorithms, as well as their running times (in milliseconds).20

For all experiments, we record the true welfares achieved by the testing regimes returned by both
algorithms, and not the objective values of the underlying MILP and conic optimization problems,
as the latter will be an approximation of the true welfare. For Approx, we tune the parameter 𝐾
of the MILP formulation so that the additive approximation guarantee (cf. Section 4.2) is small
(𝐾 = 25 for the experiments on pilot data, and 𝐾 = 20 for the experiments on synthetic data).
The code used to run these experiments can be found at redacted for anonymity. We also refer to
Appendix J for preliminary experiments that compare non-overlapping with overlapping testing on
small populations; these give additional evidence that the average-case gain from overlaps is small.

Results. Table 1 lists the welfares achieved by Approx and Greedy on our pilot study data for
pool size constraint 𝐺 = 5, as well as the running times for both algorithms and the approximation
guarantee achieved by Approx. Table 3 in Appendix I shows analogous results for pool size
constraint 𝐺 = 10. We observe that Greedy achieves near-optimal welfare for budgets up to 10 for
both pool sizes. Moreover, while the running time of Approx appears to increase exponentially with
16National testing aggregates can be found at https://datos.covid-19.conacyt.mx and https://covid19.healthdata.org/mexico/
san-luis-potosi?view=infections-testing&tab=trend&test=infections.
17Census data can be found at https://www.inegi.org.mx/programas/ccpv/2020/.
18If the random element of time spent not onsite can be controlled for, Bayesian updating according to test results may be
preferred.
19As our mixed-integer program formulation is designed to admit integral utilities only, and the problem of computing
testing regimes is invariant to scaling utilities, we first scale up the utilities of all individuals in the population by a factor of
50, and then round the resulting number to the nearest integer. Choosing a larger scaling factor increases the running time,
as the number of variables in the MILP increases (cf. Section 4.2).
20The experiments were run on a 2022 MacBook Pro. Gurobi 9.5.0 was used for the MILP, and MOSEK 10 for the MICP.

https://datos.covid-19.conacyt.mx
https://covid19.healthdata.org/mexico/san-luis-potosi?view=infections-testing&tab=trend&test=infections
https://covid19.healthdata.org/mexico/san-luis-potosi?view=infections-testing&tab=trend&test=infections
https://www.inegi.org.mx/programas/ccpv/2020/
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Approx Greedy
Budget Welfare Guarantee Time Welfare Time

2 461.24 0.17865 191 ms 461.23 26 ms
4 886.08 0.35730 524 ms 886.01 36 ms
6 1292.04 0.53594 968 ms 1291.91 23 ms
8 1684.67 0.71459 2145 ms 1684.52 26 ms
10 2070.82 0.89320 11515 ms 2070.58 32 ms
12 2446.64 1.07188 8868 ms 2446.32 50 ms

Table 1. Summary showing welfare and computation time for Approx and Greedy on our pilot study data
with a population of 𝑛 = 130 and pool size constraint 𝐺 = 5, with testing budgets 𝐵 ∈ {2, 4, . . . , 10}. We also
state the additive approximation guarantee of Approx (compared to optimal non-overlapping welfare).

the testing budget 𝐵, Greedy scales linearly and is extremely fast (even for larger populations and
testing budgets). This makes Greedy attractive for implementations that rely on a quick turnaround,
run on ‘budget hardware’ or wish to avoid costly cloud computing services.

In our synthetic experiments with lower health probabilities, Greedy performs as well as Approx
when 𝐺 = 5, and remains competitive also when 𝐺 = 10. Figures 1 and 2 in Appendix I plot the
mean welfares achieved by both algorithms for pool size constraints 𝐺 = 5 and 𝐺 = 10, as well
as the welfare ratios. For the latter, we divide the welfare achieved by Approx by the welfare of
Greedy for each population, and depict the resulting ratios as black dots. In Appendix I, Tables 4
and 5 list the mean welfares and running times of both algorithms, as well as the approximation
guarantee of Approx, for 𝐺 ∈ {5, 10}.

Comparing our experiments with different pool sizes𝐺 ∈ {5, 10}, we see that increasing pool sizes
from 5 to 10 significantly increases mean welfare if health probabilities are very high (cf. Tables 1
and 3). This effect is less pronounced in our experiment with synthetic data, in which participants
have lower health probabilities on average (cf. Tables 4 and 5). These results suggest that the pool
size limit of 5 imposed by saliva sampling, as opposed to the limit of 10 for nasopharyngeal samples,
may be considered a limitation in some scenarios, and institutions may wish to weigh the positives
and negatives of saliva and nasopharyngeal sampling carefully.

5.3 Pilot Study
For our pilot study, we implemented a two-group cluster-randomized design that partitioned the
IPICYT participant population into a treatment and a control group, clustered by field and working
group.21 All elements of the trial, including consent and surveys, email invitations for testing, data
processing, and computing testing allocations, were coordinated in a web app developed specifically
for the trial. A demo of the web app is available at https://ec23demo.pythonanywhere.com.
At the beginning of each week, we computed an optimal testing regime for each day of the

week and invited individuals from the treatment group to submit their samples for testing at the
LANBAMA testing facility.22 The treatment group was allowed to freely use the facilities of the
university as long as they tested negative, and otherwise were required to work remotely. The
control group followed the institutional policy of resuming full access to IPICYT. Participants were
21In practice, field and working group are analogous, as only one working group from each participating field volunteered
to be a part of the experiment.
22LANBAMA has validated and implemented pooled testing with saliva samples for pool sizes up to 5.

https://ec23demo.pythonanywhere.com
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assigned to an experimental condition with peers from their working group. Thus, the majority
of their social institutional interaction was contained in their experimental treatment arm.23 We
performed daily non-overlapping tests of pooled subjects in the treated population, with a weekly
testing budget of 30 tests.

Our algorithm in practice. As the Greedy algorithm as implemented in Section 4 demonstrated
favorable trade-offs between speed and accuracy (cf. Section 5.2), we implemented a version of
Greedy in our web application for computing testing regimes. In our implementation, we allowed
individuals to express preferences for two-day windows through allocation of a virtual token budget
in the web app. This allowed us to avoid scheduling individuals for testing on days they did not
wish to access IPICYT facilities in the first place, and allocate more tests to particular days that were
more popular. Moreover, our partner institute has observed — in an independent pool testing trial
— that a small fraction of participants invited to pooled testing fail to attend and submit a sample.
In order to optimize pooling in this setting, we perform a second optimization round, in which we
compute an (approximately) optimal pooling among the samples that have been submitted. It is
immediate that the second optimization round cannot decrease the expected welfare achieved.

Evaluation and methods. In our trial we measured subjects’ stress levels and subjective well-being
(life satisfaction), as well as self-assessed performance, productivity, and learning. We assess these
measures through survey questions that subjects are invited to answer before (baseline) and after
(endline) the testing period. A detailed description is given in Appendix K.3. The treatment effect is
estimated with bivariate linear regressions, using the above-mentioned outcomes as dependent
variables, and a binary treatment variable, which takes on the value one if the subject is in the
treatment group and zero otherwise, as the regressor. We estimate level effects on endline outcomes
as well as the effect on the difference in outcomes (delta models) between our two points of
measurement before and after the testing period of the trial. We further collected a number of
covariates for robustness checks of our estimations.

Results. We present the results on performance from the linear models based on Eqs. (15) and (16)
in Table 2. Further results on performance and mental health are shown in Tables 9 and 10 in
Appendix K.6. The treatment group outperforms control group participants in self-perceived
performance, in productivity, and in learning scores.24 These results are also not statistically
significant. Similarly, participants in the treatment group exhibit higher levels of stress and higher
levels of subjective well-being (life satisfaction), but the results are not statistically significant.

We also estimate the delta model, where all time-independent confounds disappear. The positive
trend in increased stress in the treatment group disappears, while the trend in life satisfaction
increases. All treatment effects related to performance, productivity, and learning are corrected
downwards, but remain not statistically significant, with the exception of productivity, where we
report a small and borderline25 statistically significant negative effect of our testing regime.26

These findings provide evidence that our testing strategy has no negative effect on participants’
work/study performance, learning, or mental health, despite the increased effort in coordination
23If non-treated participants were to run into treated participants, possible contagions would be contained within our health
protocol: non-infectious participants have a 72-hour window during which they are are given access to the building after
submitting a sample and receiving a negative qPCR test result.
24This also holds for the measures of achieving their own and their supervisors’ goals, see Appendix K.6.
25The estimated 𝑝-value is 0.051, exactly on the cutoff of statistical significance. We consider statistical significance for all
values 𝑝 < 0.05, but not for values on or above that cutoff [Zhu, 2016].
26This may stem from treated individuals having to exert additional effort attending the testing facility and hence experi-
encing a loss in productivity. Individuals in positive pools who are required to work from home may also face productivity
constraints, but during our trial only two individuals tested positive and were identified in their respective pools.
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Dependent variable
Performance Productivity Learning Δ Performance Δ Productivity Δ Learning

Treatment 0.120 0.076 0.175 −0.053 −0.256∗ 0.086
vs. Control (0.143) (0.133) (0.287) (0.143) (0.130) (0.323)

Constant 1.984∗∗∗ 2.097∗∗∗ 8.194∗∗∗ 0.000 0.081 0.177
(0.086) (0.082) (0.206) (0.110) (0.090) (0.209)

Observations 119 120 119 118 119 119
R2 0.006 0.003 0.003 0.001 0.032 0.001
Adjusted R2 −0.002 −0.006 −0.005 −0.007 0.024 −0.008

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2. Linear model regressions of performance, productivity, and learning outcomes. Note that regression
coefficients are expressed in the unit of the score. Standard errors are in parentheses.

it demands from them compared to a full reopening (the regime followed by control group). At
the same time, our strategy ensures greater safety of all participating individuals compared to full
reopening. We conjecture that accounting for welfare is the crucial ingredient in our mechanism,
enabling in-person access for those who need and benefit from it the most.

6 DISCUSSION
This work introduces a novel utility-based approach to pooled testing in resource-constrained
environments. In this setting, we provide strong theoretical and empirical performance guarantees
that further justify the implementation of non-overlapping testing regimes beyond their essential
logistical simplicity. We test a version of our utility-based testing strategy in a real-world experiment
at the higher education institute IPICYT in Mexico. The results of our randomized control trial
provide causal evidence that our testing regime performs no worse than the ‘first-best’ benchmark
of allowing full access for all individuals with respect to the participants’ work or study performance,
learning, and mental health. The trial data is also used to evaluate our algorithms Greedy and
Approx through simulations. These demonstrate that Greedy performs almost optimally and is
significantly faster than our alternative MILP implementation.
There are many directions for future work. On a theoretical level, there is a gap between our

upper bound of 4 and lower bound of 7/6 on the gain of overlaps. On a more practical level,
the overall testing and re-integration policy we propose is static in nature, as we consider the
one-shot setting where a testing budget is to be fully utilized by a policymaker. But testing can
be dynamic, with allocations chosen adaptively as a function of previous test results, and it is
valuable to understand what potential benefits this extended functionality can bring. Additionally,
policymakers potentially have access to different types of tests, each with different associated
costs and performance (i.e., pool size and sensitivity), and providing optimal budget-constrained
allocations in this heterogeneous test setting is a key open question.

Most importantly, although most countries have eased COVID-19 restrictions, we hope that the
valuable insight in performance and efficacy of our welfare-maximizing testing regimes can help
better protect resource-constrained communities during future outbreaks of infectious diseases.



Simon Finster, Michelle González Amador, Edwin Lock, Francisco Marmolejo-Cossío, Evi Micha, and Ariel D. Procaccia19

REFERENCES
A. Abera, H. Belay, A. Zewude, B. Gidey, D. Nega, B. Dufera, A. Abebe, T. Endriyas, B. Getachew, H. Birhanu, et al.

Establishment of COVID-19 testing laboratory in resource-limited settings: challenges and prospects reported from
ethiopia. Global Health Action, 13(1):1841963, 2020.

S. Ahn, W.-N. Chen, and A. Özgür. Adaptive group testing on networks with community structure. In 2021 IEEE International
Symposium on Information Theory (ISIT), pages 1242–1247. IEEE, 2021.

M. Aldridge, O. Johnson, and J. Scarlett. Group Testing: An Information Theory Perspective. Foundations and Trends®
in Communications and Information Theory, 15(3-4):196–392, 2019. ISSN 1567-2190. doi: 10.1561/0100000099. URL
http://dx.doi.org/10.1561/0100000099.

P. D. Allison. Change scores as dependent variables in regression analysis. Sociological Methodology, 20:93–114, 1990. ISSN
00811750, 14679531. URL http://www.jstor.org/stable/271083.

I. Asanov, F. Flores, D. McKenzie, M. Mensmann, and M. Schulte. Remote-learning, time-use, and mental health of ecuadorian
high-school students during the covid-19 quarantine. World development, 138:105225, 2021.

N. Augenblick, J. T. Kolstad, Z. Obermeyer, and A. Wang. Group testing in a pandemic: The role of frequent testing,
correlated risk, and machine learning. Working Paper 27457, National Bureau of Economic Research, July 2020. URL
http://www.nber.org/papers/w27457.

J. P. Azevedo, A. Hasan, D. Goldemberg, K. Geven, and S. A. Iqbal. Simulating the potential impacts of covid-19 school
closures on schooling and learning outcomes: A set of global estimates. The World Bank Research Observer, 36(1):1–40,
2021.

O. Bandiera, N. Buehren, M. Goldstein, I. Rasul, and A. Smurra. The economic lives of young women in the time of ebola:
lessons from an empowerment program. World Bank Policy Research Working Paper, 1(8760), 2019.

L. Becchetti, L. Corrado, and P. Conzo. Sociability, altruism and well-being. Cambridge Journal of Economics, 41(2):441–486,
2017.

M. Bertoni, D. Cavapozzi, G. Pasini, and C. Pavese. Remote working and mental health during the first wave of the covid-19
pandemic. Available at SSRN: https://ssrn.com/abstract=4111999 or http://dx.doi.org/10.2139/ssrn.4111999, 2022.

M. J. Binnicker. Challenges and controversies to testing for COVID-19. Journal of clinical microbiology, 58(11):e01695–20,
2020.

V. Brault, B. Mallein, and J.-F. Rupprecht. Group testing as a strategy for COVID-19 epidemiological monitoring and
community surveillance. PLoS computational biology, 17(3):e1008726, 2021.

B. Cleary, J. A. Hay, B. Blumenstiel, M. Harden, M. Cipicchio, J. Bezney, B. Simonton, D. Hong, M. Senghore, A. K. Sesay, et al.
Using viral load and epidemic dynamics to optimize pooled testing in resource-constrained settings. Science translational
medicine, 13(589):eabf1568, 2021.

A. Cohen, N. Shlezinger, A. Solomon, Y. C. Eldar, and M. Médard. Multi-level group testing with application to one-shot
pooled COVID-19 tests. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1030–1034. IEEE, 2021.

S. Cohen, T. Kamarck, R. Mermelstein, et al. Perceived stress scale. Measuring stress: A guide for health and social scientists,
10(2):1–2, 1994.

M. Cuturi, O. Teboul, Q. Berthet, A. Doucet, and J.-P. Vert. Noisy adaptive group testing using bayesian sequential
experimental design. arXiv preprint arXiv:2004.12508, 2020.

M. R. De Georgeo, J. M. De Georgeo, T. M. Egan, K. P. Klee, M. S. Schwemm, H. Bye-Kollbaum, and A. J. Kinser. Containing
sars-cov-2 in hospitals facing finite ppe, limited testing, and physical space variability: Navigating resource constrained
enhanced traffic control bundling. Journal of Microbiology, Immunology and Infection, 54(1):4–11, 2021.

G. N. Dhabaan, W. A. Al-Soneidar, and N. N. Al-Hebshi. Challenges to testing COVID-19 in conflict zones: Yemen as an
example. Journal of global health, 10(1), 2020.

R. Dorfman. The detection of defective members of large populations. The Annals of Mathematical Statistics, 14(4):436–440,
1943.

S. Dryden-Peterson, G. E. Velásquez, T. J. Stopka, S. Davey, S. Lockman, and B. O. Ojikutu. Disparities in SARS-CoV-2 testing
in massachusetts during the COVID-19 pandemic. JAMA network open, 4(2):e2037067–e2037067, 2021.

D. Du, F. K. Hwang, and F. Hwang. Combinatorial group testing and its applications, volume 12. World Scientific, 2000.
J. Ely, A. Galeotti, O. Jann, and J. Steiner. Optimal test allocation. Journal of Economic Theory, 193:105236, 2021.
J. Emmanuel, M. Bassett, H. Smith, and J. Jacobs. Pooling of sera for human immunodeficiency virus (hiv) testing: an

economical method for use in developing countries. Journal of clinical pathology, 41(5):582–585, 1988.
S. Ghosh, A. Rajwade, S. Krishna, N. Gopalkrishnan, T. E. Schaus, A. Chakravarthy, S. Varahan, V. Appu, R. Ramakrishnan,

S. Ch, et al. Tapestry: A single-round smart pooling technique for covid-19 testing. MedRxiv, 2020.
N. Goldberg and G. Rudolf. On the complexity and approximation of the maximum expected value all-or-nothing subset.

Discrete Applied Mathematics, 283:1–10, 2020.
C. Gollier and O. Gossner. Group testing against Covid-19. Technical report, EconPol Policy Brief, 2020.

http://dx.doi.org/10.1561/0100000099
http://www.jstor.org/stable/271083
http://www.nber.org/papers/w27457


Simon Finster, Michelle González Amador, Edwin Lock, Francisco Marmolejo-Cossío, Evi Micha, and Ariel D. Procaccia20

K. Gorgen and T. McAleavy. Best practice in pedagogy for remote teaching (p. 10). EdTech Hub Report, 2020.
S. Goudeau, C. Sanrey, A. Stanczak, A. Manstead, and C. Darnon. Why lockdown and distance learning during the covid-19

pandemic are likely to increase the social class achievement gap. Nature Human Behaviour, 5(10):1273–1281, 2021.
D. Hong, R. Dey, X. Lin, B. Cleary, and E. Dobriban. Group testing via hypergraph factorization applied to COVID-19.

Nature Communications, 13(1):1–13, 2022.
M. Hossain. Unequal experience of covid-induced remote schooling in four developing countries. International Journal of

Educational Development, 85:102446, 2021.
F. K. Hwang. A method for detecting all defective members in a population by group testing. Journal of the American

Statistical Association, 67(339):605–608, 1972.
J. Jonnerby, P. Lazos, E. Lock, F. Marmolejo-Cossío, C. B. Ramsey, M. Shukla, and D. Sridhar. Maximising the Benefits of an

Acutely Limited Number of COVID-19 Tests. ArXiv (preprint), pages 1–12, 2020a. URL http://arxiv.org/abs/2004.13650.
J. Jonnerby, P. Lazos, E. Lock, F. Marmolejo-Cossío, C. B. Ramsey, and D. Sridhar. Test and Contain: A Resource-Optimal

Testing Strategy for COVID-19. AI for Social Good Workshop, 1(July), 2020b.
M. M. Kavanagh, N. A. Erondu, O. Tomori, V. J. Dzau, E. A. Okiro, A. Maleche, I. C. Aniebo, U. Rugege, C. B. Holmes, and

L. O. Gostin. Access to lifesaving medical resources for african countries: COVID-19 testing and response, ethics, and
politics. The Lancet, 395(10238):1735–1738, 2020.

M. M. King and M. E. Frederickson. The pandemic penalty: The gendered effects of covid-19 on scientific productivity.
Socius, 7:23780231211006977, 2021.

T. K. Koo and M. Y. Li. A guideline of selecting and reporting intraclass correlation coefficients for reliability research.
Journal of chiropractic medicine, 15(2):155–163, 2016.

D. Lakens. Equivalence tests: A practical primer for t tests, correlations, and meta-analyses. Social psychological and
personality science, 8(4):355–362, 2017.

D. Lakens. The practical alternative to the p value is the correctly used p value. Perspectives on psychological science, 16(3):
639–648, 2021.

D. B. Larremore, B. Wilder, E. Lester, S. Shehata, J. M. Burke, J. A. Hay, M. Tambe, M. J. Mina, and R. Parker. Test sensitivity
is secondary to frequency and turnaround time for COVID-19 screening. Science advances, 7(1):eabd5393, 2021.

C. H. Li. A sequential method for screening experimental variables. Journal of the American Statistical Association, 57(298):
455–477, 1962.

A. K. Limón-Vázquez, G. Guillén-Ruiz, and E. V. Herrera-Huerta. The social isolation triggered by covid-19: Effects on
mental health and education in mexico. Health and Academic Achievement-New Findings, 2020.

E. Lock, F. J. Marmolejo-Cossío, J. Jonnerby, N. Rajgopal, H. A. Guzmán-Gutiérrez, L. A. Benavides-Vázquez, J. R. Tello-Ayala,
and P. Lazos. Optimal testing and containment strategies for universities in mexico amid covid-19. In Equity and Access
in Algorithms, Mechanisms, and Optimization, pages 1–9. Proceedings of EAAMO’21, 2021.

R. J. Martinez Arriaga, L. P. Gonzalez Ramirez, J. M. de la Roca-Chiapas, and M. Hernández-González. Psychological distress
of covid-19 pandemic and associated psychosocial factors among mexican students: An exploratory study. Psychology in
the Schools, 58(9):1844–1857, 2021.

L. Mutesa, P. Ndishimye, Y. Butera, J. Souopgui, A. Uwineza, R. Rutayisire, E. L. Ndoricimpaye, E. Musoni, N. Rujeni,
T. Nyatanyi, et al. A pooled testing strategy for identifying sars-cov-2 at low prevalence. Nature, 589(7841):276–280, 2021.

O. U. Nalbantoglu. Group testing performance evaluation for sars-cov-2 massive scale screening and testing. BMC Medical
Research Methodology, 20(1):1–11, 2020.

P. Nikolopoulos, T. Guo, S. R. Srinivasavaradhan, C. Fragouli, and S. Diggavi. Community aware group testing. arXiv
preprint arXiv:2007.08111, 2020.

OECD. OECD guidelines on measuring subjective well-being. OECD, 2013.
G. Ordóñez Barba. Discrimination, poverty and vulnerability: the intricacies of social inequality in mexico. Región y sociedad,

30(71):0–0, 2018.
H. B. Petersen, B. Bah, and P. Jung. Practical high-throughput, non-adaptive and noise-robust sars-cov-2 testing. arXiv

preprint arXiv:2007.09171, 2020.
H. R. Sanghani, D. A. Nawrot, F. Marmolejo-Cossío, J. M. Taylor, J. Craft, E. Kalimeris, M. I. Andersson, and S. R. Vasudevan.

Concentrating Pooled COVID-19 Patient Lysates to Improve Reverse Transcription Quantitative PCR Sensitivity and
Efficiency. Clinical Chemistry, 67(5):797–798, 2021. ISSN 0009-9147. doi: 10.1093/clinchem/hvab035.

B. Shan, X. Liu, A. Gu, and R. Zhao. The effect of occupational health risk perception on job satisfaction. International
Journal of Environmental Research and Public Health, 19(4):2111, 2022.

X. M. Tu, E. Litvak, and M. Pagano. On the informativeness and accuracy of pooled testing in estimating prevalence of a
rare disease: application to hiv screening. Biometrika, 82(2):287–297, 1995.

M. Versteeg and P. Steendijk. Putting post-decision wagering to the test: a measure of self-perceived knowledge in basic
sciences? Perspectives on Medical Education, 8(1):9–16, 2019.

http://arxiv.org/abs/2004.13650


Simon Finster, Michelle González Amador, Edwin Lock, Francisco Marmolejo-Cossío, Evi Micha, and Ariel D. Procaccia21

L. M. Wein and S. A. Zenios. Pooled testing for hiv screening: capturing the dilution effect. Operations Research, 44(4):
543–569, 1996.

W. Zhu. p< 0.05,< 0.01,< 0.001,< 0.0001,< 0.00001,< 0.000001, or< 0.0000001. . . . Journal of sport and health science, 5(1):77,
2016.

A SUPPLEMENTARY LITERATURE ON POOLED TESTING
Pooled testing dates back to the seminal work of Dorfman [1943] who sought to facilitate syphilis
diagnostics during World War II. Dorfman’s protocol proceeds in two stages: The first stage tests
individuals in disjoint groups of a fixed size. Given the results of the first stage, the second stage
involves individually testing individuals from positive groups to precisely find who is infected
in the population. Theoretical guarantees are provided when the number of individuals who are
infected in the population is known beforehand, which permits computing an optimal pool size in
the first stage of the protocol in such a way as to minimize the overall number of tests which are
needed to precisely ascertain the health status of all individuals in a population. Pooled testing has
since become a mature field in its own right with a rich literature of protocols aimed at solving the
same objective: precisely ascertaining the infection status of all individuals in a population with the
minimum number of tests.
In this vein, pooled testing protocols are typically categorized with respect to two axes: as-

sumptions on infection rates, and whether protocol allows for adaptive testing allocations. For
the former, two leading regimes are that of combinatorial pooled testing, where a fixed number
of infections are known to exist within the population, however the identity of those infected is
unknown, and probabilistic pooled testing, where infections occur according to a well-defined
probability distribution. With respect to the latter axis, testing regimes can either be adaptive, where
they occur in rounds and the allocation of a given round can depend on the results of tests from
previous rounds, or non-adaptive, where all tests are allocated at once. For example, Dorfman’s
protocol operates in the combinatorial adaptive regime, and it has since been significantly improved
starting with the 𝑠-stage algorithm of Li [1962] and continuing with the asymptotically optimal
generalized binary splitting approach of Hwang [1972]. More recent theoretical results include:
adaptive methods for combinatorial testing which make use of hypergraph factorization in early
stages of testing [Hong et al., 2022], using compressed sensing for non-adaptive combinatorial
pooled testing [Cohen et al., 2021, Ghosh et al., 2020, Petersen et al., 2020], pooled testing under
network-based (non-i.i.d.) infection models [Ahn et al., 2021, Nikolopoulos et al., 2020], Bayesian
infection inference in the adaptive noisy test result regime [Cuturi et al., 2020]. For a general
references to pooled testing, we refer the reader to Du et al. [2000] as well as Aldridge et al. [2019]
for an information-theoretic focus on the subject.

Beyond theory, pooled testing has been applied to combat various diseases in the past, especially
HIV/AIDS [Emmanuel et al., 1988, Tu et al., 1995, Wein and Zenios, 1996]. From the outset of
the COVID-19 pandemic it became clear that testing resource constraints would be a large issue
for multiple countries, and hence pooled testing became a viable option for combatting the virus,
especially as it was shown that qPCR tests can be sensitive enough to pool samples in a pooled
test [Mutesa et al., 2021, Nalbantoglu, 2020, Sanghani et al., 2021]. Although having access to a
pooled testing primitive is a necessary condition for implementing existing protocols, practical
constraints often render these approaches unfeasible. On one hand, complicated pooled testing
regimes can be difficult to implement logistically at scale with limited laboratory personnel and
workflow infrastructure [Cleary et al., 2021]. On the other hand, the unfortunate reality is that
many resource-constrained populations are in a situation where their testing budget falls far below
the information theoretic lower bounds required to precisely ascertain the health profile of all
individuals as per traditional pooled testing objectives.
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B PROOF OF PROPOSITION 2
Proof. Suppose that given an instance, the optimal testing regime is 𝑇 ∗, where 𝑡∗1 ∩ 𝑡∗2 ≠ ∅. Let

𝐴 = 𝑡∗1 \ 𝑡∗2 , 𝐵 = 𝑡∗2 \ 𝑡∗1 and𝐶 = 𝑡∗1 ∩ 𝑡∗2 . Note that 𝑡∗1 ∪ 𝑡∗2 = 𝐴 ∪ 𝐵 ∪𝐶 . Without loss of generality, we
assume that 𝑞𝐴 ≥ 𝑞𝐵 and with a slight abuse of notation, we denote 𝑢𝐴 =

∑
𝑖∈𝐴 𝑢𝑖 , 𝑢𝐵 =

∑
𝑖∈𝐵 𝑢𝑖 ,

and 𝑢𝐶 =
∑
𝑖∈𝐶 𝑢𝑖 . Moreover, we define the following four different testing regimes:

• 𝑇 1 with 𝑡1
1 = 𝐴 ∪𝐶 and 𝑡1

2 = 𝐵

• 𝑇 2 with 𝑡2
1 = 𝐴 and 𝑡2

2 = 𝐶

• 𝑇 3 with 𝑡3
1 = 𝐵 and 𝑡3

2 = 𝐶

• 𝑇 4 with 𝑡4
1 = 𝐴 ∪ 𝐵 and 𝑡4

2 = 𝐶

We start with the following necessary lemma.

Lemma 4. For any 𝑇 ∈ {𝑇 1,𝑇 2,𝑇 3,𝑇 4}, the ratio 𝑢 (𝑇 ∗)/𝑢 (𝑇 ) is maximized when 𝑞𝐶 = 1.

Proof. We first show that the statement is true for 𝑇 = 𝑇 1. We need to show that
𝑞𝐶 (𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵) · 𝑢𝐶 )

𝑞𝐶 · 𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + 𝑞𝐶 · 𝑞𝐴 · 𝑢𝐶

≤ 𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵) · 𝑢𝐶
𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + 𝑞𝐴 · 𝑢𝐶

⇒ 𝑞𝐶 ≤
𝑞𝐶 · 𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + 𝑞𝐶 · 𝑞𝐴 · 𝑢𝐶

𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + 𝑞𝐴 · 𝑢𝐶
which is true since

𝑞𝐶 = 𝑞𝐶 ·
𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + 𝑞𝐴 · 𝑢𝐶
𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + 𝑞𝐴 · 𝑢𝐶

≤ 𝑞𝐶 · 𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + 𝑞𝐶 · 𝑞𝐴 · 𝑢𝐶
𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + 𝑞𝐴 · 𝑢𝐶

.

Now, we consider the case that 𝑇 = 𝑇 2. Here, we need to show that
𝑞𝐶 (𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵) · 𝑢𝐶 )

𝑞𝐴 · 𝑢𝐴 + 𝑞𝐶 · 𝑢𝐶

≤ 𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵) · 𝑢𝐶
𝑞𝐴 · 𝑢𝐴 + 𝑢𝐶

⇒ 𝑞𝐶 ≤
𝑞𝐴 · 𝑢𝐴 + 𝑞𝐶 · 𝑢𝐶
𝑞𝐴 · 𝑢𝐴 + 𝑢𝐶

,

which is true since
𝑞𝐶 = 𝑞𝐶 ·

𝑞𝐴 · 𝑢𝐴 + 𝑢𝐶
𝑞𝐴 · 𝑢𝐴 + 𝑢𝐶

≤ 𝑞𝐴 · 𝑢𝐴 + 𝑞𝐶 · 𝑢𝐶
𝑞𝐴 · 𝑢𝐴 + 𝑢𝐶

.

With similar arguments as above, we can show that the ratio 𝑢 (𝑇 ∗)/𝑢 (𝑇 3) is maximized when
𝑞𝐶 = 1.

Lastly for 𝑇 = 𝑇 4, we need to show that
𝑞𝐶 (𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵) · 𝑢𝐶 )

𝑞𝐴 · 𝑞𝐵 · (𝑢𝐴 + 𝑢𝐵) + 𝑞𝐶 · 𝑢𝐶

≤ 𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵) · 𝑢𝐶
𝑞𝐴 · 𝑞𝐵 · (𝑢𝐴 + 𝑢𝐵) + 𝑢𝐶

⇒ 𝑞𝐶 ≤
𝑞𝐴 · 𝑞𝐵 · (𝑢𝐴 + 𝑢𝐵) + 𝑞𝐶 · 𝑢𝐶
𝑞𝐴 · 𝑞𝐵 · (𝑢𝐴 + 𝑢𝐵) + 𝑢𝐶

,

which is true since

𝑞𝐶 = 𝑞𝐶 ·
𝑞𝐴 · 𝑞𝐵 · (𝑢𝐴 + 𝑢𝐵) + 𝑢𝐶
𝑞𝐴 · 𝑞𝐵 · (𝑢𝐴 + 𝑢𝐵) + 𝑢𝐶

≤ 𝑞𝐴 · 𝑞𝐵 · (𝑢𝐴 + 𝑢𝐵) + 𝑞𝐶 · 𝑢𝐶
𝑞𝐴 · 𝑞𝐵 · (𝑢𝐴 + 𝑢𝐵) + 𝑢𝐶

.
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□

Using Lemma 4, hereinafter, we consider the case that 𝑞𝐶 = 1.
We distinguish into two cases.

Case I: 𝑞𝐴 ≥ 5/6. In this case, note that
(𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵) · 𝑢𝐶

𝑞𝐴 · 𝑢𝐶
≤ (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐴) · 𝑢𝐶

𝑞𝐴 · 𝑢𝐶
= 2 − 𝑞𝐴 ≤

7
6 .

where the second transition follows since 𝑞𝐴 ≥ 𝑞𝐵 and the last transition follows since 𝑞𝐴 ≥ 5/6.
Hence, we see that

𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐴) · 𝑢𝐶
𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + 𝑞𝐴 · 𝑢𝐶

≤ 7
6 ,

meaning that 𝑢 (𝑇 ∗)/𝑢 (𝑇 1) ≤ 7/6.

Case II: 𝑞𝐴 < 5/6. Here, for the sake of contradiction, suppose that for any testing without
overlaps the approximation ratio is more that 7/6. Then, we have that 𝑢 (𝑇 ∗)/𝑢 (𝑇 ) > 7/6, for any
𝑇 ∈ {𝑇 1,𝑇 2,𝑇 3,𝑇 4}.

Thus,
𝑢 (𝑇 ∗)
𝑢 (𝑇 1) >

7
6

⇒𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵) · 𝑢𝐶
𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + 𝑞𝐴 · 𝑢𝐶

>
7
6

⇒(6 · (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵) − 7𝑞𝐴) · 𝑢𝐶 > 𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 . (3)

Now, from the fact that 𝑢 (𝑇 ∗)/𝑢 (𝑇 2) > 7/6, we get that

⇒𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵) · 𝑢𝐶
𝑞𝐴 · 𝑢𝐴 + 𝑢𝐶

>
7
6

⇒𝑞𝐵 · 𝑢𝐵 >
1
6𝑞𝐴 · 𝑢𝐴 + (

7
6 − (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵)) · 𝑢𝐶

⇒𝑞𝐵 · 𝑢𝐵 >
1
6𝑞𝐴 · 𝑢𝐴 + (

7
6 − (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐴)) · 𝑢𝐶 (4)

where the last inequality follows from the fact that 𝑞𝐴 ≥ 𝑞𝐵 . With a very similar argument we can
conclude that

𝑞𝐴 · 𝑢𝐴 >
1
6𝑞𝐵 · 𝑢𝐵 + (

7
6 − (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐴)) · 𝑢𝐶 (5)

from the fact that 𝑢 (𝑇 ∗)/𝑢 (𝑇 3) > 7/6. From Equation (4) and Equation (5), we get that

𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 >
6
5 · 2 · (

7
6 − (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐴)) · 𝑢𝐶

and from Equation (3), we conclude that

(6 · (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵) − 7𝑞𝐴) >
6
5 · 2 · (

7
6 − (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐴))

which is true when 1/2 < 𝑞𝐴 < 2/3. Hence, from now one we assume that 𝑞𝐴 lies in the interval
(1/2, 2/3).
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Moreover, we have that
𝑢 (𝑇 ∗)
𝑢 (𝑇 2) >

7
6

⇒𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵) · 𝑢𝐶
𝑞𝐴 · 𝑢𝐴 + 𝑢𝐶

>
7
6

⇒(6 · (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵) − 7𝑞𝐴) · 𝑢𝐶 + (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵) · 𝑢𝐶
𝑞𝐴 · 𝑢𝐴 + 𝑢𝐶

>
7
6

⇒7 · (1 − 𝑞𝐴) · 𝑞𝐵 · 𝑢𝐶
𝑞𝐴 · 𝑢𝐴 + 𝑢𝐶

>
7
6

⇒(6 · (1 − 𝑞𝐴) · 𝑞𝐵 − 1) · 𝑢𝐶 > 𝑞𝐴 · 𝑢𝐴 (6)

where the third inequality follows from Equation (3), and similarly using the fact that 𝑢 (𝑇 ∗)/𝑢 (𝑇 3),
we get

(6 · (1 − 𝑞𝐴) · 𝑞𝐵 − 1) · 𝑢𝐶 > 𝑞𝐵 · 𝑢𝐵 (7)

Lastly,
𝑢 (𝑇 ∗)
𝑢 (𝑇 4) >

7
6

⇒𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵) · 𝑢𝐶
𝑞𝐴 · 𝑞𝐵 · (𝑢𝐴 + 𝑢𝐵) + 𝑢𝐶

>
7
6

⇒𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 >
(7 − 6(𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵)) · 𝑢𝐶

6 − 7 · 𝑞𝐵
(8)

where the last inequality follows from the fact that 𝑞𝐵 < 6/7 since 𝑞𝐵 ≤ 𝑞𝐴 and 𝑞𝐴 < 5/6.
Now, from Equation (6), Equation (7) and Equation (8), we get that

𝑢 (𝑇 ∗)
𝑢 (𝑇 1) =

𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵) · 𝑢𝐶
𝑞𝐴 · 𝑢𝐴 + 𝑞𝐵 · 𝑢𝐵 + 𝑞𝐴 · 𝑢𝐶

≤ 2 · (6 · (1 − 𝑞𝐴) · 𝑞𝐵 − 1) · 𝑢𝐶 + (𝑞𝐴 + (1 − 𝑞𝐴) · 𝑞𝐵) · 𝑢𝐶
7−6(𝑞𝐴+(1−𝑞𝐴 ) ·𝑞𝐵 ) ·𝑢𝐶

6−7·𝑞𝐵 + 𝑞𝐴 · 𝑢𝐶
which is maximized when 𝑞𝐴 = 𝑞𝐵 = 1/2, given that 1/2 < 𝑞𝐴 < 2/3 and then we get that
𝑢 (𝑇 ∗)/𝑢 (𝑇 1) ≤ 7/6 and reach a contradiction. □

C PROOF OF Lemma 1
Proof. We re-write 𝑃𝑇 ∗𝑖, 𝑗 for 𝑖 ∈ 𝑡∗𝑗 using conditional probabilities:

𝑃𝑇
∗

𝑖, 𝑗 = Pr[ ∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖; 𝑗), 𝑡∗𝑗 ′ is positive and 𝑡∗𝑗 is negative] .
= Pr[𝑡∗𝑗 negative] · Pr[∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖; 𝑗), 𝑡∗𝑗 ′ positive | 𝑡∗𝑗 negative]
= 𝑞𝑡∗

𝑗
· Pr[∀𝑡∗𝑗 ′ ∈ 𝑇 ∗ (𝑖; 𝑗) ∃𝑖′ ∈ 𝑡∗𝑗 ′ \ 𝑡∗𝑗 | 𝑖 infected] .

First of all, we notice that it must be the case that 𝑞𝑡∗
𝑗
=

∏
𝑖∈𝑡∗

𝑗
𝑞𝑖 > 0. If this is not so then

there must be some individual 𝑖 ∈ 𝑡∗𝑗 such that 𝑝𝑖 = 1, and it is straightforward to see that it is
always sub-optimal to include such an individual in any testing regime. As for the second term, to
show that it is non-zero, we begin by using the fact that 𝑇 ∗ is optimal to show that without loss
of generality, we can assume that for each 𝑡∗

𝑗 ′ ∈ 𝑇 ∗ (𝑖; 𝑗) it must be the case that there exists an
𝑖 ∈ 𝑡∗

𝑗 ′ \ 𝑡∗𝑗 such that 𝑝𝑖 > 0.
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Suppose that this is not the case and that there exist 𝑡∗
𝑗 ′ , 𝑡
∗
𝑗 ∈ 𝑇 ∗ such that every 𝑖 ∈ 𝑡∗

𝑗 ′ \ 𝑡∗𝑗 has
𝑝𝑖 = 0 (𝑞𝑖 = 1). We show that either 𝑇 ∗ is sub-optimal, or we can construct an optimal testing
regime where this is no longer the case. To do so, we assume that without loss of generality 𝑗 ′ = 1
and 𝑗 = 2 (we can arbitrarily re-order test indices), and write the expected utility of 𝑇 ∗ as follows:

𝑢 (𝑇 ∗) =
∑︁
𝑖∈[𝑛]

𝑢𝑖 · 𝑃𝑇
∗

𝑖

=
∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[𝐵 ]

𝑢𝑖 · 𝑃𝑇
∗

𝑖, 𝑗

=
∑︁
𝑗∈[𝐵 ]

∑︁
𝑖∈𝑡∗

𝑗

𝑢𝑖 · 𝑃𝑇
∗

𝑖, 𝑗

=
©­«
∑︁
𝑖∈𝑡∗1

𝑢𝑖 · 𝑃𝑇
∗

𝑖,1
ª®¬ + ©­«

∑︁
𝑖∈𝑡∗2

𝑢𝑖 · 𝑃𝑇
∗

𝑖,2
ª®¬ +

𝐵∑︁
𝑗=3

∑︁
𝑖∈𝑡∗

𝑗

𝑢𝑖 · 𝑃𝑇
∗

𝑖, 𝑗

= 𝑢 (𝑡∗1 ) +
©­«
∑︁
𝑖∈𝑡∗1

𝑢𝑖 · 𝑃𝑇
∗

𝑖,2 +
∑︁

𝑖∈𝑡∗2 \𝑡∗1

𝑢𝑖 · 𝑃𝑇
∗

𝑖,2
ª®¬ +

𝐵∑︁
𝑗=3

∑︁
𝑖∈𝑡∗

𝑗

𝑢𝑖 · 𝑃𝑇
∗

𝑖, 𝑗

= 𝑢 (𝑡∗1 ) +
©­«

∑︁
𝑖∈𝑡∗2 \𝑡∗1

𝑢𝑖 · 𝑃𝑇
∗

𝑖,2
ª®¬ +

𝐵∑︁
𝑗=3

∑︁
𝑖∈𝑡∗

𝑗

𝑢𝑖 · 𝑃𝑇
∗

𝑖, 𝑗

= 𝑢 (𝑡∗1 ) + 𝑞𝑡∗2
∑︁

𝑖∈𝑡∗2 \𝑡∗1

𝑢𝑖 +
𝐵∑︁
𝑗=3

∑︁
𝑖∈𝑡∗

𝑗

𝑢𝑖 · 𝑃𝑇
∗

𝑖, 𝑗

≤ 𝑢 (𝑡∗1 ) + 𝑢 (𝑡∗2 \ 𝑡∗1 ) +
𝐵∑︁
𝑗=3

∑︁
𝑖∈𝑡∗

𝑗

𝑢𝑖 · 𝑃𝑇
∗

𝑖, 𝑗

The first 4 equalities follow from re-ordering terms in the sums. In the fifth equality, we make
use of the fact that if 𝑖 ∈ 𝑡∗1 , it must be the case that 𝑃𝑇 ∗𝑖,2 = 0, for if 𝑡∗2 is pivotal for them, then that
test must be negative, which implies that 𝑡∗1 is negative (for individuals in 𝑡∗ \ 𝑡∗2 are guaranteed to
be healthy by assumption), contradicting the pivotal nature of 𝑡∗2 . If 𝑖 ∈ 𝑡∗2 \ 𝑡∗1 , then 𝑡∗2 is pivotal
only if it is negative, hence 𝑃𝑇 ∗𝑖,2 = 𝑞𝑡∗2 , which in turn justifies the following equality. Finally, we
know that 𝑞𝑡∗2 ≤ 𝑞𝑡∗2 \𝑡∗1 , and that 𝑢 (𝑡∗2 \ 𝑡∗1 ) = 𝑞𝑡∗2 \𝑡∗1

∑
𝑖∈𝑡∗2 \𝑡∗1 𝑢𝑖 , from which the final equality holds.

Putting everything together, let us consider 𝑇 ′ where 𝑡 ′𝑗 = 𝑡∗𝑗 for 𝑗 ≠ 2 and 𝑡 ′2 = 𝑡∗2 \ 𝑡∗1 . From the
above, it follows that either 𝑇 ∗ is sub-optimal (as 𝑇 ′ achieves more welfare), or we can replace 𝑇 ∗
with 𝑇 ′, and in either case, we can ensure that our desired property holds.
With this in hand, this means if 𝑇 ∗ is optimal, and we consider 𝑖 ∈ 𝑡∗𝑗 as in the beginning of the

proof, we can construct a pool of individuals 𝑆 by picking one individual from the set 𝑇 ∗𝑗 \𝑇 ∗𝑗 ′ for
each𝑇 ∗

𝑗 ′ ∈ 𝑇 (𝑖; 𝑗) such that the individual has non-zero probability of infection. From the above, we
are guaranteed to be able to construct such an 𝑆 which is non-empty. Furthermore, if all individuals
in 𝑆 are infected, it follows that each 𝑇𝑗 ′ ∈ 𝑇 (𝑖; 𝑗) is positive without compromising a negative
test on 𝑇 ∗𝑗 . This in turn implies that Pr[∀𝑡∗

𝑗 ′ ∈ 𝑇 ∗ (𝑖; 𝑗) ∃𝑖′ ∈ 𝑡∗𝑗 ′ \ 𝑡∗𝑗 | 𝑖 infected] ≥ Pr[1 − 𝑞𝑆 ] > 0.
Putting this together with the fact that 𝑞𝑡∗

𝑗
> 0 completes the proof.

□
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D GAIN OF OVERLAPS FOR 𝐵 ∈ {3, 4}
Proposition 4. gain(3) ≤ 7/3 and gain(4) ≤ 15/4.

Proof. We start from the case that 𝐵 = 3. we partition the individuals, that are pooled into
at least one test in an optimal testing regime 𝑇 ∗, into seven sets as following: the first three sets,
denoted by 𝑆1, 𝑆2 and 𝑆3, consist of individuals that are pooled into only the first, the second and
the third test, respectively; the next three sets, denoted by 𝑆4, 𝑆5 and 𝑆6 consist of individuals that
are only pooled into the first and the second test, the first and the third test, and the second and
the third test, respectively; the last set, denoted by 𝑆7, consists of individuals that are included in
all three tests. Then, 𝑢 (𝑇 ∗) ≤ ∑

𝑗∈[7] 𝑞𝑆 𝑗 ·
∑
𝑖∈𝑆 𝑗 𝑢𝑖 , as each 𝑖 ∈ 𝑆 𝑗 is always pooled into a test along

with all the individuals in 𝑆 𝑗 \ {𝑖} and hence her probability to be included in a test that turns
negative is at most 𝑞𝑆 𝑗 which indicates that probability that all the individuals in 𝑆 𝑗 are healthy.
Now, without loss of generality, assume that 𝑞𝑆 𝑗

∑
𝑖∈𝑆 𝑗 𝑢𝑖 ≥ 𝑞𝑆 𝑗+1

∑
𝑖∈𝑆 𝑗+1 𝑢𝑖 for each 𝑗 ∈ [6]. Then,

we define the non-overlapping testing regime 𝑇 such that 𝑡1 = 𝑆1, 𝑡2 = 𝑆2 and 𝑡3 = 𝑆3. Notice that
𝑢 (𝑇 ) = ∑

𝑗∈[3] 𝑞𝑆 𝑗 ·
∑
𝑖∈𝑆 𝑗 𝑢𝑖 , and hence 𝑢 (𝑇 ∗)/𝑢 (𝑇 ) ≤ 7/3.

For the case that 𝐵 = 4, we partition the individuals into 15 sets with a very similar way as above,
i.e. the first fours sets consist of individuals that are pooled only into one test, the next six tests
consist of individuals that are pooled into exactly two tests, the next 4 tests consist of individuals
that are pooled into exactly three tests and the last set consists of individuals that are pooled into
all four tests. Then, we use the four available tests to pool individuals from the four sets that have
the highest utility and we get an approximation of 15/4. □

E PROOF OF Lemma 3
Proof. Here we show, how the FPTAS, that is introduced in [Goldberg and Rudolf, 2020] and

finds an almost optimal test when there is no any size constraint, can be modified for the case that
a test can pool up to 𝐺 samples.
Using similar notation as in [Goldberg and Rudolf, 2020], for 𝑖 ∈ [𝑛], we denote with 𝑃 (𝑖,𝐶, 𝐿)

the maximum probability of a subset of [𝑖] to be negative with sum of utilities exactly 𝐶 and size
exactly 𝐿. Then, we modify the dynamic program that was introduced at Equation (6) in [Goldberg
and Rudolf, 2020] as following:

𝑃 (𝑖,𝐶, 𝐿) =


max{𝑃 (𝑖 − 1,𝐶, 𝐿), 𝑞𝑖 · 𝑃 (𝑖 − 1,𝐶 − 𝑢𝑖 , 𝐿 − 1)} 𝑖 ≥ 2 and 𝑢𝑖 < 𝐶
𝑃 (𝑖 − 1,𝐶, 𝐿) 𝑖 ≥ 2 and 𝑢𝑖 ≥ 𝐶
𝑞𝑖 𝑖 = 1 and 𝑢1 = 𝐶

0 otherwise

(9)

With a slight abuse of notation, we denotewith 𝑡 (𝑃 (𝑖,𝐶, 𝐿)) the subset of [𝑖] that satisfies𝑞𝑡 (𝑃 (𝑖,𝐶,𝐿) ) =
𝑃 (𝑖,𝐶, 𝐿), ∑ℓ∈[𝑡 (𝑃 (𝑖,𝐶,𝐿) ) ] 𝑢ℓ = 𝐶 and |𝑡 (𝑃 (𝑖,𝐶, 𝐿)) | = 𝐿.

If𝐶 is an upper bound on the sum of utilities of the optimal test ( a straightforward upper bound
is 𝐶 =

∑
𝑖∈[𝑛] 𝑢𝑖 ), then the optimal test with size at most 𝐺 that maximizes the utility is given by

𝑡 (𝑃 (𝑛,𝐶∗, 𝐿∗)) where
𝐶∗, 𝐿∗ = arg max

𝐶∈[𝐶 ],𝐿∈[𝐺 ]
𝐶 · 𝑃 (𝑛,𝐶, 𝐿). (10)

Thus, the running time is given by 𝑂 (𝑛𝐺𝐶) ≤ 𝑂 (𝑛2𝐶), since 𝐺 ≤ 𝑛. Then, we see that in order to
approximately solve the dynamic programming with a polynomial run-time complexity bound, we
should scale down (and round) the utility coefficients whose magnitude determines the running
time of the program. We can achieve this by using identical arguments as in Section 3.2 of [Goldberg
and Rudolf, 2020]. We present the whole proof here for completeness.
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Algorithm 1

1: 𝜅 ← (𝜖 · 1/2 ·max𝑖∈𝑁1/2 𝑢𝑖 )/𝑛
2: 𝑧∗ ← 0; 𝑡 ← ∅
3: for 𝑗 = ℎ + 1, . . . 𝑛 do
4: if 𝑧 (ℎ, 𝑗) < 𝑞 𝑗 · 𝑢 𝑗 then
5: if 𝑞 𝑗 · 𝑢 𝑗 > 𝑧∗ then
6: 𝑧∗ ← 𝑞 𝑗 · 𝑢 𝑗
7: 𝑡 ← { 𝑗}
8: end if
9: else
10: if 𝑧 (ℎ, 𝑗) > 𝑧∗ then
11: 𝑧∗ ← 𝑧 (ℎ, 𝑗)
12: 𝑡 ← 𝑡 (𝑃 (ℎ,𝐶𝑖, 𝑗 , 𝐿̂𝑖, 𝑗 ))
13: end if
14: end if
15: end for
16: return 𝑡

We scale down the utilities using some factor 𝜅 , by setting𝑢𝑖 = ⌊𝑢𝑖/𝜅⌋ for each 𝑖 ∈ [𝑛]. Before, we
choose 𝜅, we add some more notation. Let 𝑁1/2 = {𝑖 ∈ [𝑛] : 𝑞𝑖 ≥ 1/2}. Without loss of generality,
assume that 𝑁1/2 = [ℎ] and [𝑛] \ 𝑁1/2 = {ℎ + 1, . . . , 𝑛}. Let 𝑃 (𝑖,𝐶, 𝐿) denote the DP in Equation (9)
by replacing 𝑢𝑖 with 𝑢𝑖 . Moreover, we assume that there exists a dummy individual 𝑛 + 1 with
𝑢𝑛+1 = 0 and 𝑞𝑛+1 = 1. Then, for 𝑖 ∈ [𝑛] and 𝑗 > 𝑖 the scaled DP problem is defined as

𝑧𝜅 (𝑖, 𝑗) = max
𝐶∈[𝐶 (𝑖 ) ],𝐿∈[𝐺 ]

(𝜅 ·𝐶 + 𝑢 𝑗 ) · 𝑃 (𝑖,𝐶, 𝐿) · 𝑞 𝑗 . (11)

where 𝐶 (𝑖) = ∑
𝑖′∈[𝑖 ] 𝑢𝑖′ . Let

𝐶𝑖, 𝑗 , 𝐿̂𝑖, 𝑗 = arg max
𝐶∈[𝐶 (𝑖 ) ],𝐿∈[𝐺 ]

(𝜅 ·𝐶 + 𝑢 𝑗 ) · 𝑃 (𝑖,𝐶, 𝐿) · 𝑞 𝑗 .

Note that 𝑡 (𝑃 (𝑖,𝐶𝑖, 𝑗 , 𝐿̂𝑖, 𝑗 ) ∪ { 𝑗}) returns an optimal test by replacing 𝑢𝑖 with 𝑢𝑖 and adding the
constraint that for any ℓ ∈ [𝑖 + 1, . . . , 𝑛] \ { 𝑗}, ℓ is not pooled into the test, while 𝑗 is pooled into
it. From Lemma 2, we know that it suffices to evaluate 𝑧 (𝑖, 𝑗) for 𝑖 ∈ [ℎ] and 𝑗 ∈ {ℎ + 1, . . . , 𝑛} in
order to evaluate 𝑧𝜅 (𝑛, 𝑛 + 1) as at most one individual from [𝑛] \ 𝑁1/2 may be pooled into the test.
The following lemma establishes an upper bound on a value of 𝜅 that suffices to bound the

relative error of solutions of 𝑧𝜅 in approximating the optimal test within a given 𝜖 > 0.

Lemma 5. Let 𝑡∗ be an optimal test with
∑
ℓ∈𝑡∗ 𝑢ℓ = 𝐶

∗ and |𝑡∗ | = 𝐿∗. For a given 𝜖 > 0, there exist
𝑖 ∈ [ℎ], 𝑗 ∈ {ℎ, . . . , 𝑛 + 1}, with 𝑖 < 𝑗 , and for 𝑡 = 𝑡∗ \ { 𝑗} and 𝜅 ≤ 𝜖 max𝑖∈𝑡 𝑞𝑖 ·𝑢𝑖

𝑛
such that

𝑧𝜅 (𝑖, 𝑗) ≥ (1 − 𝜖) ·𝐶∗ · 𝑃 (𝑛,𝐶∗, 𝐿∗).

Proof. First note∑︁
𝑖∈𝑡∗

𝑢𝑖 − 𝜅
∑︁
𝑖∈𝑡∗

𝑢𝑖 =
∑︁
𝑖∈𝑡∗

𝑢𝑖 − 𝜅
∑︁
𝑖∈𝑡∗
⌊𝑢𝑖/𝜅⌋ ≤

∑︁
𝑖∈𝑡∗

𝑢𝑖 − 𝜅
∑︁
𝑖∈𝑡∗
(𝑢𝑖/𝜅 − 1) ≤ 𝜅𝑛

where the last inequality follows since |𝑡∗ | ≤ 𝑛.
Let 𝑗 be the individual with the smallest probability of being healthy in 𝑡∗ by breaking ties with

respect to individuals that have higher index and let 𝑖 be the individual with the highest index in
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𝑡∗ \ { 𝑗}. We denote with 𝑡 ⊆ [𝑖] the set that maximizes Equation (11). Then, we get that

𝑧𝜅 (𝑖, 𝑗) = 𝑞 𝑗 ©­«𝜅
∑︁

ℓ∈𝑡\{ 𝑗 }
𝑢ℓ + 𝑢 𝑗ª®¬𝑞𝑡\{ 𝑗 } = 𝑞 𝑗 ©­«𝜅

∑︁
ℓ∈𝑡∗\{ 𝑗 }

𝑢ℓ + 𝑢 𝑗ª®¬𝑞𝑡∗\{ 𝑗 }
≥

(
1 − 𝑛𝜅∑

𝑖∈𝑡∗ 𝑢𝑖

)
· 𝑞𝑡∗

∑︁
𝑖∈𝑡∗

𝑢𝑖 ,

where the first inequality follows from optimality of 𝑡 under the scaled utilities. Thus, to ensure an
𝜖-approximate solution, we need

𝑛𝜅∑
ℓ∈𝑡∗ 𝑢ℓ

≤ 𝜖 ⇔ 𝜅 ≤ 𝜖 ·
∑
ℓ∈𝑡∗ 𝑢ℓ
𝑛

.

Thus, it suffices to choose

𝜅 ≤
𝜖 ·maxℓ∈[𝑡∗\{ 𝑗 } ] 𝑢ℓ · 𝑞ℓ

𝑛
≤ 𝜖 · 𝑞𝑡

∗ ·∑𝑖∈𝑡∗ 𝑢𝑖
𝑛

≤ 𝜖 ·
∑
ℓ∈𝑡∗ 𝑢𝑖
𝑛

□

Since 𝑡∗ is not known, we should choose a value for 𝜅 that satisfies the above lemma. Note that
due to Lemma 2, we know that 𝑡∗ ∩ ([𝑛] \ 𝑁1/2) ≤ 1.
Algorithm 1, which is an FPTAS for the optimal test, due to Lemma 2, fixes an individual

𝑗 ∈ [𝑛 + 1] \ 𝑁1/2 that is pooled into the optimal test, where 𝑗 = 𝑛 + 1 indicates the case that
𝑡∗ ∩ ([𝑛] \ 𝑁1/2) = 0. Hence, we can apply Lemma 3 by setting 𝑖 = ℎ and thus 𝑡 ⊆ 𝑁1/2. Since for
each ℓ ∈ 𝑁1/2, 𝑞ℓ ≥ 1/2, we have that maxℓ∈𝑡 𝑞ℓ · 𝑢ℓ ≥ 1/2 maxℓ∈𝑡 ·𝑢ℓ . Thus, we can choose 𝜅 such
that

𝜅 =
𝜖 · 1/2 ·maxℓ∈[𝑡 ] 𝑢ℓ

𝑛
≤
𝜖 ·maxℓ∈[𝑡 ] 𝑞ℓ · 𝑢ℓ

𝑛
≤ 𝜖 · 𝑞𝑡

∗ ·∑𝑖∈𝑡∗ 𝑢𝑖
𝑛

where the last inequality follows from optimality of 𝑡∗.
Now, we show that Algorithm 1 is an FPTAS for the optimal test.
First note that if |𝑡∗ | = 1, then Algorithm 1 finds the optimal test in Lines 5-7. Hence, we focus

on the case that |𝑡∗ | > 1. using Lemma 2, we distinguish into two cases:

Case I: |𝑡∗ \𝑁1/2 | = 0. For each given 𝜖 > 0, 𝜅 satisfies the supposition of Lemma 5. So following
Lemma 5 with 𝐶 = 𝐶 (ℎ) = ∑

ℓ∈𝑁1/2 ≥
∑
ℓ∈𝑡∗ 𝑢ℓ , for 𝐶ℎ,𝑛+1 and 𝐿̂ℎ,𝑛+1, we have

𝑢 (𝑡) = 𝑧𝜅 (ℎ, 𝑛 + 1) = 𝜅 ·𝐶ℎ,𝑛+1 · 𝑃 (ℎ,𝐶ℎ,𝑛+1, 𝐿̂ℎ,𝑛+1) ≥ (1 − 𝜖) ·𝐶∗ · 𝑃 (ℎ,𝐶∗, 𝐿∗)
≥ (1 − 𝜖) ·𝐶∗ · 𝑃 (𝑛,𝐶∗, 𝐿∗)

Case II: |𝑡∗ \ 𝑁1/2 | = 1. Then, for each 𝜖 > 0, the choice of 𝜅 for some 𝑗 ∈ [𝑛] \ 𝑁1/2 satisfies

𝑧𝜅 (ℎ, 𝑗) ≥ (1 − 𝜖) ·𝐶∗ · 𝑃 (𝑛,𝐶∗, 𝐿∗)

where the inequality follows form Lemma 5. The algorithm must determine 𝑗 since it enumerates
all elements of [𝑛] \ 𝑁1/2. in the main loop.

The complexity of the algorithm is determined by at most 𝑛 evaluations of Equation (11). Hence,

𝑂
(
𝑛3𝐶

)
⊆ 𝑂 ©­«𝑛3

∑︁
ℓ∈𝑁1/2

𝑢ℓ

𝜅

ª®¬ ⊆ 𝑂
(
𝑛5

𝜖

)
.

□
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F PROOF OF Proposition 3
We begin by providing a simple upper bound on the attainable welfare for any testing regime
𝑇 ∈ T 𝐵 .

Lemma 6. Suppose that (𝑡∗) ∈ T 1 is optimal. For any 𝐵 ≤ 1. If 𝑇 ∈ T 𝐵 , then it follows that
𝑢 (𝑇 ) ≤ 𝐵 · 𝑢 (𝑡∗).

Proof. Suppose that 𝑇 ∈ T 𝐵 . As before, we write its welfare as follows:

𝑢 (𝑇 ∗) =
∑︁
𝑖∈[𝑛]

𝑢𝑖 · 𝑃𝑇𝑖

=
∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[𝐵 ]

𝑢𝑖 · 𝑃𝑇𝑖,𝑗

=
∑︁
𝑗∈[𝐵 ]

∑︁
𝑖∈[𝑛]

𝑢𝑖 · 𝑃𝑇𝑖,𝑗

=
∑︁
𝑗∈[𝐵 ]

∑︁
𝑖∈𝑡 𝑗

𝑢𝑖 · 𝑃𝑇𝑖,𝑗

≤
∑︁
𝑗∈[𝐵 ]

𝑞𝑡 𝑗

∑︁
𝑖∈[𝑛]

𝑢𝑖

=
∑︁
𝑗∈[𝐵 ]

𝑢 (𝑡 𝑗 )

≤
∑︁
𝑗∈[𝐵 ]

𝑢 (𝑡∗)

= 𝐵 · 𝑢 (𝑡∗)

The initial equalities in the above equations arise from re-arranging the sum and from the fact that
𝑃𝑇𝑖,𝑗 = 0 when 𝑖 ∉ 𝑡 𝑗 . As for the first inequality, We can express and bound the probability that 𝑡 𝑗 is
pivotal for 𝑖 in 𝑇 :

𝑃𝑇𝑖,𝑗 = 𝑞𝑡 𝑗

∏
𝑡ℓ ∈𝑇 (𝑖:𝑗 )

(1 − 𝑞𝑡ℓ \𝑡 𝑗 ) ≤ 𝑞𝑡 𝑗 .

Finally, due to optimality of 𝑡∗, it follows that 𝑢 (𝑡) ≤ 𝑢 (𝑡∗) for any feasible pooled test 𝑡 ⊆ [𝑛]. This
finishes the proof of the claim. □

Suppose that we consider a population instance where the population to be tested, [𝑛] can be
partitioned into 𝐶 clusters, such that all individuals in the 𝑖-th cluster have utility given by 𝑢𝑖
and probability of infection given by 𝑝𝑖 . In addition, suppose that the 𝑖-th cluster contains 𝑛𝑖 > 0
individuals. Using the above lemma, we can show that if the population sizes of each cluster permit
repeating identical copies of the optimal test in T 1, then this is optimal. Notice that this is what
result of executing the greedy algorithm with 𝜖 = 0 (which can be done efficiently by brute force if
the number of clusters is not too large).

Proposition 5. Suppose that {𝑡∗} ∈ T 1 is optimal and that in addition, 𝐵 · |𝑡∗ ∩𝐶𝑖 | ≤ 𝑛𝑖 for each
cluster. Let 𝑇 ∗ ∈ T 𝐵 be a testing regime that simply repeats 𝑡∗ in disjoint copies 𝐵 times. It follows
that 𝑇 ∗ is optimal.
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G IDENTICAL UTILITIES
In this section, we consider the special case where 𝑢𝑖 = 𝑢𝑖′ for each 𝑖, 𝑖′ ∈ [𝑛]. Without loss of
generality, assume that 𝑢𝑖 = 1 for any 𝑖 ∈ [𝑛] and 𝑞𝑖 ≥ 𝑞𝑖+1 for any 𝑖 ∈ [𝑛 − 1].

G.1 Optimal Testing Regime for constant 𝐵
We start by showing that when 𝐵 is a constant, we can find the optimal non-overlapping testing
regime in polynomial time.

Theorem 3. When the individuals have identical utilities, we can find an optimal non-overlapping
testing regime 𝑇 in time 𝑂 (𝑛𝐵+1/𝐵!).

Proof. We start with the following crucial lemma which indicates that there exists an optimal
testing regime where the test that has the largest size pools samples of the first 𝑘1 individuals with
𝑘1 ∈ [𝑛], the test that has the second largest size pools samples of the individuals 𝑘1 + 1 to 𝑘2 with
𝑘2 ∈ {𝑘1 + 1, . . . , 𝑛}, the test that has the third largest size pools samples of the individuals 𝑘2 + 1 to
𝑘3 with 𝑘3 ∈ {𝑘2 + 1, . . . , 𝑛} and so on.

Lemma 7. Let𝑇 ∗ be an optimal testing regime and without loss of generality let |𝑡∗𝑗 | ≥ |𝑡∗𝑗+1 | for any
𝑗 ∈ [𝐵 − 1]. Then, there exists an optimal testing regime 𝑇 ′ such that for each 𝑗 ∈ [𝐵], |𝑡 ′𝑗 | = |𝑡∗𝑗 | and

𝑡 ′𝑗 = {
∑︁

𝑗 ′∈[ 𝑗−1]
|𝑡 ′𝑗 ′ | + 1, . . . ,

∑︁
𝑗 ′∈[ 𝑗−1]

|𝑡 ′𝑗 ′ | + |𝑡 ′𝑗 |}.

Proof. First, note that for some optimal testing regime, it should hold that for any 𝑖′ > 𝑖 , if 𝑖′ is
pooled into some test, then 𝑖 is also pooled into some test, as otherwise the replacement of 𝑖′ with 𝑖
cannot worse the expected welfare of the testing regime. Thus, hereinafter, we focus on optimal
testing regimes that pool samples of the first 𝑘 individuals for some 𝑘 ∈ [𝑛].
We prove the lemma by induction on the number of tests. Start from the case that 𝐵 = 2. Let 𝑇 ∗

be an optimal testing regime with |𝑡∗1 | ≥ |𝑡∗2 |. Assume that 𝑡∗1 = 𝑆1 ∪ 𝑆 ′1, where 𝑆1 ⊂ {1, . . . , |𝑡∗1 |},
and 𝑆 ′1 ⊂ {|𝑡∗1 | + 1, . . . , 𝑘} and 𝑡∗2 = 𝑆2 ∪ 𝑆 ′2, where 𝑆2 ⊂ {1, . . . , |𝑡∗1 |} and 𝑆 ′2 ⊂ {|𝑡∗1 | + 1, . . . , 𝑘}. Since
𝑡∗1 ∪ 𝑡∗2 = [𝑘], we get that |𝑆 ′1 | = |𝑆2 | and since |𝑡∗1 | ≥ |𝑡∗2 |, we get that |𝑆1 | ≥ |𝑆 ′2 |. Now, consider the
testing regime 𝑇 such that 𝑡1 = 𝑆1 ∪ 𝑆2 and 𝑡2 = 𝑆 ′1 ∪ 𝑆 ′2. Notice that 𝑡1 ∪ 𝑡2 = [𝑘], |𝑡1 | = |𝑡∗1 | and
|𝑡2 | = |𝑡∗2 |. Then, we have

𝑢 (𝑇 ∗) = 𝑞𝑆1 · 𝑞𝑆 ′1 · |𝑡
∗
1 | + 𝑞𝑆2 · 𝑞𝑆 ′2 · |𝑡

∗
2 |

and

𝑢 (𝑇 ) = 𝑞𝑆1 · 𝑞𝑆2 · |𝑡∗1 | + 𝑞𝑆 ′1 · 𝑞𝑆 ′2 · |𝑡
∗
2 |.

and hence,

𝑢 (𝑇 ) − 𝑢 (𝑇 ∗) =
(
𝑞𝑆2 − 𝑞𝑆 ′1

)
·
(
𝑞𝑆1 · |𝑡∗1 | − 𝑞𝑆 ′2 · |𝑡

∗
2 |
)
. (12)

Due to optimality of 𝑇 ∗, we have that for any 𝑆1 ⊆ 𝑆1

𝑞𝑆1 · 𝑞𝑆 ′1 · |𝑡
∗
1 | ≥ 𝑞𝑆1

· 𝑞𝑆 ′1 · ( |𝑆1 | + |𝑆 ′1 |)

as otherwise if 𝑇 ′ is a testing regime with 𝑡 ′1 = 𝑆1 ∪ 𝑆 ′1 and 𝑡 ′2 = 𝑡∗2 , then it would hold that
𝑢 (𝑇 ′) > 𝑢 (𝑇 ∗) which is a contradiction. Now, choose arbitrary 𝑆1 ⊆ 𝑆1 such that |𝑆1 | = |𝑆 ′2 |. We
know that this is feasible since |𝑆1 | ≥ |𝑆 ′2 |. Then, we have

𝑞𝑆1 · 𝑞𝑆 ′1 · |𝑡
∗
1 | ≥ 𝑞𝑆1

· 𝑞𝑆 ′1 · ( |𝑆
′
2 | + |𝑆2 |) ≥ 𝑞𝑆 ′2 · 𝑞𝑆 ′1 · |𝑡

∗
2 |
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where the second transition follows due to optimally of 𝑇 ∗, and the facts that |𝑆1 | = |𝑆 ′2 | and
|𝑆 ′1 | = |𝑆2 | and the third transition follows since |𝑆 ′2 | + |𝑆2 | = |𝑡∗2 | and 𝑞𝑆1

≥ 𝑞𝑆 ′2 as for each 𝑖 ∈ 𝑆1
and each 𝑖′ ∈ 𝑆 ′2 it holds that 𝑞𝑖 ≥ 𝑞𝑖′ . Hence, we have that

𝑞𝑆1 · |𝑡∗1 | ≥ 𝑞𝑆 ′2 · |𝑡
∗
2 |.

Now from Equation (12), we have that 𝑢 (𝑇 ) ≥ 𝑢 (𝑇 ∗) since
(
𝑞𝑆2 − 𝑞𝑆 ′1

)
≥ 0 as for each 𝑖 ∈ 𝑆2 and

each 𝑖′ ∈ 𝑆 ′1 it holds that 𝑞𝑖 ≥ 𝑞𝑖′ and |𝑆 ′1 | = |𝑆2 |. Thus, we conclude in a testing regime 𝑇 , with
|𝑡1 | ≥ |𝑡2 |, 𝑇1 = {1 . . . , |𝑡1 |} and 𝑇2 = {|𝑡1 | + 1, . . . , |𝑡2 |} that is optimal.
Now, suppose that the claim holds for 𝐵 − 1. We will show that it holds for 𝐵. Let 𝑇 ∗ be an

optimal testing regime with |𝑡∗𝑗 | ≥ |𝑡∗𝑗+1 | for any 𝑗 ∈ [𝐵]. Using the induction hypothesis, we can
construct an optimal testing regime 𝑇 ′ such that |𝑡 ′𝑗 | = |𝑡∗𝑗 | for any 𝑗 ∈ [𝐵 − 1], 𝑡 ′

𝐵
= 𝑡∗

𝐵
and there

are no 𝑖 ∈ 𝑡 ′𝑗 and 𝑖′ ∈ 𝑡 ′𝑗 ′ with 𝑖′ < 𝑖 and 𝑗 ′ > 𝑗 . Then, in round 𝑗 , for any 𝑡 ′𝑗 and 𝑡∗𝐵 , from induction
base we construct 𝑡 ′′𝑗 and 𝑡 𝑗

𝐵
such that |𝑡 ′′𝑗 | = |𝑡 ′𝑗 | = |𝑡∗𝑗 | and |𝑡

𝑗

𝐵
| = |𝑡∗

𝐵
| and there are no 𝑖 ∈ 𝑡 ′′𝑗 and

𝑖′ ∈ 𝑡 𝑗
𝐵
with 𝑖′ < 𝑖 . Thus, after 𝑛 − 1 rounds, we have 𝑇 ′′ = (𝑡 ′′1 , . . . , 𝑡 ′′𝐵−1, 𝑡

𝑛−1
𝐵
) which is optimal and

satisfies the property of the statement. □

Using Lemma 7, we can find an optimal testing as following. For any 𝑘 ∈ [𝑛] and any 𝑘1 ≥
𝑘2 . . . ≥ 𝑘𝐵 with

∑
ℓ∈[𝐵 ] 𝑘ℓ = 𝑘 , calculate the welfare of 𝑇 such that

𝑡 𝑗 = {
∑︁

ℓ∈[ 𝑗−1]
𝑘ℓ + 1, . . .

∑︁
ℓ∈[ 𝑗−1]

𝑘ℓ + 𝑘 𝑗 },

and return the testing regime that has the highest welfare. Hence, we need time at most 𝑛 ·𝑛𝐵/𝐵! to
find the optimal testing regime as for each 𝑘 , each 𝑘ℓ takes up to 𝑛 values and for each of the cases,
we order the 𝑘ℓ ’s in a decreasing order, meaning that among the 𝐵! different ways of ordering them
we are interested only for the case that 𝑘1 ≥ 𝑘2 . . . ≥ 𝑘𝐵 . □

G.2 Greedy Algorithm
Here, we show that when the utilities are identical, we can find an 𝑒-approximate testing regime
with respect to the optimal non-overlapping testing regime, for any value 𝐵. Specifically, we
consider a variation of the greedy algorithm that we introduced in Section 3.3 which we denote as
var-Greedy and is defined as following: var-Greedy runs 𝐵 rounds, and in each round 𝑗 , includes in
test 𝑡 𝑗 individuals that have not been pooled into any other test yet in an decreasing order with
respect to their probability of being healthy until the utility of the test is not worsen. Note that
var-Greedy always returns a testing regime 𝑇 where samples of the first 𝑛′ ∈ [𝑛] individuals are
pooled into some test, i.e. ∪𝑗∈[𝐵 ]𝑡 𝑗 = [𝑛′].

We start with the following lemma.

Lemma 8. If var-Greedy returns a testing regime that pools samples of the first 𝑛′ individuals, then
there exists an optimal testing regime that pools samples of the first 𝑛′′ individuals with 𝑛′′ ≤ 𝑛′.

Proof. Let 𝑇 ∗ be an optimal non-overlapping testing regime that satisfies the properties of
Lemma 7, i.e. for each 𝑗 ∈ 𝐵

𝑡∗𝑗 = {𝑖∗𝑗−1 + 1, . . . , 𝑖∗𝑗 }
with 𝑖∗0 = 0 and 𝑖∗𝑗−1 < 𝑖∗𝑗 . We denote with 𝑇 the testing regime that is returned by var-Greedy,
where for each 𝑗 ∈ [𝐵], 𝑡 𝑗 = {𝑖 𝑗−1 + 1, . . . , 𝑖 𝑗 }, with 𝑖0 = 0 and 𝑖 𝑗−1 < 𝑖 𝑗 . We show that for each
𝑗 ∈ [𝐵], 𝑖∗𝑗 ≤ 𝑖 𝑗 . Suppose for contradiction that 𝑡∗𝑗 is the first test such that 𝑖∗𝑗 > 𝑖 𝑗 . Due to the
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structure of 𝑇 ∗ and 𝑇 , this means that ∪𝑗 ′∈[ 𝑗−1]𝑡
∗
𝑗 ′ ⊆ ∪𝑗 ′∈[ 𝑗−1]𝑡 𝑗 ′ , and hence 𝑖∗𝑗−1 ≤ 𝑖 𝑗−1. Given that

var-Greedy did not pool 𝑖 𝑗 + 1 in 𝑡 𝑗 , we have that
𝑞𝑖 𝑗−1+1 · . . . · 𝑞𝑖 𝑗 · |𝑡 𝑗 | > 𝑞𝑖 𝑗−1+1 · . . . · 𝑞𝑖 𝑗 · 𝑞𝑖 𝑗+1 ·

(
|𝑡 𝑗 | + 1

)
⇒

|𝑡 𝑗 |
|𝑡 𝑗 | + 1 > 𝑞𝑖 𝑗+1.

as otherwise, from the definition of var-Greedy, 𝑖 𝑗 + 1 would have been included in 𝑡 𝑗 .
Note that,

𝑞𝑖∗
𝑗
<
|𝑡 𝑗 |
|𝑡 𝑗 | + 1 ≤

|𝑡∗𝑗 | − 1
|𝑡∗
𝑗
|

where the first transition follows since for any 𝑖′ > 𝑖 it holds 𝑞𝑖 ≥ 𝑞𝑖′ and |𝑡 𝑗 |/( |𝑡 𝑗 | + 1) > 𝑞𝑖 𝑗+1, and
the second transition holds since |𝑡∗𝑗 | − 1 ≥ |𝑡 𝑗 |.
Thus, we have that,

𝑞𝑡∗
𝑗
\{𝑖∗

𝑗
} · ( |𝑡∗𝑗 | − 1) > 𝑞𝑡∗

𝑗
\{𝑖∗

𝑗
} · 𝑞𝑖∗𝑗 · |𝑡

∗
𝑗 |.

This means that 𝑢 (𝑡∗𝑗 \ {𝑖∗𝑗 }) > 𝑢 (𝑡∗𝑗 ) and hence, we have that if𝑇 ′ is the testing regime with 𝑡 ′
𝑗 ′ = 𝑡

∗
𝑗 ′

for each 𝑗 ′ ≠ 𝑗 and 𝑡 ′𝑗 = 𝑡∗𝑗 \ {𝑖∗𝑗 }, then 𝑢 (𝑇 ′) > 𝑢 (𝑇 ∗) which is a contradiction.
We conclude that for each 𝑗 ∈ [𝐵], 𝑖∗𝑗 ≤ 𝑖 𝑗 , and the statement follows. □

Now, we are ready to show that for each instance var-Greedy returns an 𝑒-approximate testing
regime.

Theorem 4. var-Greedy returns an 𝑒-approximate testing regime.

Proof. Let𝑇 be the testing that is returned by var-Greedywhich pools the first𝑛′ ≤ 𝑛 individuals.
We start by showing that for each 𝑖 , 𝑃𝑇𝑖 ≥ 𝑞𝑖 · 1

𝑒
.

Consider an individual 𝑖 that is included in test 𝑡 𝑗 of size 𝑘 . Note for each 𝑖′ ∈ 𝑡 𝑗 , we have that
𝑞𝑖′ ≥ (𝑘 − 1)/𝑘 , as otherwise we would have that

𝑞𝑖′
∏

𝑖′′∈𝑡 𝑗 \{𝑖′ }
𝑞𝑖′′ · 𝑘 <

∏
𝑖′′∈𝑡 𝑗 \{𝑖′ }

𝑞𝑖′′ · (𝑘 − 1)

which is a contradiction. Thus, we get that

𝑃𝑇𝑖 = 𝑞𝑡 𝑗 = 𝑞𝑖 ·
∏

𝑖′∈𝑡 𝑗 \{𝑖 }
𝑞𝑖′ ≥ 𝑞𝑖 ·

(
𝑘 − 1
𝑘

)𝑘−1
≥ 𝑞𝑖 ·

1
𝑒
. (13)

From Lemma 8, we know that it exists an optimal non-overlapping testing regime 𝑇 ∗ that pools
the first 𝑛′′ individuals with 𝑛′′ ≤ 𝑛′. Then, we have

𝑢 (𝑇 ∗)
𝑢 (𝑇 ) =

∑
𝑖∈[𝑛′′ ] 𝑃

𝑇
𝑖 · 𝑢𝑖∑

𝑖∈[𝑛′ ] 𝑃
𝑇
𝑖
· 𝑢𝑖
≤

∑
𝑖∈[𝑛′ ] 𝑞𝑖 · 𝑢𝑖∑

𝑖∈[𝑛′ ] 𝑞𝑖 · 1
𝑒
· 𝑢𝑖
≤ 𝑒,

where the third transition follows from Equation (13). □

H MILP FORMULATIONWITH CLUSTERS
In order to speed up the computation, we can consider groups of individuals with the same utilities
and health probabilities as clusters. Clusters are particularly pertinent when utilities are integral and
health probabilities are discretized, as is the case in our pilot study. Suppose we have𝐶 clusters. We
introduce a population vector 𝑛 ∈ N𝐶0 so that 𝑛𝑖 denotes the number of individuals in cluster 𝑖 ∈ [𝐶].
In order to incorporate clustering into the MILP, we now let the index 𝑖 refer to a cluster (instead
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of an individual), and allow variables 𝑥 𝑗
𝑖
to take arbitrary non-negative integral values (instead

of binary values in (2h)); these values represent the number of individuals from cluster 𝑖 that are
included in test 𝑗 . Additionally, we relax the non-overlapping test constraint (2f) to

∑
𝑗∈[𝐵 ] 𝑥

𝑗

𝑖
≤ 𝑛𝑖 .

As an aside, it is not difficult to show that if cluster populations are much larger than the testing
budget at hand, then non-overlapping tests are optimal. We now state the full MILP with clustering
below. Note that constraints (14b)–(14f) capture the exponential constraint (2b), while (14h)–(14j)
capture the logarithmic constraint (2d).

max
∑︁
𝑗∈[𝐵 ]

𝑤 𝑗 (14a)

s.t. 𝑤 𝑗 ≤
∑︁
𝑘∈[𝐾 ]

𝑎𝑘𝑣
𝑗

𝑘
+ 𝑏𝑘 · 𝛿 𝑗𝑘 ∀𝑗 ∈ [𝐵], (14b)∑︁

𝑘∈[𝐾 ]
𝛿
𝑗

𝑘
= 1 ∀𝑗 ∈ [𝐵], (14c)∑︁

𝑘∈[𝐾 ]
𝑣
𝑗

𝑘
= 𝑙 𝑗 ∀𝑗 ∈ [𝐵], (14d)

𝑐𝑘 · 𝛿 𝑗𝑘 ≤ 𝑣
𝑗

𝑘
∀𝑗 ∈ [𝐵], 𝑘 ∈ [𝐾], (14e)

𝑐𝑘+1 · 𝛿 𝑗𝑘 ≥ 𝑣
𝑗

𝑘
∀𝑗 ∈ [𝐵], 𝑘 ∈ [𝐾], (14f)

𝑙 𝑗 = 𝑦 𝑗 +
∑︁
𝑖∈[𝐶 ]

𝑥
𝑗

𝑖
log𝑞𝑖 ∀𝑗 ∈ [𝐵], (14g)

1 =
∑︁

𝑘∈[𝐿,𝑈 ]
𝛾
𝑗

𝑘
∀𝑗 ∈ [𝐵], (14h)

𝑧 𝑗 =
∑︁

𝑘∈[𝐿,𝑈 ]
𝑘 · 𝛾 𝑗

𝑘
∀𝑗 ∈ [𝐵], (14i)

𝑦 𝑗 =
∑︁

𝑘∈[𝐿,𝑈 ]
log(𝑘) · 𝛾 𝑗

𝑘
∀𝑗 ∈ [𝐵], (14j)

𝑧 𝑗 = 𝑢 · 𝑥 𝑗 , ∀𝑗 ∈ [𝐵], (14k)∑︁
𝑗∈[𝐵 ]

𝑥
𝑗

𝑖
≤ 𝑛𝑖 , ∀𝑖 ∈ [𝐶], (14l)∑︁

𝑖∈[𝐶 ]
𝑥
𝑗

𝑖
≥ 1, ∀𝑗 ∈ [𝐵], (14m)∑︁

𝑖∈[𝐶 ]
𝑥
𝑗

𝑖
≤ 𝐺, ∀𝑗 ∈ [𝐵], (14n)

𝑥
𝑗

𝑖
∈ N0, ∀𝑗 ∈ [𝐵], 𝑖 ∈ [𝐶], (14o)

𝑣
𝑗

𝑘
∈ R, ∀𝑖 ∈ [𝐶], 𝑘 ∈ [𝐾], (14p)

𝛿
𝑗

𝑘
∈ {0, 1}, ∀𝑖 ∈ [𝐶], 𝑘 ∈ [𝐾], (14q)

𝛾
𝑗

𝑘
∈ {0, 1}, ∀𝑖 ∈ [𝐶], 𝑘 ∈ [𝐿,𝑈 ] (14r)
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I ADDITIONAL FIGURES AND TABLES FROM EXPERIMENTS
Here we show figures and summary tables for our experiments comparing Approx and Greedy on
the pilot study data with pool size constraint 𝐺 = 10, and on synthetic populations of size 𝑛 = 150
and pool size constraints 𝐺 ∈ {5, 10}. For details on the experiments, we refer to Section 5.2.

Fig. 1. Outcomes of Greedy and Approx on synthetic data with 𝑛 = 150, pool size bound 𝐺 = 5 and testing
budgets 𝐵 ∈ {2, 4, . . . , 10}. Left: Welfares achieved by Approx (left regions, blue) and Greedy (right regions,
red). Right: Ratios between the welfares of Approx and Greedy. In both figures, each black dot corresponds to
one of the 20 randomly generated populations.

Fig. 2. Outcomes of Greedy and Approx on synthetic data with 𝑛 = 150, pool size bound 𝐺 = 10 and testing
budgets 𝐵 ∈ {2, 4, . . . , 10}. Left: Welfares achieved by Approx (left regions, blue) and Greedy (right regions,
red). Right: Ratios between the welfares of Approx and Greedy. In both figures, each black dot corresponds to
one of the 20 randomly generated populations.

J TOWARDS OVERLAPPING TESTING
In Section 3.2, we show that the gain of allowing overlapping testing, compared to non-overlapping
testing, is at most 4. Despite extensive computational searching, no example with a gain of more
than 7/6 has been found. In order to better understand the average-case gain, we conduct computa-
tional experiments in which we generate 20 populations of size 10, with utilities and probabilities
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Approx Greedy
Budget Welfare Guarantee Time Welfare Time

2 866.60 0.47215 222 ms 866.48 9 ms
4 1646.23 0.94430 685 ms 1645.98 22 ms
6 2391.50 1.41645 1763 ms 2391.00 17 ms
8 3101.97 1.88861 16380 ms 3101.18 25 ms
10 3775.35 2.36076 6201334 ms 3774.20 75 ms
12 4399.37 2.83291 51746456 ms 4397.69 277 ms

Table 3. Summary showing welfare and computation time for Approx and Greedy on pilot study data (with a
population of 𝑛 = 130) and pool size constraint𝐺 = 10 with testing budgets 𝐵 ∈ {2, 4, . . . , 12}. We also state
the additive approximation guarantee of Approx (compared to optimal non-overlapping welfare).

Approx Greedy
Budget Welfare Guarantee Time Welfare Time

2 362.46 0.55666 187 ms 362.41 12 ms
4 652.56 1.11332 509 ms 652.46 23 ms
6 895.78 1.66998 1643 ms 895.53 36 ms
8 1099.03 2.22664 12170 ms 1098.70 45 ms
10 1264.35 2.7833 38272 ms 1263.91 63 ms

Table 4. Experiment summary on synthetic data with pool size bound 𝐺 = 5 and testing budgets 𝐵 ∈
{2, 4, . . . , 10}. Welfares and times are averaged over 20 randomly generated populations. We also state the
additive approximation guarantee of Approx (compared to optimal non-overlapping welfare).

Approx Greedy
Budget Welfare Guarantee Time Welfare Time

2 548.03 1.24119 246 ms 547.97 12 ms
4 828.49 2.48239 1157 ms 825.38 32 ms
6 1022.38 3.72358 7680 ms 1004.02 65 ms
8 1180.68 4.96477 27963 ms 1145.06 96 ms
10 1319.03 6.20597 243776 ms 1265.31 161 ms

Table 5. Experiment summary on synthetic data with pool size bound 𝐺 = 10 and testing budgets 𝐵 ∈
{2, 4, . . . , 10}. Welfares and times are averaged over 20 randomly generated populations. We also state the
additive approximation guarantee of Approx (compared to optimal non-overlapping welfare).

respectively drawn from {1, 2, 3}, and {0, 0.1, . . . , 1}. The pool size is unbounded and testing bud-
gets are 𝐵 ∈ {2, 3, 4}. We note that our choice of population size is constrained by the fact that
computing optimal overlapping tests is significantly more computationally intensive. For the same
reason, we restrict ourselves to comparing non-overlapping testing with 2-overlapping testing; in
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the latter case, individuals are permitted to lie in at most two tests. In order to compute optimal
non-overlapping and 2-overlapping regimes, we formulate the optimization problems as an (exact)
MILP parameterized by the overlap 𝑘 , and refer to the resulting approach as 𝑘-Overlap. The results
of running 1-Overlap and 2-Overlap on our 20 populations are shown in Fig. 3 and Table 6; they
indicate that the gain of 2-Overlap is non-negligible but limited.

Fig. 3. Outcomes of 1-Overlap and 2-Overlap with population size 𝑛 = 10, pool size constraint 𝐺 = 10 and
testing budgets 𝐵 ∈ {2, 3, 4}. Left: Welfares achieved by 1-Overlap (left regions, blue) and 2-Overlap (right
regions, red). Right: Ratios between the welfares of 1-Overlap and 2-Overlap. In both figures, each black dot
corresponds to one of the 20 randomly generated populations.

1-Overlap 2-Overlap
Budget Welfare∗ Time∗ Welfare∗ Time∗

2 5.57 58 ms 5.76 104 ms
3 6.69 102 ms 6.91 2107 ms
4 7.55 136 ms 7.75 94627 ms

Table 6. Experiment summary showing welfare and computation time for 1-Overlap and 2-Overlap on
populations of size 𝑛 = 10 and pool size constraint𝐺 = 10, with testing budgets 𝐵 ∈ {2, 3, 4}. Starred columns
show mean values computed over the 20 random populations.

K THE RANDOMIZED CONTROL TRIAL
K.1 Randomization
The separation of treatment and control groups is essential for our protocol to work; in some small
part to avoid health spillovers, but primarily to disentangle psychological dynamics. If non-treated
participants were to run into treated participants, possible health spillovers would be contained
within our health protocol: participants have a non-infectious 48 hour window in which they are
allowed into the building after receiving a negative qPCR test result. This is also of relevance
because, while we can monitor participants during working hours to some extent, we cannot
control their socialization outside of the building.
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The IPICYT campus lends itself, for the most part, to a two-group clustered randomization
approach. The campus consists of two similar buildings for research in natural sciences, two
similar buildings for research in computer science and mathematics, one building for classes, and
one building for administration. The individuals participating in our trial belong to a research
‘discipline’, and within that discipline, to a working group. These working groups are randomly
assigned to treatment and control groups. Because only one group from each discipline volunteered
to participate in the trial, discipline and working group are henceforth analogous.
Students, researchers and staff are clustered based on their discipline/working group and each

cluster is randomly assigned to treatment or control groups. Treatment and control groups work
in different buildings or, conditional on the experimental sample size, different building floors or
offices. Crucial for this approach to be effective is that individuals across working disciplines are
comparable. Given IPICYT’s reports about their staff, we know that staff, research students and
researchers are assigned to work/study in each of the teams contingent only on their academic
discipline, based on no individual characteristics. Hence, we may consider the assignment as
pseudo-random. Nevertheless, we further collect a number of covariates to conduct a balance
analysis.

K.2 Mechanism
K.2.1 Scheduling preferences. Our mechanism allowed individuals in the treatment group to
indicate their own preferences over days on which they wish to access the institute. A negative
pooled test on a given day allowed individuals in the pool to access the campus for 48h. In the web
app, participants were given a set of 10 virtual tokens that they could distribute arbitrarily among
all consecutive two-day windows (Monday & Tuesday, Tuesday & Wednesday, etc.) on which
they wished to enter the institute. This distribution of tokens then expressed the agent’s relative
preferences. (Assigning more tokens to some two-day window indicated a stronger preference for
these two days.) The individual’s utility for each two-day block is then computed from baseline
utilities as described in Section 5.1 and their relative preference for the block.

K.3 Outcomes and covariates
K.3.1 Mental health outcomes. Mental health problems related to social isolation as a consequence
of the COVID-19 pandemic have been documented for students and the general population [Mar-
tinez Arriaga et al., 2021]. We conjecture that putting in place a safe education protocol decreases
stress levels among students, researchers, and staff, by increasing safe sociability [Becchetti et al.,
2017] and modulating the perception of health risk in the institute [Shan et al., 2022]. Consequently,
subjective well-being may also be positively affected. Stress is measured via the validated 4-item
Perceived Stress Scale by Sheldon Cohen [Cohen et al., 1994] and we use a variation of the European
Quality of Life Survey measure of subjective well-being, using a life/subject evaluation approach
[OECD., 2013]27

K.3.2 Performance, productivity, and learning. The pandemic has disrupted learning processes
and decreased productivity of Mexican students [Limón-Vázquez et al., 2020, Martinez Arriaga
et al., 2021] and female researchers [King and Frederickson, 2021]. A significant portion of this
downfall in productivity may be due to remote work with limited access to the necessary resources
for work, research, and learning. We conjecture that our testing protocol improves (self-assessed)
productivity and performance (in learning environments), and self-assessed learning experiences
when compared to a remote work policy. In the presence of an alternative reopening strategy - as
27Note that we use baseline Stress and Subjective Well-being in our utilites’ computation. On the other hand, we use endline
Stress and Subjective Well-being to analyze between-group intervention effects.
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is our case - we expect to see no difference between groups. I.e. two competing opening strategies
that allow all or some individuals in the population to socialize within the institutional premises
should increase productivity. Since our mechanism is stricter than the reopening policy of IPICYT,
no difference in performance, productivity and learning is an indication of success.
We use a composite score for the evaluation of performance, productivity. Let 𝑃𝑝𝑝𝑎

𝑖,𝑧
denote the

number of points “achieved” by the answer of subject 𝑖 to question 𝑧 pertaining to ‘Performance,
productivity, and sense of achievement’. Let 𝑍𝑝𝑝𝑎 denote the number of relevant questions. Then
the score is computed as 𝑝𝑖 = 1

𝑍𝑝𝑝𝑎

∑
𝑧 𝑃

𝑝𝑝𝑎

𝑖,𝑧
. For learning, we use a self-assessment likert scale that

ranges between 1 and 10, where 1 is poor and 10 is excellent.

K.3.3 Covariates. Besides outcome variables, we have collected additional socioeconomic and
psychosocial data of participants. These data are used twofold. First, some of these features enter into
the utility estimations needed for the testing algorithm. Second, we use relevant features/variables
to check for group balance and, as needed for robustness checks and exploration of mechanisms, as
covariates in our proposed linear models.
(1) Socio-economic attributes: gender, age, ethnicity, educational affiliation, perceived socio-

economic status, financial dependants.
(2) Academic or job resources: access to internet, access to job materials, need to collaborate in

person, access to a dedicated working space outside of the office.
(3) Psychosocial attributes: Sociability, fear of the virus, subjective well-being (generalized).

All covariates and their measurement strategy can be found in the baseline survey in Appendix K.7.

K.4 Power and sample size
We estimate statistical power given the five outcome vectors outlined in Appendices K.3.1 and K.3.2.
All our outcome variables are continuous scores, where ‘perceived stress’ is a non-integer vector
ranging from 1 to 4, and ‘life satisfaction’, ‘learning’, ‘productivity’, and ‘performance’ are integer
vectors with ranges 1 to 10 for the first two vectors, and 1 to 5 for the remaining three. We perform
two types of tests to determine power: first, we estimate Cohen’s 𝑑 with a two-sample t-test. We
specify the true sample size based on post-attrition numbers. We also calculate the power of a
two one-sided (TOST) equivalence test, given that we are interested in observing no difference in
outcomes between experimental groups. Equivalence tests are usually a good complement to a
null hypothesis test to avoid the misinterpretation of 𝑝-values higher than 𝛼 being considered as
evidence of the absence of an effect [Lakens, 2017]. We set the bounds based on a one unit change
from the lower bound on the realized confidence intervals from the null hypothesis tests (t-tests).

Power (1 − 𝛽) 𝛼 𝑁 Cohen’s 𝑑
0.80 0.05 120 0.515

Table 7. Two-sample t test power calculation, using the R package ‘pwr’, assuming ICC ≈ 0, for all outcome
variables: stress, life satisfaction, performance, productivity, learning.

Table 7 presents the results obtained from a two-sample t test power calculation. With a standard
power score of 0.80 for the set of outcome vectors of interest at 𝛼 = 0.05 and a conservative 𝑁 = 120
(from a post-attrition experimental sample of 122), we can detect an effect size of 0.515.

Table 8 shows the lower and upper bounds for each outcome variable in our analysis. We set
the bounds based on a one unit change from the lower bound on the realized confidence intervals
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Lower bound Upper bound Equivalence 𝑝 Result
Stress -0.453 0.453 2.44e-02 reject null equivalence

Life satisfaction -0.822 0.822 0.2.5e-02 reject null equivalence
Performance -0.371 0.371 2.3e-02 reject null equivalence
Productivity -0.403 0.403 1.61e-02 reject null equivalence

Learning -0.742 0.742 2.38e-02 reject null equivalence

Table 8. TOST Equivalence test, using the R package ‘TOSTER’, assuming ICC ≈ 0.

from the null hypothesis tests. In all cases, the equivalence 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 are statistically significant at
𝑝 < 0.02, and we can reject the null hypothesis of the TOST equivalence test.
Our randomization approach relied on the affiliation of experiment participants to an institu-

tional discipline. The rationale behind this approach was not statistical, but practical. We wanted
experiment participants within the same experimental condition to only interact (in the institute)
with their direct peers or, at least, not to interact with their experimental counterfactuals. Our
power calculations do not include an intra-cluster correlation coefficient (ICC) parameter based
on the realized ICCs in our sample. We used the outcome vector ‘performance’ as the baseline
exploration vector and analyzed two possible sources of clustering: first, discipline affiliation, which
presented a singular boundary, or close to zero variance by cluster that resulted in no ICC score.
Second, the role (researcher, administrative staff, research student or taught student) of participants
within the institute. The adjusted ICC was 𝜌 = 0.205, too low to be considered reliable [Koo and Li,
2016].

K.5 Metrics and methods
We propose a two-group experimental design where [𝑛] = 131 subjects are semi-randomly
assigned to either a treatment or a control group. Group balance in observed and unobserved
heterogeneity is a direct result of random assignment, allowing for treatment status to be the only
source of exogenous variation. As such, the mean group difference in the outcomes of interest can
be presented as the causal effect of our testing strategy in those those dimensions.

We estimate the average treatment effect on the five, previously introduced, outcome variables.
As a reminder, we state in our hypotheses that we are interested in non-significant differences
between experimental conditions. We therefore refer to the 𝑝-values in bivariate regressions as
evidence of no association.28

We previously explain that, while we hope to deliver an ATE, we are likely to deliver ITT results,
based on the assumption that some treatment participants may not fully comply with the protocol
by, for instance, not attending an invitation for saliva sample submission. The protocol is designed
such that opting out of sample submission does not affect results, as the grouping algorithm
(for test pools) is ran only on the subsample of compliers. The non-attendee is simply restricted
from entering the premises until they get a negative test result, and they are not penalized when
generating new sample submission invitations.

We denote our outcomes as 𝑦𝑖 ∈ {𝑠𝑖 ,𝑤𝑖 , 𝑙𝑖 , 𝑝𝑖 , 𝑝𝑟𝑖 } :
• The average stress level and subjective well-being, measured by each individual’s stress score
𝑠𝑖 and life satisfaction score𝑤𝑖

28There is an ongoing debate over whether one can use insignificant 𝑝-values as evidence of no effect [Lakens, 2021]. We
resort to equivalence tests as robustness checks for our findings.
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• Subjects’ self-assessed learning 𝑙𝑖 , performance 𝑝𝑖 and productivity scores 𝑝𝑟𝑖 .29

The treatment effect of endline outcomes is estimated using a linear model, with HC1 standard
errors. Let 𝑌 denote the stacked vector of outcomes (𝑦1, . . . , 𝑦𝑛) ∈ {𝑠𝑖 ,𝑤𝑖 , 𝑙𝑖 , 𝑝𝑖 , 𝑝𝑟𝑖 }. Let 𝛽 denote
the vector of parameters to be estimated, and 𝜏𝑖 the treatment dummy. The independent variables
are subsumed in 𝑋 = (1𝑛, T,𝐶), where 1𝑛 is an 𝑛−vector of ones, T is a vector of treatment status 𝜏𝑖 ,
and 𝐶 is a matrix of covariates30. Let 𝜖 denote the vector of error terms 𝜖𝑖 . We estimate the model

𝑌 = 𝑋𝛽 + 𝜖 (15)

for 𝑌 ∈ {𝑆,𝑊 , 𝑃, 𝑃𝑟, 𝐿} and test the hypothesis 𝛽1 ≈ 0. We collect baseline and endline data for the
set of outcome vectors. Let Δ𝑌 = 𝑌𝑒𝑛𝑑𝑙𝑖𝑛𝑒 − 𝑌𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 denote the change in outcome 𝑌 from baseline
to endline. We estimate the delta model

Δ𝑌 = 𝑋𝛽 ′ + 𝜖′ (16)
to identify the effect of our intervention on the change in outcomes throughout the duration

of the experiment. This analysis complements the analysis of endline outcomes: it eliminates all
observed and unobserved confounds that are constant between our two points of measurement
[Allison, 1990]. This allows for the interpretation of results not only as static differences but also in
the context of possible outcome trajectories, and adjusted for static unobservables.

K.6 Results
We present the results from the regression analysis based on Eqs. (15) and (16) in Tables 2, 9 and 10.
On a high level, we are able to report for performance outcomes as well as mental health outcomes
that our testing protocol has no negative effect, despite the increased effort it demands from
participants. The exception is a statistically significant, albeit very small decrease in productivity
of the trial group. As individuals in our testing regime have to exert more effort and are more
curtailed in their freedom than individuals in the control group, the absence of a negative effect
leads us to positively evaluate our trial with respect to the participants’ mental health.

Productivity, performance, learning outcomes. Table 2 show the linear models’ results for self-
reported productivity, performance, and learning outcomes. In Table 9 we also report two other
outcomes, achieving personally set (work/study) goals and achieving the goals set by your supervisor.
We do so with the intention to better understand in which ways our protocol could affect a
participants’ ability to perform along a varied set of subjective educational/work dimensions.
Similar to mental health outcomes, in the endline analysis treated participants outperform their
control group counterparts in every outcome variable, albeit with small and non-statistically
significant coefficients. For example, participants in the treatment group report, on average, 0.12
points more in the performance score than participants in the control group. At 𝑝 = 0.40, the
coefficient is not significant. To check robustness of these outcomes, we also estimate the bivariate
delta models for performance, productivity, and learning (also in Table 9). All treatment effects are
corrected downwards,31 but remain non-significant with one exception. At 𝑝 = 0.05, the change
in treatment participants’ productivity from 𝑡0 to 𝑡1 is at the border of statistical significance.
It shows a downward effect of 0.25 score points. Mean self-reported productivity for treatment
participants went from 2.27 at 𝑡0, down to 2.17 at 𝑡1. This small decrease or 0.1 may be due to the
29We adapt a measure based on the fit of 10 and 5 point likert scales, respectively, as per Versteeg and Steendijk [2019]
30We present covariate-controlled linear models in the Appendix but it is as robustness checks but are not part of the main
analysis.
31During the course of the month, treatment participants experience a small and statistically insignificant decrease in
performance and goals; however, they still report higher learning, on average.
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added coordination effort exerted by treatment participants, and time invested in familiarising
themselves with the protocol. On the other hand, control participants experienced an increase in
mean self-reported productivity of 0.09 points; they went from 2.00 at 𝑡0 up to 2.09 at 𝑡1. This small
increase in productivity may be benefit from transitioning from remote work to full institutional
access. Together, they explain the negative and borderline statistically significant coefficient. This
effect is causal, albeit small in magnitude.

Mental health outcomes. Table 10 shows that there are no significant effects of our testing strategy
on the subjects’ stress level or subjective well-being (life satisfaction). On average, subjects in the
treatment group report a stress score that is 0.186 points higher than for subjects in the control group.
At 𝑝 = 0.17, this difference is not statistically significant. When looking at the change in stress from
baseline to endline (or the duration of the trial) in the delta bivariate model, the magnitude of the
coefficient decreases to 0.009 at 𝑝 = 0.95. That is, treatment status induces little to no variation in
the change in stress between 𝑡0 and 𝑡1. Treatment participants report higher average life satisfaction
scores. At endline, the difference in scores is small at 0.089, and insignificant (𝑝 = 0.81). However,
the magnitude of the coefficient drastically increases for treatment participants by 0.284 points
when looking at the change in scores pre and post trial. The change in life satisfaction score is,
again, statistically insignificant (𝑝 = 0.37). As individuals in our pool testing regime had to exert
more effort and are curtailed in their freedom compared to individuals in the control group, the
absence of statistically significant negative effects leads us to positively evaluate our mechanism
with respect to participants’ mental health outcomes.

Dependent variable:
Own goals Supervisor goals Δ Own goals Δ Supervisor goals

Treat vs. control 0.035 0.250 −0.307 −0.115
(0.170) (0.159) (0.192) (0.191)

Constant 2.344∗∗∗ 2.129∗∗∗ −0.131 −0.113
(0.107) (0.099) (0.101) (0.098)

Observations 119 120 118 119
R2 0.0004 0.021 0.022 0.003
Adjusted R2 −0.008 0.012 0.014 −0.005

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Table 9. Linear model regressions of further performance outcomes.

Covariate analysis and secondary results. We also ran covariate-controlled regressions as robust-
ness checks for our bivariate models, and find no contradictions to our main findings in our model
specifications. All covariates are taken from the baseline survey, whereas the dependant variables
are taken from the endline survey. Further details are available from the authors upon request.

K.7 Survey
(1) Socio-demographic attributes
1.1 Identifier
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Dependent variable
Overall stress Life satisfaction Δ Overall stress Δ Life satisfaction

Treatment 0.186 0.089 0.009 0.373
vs. control (0.135) (0.371) (0.146) (0.414)

Constant 2.238∗∗∗ 7.556∗∗∗ −0.813∗∗∗ −0.270
(0.093) (0.259) (0.096) (0.276)

Observations 121 122 121 121
R2 0.016 0.0005 0.00004 0.007
Adjusted R2 0.007 −0.008 −0.008 −0.002

∗𝑝 < 0.1; ∗∗𝑝 < 0.05; ∗∗∗𝑝 < 0.01
Table 10. Linear model regressions of mental health outcomes.

Please write down your IPICYT ID number:
1.2 Role

What is your role at the university?
2 Taught student
2 Research student
2 Researcher
2 Staff (Administration, maintenance, other employees of IPICYT)

1.3 Affiliation [Only for students and researchers]
Which department are you affiliated with?
2 Maths and Computer Science
2 Natural Sciences
2 Other:

1.4 Gender
Which gender do you identify yourself with?
2 Female
2 Male
2 Other:
2 Prefer not to say

1.5 Age
Please indicate your age in two digits:

1.6 Ethnicity
Which ethnic group do you identify most with?
2 White
2 Indigenous
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2 Mestizo
2 Afrolatino
2 Other:

(2) Family, work, and socio-economics features
2.1 (se) How many dependants do you have?

This could be children, children and partner, other relatives, etc.
2 Answer:
2 0-1 [1pt.]
2 2 [2pt.]
2 3 [3pt.]
2 4 [4pt.]
2 5+ [5pt.]

2.2 (pr) How many people live in the same household as you?
This could be children, children and partner, siblings, other relatives, housemates etc.
2 Answer:
2 0-1 [1pt.]
2 2 [2pt.]
2 3 [3pt.]
2 4 [4pt.]
2 5+ [5pt.]

2.3 (pr) How much of your time during a normal work day do you spend working on a computer?
2 0-10% [5pt.]
2 11-30% [4pt.]
2 31-50% [3pt.]
2 51-70% [2pt.]
2 70-100% [1pt.]

2.4 (pr) How much of your time during a normal work day do you spend on communication
with colleagues?
2 0-10% [1pt.]
2 11-30% [2pt.]
2 31-50% [3pt.]
2 51-70% [4pt.]
2 70-100% [5pt.]

2.5 (pr) How much of your time during a normal work day do you spend working in a team?
2 0-10% [1pt.]
2 11-30% [2pt.]
2 31-50% [3pt.]
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2 51-70% [4pt.]
2 70-100% [5pt.]

2.6 Socio-economic class
(se) Look at the image of the ladder below. Imagine this ladder pictures how Mexican society
is set up:

· At the top of the ladder are the people that are best off - they have the most money, the
highest amount of schooling, and the jobs that bring the most respect.

· At the bottom are the people who are the worst off - they have the least money, little or no
education, no job or jobs that no one wants or respects.

Now think of your family, please tell us where you think your family would be on this ladder:

2 10-9 [1pt.]
2 8-7 [2pt.]
2 6-5 [3pt.]
2 4-3 [4pt.]
2 2-1 [5pt.]

2.7 (se) Perceived socio-economic status
People sometimes describe themselves as belonging to the working class, the middle class, or
the upper or lower class. Would you describe yourself as belonging to the
2 Upper class [1pt.]
2 Upper middle class [2pt.]
2 Lower middle class [3pt.]
2 Working class [4pt.]
2 Lower class [5pt.]
2 Prefer not to answer [0pt.]

(3) Using digital media
3.1 (pr) How much of your work time do you spend using the internet?

2 0-10% [5pt.]
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2 11-30% [4pt.]
2 31-50% [3pt.]
2 51-70% [2pt.]
2 70-100% [1pt.]

3.2 (pr) How much of your leisure time do you spend using the internet?
2 0-10% [5pt.]
2 11-30% [4pt.]
2 31-50% [3pt.]
2 51-70% [2pt.]
2 70-100% [1pt.]

3.3 (pr) How do access the internet from home most of the time?
2 Through laptop + wifi [1pt.]
2 Through laptop + mobile connection [2pt.]
2 Through phone + wifi [3pt.]
2 Through phone + mobile connection [4pt.]
2 N/A [5pt.]

(4) Psychosocial features
4.1 (psy) Sociability

Please write down the percentage of individuals (in your social circle) who would agree with
the following statement about yourself: ‘I spend a lot of time visiting friends’
2 0-10% [5pt.]
2 11-30% [4pt.]
2 31-50% [3pt.]
2 51-70% [2pt.]
2 70-100% [1pt.]

4.2 Fear
Please rate the extent to which you experience the following feelings at this moment: Fear
because of the COVID-19 disease/ the SARS COV-2 virus.
2 Not at all
2 Not really
2 Neutral
2 Somewhat
2 Very much

4.3 (psy) Perceived Stress Scale

1 2 3 4 5
Never Almost never Sometimes Fairly often Very Often
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Based on the scale above, where zero indicates never experiencing that situation and four
indicates experiencing that situation very often, please rate the following statements:

· In the last month, how often have you felt that you were unable to control the important
things in your life?

· In the last month, how often have you felt confident about your ability to handle your
personal problems?

· In the last month, how often have you felt that things were going your way?
· In the last month, how often have you felt difficulties were piling up so high that you could
not overcome them?

[Each score translates into the identical number of points. Then the average of the four
sub-questions is computed.]

4.4 (psy) Subjective well-being
All things considered, how satisfied would you say you are with your life these days? Please
tell me on a scale of 1 to 10, where 1 means very dissatisfied and 10 means very satisfied:

2 10-9 [1pt.]
2 8-7 [2pt.]
2 6-5 [3pt.]
2 4-3 [4pt.]
2 2-1 [5pt.]

4.5 Subjective well-being
Taking all things together on a scale of 1 to 10, how satisfied are you about IPICYT’s efforts
to keep you safe in the institute throughout the pandemic?

(5) Performance self-assessment

5.1 (ppa) Self-assessment of performance
How would you rate your overall performance for your job or degree in the past 4 weeks?
2 Poor [5pt.]
2 Below average [4pt.]
2 Average [3pt.]
2 Above average [2pt.]
2 High [1pt.]

5.2 Self-assessment of learning
After the COVID-19 pandemic began, the way we learn and interact with our peers drastically
changed. How would you say your learning experience has been in the past 4 weeks?
Please rate your learning process and experience between 1 and 10, where 1 is poor and 10 is
excellent:

5.3 (ppa) Self-assessment of productivity
How would you rate your day-to-day productivity in your work in the past 4 weeks?
2 Poor [5pt.]
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2 Below average [4pt.]
2 Average [3pt.]
2 Above average [2pt.]
2 High [1pt.]

5.4 (ppa) Self-assessment of achievement (supervisor goals)
Considering again the work for your job or degree during the past 4 weeks, please select the
statement that fits your situation best.
2 I have struggled to achieve the goals set by my supervisor/employer/course teachers [5pt.]
2 I havemanaged to achieve some of the goals set bymy supervisor/employer/course teachers
[4pt.]
2 I have achieved many of the goals set by my supervisor/employer/course teachers [3pt.]
2 I have achieved most of the goals set by my supervisor/employer/course teachers [2pt.]
2 I have achieved all or exceeded the goals set by my supervisor/employer/course teachers
[1pt.]

5.5 (ppa) Self-assessment of achievement (own goals)
Considering again the work for your job or degree during the past 4 weeks, please select the
statement that fits your situation best.
2 I have struggled to achieve the goals I set for myself [5pt.]
2 I have managed to achieve some of the goals I set for myself [4pt.]
2 I have achieved many of the goals I set for myself [3pt.]
2 I have achieved most of the goals I set for myself [2pt.]
2 I have achieved all or exceeded the goals I set for myself [1pt.]

K.8 Consent form
You are invited to take part in a research project conducted by researchers from redacted for
anonymity in conjunction with IPICYT. This project is funded by IPICYT. In accordance with
international standards in the practice of randomized studies, this project has received ethical
approval from the Research Ethics Committee at IPICYT and redacted for anonymity.
We ask that you read this form carefully prior to deciding to participate in the study. If you

decide you do not want to participate, you may leave at any time without providing a reason and
without penalty.
Purpose: The purpose of this study is to understand how the implementation of an algorithmic-
base safe education protocol influences students and staff well-being and productivity during a
pandemic.
What happens during the study: This study requires you to follow one of two protocols.

If you are selected to be part of the treatment group, you will participate in COVID-19 pooled
testing. Throughout the course of the study, you may receive emails inviting you to submit a saliva
sample, which will be pooled with other samples and tested at the LANBAMA laboratory at IPICYT.
If your test is negative, then everyone in your pool is healthy and permitted to enter the institute
for 48 hours. If your test is positive, then at least one person in your pool is infected, and you (as
well as all other individuals in your pool) are not permitted to enter the institute until you are
selected for re-testing and the next test result is negative. At no point are you obliged to submit a
saliva sample, or to enter the building.
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If you are selected to be part of the control group, you will be asked to follow the same remote
working policy that is currently in place at IPICYT. If you would like to access the institute, you
must contact the head of your department for permission.
We also ask all participants to respond to a short survey at the beginning and at the end of the

trial - within a month’s time - where you will be asked sociodemographic questions, alongside a
set of psychological questions. You are not required to answer any questions that you may find
uncomfortable. Furthermore, for the purpose of COVID-19 testing, you may be asked to give a
saliva sample to the technicians at LANBAMA if you are selected for pooled testing. The sample
will be used directly on the day of reception and will be destroyed after being processed for a qPCR
test. The sample(s) will not be stored. You will be informed about the result of all pooled tests that
contain your sample.
Participation: The trial is expected to run for a month, throughout August 2022, during which
participants in the treatment group will receive free COVID-19 testing. Participants are asked to fill
in a survey at the beginning and end of the study. In addition, participants in the treatment group
are able to indicate their preference for which days they wish to be tested. Throughout the course
of the month, the principal investigators will link health data (i.e. COVID-19 test results) to survey
data (collected at the beginning and end of the trial). However, at the end of the trial all gathered
data will be anonymized. If you wish to withdraw consent on the use of your data at any point
during the study, please contact redacted for anonymity. You always have the option of stopping
your participation in the study and you may leave at any time during the study (4 weeks from the
start of the trial) without providing a reason and without penalty. If you decide to leave, the data
you have provided up to this point will be anonymized immediately and deleted after attrition
analysis.
Potential risks: If you choose not to participate in the study, or you participate and are selected
into the control group, you will not be exposed to any additional risk. If you choose to participate
and are selected into the treatment group, there is a risk that you will be infected if you are permitted
to enter the institute and decide to do so. This risk is small, as all individuals must test negative in
order to enter the institute. In particular, [our protocols, redacted for anonymity are much safer than
reopening without monitoring for infections. While the probability of infection can be minimized
and contained, it is not guaranteed to be zero. There is always a very small chance to get infected
when participating in social activities, and COVID-19 comes with small and major consequences;
among which, fever, cough, loss of taste and smell, respiratory problems and, in some cases, death.
Your survey responses are strictly confidential and will only be accessible to the researchers.

Below, we describe the steps we are taking to protect your privacy. In addition, your decision
on whether to participate will not adversely affect your relationship with IPICYT or any other
institution to which the researchers are affiliated.
Benefits: Participating in this study means that you are aiding further development of science.
Additionally, a successful trial would allow IPICYT to reformulate the institutional policy regarding
work and study during the current and future waves of the pandemic into one that gives you more
social interactions and flexibility with a minimized risk of contagion.
Data protection and privacy: The information collected during the study will be kept private. In
concordance with the redacted for anonymity, is the data controller with respect to your personal
data, and as such will determine how your personal data is used in the research. The University
will process your personal data for the purpose of the research outlined above. Research is a task
that is performed in the public interest. Further information about your rights with respect to your
personal data is available at redacted for anonymity.
Responsible members of redacted for anonymity and IPICYT may be given access to data for

monitoring and or audit of the study to ensure we are complying with the guidelines or as otherwise
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required by law. Moreover, in concordance with the signed Memorandum of Understanding, the
Potosinian Institute of Scientific Research and Technology (IPICYT) will store and anonymize
the original data in a secure server. During the trial, no one other than the head of the IPICYT
Supercomputing Centre and responsible members of redacted for anonymity will have access to any
records of this trial. The data will be stored in electronic form, encrypted and password protected.
At the conclusion of the trial, all data will be anonymized, and none of the records will identify you.
A copy of the anonymized data will be provided to the primary investigators of the trial. The data
that we collect from you may be transferred to, and stored or processed at a destination outside
Mexico. Archived/stored data, once anonymized, is available for research purposes upon request
(primarily for peer-review replication processes). By submitting your personal data, you agree
to this transfer, storing, or processing. After completion of the study, you cannot withdraw your
personal information. Your individual privacy will be maintained in all publications or presentations
resulting from this study. No information about you provided by you during this research will be
disclosed to others without your written permission, except:

- if necessary to protect your rights or welfare (for example, if you are injured and need
emergency care); or

- if required by law.
Additional information: If you are interested in receiving additional information about the
results of the study, please contact the study authors.
Concerns: If you have any questions or concerns about any aspect of this project, you can contact
the study authors at redacted for anonymity who will do their best to answer your query. The
researcher(s) should acknowledge reception of your concern within 10 working days and give you
an indication of how they intend to address it. If you fail to receive a response, are dissatisfied with
the response you receive, or desire to report an aspect of how the study is being conducted, please
contact the relevant Chair of Research Ethics Committee at the redacted for anonymity:

[Address, redacted for anonymity]
The Chair will seek to resolve the matter in a reasonably expeditious manner.

Please confirm the following by marking each of the boxes next to the statements.

Please Mark Each Box

• I confirm that I have read and understand
the information for the above study and
have had the opportunity to properly con-
sider the information provided. 2
• I understand that my participation is vol-
untary and that I am free to withdraw at
any time, without giving any reason and
without any adverse consequences. 2
• I understand the risks associated with par-
ticipating in this study as explained in the
information sheet. 2

• I understand that a saliva sample will be
taken during the study and that this sam-
ple will be tested for COVID-19. I under-
stand that the sample will be destroyed
after completion of this test or if I with-
draw my consent. 2
• I consider these samples a gift to redacted
for anonymity and the LANBAMA labora-
tory and I understand I will not gain any
direct personal benefit from this. 2
• I understand that research data collected
during the study may be looked at by
designated individuals from redacted for
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anonymity and IPICYT where it is rele-
vant to my taking part in this study. I give
permission for these individuals to access
my data. I give permission for anonymized
data to be made publicly available at the
end of the research. 2
• I understand that this project has been re-
viewed by, and received ethics clearance
through, the Research Ethics Committee at
IPICYT and redacted for anonymity 2

• I understand who will have access to the
personal data provided, how the data will
be stored, andwhat will happen to the data
at the end of the project. 2
• I understand how this research will be
written up and published. 2
• I understand how to raise a concern or
make a complaint. 2
• I agree to take part in the study. 2

By selecting “Yes, I agree to participate” below you are signifying that you have read and
understood the above information and are agreeing to have the data that you provide during the
course of the study to be processed accordingly.

2 Yes, I agree to participate

2 No, I do not agree to participate
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