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ABSTRACT
In the past few years, conferences like AAAI and NeurIPS have

grown tremendously. While on the one hand this has attracted sub-

missions from a large number of communities, on the other hand it

has also resulted in a poor reviewing experience for some commu-

nities, whose submissions end up being assigned to less qualified

reviewers outside of their communities. An often-advocated solu-

tion is to break up such large conferences into smaller conferences

to decentralize the reviewing process. However, this can lead to

isolation of various communities and slower emergence of truly

interdisciplinary ideas.

In this work, we tackle this challenge by introducing a notion

of group fairness, namely the core, to the peer review setting. A

reviewing assignment is in the core if every subset of researchers

(a possible community) is treated in such a manner such that they

cannot achieve a better outcome by breaking off and organizing a

smaller conference on their own.

We study a simple peer reviewmodel, prove that it always admits

a reviewing assignment in the core, and design an efficient algo-

rithm to find one such assignment. On the negative side, we show

that the core is incompatible with achieving a good worst-case

approximation of social welfare, an often-sought desideratum. We

complement these results by conducting experiments with real data.

We observe that our algorithm, in addition to satisfying the core,

generates good social welfare on average. In contrast, existing re-

view assignment systems violate the core, treat many communities

unfairly, and significantly incentivize them to disengage.

1 INTRODUCTION
Computer Science is a rapidly advanced field, and therefore peer-

reviewed conferences are at the heart of the research progress,

since their reviewing time is usually quite fast [6, 29]. In many

of these conferences, such as AAMAS, AAAI, and NeurIPS, the

assignment of the papers to reviewers is usually an automated

procedure, due to their massive scale. Famous automated systems

that are used in practise are the Toronto Paper Matching System [1],

Microsoft CMT
1
, and OpenReview

2
. The authors of the submissions

are usually very interested to receive useful feedback from their

peers, regarding how they could improve their paper [13, 20, 28].

Naturally, the overall experience of an author for a peer review

procedure highly depends on the quality of the reviews that her

manuscripts receive.

In many large conferences, the typical procedure of selecting

the reviewers of each manuscript is the following one. First, for

each paper-reviewer pair is calculated a similarity score based on

various parameters such as the subject area of the paper and the

reviewer, the bidding of the reviewer, etc. [1, 11, 12, 18, 27]. Then, an

1
https://cmt3.research.microsoft.com/

2
https://github.com/openreview/openreview-matcher

assignment is calculated through an optimization problem where

the usual objectives are either to maximize the utilitarian social wel-

fare, which is equal to the total similarity, or the egalitarian social

welfare, which is equal to the minimum score of each submission,

subject to constraints related to the total number of papers that each

reviewer can review and the total number of reviewers that each

paper should be assigned to. Under both objectives, it is possible

that the review quality on some papers is sacrificed. To see that,

consider the case that there are four submissions, 𝑝1, 𝑝2, 𝑝3 and 𝑝4,

and four reviewers, 1, 2, 3 and 4 who can review up one paper each.

1/2 3/4
𝑝1 1 𝜖

𝑝2 1 𝜖

𝑝3 0.9 0

𝑝4 0.9 0

Assume that the first two reviewers have

similarity score equal to 1 for 𝑝1 and 𝑝2 and

equal to 0.9 for 𝑝3 and 𝑝4, while the other

two reviewers have similarity score equal

to a negligible quantity 𝜖 > 0 for 𝑝1 and 𝑝2

and have zero similarity score for 𝑝3 and

𝑝4. This may happen, when 1 and 2 work

on topics that these papers consider, while

3 and 4 belong in a different community. If the goal is to maximize

the utilitarian social welfare, then 𝑝1 and 𝑝2 are assigned to the first

two reviewers, while 𝑝3’s and 𝑝4’s utilities are completely sacrificed,

while if the goal is to maximize the egalitarian social welfare, the

opposite happens. Papers that are assigned to inappropriate review-

ers may receive poor feedback or even may be unfairly rejected,

which may cause their authors to be significantly unsatisfied with

the whole procedure. Thus, finding reviewing assignments that are

fair is very important, and the last years researchers have focused

in this direction [19].

Peng et al. [17] recently mentioned that a major problem with

the prestigious mega conferences is that they constitute the main

venues for several communities, and as a result, in some cases,

people are asked to review submissions that are beyond their main

areas of work. They claim that a reasonable solution is to move to

a de-centralized publication process by creating more specialized

conferences appropriate for different communities. In particular,

they say that by this way “Reviewers and reviewees will be peers,
collaborators, and problem-specific interlocutors, not generic members
of a large anonymized community.”. However, this solution could

cause the isolation of different communities which in its turn could

cause various other problems such as the difficulty of emerging

interdisciplinary ideas. Moreover, it usually takes several years until

a conference becomes famous and acceptable across the members

of a community. So, a reasonable question is

...how can we treat each group of researchers in a fair

way in the current review and publication processes?

To answer this question, we use the concept of fairness, which, to

the best of our knowledge, we are the first that introduce in a peer

review setting, called core [5]. In this context, this notion requires

that given an assignment there is no subset of authors– who can

https://cmt3.research.microsoft.com/
https://github.com/openreview/openreview-matcher


also serve as reviewers– that can deviate as following: They can

find an assignment of their submissions among themselves such

that

• no author reviews her own submissions,

• each paper is reviewed by as many reviewers as in the given

assignment,

• each reviewer reviews no more papers than in the given

assignment, and

• the submissions of each author are assigned to better review-

ers than in the given assignment.

Intuitively, this notion of fairness requires that any group of authors

is treated in a way that it does not have any incentive to deviate

from the given assignment and create its own assignment that

meets the constraints of the peer review procedure. In other words,

any sub-community in a big conference is treated in a way that it

does not have any incentive to deviate from the conference and

create its own smaller conference. Note that this definition provides

fairness to every sub-community and not only to pre-defined ones,

and as result it guarantees that even emerged interdisciplinary

subcommunities, are treated fairly.

1.1 Our Contribution
In this work, we consider the case that each submission is authored

by one agent that also serves as reviewer. A reviewing assignment

is valid if each paper is reviewed by 𝑘𝑝 reviewers, each reviewer

reviews up to 𝑘𝑎 papers and no agent reviews her own submissions.

To ensure that a valid assignment always exists, we assume that

the maximum number of papers that each agent can submit is at

most

⌊
𝑘𝑎/𝑘𝑝

⌋
.

In Section 3, we present an efficient algorithm that always re-

turns a valid assignment in the core under very minor assumptions

regarding the preferences of the authors for different potential re-

viewers. In particular, we assume that each author holds an ordinal

preference over the reviewers with respect to each of her submis-

sions and the extension of these preferences to preferences over

sets of reviewers that review her submissions follows some very

natural properties.

In Section 4, we show that there are instances where no assign-

ment in the core can provide an approximation better than Ω(𝑛)
with respect to the utilitarian social welfare and bounded approxi-

mation with respect to the egalitarian social welfare. Moreover, we

show that it is NP-hard to find an assignment in the core with max-

imum utilitarian social welfare and an assignment in the core that

provides bounded approximation to the best egalitarian welfare

that can be achieved by any assignment in the core.

In Section 5, we conduct experiments with real data and observe

that our algorithm achieves good utilitarian and egalitarian social

welfare in the average case, while broadly applied methods fail

to find assignments in the core, and as a result communities are

incentivized to deviate.

1.2 Related Work
The reviewing assignment problem has been extensively stud-

ied [30]. Toronto PaperMatching System [1] which is a very broadly

applied method focuses on maximizing the utilitarian welfare and

this approach has been adopted by other popular conference man-

agement systems such as EasyChair
3
and HotCRP

4
[25]. O’Dell

et al. [14] got a different approach where the goal is maximize the

minimum total utility that a paper gets, and Stelmakh et al. [25]

generalized this approach by maximizing the minimum paper score,

then maximizing the next smallest paper score, etc. One of the key

issues in reviewer assignment is to ensure that the assignment is

fair and efficient for the reviewers as well as the papers/authors.

Several papers have examined this issue in different respects (see,

e.g., [4, 8, 10, 16, 21]). The core property we focus on can also be

viewed as a fairness or efficiency requirement.

Assignment of papers to reviewers is essentially a matching

problem and hence has connections with several classical problems

in matching. Our model is related to exchange problems with en-

dowments. Agents can be viewed as being endowed by their own

papers which they wish to exchange with other agents. In contrast

to classical exchange problem with endowments, our model has

a distinctive requirement that agents need to give away all their
items/papers as the papers need to be reviewed by the agent who

gets the paper. The difference is crucial as explained next.

A basic exchange problem the Shapley-Scarf housing market in

which each agent owns one house. Shapley and Scarf [22] showed

that a simple yet elegant mechanism called Gale’s Top Trading Cycle
(TTC) finds an allocation which is in the core. TTC is based on

multi-way exchanges of houses between agents. Since the basic

assumption in the model is that agents have strict preferences

over houses, TTC is also strict core selecting and therefore Pareto

optimal. Our model involves agents getting multiple items. For

problems with multiple endowments, Konishi et al. [9] showed that

the core can be empty under additive valuations. Note our problem

is different as individual rationality has no bite in our context and

an agent is required to give away all of his ‘resources’ (own papers).

Our model also has connections with matching with two-sided

preferences where agents have preferences over reviewers. In many

to many matchings with two-sided preferences, several solution

concepts have been used to identify desirable matchings. The clas-

sical concept of pairwise stability requires that there are no two

agents who are not partners, but by becoming partners, possibly

dissolving some of their partnerships to remain within their quotas

and possibly keeping other ones, can both obtain a strictly preferred

set of partners. A matching corewise-stable if there is no subset of

agents who by forming all their partnerships only among them-

selves, can all obtain a strictly preferred set of partners. A matching

` will be called setwise-stable (SW) if there is no subset of agents

who by forming new partnerships only among themselves, possibly

dissolving some partnerships of ` to remain within their quotas

and possibly keeping other ones, can all obtain a strictly preferred

set of partners [23]. For a detailed taxonomy of stability concepts

for matching for many to many matchings, see the paper by Klaus

and Walzl [7].

2 MODEL
For 𝑞 ∈ N, we use [𝑞] to denote the set {1, . . . , 𝑞}. There is a set
of agents 𝑁 = [𝑛] where each agent can serve as reviewer and

3
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may also author some papers. Let 𝑃𝑖 = {𝑝𝑖,1, . . . , 𝑝𝑖,𝑚𝑖
} be the set of

submissions of agent 𝑖 where𝑚𝑖 ∈ N and 𝑃 = (𝑃1, . . . , 𝑃𝑛). We call

𝑝𝑖,ℓ as the ℓ-th submission of agent 𝑖 . Whenever all the agents have

just one submission, we drop ℓ and simply write 𝑝𝑖 . Let us define

𝑚 =
∑
𝑖∈𝑁 𝑚𝑖 , i.e.𝑚 denotes the total number of submissions.

Preferences. Each agent 𝑖 ∈ 𝑁 has a preference ranking over

the agents in 𝑁 \ {𝑖} with respect to her ℓ-th submission, de-

noted by 𝜎𝑖,ℓ .
5
This preference can be based on a mixture of fac-

tors, such as how qualified the other agents are to review her ℓ-

th submission and how likely they are to provide a positive re-

view. Let 𝜎𝑖,ℓ (𝑖 ′) be the position of agent 𝑖 ′ ∈ 𝑁 \ {𝑖} in the

ranking. An agent 𝑖 prefers her submissions 𝑝𝑖,ℓ to be reviewed

by 𝑖 ′ rather than 𝑖 ′′, if 𝜎𝑖,ℓ (𝑖 ′) < 𝜎𝑖,ℓ (𝑖 ′′). Again, when all the

agents have just one submission, we drop ℓ and just write 𝜎𝑖 . Let

®𝜎 = (𝜎1,1, . . . , 𝜎1,𝑚1
, . . . , 𝜎𝑛,1, . . . , 𝜎𝑛,𝑚𝑛

).
Typically, each paper receives multiple reviews; hence, we need

to define the preferences of agents over sets of reviewers. When

agent 𝑖 prefers (resp., weakly prefers) her ℓ-th submission to be

reviewed by the set of agents 𝑆 rather than the set of agents 𝑆 ′,
we denote it by 𝑆 ≻𝑖,ℓ 𝑆 ′ (resp., 𝑆 ⪰𝑖,ℓ 𝑆 ′). We assume that this

extension from preferences over individual agents to preferences

over sets of agents satisfies the following natural property.

Definition 2.1 (Order Separability). Let 𝑆1, 𝑆2, 𝑆3 ⊆ 𝑁 with |𝑆1 | =
|𝑆2 |. If for each 𝑖 ′ ∈ 𝑆1 and each 𝑖 ′′ ∈ 𝑆2, it holds that 𝜎𝑖,ℓ (𝑖 ′) <
𝜎𝑖,ℓ (𝑖 ′′), then 𝑆1 ∪ 𝑆3 ≻𝑖,ℓ 𝑆2 ∪ 𝑆3.

Assignment. A review assignment (sometimes simply called as

assignment) 𝑅 ∈ {0, 1}𝑛×𝑚 is a binary matrix such that 𝑅(𝑖, 𝑗) = 1,

if agent 𝑖 is assigned to review submission 𝑗 . With a slight abuse

of notation, we denote with 𝑅𝑎
𝑖
= { 𝑗 ∈ [𝑚] : 𝑅(𝑖, 𝑗) = 1}, i.e. the

submissions that agent 𝑖 reviews and with 𝑅
𝑝

𝑗
= {𝑖 ∈ [𝑛] : 𝑅(𝑖, 𝑗) =

1}, i.e. the agents that review submission 𝑗 . We say that a review

assignment is valid if:
• For each 𝑗 ∈ [𝑚], |𝑅𝑝

𝑗
| = 𝑘𝑝 , i.e. each paper is reviewed by

𝑘𝑝 agents.

• For each 𝑖 ∈ [𝑛], |𝑅𝑎
𝑖
| ≤ 𝑘𝑎 , i.e. each agent reviews at most

𝑘𝑎 submissions.

• For each 𝑖 ∈ [𝑛] and ℓ ∈ [𝑚𝑖 ], 𝑅(𝑖, 𝑝𝑖,ℓ ) = 0, i.e. no agent is

assigned to review her own submissions.

To ensure that a valid assignment always exists, we impose the

constraint that 𝑚𝑖 · 𝑘𝑝 ≤ 𝑘𝑎 for each 𝑖 ∈ 𝑁 , which implies that

𝑚 · 𝑘𝑝 ≤ 𝑛 · 𝑘𝑎 .
Given 𝑁 ′ ⊆ 𝑁 and 𝑃 ′

𝑖
⊆ 𝑃𝑖 for each 𝑖 ∈ 𝑁 ′ with 𝑃 ′ = ∪𝑖∈𝑁 ′𝑃 ′𝑖 ,

an assignment 𝑅 ∈ {0, 1} |𝑁 ′ |× |𝑃 ′ | that is restricted over 𝑁 ′ and 𝑃 ′
is called valid if each submission in 𝑃 ′ is reviewed by 𝑘𝑝 agents

from 𝑁 ′ and each agent in 𝑁 ′ is assigned to review at most 𝑘𝑎
submissions from 𝑃 ′ \ 𝑃 ′

𝑖
.

Hereinafter, when referring to an assignment or a restricted

assignment, we will assume validity, unless specified otherwise.

Preferences over assignments. Recall that ≻𝑖,ℓ (resp., ⪰𝑖,ℓ ) denotes
the preferences (resp., weak preferences) of agent 𝑖 over possible

sets of reviewers to her ℓ-th submission. To extend this to pref-

erences (resp., weak preferences) of the agent over assignments,

5
Our algorithms continue to work with weak orders; one can arbitrarily break ties to

convert them into strict orders before feeding them into our algorithms.

Algorithm 1 PeerReview-TTC(𝑁, 𝑃, ®𝜎, 𝑘𝑎, 𝑘𝑝 )
1: Let 𝑅(𝑖, 𝑗) ← 0 for every 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑃 ⊲ Initialize an empty

assignment

2: Construct the preference graph 𝐺𝑅

3: while ∃ cycle in 𝐺𝑅 do
4: Eliminate the cycle

5: Update 𝑃𝑖 -s by removing any completely assigned paper

6: Update 𝐺𝑅

7: end while
8: 𝑈 ← {𝑖 ∈ 𝑁 : 𝑃𝑖 ≠ ∅}
9: 𝐿 ← the last 𝑘𝑝 − |𝑈 | + 1 agents in 𝑁 \ 𝑈 to have all their

submissions completely assigned

10: Return 𝑅, 𝐿,𝑈

denoted by ≻𝑖 (resp., ⪰𝑖 ), we need to collate her preferences across

all her submissions. We simply require that the collated preference

extension satisfies the following natural property.

Definition 2.2 (Consistency). Let 𝑅 be an assignment, 𝑅 be an

assignment restricted over 𝑁 ′ ⊆ 𝑁 and 𝑃 ′ = ∪𝑖∈𝑁 ′𝑃 ′𝑖 , where
𝑃 ′
𝑖
⊆ 𝑃𝑖 for each 𝑖 ∈ 𝑁 ′, and 𝑖 ∈ 𝑁 ′ be an agent. If 𝑅

𝑝
𝑝𝑖,ℓ
⪰𝑖,ℓ 𝑅𝑝𝑝𝑖,ℓ

for each 𝑝𝑖,ℓ ∈ 𝑃 ′𝑖 , then we must have 𝑅 ⪰𝑖 𝑅.

Core. In this work, we are interested in finding assignments such

that no subset of agents has an incentive to deviate with any subset

of their submissions and implement a restricted assignment that

each deviating agent prefers. Formally:

Definition 2.3 (Core). An assignment 𝑅 is in the core if there is

no 𝑁 ′ ⊆ 𝑁 , 𝑃 ′
𝑖
⊆ 𝑃𝑖 for each 𝑖 ∈ 𝑁 ′, and assignment 𝑅 restricted

over 𝑁 ′ and 𝑃 ′ = ∪𝑖∈𝑁 ′𝑃 ′𝑖 such that 𝑅 ≻𝑖 𝑅 for each 𝑖 ∈ 𝑁 ′.

Note that a core assignment 𝑅 guarantees no subset of agents

simultaneously finds an alternative assignment 𝑅 restricted to them

and a subset of their submissions strictly better according to any
preference extension satisfying order separability and consistency.

In other words, every deviating agent must find 𝑅 weakly better

than 𝑅 for every single one of her submissions in the deviation

simultaneously, which is a demanding guarantee for the assignment

𝑅 to provide. Nonetheless, our main result is that an assignment

with such a strong guarantee always exists.

3 ASSIGNMENT IN THE CORE
In this section, we show that when the preferences of the agents are

order separable and consistent, an assignment in the core always

exists and can be found in polynomial time. The main algorithm

(Algorithm 3), which is called PRCore, uses Algorithm 1 and Al-

gorithm 2. Algorithm 1 is quite similar to the Top-Trading-Cycles

(TTC) mechanism. After the execution of Algorithm 1, it is possible

that there are submissions that have not been assigned to 𝑘𝑝 agents,

but either no agent can review more submissions or all the agents

that can review more submissions already review them. In this case,

we call Algorithm 2 which ensures that each submission is reviewed

by 𝑘𝑝 agents, by making tweaks in the assignment. It is important

to mention that assignments, that were established in the execution

of Algorithm 1, may be removed in the execution of Algorithm 2.



Reviewers

Rounds

1 2 3 4 5

1 : 𝑝3 𝑝2 𝑝4

2 : 𝑝1 𝑝3 𝑝6

3 : 𝑝2 𝑝1 𝑝4

4 : 𝑝1 𝑝5

5 : 𝑝2 𝑝3

6 : 𝑝5

(a) Execution of PeerReview-TTC

Reviewers

Rounds

1 1 2

1 : 𝑝3, 𝑝2, 𝑝4 ��𝑝3, 𝑝6 𝑝2, 𝑝4 𝑝6 𝑝2,��𝑝4, 𝑝5

2 : 𝑝1, 𝑝3, 𝑝6 𝑝1, 𝑝3, 𝑝6 𝑝1, 𝑝3, 𝑝6

3 : 𝑝2, 𝑝1, 𝑝4 𝑝2, 𝑝1, 𝑝4 𝑝2, 𝑝1, 𝑝4

4 : 𝑝1, 𝑝5, 𝑝6 𝑝1, 𝑝5, 𝑝6 𝑝1, 𝑝5, 𝑝6

5 : 𝑝2, 𝑝3 𝑝2, 𝑝3 𝑝2, 𝑝3, 𝑝4

6 : 𝑝5, 𝑝4 𝑝5, 𝑝4, 𝑝3 𝑝5, 𝑝4, 𝑝3︸    ︷︷    ︸ ︸                    ︷︷                    ︸
Phase 1 Phase 2

(b) Execution of Filling-Gaps

Figure 1: Execution of PRCore when 𝑛 = 6, 𝑘𝑝 = 𝑘𝑎 = 1, 𝜎1 = 2 ≻ 3 ≻ 4 ≻ . . ., 𝜎2 = 3 ≻ 1 ≻ 5 ≻ . . ., 𝜎3 = 1 ≻ 2 ≻ 5 ≻ . . .,
𝜎4 = 1 ≻ 3 ≻ 5 ≻ . . ., 𝜎5 = 6 ≻ 4 ≻ . . . and 𝜎6 = 2 ≻ . . .. On the left table, we see the assignments that are established in each round
of PeerReview-TTC by eliminating cycles. After the execution of PeerReview-TTC, three papers, 𝑝4, 𝑝5, 𝑝6 are not completely
assigned. Thus,𝑈 = {4, 5, 6} and 𝐿 = {3}. On the right table, we see that there is a cycle in the greedy graph which is eliminated
at the first round of Phase 1. In Phase 2, where ®𝜌 = (6, 5), at the first round, since 𝑝3 is authored by an agent in𝑈 ∪ 𝐿 \ {6}, is not
reviewed by 6 and is completely assigned, 𝑝3 is assigned to 6 while it is removed form 1 in which 𝑝6 is now assigned. At the
second round, since 𝑝4 is authored by an agent in𝑈 ∪ 𝐿 \ {5}, is not reviewed by 5 and is completely assigned, 𝑝4 is assigned to 5

while it is removed form 1 in which 𝑝5 is now assigned.

Algorithm 2 Filling-Gaps(𝑁, 𝑃, ®𝜎, 𝑘𝑎, 𝑘𝑝 , 𝑅, 𝐿,𝑈 )
Phase 1

1: Construct the greedy graph 𝐺𝑅

2: while ∃ cycle do
3: Eliminate the cycle

4: Update 𝑃𝑖 -s by removing any completely assigned paper

5: Update𝑈 and 𝐿 by moving any agent 𝑖 from𝑈 to 𝐿 if 𝑃𝑖 = ∅
6: Update 𝐺𝑅

7: end while

Phase 2
8: Construct an order ®𝜌 over the agents in𝑈 such that ∀𝑖 ∈ 𝑈 \
{𝜌 (1), . . . , 𝜌 (𝑡 − 1), 𝜌 (𝑡)} and ∀𝑝𝑖,ℓ ∈ 𝑃𝑖 , 𝑅(𝜌 (𝑡), 𝑝𝑖,ℓ ) = 1

9: for 𝑡 ∈ [|𝑈 |] do
10: while 𝑃𝜌 (𝑡 ) ≠ ∅ do
11: Pick arbitrary 𝑝𝜌 (𝑡 ),ℓ ∈ 𝑃𝜌 (𝑡 )
12: Find completely assigned 𝑝𝑖′,ℓ′ such that𝑅(𝜌 (𝑡), 𝑝𝑖′,ℓ′) =

0 for some 𝑖 ′ ∈ 𝑈 ∪ 𝐿 \ {𝜌 (𝑡)}
13: Find 𝑖 ′′ ≠ 𝜌 (𝑡) such that 𝑅(𝑖 ′′, 𝑝𝜌 (𝑡 ),ℓ ) = 0 and

𝑅(𝑖 ′′, 𝑝𝑖′,ℓ′) = 1

14: 𝑅(𝑖 ′′, 𝑝𝜌 (𝑡 ),ℓ ) ← 1

15: 𝑅(𝑖 ′′, 𝑝𝑖′,ℓ′) ← 0

16: 𝑅(𝜌 (𝑡), 𝑝𝑖′,ℓ′) ← 1

17: Remove 𝑝𝜌 (𝑡 ),ℓ from 𝑃𝜌 (𝑡 ) if it is completely assigned

18: end while
19: end for
20: Return 𝑅

Before we describe the algorithms in detail, let us introduce some

more notation. Let𝑚∗ = max𝑖∈𝑁 𝑚𝑖 . For reasons that will become

clear later, we want to ensure that 𝑚𝑖 = 𝑚∗, for each 𝑖 ∈ 𝑁 . To

achieve that, we add𝑚∗−𝑚𝑖 dummy submissions to agent 𝑖 , denoted

by 𝑝𝑖,𝑚𝑖+1, 𝑝𝑖,𝑚𝑖+2, . . . , 𝑝𝑖,𝑚∗ , and the rankings over reviewers with

Algorithm 3 PRCore(𝑁, 𝑃, ®𝜎, 𝑘𝑎, 𝑘𝑝 )

1: 𝑅, 𝐿,𝑈 =PeerReview-TTC(𝑁, 𝑃, ®𝜎, 𝑘𝑎, 𝑘𝑝 )
2: if |𝑈 | > 0 then
3: 𝑅 =Filling-Gaps(𝑁, 𝑃, ®𝜎, 𝑘𝑎, 𝑘𝑝 , 𝑅, 𝐿,𝑈 )
4: end if
5: Return 𝑅

respect to these submissions are arbitrary. An assignment is called

partial if no agent reviews more than 𝑘𝑎 submissions, but there are

submissions that are reviewed by less than 𝑘𝑝 agents. A submission

that is reviewed by 𝑘𝑝 agents under a partial assignment is called

completely assigned and incompletely assigned, otherwise.We denote

with 𝑃𝑖 (𝑅) the set of submissions of 𝑖 that are incompletely assigned

under a partial assignment 𝑅, i.e. 𝑃𝑖 (𝑅) = {𝑝𝑖,ℓ ∈ 𝑃𝑖 : |𝑅𝑝𝑝𝑖,ℓ | < 𝑘𝑝 }.
Let 𝑃 (𝑅) = (𝑃1 (𝑅), . . . , 𝑃𝑛 (𝑅)). We omit 𝑅 from the notation when

it is clear from context.

In order to define the PeerReview-TTC algorithm (Algorithm 1),

we first need to introduce the notion of a preference graph. Suppose
we have a partial assignment 𝑅. Each agent 𝑖 with 𝑃𝑖 ≠ ∅ picks
one of her incompletely assigned submissions arbitrarily. Without

loss of generality, we assume that she picks her ℓ∗-th submission.

We define the directed preference graph 𝐺
�̂�
= (𝑁, 𝐸

�̂�
) where each

agent is a node and for each 𝑖 with 𝑃𝑖 ≠ ∅, (𝑖, 𝑖 ′) ∈ 𝐸�̂� if and only if

𝑖 ′ is ranked higher in 𝜎𝑖,ℓ∗ among the agents that don’t review 𝑝𝑖,ℓ∗

and review less than 𝑘𝑎 submissions. In other words, each agent

points her most preferred agent with respect to 𝑝𝑖,ℓ∗ that does not

already review it and can review at least one more submission.

Moreover, for each 𝑖 ∈ 𝑁 with 𝑃𝑖 = ∅, we add an edge from 𝑖 to 𝑖 ′,
where 𝑖 ′ is an arbitrary agent with 𝑃𝑖′ ≠ ∅, i.e. each agent, whose

all submissions are completely assigned, points an arbitrary agent

whose some of her submissions are not completely assigned.

PeerReview-TTC starts with an empty assignment, constructs

the preference graph and searches for a directed cycle in the graph.



If such a cycle exists, the algorithm eliminates it as following: For

each (𝑖, 𝑖 ′) that is included in the cycle, it assigns submission 𝑝𝑖,ℓ∗

to 𝑖 ′ (if 𝑖’s submissions are already completely assigned, it does

nothing) and removes 𝑝𝑖,ℓ∗ from 𝑃𝑖 , if it is now completely assigned.

Then, the algorithm updates the preference graph and continues to

eliminate cycles in the same way. When there are no left cycles in

the preference graph, the algorithm terminates and returns a set

𝑈 that contains all the agents that some of their submissions are

incompletely assigned and a set 𝐿 that contains the last 𝑘𝑝 − |𝑈 | + 1

agents whose all submissions became completely assigned.

PRCore first calls PeerReview-TTC and if 𝑈 is non-empty it

also calls Algorithm 2, called Filling-Gaps, to ensure that the final

assignment is valid. Before we describe the algorithm, we also need

to introduce the notion of a greedy graph. Suppose that we have a
partial assignment 𝑅 which indicates a set𝑈 that contains all the

agents whose at least one submission is incompletely assigned. We

define the directed greedy graph 𝐺
�̂�
= (𝑈 , 𝐸

�̂�
) where (𝑖, 𝑖 ′) ∈ 𝐸

�̂�

if 𝑅(𝑖 ′, 𝑝𝑖,ℓ ) = 0 for some 𝑝𝑖,ℓ ∈ 𝑃𝑖 . In other words, while in the

preference graph, agent 𝑖 points only to her favourite potential

reviewer with respect to one of her incomplete submissions, in the

greedy graph agent 𝑖 points to any agent in𝑈 \{𝑖} that could review
at least one of her submissions that is incompletely assigned.

Filling-Gaps consists of two phases. In the first phase, starting

from the partial assignment 𝑅 that was created in Algorithm 1, it

constructs the greedy graph, searches for cycles and eliminates a

cycle by assigning submission 𝑝𝑖,ℓ to agent 𝑖 ′ for each (𝑖, 𝑖 ′) in the

cycle that exists due to 𝑝𝑖,ℓ (when an edge exists due to multiple

submissions, the algorithm chooses one of them arbitrary). Then, it

updates 𝑃𝑖 be removing any 𝑝𝑖,ℓ that became completely assigned

and also updates 𝑈 be moving any 𝑖 to 𝐿 if 𝑃𝑖 became empty. It

continues by updating the greedy graph and eliminating cycles in

the same away. When no more cycles exist in the greedy graph, if𝑈

is empty, the algorithm terminates. Otherwise, the algorithm starts

the second phase, where in |𝑈 | rounds ensures that the incomplete

submissions of each agent become completely assigned as following.

It constructs an order ®𝜌 over the agents in𝑈 , that has some specific

properties, and in round 𝑡 ∈ [|𝑈 |], for each incomplete assigned

𝑝𝜌 (𝑡 ),ℓ , it finds a completely assigned submission 𝑗 ′ that is authored
by some agent in𝑈 ∪𝐿 \ {𝜌 (𝑡)} and is not reviewed by 𝜌 (𝑡) and an
agent 𝑖 that reviews 𝑗 ′ but not 𝑝𝜌 (𝑡 ),ℓ , and then, it moves 𝑗 ′ from
𝑖 to 𝜌 (𝑡) and assigns 𝑝𝜌 (𝑡 ),ℓ to 𝑖 . Figure 1 shows the execution of

PRCore in a small instance.

Theorem 3.1. RPCore returns an assignment in the core, in poly-
nomial time.

Proof. First, in the next lemma, we show that the assignment

that the algorithm returns is valid.

Lemma 3.2. RPCore returns a valid assignment.

Proof. First, note that in Algorithm 1, if an agent 𝑖 with 𝑃𝑖 ≠ ∅
is assigned one submission due to the elimination of a cycle, then

we know that one of her submissions that is incompletely assigned

is also assigned to an agent that does not review it already. Hence,

we see that until 𝑃𝑖 becomes empty, we have that

|𝑅𝑎𝑖 | =
∑︁

𝑗 ∈[𝑚∗ ]
|𝑅𝑝𝑝𝑖,𝑗 |. (1)

Since

∑
𝑗 ∈[𝑚∗ ] |𝑅

𝑝
𝑝𝑖,𝑗
| =𝑚∗ · 𝑘𝑝 ≤ 𝑘𝑎 , we get that 𝑖 is not assigned

more than 𝑘𝑎 papers to review until the point where all of her sub-

missions become completely-assigned. After that point, the agent

may still participate in a cycle as long as she reviews strictly less

than 𝑘𝑎 submissions. Thus, we see that if Algorithm 1 terminates

with an empty set 𝑈 , i.e. all the submissions are completely as-

signed, the assignment that it returns is valid, as each submission

is reviewed by 𝑘𝑝 different agents, each agent reviews at most 𝑘𝑎
submissions and no author reviews her own submissions.

Now, suppose that Algorithm 1 returns a non-empty set𝑈 . First,

we show that |𝑈 | ≤ 𝑘𝑝 . For each 𝑖 ∈ 𝑈 , from Equation (1), we know

that

|𝑅𝑎𝑖 | =
∑︁

𝑗 ∈[𝑚∗ ]
|𝑅𝑝𝑝𝑖,𝑗 | < 𝑚∗ · 𝑘𝑝 ≤ 𝑘𝑎 (2)

as there exists at least one submission of 𝑖 that is assigned to less

than 𝑘𝑝 agents. Hence, we get that 𝑖 can review more submissions.

Now, suppose for contradiction that at the last iteration of the

algorithm, each agent 𝑖 ∈ 𝑈 has an outgoing edge in the preference

graph. In this case, we claim that there exists a directed cycle in the

preference graph which is a contradiction as Algorithm 1 would

have not been terminated yet. To see that, note that each outgoing

edge of an agent 𝑖 ∈ 𝑈 either goes to another agent 𝑖 ′ ∈ 𝑈 , since 𝑖 ′

can review more submissions, or goes to an agent 𝑖 ′ ∉ 𝑈 whose all

submissions are completely-assigned. In the latter case, 𝑖 ′ has an
outgoing edge to an agent in 𝑈 by the definition of the preference

graph. Thus, starting from any agent in𝑈 , we conclude in an agent

in 𝑈 and eventually we would found a cycle. Therefore, we have

that there exists an agent 𝑖∗ ∈ 𝑈 that at the last iteration of the

algorithm arbitrary picks her incomplete submission 𝑝𝑖∗,ℓ∗ and does

not have any outgoing edge to any other agent. This means that all

the agents that can review more submissions, already review 𝑝𝑖∗,ℓ∗ .

Since all the agents in𝑈 \ {𝑖∗} can review more submissions, we get

that all of them are assigned 𝑝𝑖∗,ℓ∗ . But since 𝑝𝑖∗,ℓ∗ is not completely

assigned, we conclude that |𝑈 \ {𝑖∗}| < 𝑘𝑝 . Therefore, we have that

|𝐿 | ≥ 1 and from their definitions, we get that |𝑈 ∪ 𝐿 | = 𝑘𝑝 + 1.

When𝑈 is non empty, PRCore calls Filling-Gaps. This algorithm

first eliminates cycles in the greedy graph. With similar arguments

as in the elimination of cycles in the preference graph, we conclude

that during and after the first phase of Filling-Gaps, Equation (1)

is still true for any 𝑖 ∈ 𝑁 with 𝑃𝑖 ≠ ∅. When no more cycles exist

and𝑈 is still non empty, the algorithm constructs an order over the

agents𝑈 , denoted by ®𝜌 , such that 𝜌 (𝑡) reviews all the incompletely

assigned submissions of each 𝑖 ∈ 𝑈 \ {𝜌 (1), . . . , 𝜌 (𝑡 − 1), 𝜌 (𝑡)}.
To see why such an order exists, first note that the greedy graph

is a DAG, since it has no cycles. If we construct the topological

ordering of the DAG over the nodes in𝑈 , denoted by ®𝜌 , we get that
no 𝑖 ∈ 𝑈 \ {𝜌 (1), . . . , 𝜌 (𝑡 − 1), 𝜌 (𝑡)} has an outgoing edge to 𝜌 (𝑡).
But since 𝜌 (𝑡) can review more submissions and each such 𝑖 has

incomplete submissions, from the definition of the greedy graph,

we get that 𝜌 (𝑡) reviews all the incompletely assigned submissions

of each 𝑖 in𝑈 \ {𝜌 (1), . . . , 𝜌 (𝑡 − 1), 𝜌 (𝑡)}.
After having created the order ®𝜌 , Algorithm 2 runs |𝑈 | rounds,

where in round 𝑡 ∈ [|𝑈 |], it ensures that all the submissions of agent

𝜌 (𝑡) become completely assigned as following. For each 𝑝𝜌 (𝑡 ),ℓ ∈
𝑃𝜌 (𝑡 ) , it finds a completely assigned submission 𝑝𝑖′,ℓ′ of an agent

𝑖 ′ ∈ 𝑈 ∪ 𝐿 \ {𝜌 (𝑡)} that is not reviewed by 𝜌 (𝑡). It also finds an



agent 𝑖 ′′ that reviews 𝑝𝑖′,ℓ′ , but does not review 𝑝𝜌 (𝑡 ),ℓ . Then, the
algorithm assigns 𝑝𝜌 (𝑡 ),ℓ to 𝑖

′′
, and moves 𝑝𝑖′,ℓ′ from 𝑖 ′′ to 𝜌 (𝑡).

Before, we show that there exist 𝑝𝑖′,ℓ′ and 𝑖
′′
with the desired

properties, we show that it holds |𝑅𝑎
𝜌 (𝑡 ) | =

∑
𝑗 ∈[𝑚∗ ] |𝑅

𝑝
𝑝𝜌 (𝑡 ), 𝑗 |, be-

fore and during the execution of round 𝑡 . We already know that this

is true after the first phase of Filling-Gaps. In the second phase, note

that until round 𝑡 , if 𝜌 (𝑡) is assigned a new submission to review,

she is removed one of the old assigned submissions. Moreover, none

of her incompletely assigned submissions is assigned to any agent.

Hence, indeed before round 𝑡 , we have the desired property. Now,

note that when we execute step 𝑡 , 𝜌 (𝑡) is assigned one more submis-

sion to review and one of her incomplete submissions is assigned

to a new agent. Thus, it is still true that |𝑅𝑎
𝜌 (𝑡 ) | =

∑
ℓ∈[𝑚∗ ] |𝑅

𝑝
𝑝𝜌 (𝑡 ),ℓ |.

Now, we show that as long as 𝑃𝜌 (𝑡 ) is non-empty, there exists a

completely assigned submission 𝑝𝑖′,ℓ′ of an agent 𝑖
′ ∈ 𝑈 ∪𝐿\{𝜌 (𝑡)}

that is not reviewed by 𝜌 (𝑡). Note that at iteration 𝑡 , all the submis-

sions of each agent in 𝑖 ′ ∈ 𝐿 ∪ {𝜌 (1), . . . , 𝜌 (𝑡 − 1)} are completely

assigned. Thus, any incompletely assigned submission, that does

not belong to 𝜌 (𝑡), belongs to some agent 𝑖 ∈ 𝑈 \ {𝜌 (1), . . . , 𝜌 (𝑡 −
1), 𝜌 (𝑡)}. But, we already know that 𝜌 (𝑡) reviews any such submis-

sion. Moreover, we note that 𝜌 (𝑡) cannot review all the submissions

of all the agents in 𝑈 ∪ 𝐿 \ {𝜌 (𝑡)}. Indeed, if we assume for con-

tradiction that 𝜌 (𝑡) reviews all the submissions of all the agents in

𝑈 ∪ 𝐿 \ {𝜌 (𝑡)}, then we have that

|𝑅𝑎
𝜌 (𝑡 ) | =

∑︁
ℓ∈[𝑚∗ ]

|𝑅𝑝𝑝𝜌 (𝑡 ),ℓ | = 𝑘𝑝 ·𝑚∗,

since |𝑈 ∪ 𝐿 \ {𝜌 (𝑡)}| = 𝑘𝑝 and each of them has𝑚∗ submissions,

which would imply that all the submissions of 𝜌 (𝑡) are completely

assigned since 𝜌 (𝑡) has𝑚∗ submissions and each of them should

be assigned to 𝑘𝑝 reviewers. Hence, we get that since 𝜌 (𝑡) reviews
all the incompletely assigned submissions but cannot review all

the submissions of all agents in 𝑖 ∈ 𝑈 ∪ 𝐿 \ {𝜌 (𝑡)}, there exists a
completely assigned submission that belongs to some 𝑖 ′ ∈ 𝑈 ∪ 𝐿 \
{𝜌 (𝑡)} and is not reviewed by 𝜌 (𝑡).

Next, we show that there exists 𝑖 ′′ that reviews 𝑝𝑖′,ℓ′ , but does
not review 𝑝𝜌 (𝑡 ),ℓ . Indeed, since 𝑝𝑖′,ℓ′ is reviewed by 𝑘𝑝 agents and

not from 𝜌 (𝑡), while 𝑝𝜌 (𝑡 ),ℓ is reviewed by strictly less than 𝑘𝑝
agents, it exists an agent that reviews the former submission but

not the latter.

Note that after this assignment, any submission except for 𝑝𝜌 (𝑡 ),ℓ
is assigned to the same number of reviewers as before this step and

every agent except for 𝜌 (𝑡) reviews the same number of submissions

as before this step. Moreover, we see that after step 𝑡 , it remains

true that |𝑅𝑎
𝜌 (𝑡 ) | =

∑
ℓ∈[𝑚∗ ] |𝑅

𝑝
𝑝𝜌 (𝑡 ),ℓ |, as if 𝜌 (𝑡) is assigned a new

submission, an old assigned submission is removed, while if 𝑝𝜌 (𝑡 ),ℓ
is assigned to a new reviewer, it is removed form another reviewer.

Thus, we conclude that after the execution of Filling-Gaps, the

assignment is valid. □

Now, we show that the final assignment 𝑅 that PRCore returns is

in the core. First, note that while it is probable that an assignment

of a submission of an agent in 𝑈 ∪ 𝐿, that was established during

the execution of Algorithm 1, to be removed in the execution of Al-

gorithm 2, this never happens for submissions that belong to some

agent in 𝑁 \ (𝑈 ∪𝐿). Now, for the sake of contradiction, we assume

that 𝑁 ′ ⊆ 𝑁 , with 𝑃 ′
𝑖
⊆ 𝑃𝑖 for each 𝑖 ∈ 𝑁 ′, deviate to a restricted

assignment 𝑅 over 𝑁 ′ and ∪𝑖∈𝑁 ′𝑃 ′𝑖 . Note that 𝑅 is valid if and only

if |𝑁 ′ | > 𝑘𝑝 , as if |𝑁 ′ | ≤ 𝑘𝑝 , there is no way each submission in

∪𝑖∈𝑁 ′𝑃 ′𝑖 to be completely assigned, since no agent can review her

own submissions.

Now, we distinguish into two cases.

Case I: ∃𝑖 ∈ 𝑁 ′ : 𝑖 ∉ 𝐿 ∪𝑈 . Let 𝑖∗ ∈ 𝑁 ′ be the first agent in 𝑁 ′

whose all submissions became completely assigned in the execution

of PeerReview-TTC. Note that since there exists 𝑖 ∉ 𝑈 ∪ 𝐿, we get
that 𝑖∗ ∉ 𝑈 ∪ 𝐿 from the definitions of𝑈 and 𝐿. Now, consider any

𝑝𝑖∗,ℓ . Let𝑄1 = 𝑅
𝑝
𝑝𝑖∗,ℓ
\(𝑅𝑝𝑝𝑖∗,ℓ ∩𝑅

𝑝
𝑝𝑖∗,ℓ
) and𝑄2 = 𝑅

𝑝
𝑝𝑖∗,ℓ
\(𝑅𝑝𝑝𝑖∗,ℓ ∩𝑅

𝑝
𝑝𝑖∗,ℓ
).

If 𝑄1 = ∅, then we have that 𝑅
𝑝
𝑝𝑖∗,ℓ

= 𝑅
𝑝
𝑝𝑖∗,ℓ

which means that

𝑅
𝑝
𝑝𝑖∗,ℓ
⪰𝑖∗,ℓ 𝑅𝑝𝑝𝑖∗,ℓ . Otherwise, let

𝑖 ′ = argmax

𝑖∈𝑄1

𝜎𝑖∗,ℓ (𝑖),

i.e. 𝑖 ′ is ranked at the lowest position in 𝜎𝑖∗,ℓ among the agents that

review 𝑝𝑖∗,ℓ under 𝑅 but not under 𝑅 and let

𝑖 ′′ = argmin

𝑖∈𝑄2

𝜎𝑖∗,ℓ (𝑖),

i.e. 𝑖 ′′ is ranked at the highest position in 𝜎𝑖∗,ℓ among the agents

that review 𝑝𝑖∗,ℓ under 𝑅 but not under 𝑅. We have 𝑅(𝑖 ′, 𝑝𝑖∗,ℓ ) = 1,

if and only if 𝑖∗ has an outgoing edge to 𝑖 ′ at some round of

PeerReview-TTC. At the same round, we get that 𝑖 ′′ can review

more submissions, since 𝑖 ′′ ∈ 𝑁 ′ and if 𝑖∗ has incompletely as-

signed submissions, then any 𝑖 ∈ 𝑁 ′ has incompletely assigned

submissions, and hence |𝑅𝑎
𝑖′′ | < 𝑘𝑝 ·𝑚∗ ≤ 𝑘𝑎 . This means that if

𝜎𝑖∗,ℓ (𝑖 ′) > 𝜎𝑖∗,ℓ (𝑖 ′′), then 𝑖∗ would point 𝑖 ′′ instead of 𝑖 ′. Hence,
we conclude that 𝜎𝑖∗,ℓ (𝑖 ′) < 𝜎𝑖∗,ℓ (𝑖 ′′). Then, from the definition of

𝑖 ′ and 𝑖 ′′ and from the order separability property we have that

𝑅
𝑝
𝑝𝑖∗,ℓ
≻𝑖∗,ℓ 𝑅𝑝𝑝𝑖∗,ℓ . Thus, either if𝑄1 is empty or not, we have that for

any 𝑝𝑖∗,ℓ ∈ 𝑃 ′𝑖 , it holds that 𝑅
𝑝
𝑝𝑖∗,ℓ
⪰𝑖∗,ℓ 𝑅𝑝𝑝𝑖∗,ℓ and from consistency

we get that 𝑅 ⪰𝑖∗ 𝑅 which is a contradiction.

Case II: ∄𝑖 ∈ 𝑁 ′ : 𝑖 ∉ 𝐿∪𝑈 . In this case we have that 𝑁 ′ = 𝑈 ∪𝐿,
as |𝑈 ∪𝐿 | = 𝑘𝑝 +1. This means that for each 𝑖 ∈ 𝑈 ∪𝐿 and ℓ ∈ [𝑚∗],
𝑅
𝑝
𝑝𝑖,ℓ

= (𝑈 ∪ 𝐿) \ {𝑖}. Let 𝑖∗ ∈ 𝐿 be the first agent in 𝐿 whose all

the submissions became completely assigned in the execution of

PeerReview-TTC. Consider any 𝑝𝑖∗,ℓ . Note that it is probable that

while 𝑝𝑖∗,ℓ was assigned to some agent 𝑖 in PeerReview-TTC, it was

moved to another agent 𝑖 ′ during the execution of Filling-Gaps.

But, 𝑖 ′ belongs to 𝑈 and we can conclude that if 𝑝𝑖∗,ℓ is assigned

to some 𝑖 ∈ 𝑁 \𝑈 at the output of PRCore, this assignment took

place during the execution of PeerReview-TTC. Now, let 𝑄1 =

𝑅
𝑝
𝑝𝑖∗,ℓ
\ (𝑅𝑝𝑝𝑖∗,ℓ ∩ 𝑅

𝑝
𝑝𝑖∗,ℓ
) and 𝑄2 = 𝑅

𝑝
𝑝𝑖∗,ℓ
\ (𝑅𝑝𝑝𝑖∗,ℓ ∩ 𝑅

𝑝
𝑝𝑖∗,ℓ
). If 𝑄1 = ∅,

then we have that 𝑅
𝑝
𝑝𝑖∗,ℓ

= 𝑅
𝑝
𝑝𝑖∗,ℓ

which means that 𝑅
𝑝
𝑝𝑖∗,ℓ
⪰𝑖∗,ℓ 𝑅𝑝𝑝𝑖∗,ℓ .

If𝑄1 ≠ ∅, then𝑄1 ⊆ 𝑁 \(𝑈 ∪𝐿) and𝑄2 ⊆ 𝑈 ∪𝐿 since 𝑅
𝑝
𝑝𝑖∗,ℓ

= 𝑈 ∪𝐿.
Let

𝑖 ′ = argmax

𝑖∈𝑄1

𝜎𝑖∗,ℓ (𝑖),

i.e. 𝑖 ′ is ranked at the lowest position in 𝜎𝑖∗,ℓ among the agents that

review 𝑝𝑖∗,ℓ under 𝑅 but not under 𝑅 and let

𝑖 ′′ = argmin

𝑖∈𝑄2

𝜎𝑖∗,ℓ (𝑖),



i.e. 𝑖 ′′ is ranked at the highest position in 𝜎𝑖∗,ℓ among the agents

that review 𝑝𝑖∗,ℓ under𝑅 but not under𝑅. From above, we know that

the assignment of 𝑝𝑖∗,ℓ to 𝑖
′
was implemented during the execution

of PeerReview-TTC, since 𝑖 ′ ∈ 𝑁 \ (𝑈 ∪ 𝐿). Hence, with very

similar arguments as in the previous case, we will conclude that

𝜎𝑖∗,ℓ (𝑖 ′) < 𝜎𝑖∗,ℓ (𝑖 ′′). We have 𝑅(𝑖 ′, 𝑝𝑖∗,ℓ ) = 1 if and only if 𝑖∗ has
an outgoing edge to 𝑖 ′ at some round of PeerReview-TTC. At this

round, we know that 𝑖 ′′ can reviewmore submissions, since 𝑖 ′′ ∈ 𝑁 ′
and if 𝑖∗ has incompletely assigned submissions, then any 𝑖 ∈ 𝑁 ′ has
incompletely assigned submissions. This means that if 𝜎𝑖∗,ℓ (𝑖 ′) >
𝜎𝑖∗,ℓ (𝑖 ′′), then 𝑖∗ would point 𝑖 ′′ instead of 𝑖 ′. Hence, we conclude
that 𝜎𝑖∗,ℓ (𝑖 ′) < 𝜎𝑖∗,ℓ (𝑖 ′′). Then, from the definition of 𝑖 ′ and 𝑖 ′′ and
from the order separability property we have that 𝑅

𝑝
𝑝𝑖∗,ℓ
≻𝑖∗,ℓ 𝑅𝑝𝑝𝑖∗,ℓ .

Thus, either if 𝑄1 is empty or not, we have that for any 𝑝𝑖∗,ℓ ∈ 𝑃 ′𝑖 ,
it holds that 𝑅

𝑝
𝑝𝑖∗,ℓ
⪰𝑖∗,ℓ 𝑅

𝑝
𝑝𝑖∗,ℓ

and from consistency we get that

𝑅 ⪰𝑖∗ 𝑅 which is a contradiction. □

4 CORE AND OTHER OBJECTIVES
In the previous section, we show that an assignment in the core is

guaranteed to exist under very minor assumptions regarding the

preferences of the authors. As we mentioned in the introduction,

existing works have focused on different objectives. To be able to

compare our objective with the existing ones, from now on, we take

the standard approach that for each paper 𝑗 and each reviewer 𝑖 , it

is given a similarity score 𝑆 (𝑖, 𝑗) which is calculated as a function of

different parameters. Given an assignment 𝑅, we also assume that

the utilities of the papers and the authors are additive, i.e. the utility

of a paper 𝑗 , denoted by 𝑢
𝑝

𝑗
, is equal to 𝑢

𝑝

𝑗
=
∑
𝑖∈𝑅𝑝

𝑗
𝑆 (𝑖, 𝑗) and the

utility of an author 𝑖 , denoted by 𝑢𝑎
𝑖
, is equal to 𝑢𝑎

𝑖
=
∑

𝑗 ∈𝑃𝑖 𝑢
𝑝

𝑗
.

The most known objective, as it is used at the Toronto Paper

Matching System (TPMS) [1] is the maximization of the utilitarian

social welfare (USW), which is given by

𝑈𝑆𝑊 (𝑅) =
∑︁
𝑖∈𝑁

∑︁
𝑗 ∈𝑃𝑖

𝑢
𝑝

𝑗
(𝑅) .

We denote the algorithm which computes such an assignment as

TPMS.

A different objective that was introduced by Stelmakh et al. [25]

is to maximize the egalitarian social welfare (ESW) which is given

by

𝐸𝑆𝑊 (𝑅) = min

𝑗 ∈∪𝑖∈𝑁 𝑃𝑖
𝑢
𝑝

𝑗
(𝑅).

Stelmakh et al. [25] considered the extended leximin version of

this objective where subject to maximize the minimum utility of

all papers, they aim to maximize the second minimum utility of all

papers, and subject to that they aim to maximize the third minimum

utility of all papers and so on. The algorithm that achieves this

objective is called PeerReview4All (PR4A).

A reasonable question is whether the core is compatible with

good approximations of USW and ESW. Below, we show that there

are instances where any solution in the core does not achieve an

approximation ratio better than Ω(𝑛) with respect to USW and a

finite approximation ratio with respect to ESW.

Theorem 4.1. For any 𝑛, 𝑘𝑝 and 𝑘𝑎 , where 𝑘𝑎 is divisible by 𝑘𝑝 ,
when𝑛 ≥ 2·𝑘𝑝 ·𝑘𝑎+1, there exists an instance such that no assignment

in the core achieves approximation ratio better than Ω(𝑛/𝑘𝑎) with
respect to USW and a finite approximation with respect to ESW.

Proof. Suppose that each agent submits 𝑘𝑎/𝑘𝑝 submissions.

Let 𝑁1 = {1, . . . , ⌊𝑛/2⌋} and 𝑁2 = {⌊𝑛/2⌋ + 1, . . . , 𝑛} Consider an
instance where the similarity scores are as following:

• For 𝑖, 𝑖 ′ ∈ 𝑁1, 𝑠 (𝑖 ′, 𝑝𝑖,1) = 0

• For 𝑖 ∈ 𝑁1 and 𝑖 ′ ∈ 𝑁2, 𝑠 (𝑖 ′, 𝑝𝑖,1) = 1

• For 𝑖, 𝑖 ′ ∈ 𝑁2, 𝑠 (𝑖 ′, 𝑝𝑖,1) = 𝜖1

• For 𝑖 ∈ 𝑁2 and 𝑖 ′ ∈ 𝑁1, 𝑠 (𝑖 ′, 𝑝𝑖,1) = 𝜖2

• For 𝑖, 𝑖 ′ ∈ 𝑁 , 𝑠 (𝑖 ′, 𝑝𝑖, 𝑗 ) = 0, for each 𝑗 > 1

where 𝜖1 > 𝜖2.

Now, suppose that there are at least𝑘𝑝+1 agents in𝑁2 whose first

submissions are not exclusively assigned to reviewers in 𝑁2. Then,

if they deviate and assign their submissions among themselves,

this would lead in a valid assignment as each submission would

be reviewed by 𝑘𝑝 agents and they would strictly improve their

utility. Thus, we conclude that an assignment is in the core if the

first submission of at most 𝑘𝑝 authors in 𝑁2 are not exclusively

assigned to authors in 𝑁2. Hence, we get that there are at most

𝑘𝑝 · 𝑘𝑎 assignments of submissions that belong in authors in 𝑁1 to

reviewers in 𝑁2. This means that the maximum utilitarian welfare

of an assignment in the core is equal to 𝑘𝑝 ·𝑘𝑎 +𝑛 ·𝑘𝑎 ·𝜖1 where as 𝜖1

goes to zero the welfare goes to𝑘𝑝 ·𝑘𝑎 . Moreover, for ⌊𝑛/2⌋ > 𝑘𝑝 ·𝑘𝑎 ,
we have that at least one agent in 𝑁1 should have zero utility under

any assignment in the core. On the other hand, by assigning the

submissions of the agents in 𝑁1 to agents in 𝑁2 and the submissions

of the agents in 𝑁2 (except for the submissions of the last agent

when 𝑛 is odd) to agents in 𝑁1, we achieve utility at least equal

to 𝑘𝑝 · ⌊𝑛/2⌋. Thus, the approximation with respect to the optimal

social welfare cannot be better than Ω(𝑛/𝑘𝑎). Moreover, by this

way the minimum utility is equal to 𝜖2 and for 𝜖2 > 0, and we get

that the approximation with respect to ESW is unbounded. □

The condition of the theorem is quite realistic since in practice

𝑘𝑝 and 𝑘𝑎 are small constants. Thus, we can also get the following

Corollary.

Corollary 4.2. There are instances where no assignment in the
core achieves approximation ratio better than Ω(𝑛) with respect to
USW.

It is known from the literature that we can find an assignment

with maximum USW in polynomial times using standard tools [26].

In the previous section, we also presented a polynomial time algo-

rithm that finds an assignment in the core. Here, we surprisingly

show that if 𝑁𝑃 ≠ 𝑃 , there is no polynomial time algorithm that

finds an assignment in the core with maximum USW. Moreover, it is

known that finding an assignment with maximum egalitarian social

welfare is a NP-hard problem [2]. Here, we show that it is NP-hard

to find an assignment in the core with bounded approximation to

the maximum ESW that can be achieved by any assignment in the

core.

Theorem 4.3. Finding an assignment in the core with maximum
social welfare is NP-hard. Moreover, finding an assignment in the core
with bounded approximation with respect to the maximum egalitarian
welfare achieved by assignments in the core is NP-hard.



Proof. We begin by proving the theorem for the case that 𝑘𝑎 =

𝑘𝑝 = 1, and later we generalize it for any 𝑘𝑎 .

We use a polynomial-time reduction from 2P2N-3SAT, the special

case of 3SATwhere every boolean variable appears twice as positive

and twice as negative literal. Let 𝜙 be an instance of 2P2N-3SAT

which consists of 𝑛 boolean variables, 𝑥1, 𝑥2, ..., 𝑥𝑛 and𝑚 clauses

𝐶1,𝐶2, ...,𝐶𝑚 with 𝑛 = 3𝑚/4. We assume that 𝑛 is divisible by

3. Given 𝜙 , we construct an instance for the assignment review

problem such that:

• If 𝜙 is satisfiable, then there exists an assignment in the core

with social welfare at least 4𝑛/3 and with minimum paper

score 𝜖 > 0.

• If 𝜙 is not satisfiable, then any assignment in the core has

social welfare less than 4𝑛/3−1/2 and minimum paper score

equal to zero.

The assignment review problem is as following: For each boolean

variable 𝑥𝑖 , we add agents 𝑥𝑖,1, 𝑥𝑖,2, 𝑥𝑖,2 and 𝑥𝑖,1, where the first

two (respectively, the last two) agents corresponds to the two oc-

currences of the literal 𝑥𝑖 (resp., ¬𝑥𝑖 ). Moreover, for each clause

𝐶 𝑗 we add agent 𝑐 𝑗 . Each agent has exactly on submission and the

expertises of the agents over the submissions are as follows: For

each bolean variable 𝑥𝑖 ,

• 𝑆 (𝑥𝑖,1, 𝑝𝑥𝑖,1 ) = 𝑆 (𝑥𝑖,1, 𝑝𝑥𝑖 ) = 𝜖1

• 𝑆 (𝑥𝑖,2, 𝑝𝑥𝑖,2 ) = 𝑆 (𝑥𝑖,2, 𝑝𝑥𝑖,2 ) = 𝜖1

• 𝑆 (𝑥𝑖,1, 𝑝𝑥𝑖,2 ) = 𝑆 (𝑥𝑖,2, 𝑝𝑥𝑖,1 ) = 𝜖2

• 𝑆 (𝑥𝑖,2, 𝑝𝑥𝑖,1 ) = 𝑆 (𝑥𝑖,1, 𝑝𝑥𝑖,2 ) = 𝜖2

and for each 𝐶 𝑗 = (ℓ1 ∨ ℓ2 ∨ ℓ3) where ℓ1, ℓ2 and ℓ3 correspond

to the 𝑡1-th appearance of literal 𝑥𝑖1 (resp., of the literal ¬𝑥𝑖1 ), 𝑡2-
th appearance of literal 𝑥𝑖3 (resp., of the literal ¬𝑥𝑖3 ) and 𝑡3-th

appearance of literal 𝑥𝑖3 (resp., of the literal ¬𝑥𝑖3 ), respectively,
with 𝑡1, 𝑡2, 𝑡3 ∈ {1, 2},
• 𝑆 (𝑥𝑖1,𝑡1

, 𝑝𝑐 𝑗 ) = 𝑆 (𝑥𝑖2,𝑡2
, 𝑝𝑐 𝑗 ) = 𝑆 (𝑥𝑖3,𝑡3

, 𝑝𝑐 𝑗 ) = 1

• 𝑆 (𝑖, 𝑝𝑐 𝑗 )=0, for any agent 𝑖 ∉ {𝑥𝑖1,𝑡1
, 𝑥𝑖2,𝑡12, 𝑥𝑖3,𝑡3

}
and all the remaining scores are equal to 𝜖3 with 1/(8𝑛) ≥ 𝜖1 >

𝜖2 > 𝜖3 > 0.

If 𝜙 is satisfiable, then we use a truth assignment to find an as-

signment in the core with social welfare at least 4𝑛/3 and minimum

paper score equal to 𝜖2 > 0 as follows: For every true variable 𝑥𝑖 ,

we assign 𝑝𝑥𝑖,𝑡 to 𝑥𝑖,𝑡 , for each 𝑡 ∈ {1, 2}. Respectively, for every
false variable 𝑥𝑖 , we assign 𝑝𝑥𝑖,𝑡 to 𝑥𝑖,𝑡 , for each 𝑡 ∈ {1, 2}. For every
clause 𝐶 𝑗 , we arbitrary select one of the true literals of the clause,

and assign 𝑝𝑐 𝑗 to the corresponding agent. All the remaining as-

signments are arbitrary. First, we see that under this assignment

each agent 𝑐 𝑗 has utility 1, as 𝑝𝑐 𝑗 is assigned to a reviewer with

similarity score equal to 1. Hence, the social welfare is at least 4𝑛/3.
Moreover, the minimum score utility is equal to 𝜖2. Now, we show

that it is also in the core. First, no agent 𝑐 𝑗 has incentives to deviate

as her submission is assigned to one of the best possible agents for

her submission. Now, consider an agent 𝑥𝑖,𝑡 , for 𝑡 ∈ {1, 2}, when
variable 𝑥𝑖 is true. From the construction, 𝑝𝑥𝑖,𝑡 is assigned to 𝑥𝑖,𝑡
which has the highest similarity score for it and hence 𝑥𝑖,𝑡 does

not have any incentives to deviate. With similar, arguments we can

show that 𝑥𝑖,𝑡 , for 𝑡 ∈ {1, 2}, does not have incentives to deviate

when 𝑥𝑖 is false. Next, consider an agent 𝑥𝑖,𝑡 , for 𝑡 ∈ {1, 2} when
variable 𝑥𝑖 is false. While 𝑥𝑖,1 and 𝑥𝑖,2 are the two agents that have

higher similarity score for 𝑝𝑥𝑖,𝑡 , than its current reviewer, we know

from above that 𝑥𝑖,1 and 𝑥𝑖,2 do not have any incentives to deviate.

Hence, 𝑥𝑖,𝑡 does not have any incentive to deviate with any other

agents when 𝑥𝑖 is false, and similarity we can show that 𝑥𝑖,𝑡 does

not have any incentive to deviate if 𝑥𝑖 is true. Thus, in any case

there is no deviating coalition and the assignment is in the core.

Now, we show that if the social welfare is at least 4𝑛/3, then 𝜙 is

satisfiable. Moreover, if the lower utility of each paper is positive,

then 𝜙 is satisfiable. First, assume for the sake of contradiction that

some 𝑝𝑐 𝑗 is not assigned to an agent that corresponds to one of the

literals of𝐶 𝑗 . Then, since any other agent has similarity score equal

to 0 for 𝑝𝑐 𝑗 , the sum of utilities of agents 𝑐 𝑗 for 𝑗 ∈ [𝑚] is at most

4𝑛/3− 1. But since for any 𝑝𝑥𝑖,𝑡 and 𝑝𝑥𝑖,𝑡 the similarity score of any

agent is less than 1/8𝑛 and there are 4𝑛 such submissions, we have

that the overall sum of utilities is at most 4𝑛/3 − 1/2 and we reach

a contradiction. Moreover, we see that in this case the minimum

utility of a paper is equal to zero. Hence, we conclude that every

𝑝𝑐 𝑗 is assigned to an agent that corresponds to one of the literals of

𝐶 𝑗 . Suppose that 𝑝𝑐 𝑗 is assigned to 𝑥𝑖,𝑡 , where 𝑥𝑖 appears as positive

literary to 𝐶 𝑗 , and without loss of generality assume that 𝑡 = 1.

Then, we see that 𝑝𝑥𝑖,1 is assigned to 𝑥𝑖,1, as otherwise 𝑥𝑖,1 and

𝑥𝑖,1 could deviate to their own coalition. Moreover, we notice that

the assignment is in the core if and only if at least one of 𝑥𝑖,2 and

𝑝𝑥𝑖,2 reviews the other’s submission. For the sake of contradiction,

assume that the assignment meets this requirement by assigning

𝑝𝑥𝑖,2 to 𝑥𝑖,2, but not 𝑝𝑥𝑖,2 to 𝑥𝑖,2. Then, 𝑥𝑖,1 and 𝑥𝑖,2 as none of them

reviews each other’s submission, they could deviate to their own

coalition. So, it should be the case that 𝑥𝑖,2 reviews 𝑝𝑥𝑖,2 . Thus, we

have that if 𝑝𝑐 𝑗 is assigned to 𝑥𝑖,1, then 𝑝𝑥𝑖,1 and 𝑝𝑥𝑖,2 are assigned

to 𝑥𝑖,1 and 𝑥𝑖,2, respectively. Hence, no 𝑝𝑐 𝑗′ can be assigned to 𝑥𝑖,1
or 𝑥𝑖,2. With similar arguments, we can show that if 𝑝𝑐 𝑗 is assigned

to 𝑥𝑖,𝑡 , then there is no 𝑝𝑐 𝑗′ that is assigned to 𝑥𝑖,1 or 𝑥𝑖,2. Now, we

see that by setting the variable 𝑥𝑖 to true if some 𝑝𝑐 𝑗 is reviewed by

𝑥𝑖,1 or 𝑥𝑖,2, and to false if some 𝑝𝑐 𝑗 is reviewed by 𝑥𝑖,1 or 𝑥𝑖,2 (these

cannot happen concurrently), we get an assignment that satisfies

all clauses of 𝜙 .

Now, when 𝑘𝑎 > 1, then for each agent 𝑥𝑖,𝑡 (resp. 𝑥𝑖,𝑡 ) in the

above construction, we assume that there are 𝑘𝑎 − 1 other agents,

denoted by 𝑥1

𝑖,𝑡
, . . . , 𝑥

𝑘𝑎
𝑖,𝑡

such that each of them have similarity score

equal to 𝜖4 for each other’s submission with 1/(8𝑛) > 𝜖4 > 𝜖1. The

remaining scores are set as for the case of𝑥𝑖,𝑡 . If there are at least two

agents among 𝑥1

𝑖,𝑡
, . . . , 𝑥

𝑘𝑎
𝑖,𝑡

that their submissions are not reviewed

by another agent in {𝑥1

𝑖,𝑡
, . . . , 𝑥

𝑘𝑎
𝑖,𝑡
}, then they have incentives to

deviate. Hence, we see that at most one of them can review a

submission that does not belong to some agent in {𝑥1

𝑖,𝑡
, . . . , 𝑥

𝑘𝑎
𝑖,𝑡
}

and at most one submission of some agent in {𝑥1

𝑖,𝑡
, . . . , 𝑥

𝑘𝑎
𝑖,𝑡
} may

not reviewed from some agent in the same set. Thus, by interpreting

this agent as 𝑥𝑖,𝑡 and this submission as 𝑝𝑥𝑖,𝑡 , with arguments as

above the statement follows. □

5 EXPERIMENTS
In this section, we empirically compare PRCore with TPMS, which

is widely used, and PR4A which was used in ICML 2020 [24]. While

the latter does not explicitly take into account conflicts between

reviewers and submissions, when a reviewer is the author of a



Alg. USW ESW 𝛼-Core Dev Pr

PRCore 0.145 ± 0.01 0.037 ± 0.01 1 0%

TPMS 0.161 ± 0.01 0.055 ± 0.01 1.029 ± 0.037 65%

PR4A 0.156 ± 0.01 0.082 ± 0.01 1.053 ± 0.053 86%

Table 1: Results on ICLR 2018

Alg. USW ESW 𝛼-Core Dev Pr

PRCore 0.985 ± 0.04 0.075 ± 0.04 1 0%

TPMS 1.229 ± 0.04 0.075 ± 0.04 1.984 ± 0.32 100%

PR4A 1.059 ± 0.04 0.075 ± 0.04 1.456 ± 0.02 100%

Table 2: Results on CVPR

Alg. USW ESW 𝛼-Core Dev Pr

PRCore 2.62 ± 0.04 0.075 ± 0.04 1 0%

TPMS 2.986 ± 0.04 0.125 ± 0.04 1.085 ± 0.03 95%

PR4A 2.928 ± 0.04 0.847 ± 0.04 1.182 ± 0.05 100%

Table 3: Results on CVPR 2018

submission, we set the corresponding score to be equal to a large

negative number. FairIR and FairFlow algorithms [8] also did not

take conflicts into account, but the same trick did not work since

the latter does not work with negative scores, while when we

implemented and incorporated negative scores in the former, it

could not find an optimal solution. For this reason, we do not

compare our algorithm with these algorithms.

We use three conference datasets: Conference on Computer

Vision and Pattern Recognition (CVPR) and the 2018 iteration of

CVPR which both were used by [8], and International Conference

on Learning Representations (ICLR) 2018, which was used by [31].

In all the experiments, we set 𝑘𝑎 = 𝑘𝑝 = 3. In ICLR’18, the similarity

matrix and the conflict matrix are available where the entry in

row 𝑖 and column 𝑗 indicates the similarity score and a conflict,

respectively, between reviewer 𝑖 and submission 𝑗 . As Xu et al. [31],

we deploy the conflict matrix as the authorshipmatrix.We disregard

any reviewer that does not author any submissions, but note that

the addition of more reviewers can only improve the results of our

algorithm since these additional reviewers will have no incentives to

deviate. Since in our model each submission is authored by exactly

one author, and no author can submit more than

⌊
𝑘𝑎/𝑘𝑝

⌋
= 1

papers, we found a maximum matching on the conflict matrix, and

use this as the authorship matrix for our experiments, as Dhull et al.

[3] also did. By this way, 883 out of the 911 papers were matched.

In CVPR and CVPR’18, the similarity matrix was available, but not

the conflict matrix. In both datasets, there are less reviewers than

papers. We constructed an artificial author matrix, by matching a

paper to the reviewer that has the highest score for it and is not

assigned as an author to any other paper so far. By this way, 1373

out of 2623 papers from CVPR and 2840 out of 5062 papers from

CVPR’18 were matched.

To measure the performance of different algorithms with respect

to the core, we consider multiplicative approximations. In particular,

we say that an assignment is in the 𝛼-core, if there is no deviating

coalition such that all the authors improve their utility by a multi-

plicative factor of 𝛼 . For each experiment, we report USW, ESW and

the value of 𝛼 . Because the calculation of the core approximation

requires much time, we subsample 50 papers from each database

and report means and standard deviation over 100 runs. Note, that

if there is an instance where all the authors with initial score equal

to 0, deviate to an assignment where all have strictly positive score,

then the value of 𝛼 would be infinite. To avoid situations where the

existence of such instance would explode the mean value of 𝛼 to in-

finite, we make sure that the similarity matrices do not contain zero

values (something that it is very common in CVPR and CVPR’18),

by adding 0.0005 to each cell of a similarity matrix. We also report

the probability that a deviating coalition exists. Following Kobren

et al. [8] and Stelmakh et al. [25], we run 4 iterations of PR4A (they

actually run only one), which ensures that the four minimum scores

are maximized.

In Table 1, we see the results of ICLR’18. As expected we see that

TPMS achieves the highest USW while PR4A achieves the highest

ESW. We see that PRCore achieves a multiplicalte approximation

better than 1.2 with respet to USW and better than 2.31 with respect

to ESW. Both TMPS and PR4A violate core very often, but it seems

that the improvement of the scores is not very significant. In Table 2,

we see the results of CVPR. Here, again we see that the mutliplicate

approximation of PRCore with respect to USW is around 1.3, but it

seems to achieve a much better approximation with respect to ESW.

On the other hand, TMPS and PR4A violate core with certainty and

in this case the value of 𝛼 is more than 1.4. Lastly, in Table 3, we see

the results of CVPR’18. In this case, we notice that PRCore achieves

a better approximation with respect to USW, but worse with respect

to ESW. Again, TMPS and PR4A violate core almost with certainty

and the value of 𝛼 is non negligible. Overall, we see that in contrast

with the worst case, PRCore seems to achieve good approximations

with respect to both USW and ESW in the average case. Moreover,

methods that are widely used in practise, violate core very often

and significantly incentivize communities to deviate.

6 DISCUSSION
This work introduces a novel notion of group fairness, called core,

in a peer review setting which asks that each group is treated in

a way that does not have any incentive to deviate and make its

own conference. We show that a review assignment in the core

always exists when each submission is authored by one agent and

each agent serves as a reviewer. While, in the worst case, our algo-

rithm achieves bad approximations with respect to often desirable

desideratums, using real data, we show that in the average case,

the approximations are quite good. On the other hand, famous

reviewing assignment systems fail to satisfy group fairness very

often and therefore incentivize communities to deviate from the

current peer review process.

There are many directions for future work. First, our algorithm

cannot be applied in the case that each submission is authored by

multiple authors. The main difference is that when a submission is

authored by multiple authors, it is probable that PeerReview-TTC

returns 𝑈 , with |𝑈 | > 𝑘𝑝 . While one can see that PeerReview-

TTC returns an assignment in the core even when a submission



is authored by many agents, the tweaks that are made in Filling-

Gaps may result in an assignment that is not in the core when

|𝑈 | > 𝑘𝑝 . Another limitation of our algorithm is that it assumes

that each paper is assigned to the same number of reviewers and

each reviewer can review at most the same number of papers. The

extension of our algorithm for the multi-author case, and for the

cases that papers are assigned to different numbers of reviewers and

reviewers review different number of papers is an important open

problem. Moreover, strategic issues in conference peer review have

been examined in detail in recent years (see the surveys [15, 20]).

In Appendix A, we show that our algorithm is not strategyproof.

The design of an algorithm that returns an assignment in the core

and is also strategyproof is another interesting problem. Lastly,

even if a community has incentives to deviate, the cost of deviating,

may outweigh the benefits of doing it. A more general model that

also includes the cost for a community to break away from a large

conference is another interesting direction.
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A STRATEGYPROOFNESS
Theorem A.1. PRCore is not strategyproof.

Proof. Consider an instance with 𝑛 = 4 and 𝑘𝑝 = 𝑘𝑎 = 1. Suppose that 𝜎1 = 2 ≻ 3 ≻ 4, 𝜎2 = 3 ≻ 1 ≻ 4 and 𝜎3 = 1 ≻ 2 ≻ 4. We see that if

we run PeerReview-TTC, then the partial assignment that is constructed is that 1 is assigned 𝑝3, 2 is assigned 𝑝1 and 3 is assigned 𝑝2. Then,

Filling-Gaps should be called as 𝑝4 is not completely assigned and there are no more cycles in the preference graph. Since, the submissions of

the first three agents became complete assigned at the same round, 𝐿 can include any of them. Due to symmetry, without loss of generality,

assume that 𝐿 = {1}. Then, Filling-Gaps to ensure that the assignment is valid, moves 𝑝1 from 2 to 4 and assigns 𝑝4 to 2. Hence, at the final

assignment, 𝑝1 is assigned to 4. If 1 misreports 𝜎 ′
1
= 3 ≻ 2 ≻ 4, then when we run PRCore, in PeerReview-TTC, 𝑝1 is assigned to 3 and 𝑝3 is

assigned to 1, and then 𝑝2 is assigned to 4 and 𝑝4 is assigned to 2. The algorithm does not call Filling-Gaps as the assignment is already valid.

So, under this misreport 𝑝1 is assigned to 3 which 1 strictly prefers than 4. So, 1 has incentives to misreport and we conclude that PRCore is

not strategyproof. □
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