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Abstract

We introduce a new model for two-sided matching which allows us to borrow popular fairness notions from the
fair division literature such as envy-freeness up to one good and maximin share guarantee. In our model, each agent
is matched to multiple agents on the other side over whom she has additive preferences. We demand fairness for each
side separately, giving rise to notions such as double envy-freeness up to one match (DEF1) and double maximin share
guarantee (DMMS). Our main result is that when both sides have identical preferences, the round robin algorithm
with a carefully designed agent ordering achieves (a slight strengthening of) DEF1, but this is impossible when even
one side has heterogeneous preferences.

1 Introduction
Consider a group of agents seeking to divide some number of indivisible goods amongst themselves. Each agent has
a utility function describing the value that they have for every possible bundle of goods, and each agent may have
a different utility function. This is a canonical resource allocation problem that arises in estate division, partnership
dissolution, and charitable donations, to name just a few. A central goal is to find an allocation of the goods that is fair.

One desirable notion of fairness is envy-freeness [9], which requires that no agent prefer another agent’s allocation
of goods to her own. This is a compelling definition but, due to the discrete nature of the problem, cannot always be
satisfied. Instead, we must consider relaxed versions, with one popular relaxation being envy-freeness up to one good
(EF1) [14, 4], which requires that any pairwise envy can be eliminated by removing a single good from the envied
agent’s allocation. An allocation satisfying EF1 always exists for a broad class of agent utility functions [14].

While quite general, the resource allocation model fails to capture some allocation settings that we might be inter-
ested in. In particular, it does not allow for the possibility of two-sided preferences, in which agents have preferences
over “goods,” but also “goods” have preferences over agents. For instance, when college courses are allocated to
students, it is reasonable to assume that students have preferences over the courses they take, and that teachers in
charge of courses also have preferences over the students they accept (perhaps measured by prerequisites or GPA).1

As another example, consider the problem of matching social services to vulnerable individuals,2, where individuals
have preferences over the services they receive, and service providers have preferences over the individuals they serve
(perhaps based on demographics, location, or synergy with existing clients).

Motivated by these applications, we consider a two-sided resource allocation setting in which we have two groups
of agents, where each agent has preferences over agents on the other side. Each agent must be “matched” to a subset
of agents on the other side, subject to a maximum degree constraint. In the courses-to-students example, the maximum
degree constraint reflects that each student has an upper bound on the number of courses they can take, and each course
has an upper bound on its enrollment capacity. Our goal is to find a many-to-many matching that provides fairness

1The problem of assigning students to courses has been studied before [4, 15, 5], but these papers typically only consider the preferences of the
students.

2http://csse.utoronto.ca/social-needs-marketplace

1

http://csse.utoronto.ca/social-needs-marketplace


to both sets of agents simultaneously. Our model generalizes the standard resource allocation setting, in which the
maximum degree constraint for each good is one (each good can be allocated to at most one agent), for each agent is
simply the total number of goods (one agent can receive all the goods, in principle), and the goods are indifferent to
which agent they are assigned to.

As we have already alluded to, our model bridges the gap between fair division and two-sided matching. In the
two-sided matching literature, it is generally assumed that each agent has ordinal preferences over the other side, and
a matching is sought that is in some sense stable to individual or group deviations. We retain the same basic structure
of two-sided preferences, while incorporating fairness notions from fair division.

Our results. As a natural tradeoff between expressiveness and succinctness, we restrict our attention to additive
preferences, in which the utility for being matched to a group of agents is equal to the sum of utilities for being
matched to each agent in the group individually. While conceptually simple, additive preferences have led to a rich
body of work in fair division. We focus primarily on the case in which all agents on the same side have the same
degree constraint, and the total maximum degree on both sides is equal. In this case, it is reasonable to seek a complete
matching, which saturates the degree constraints of all the agents on both sides.

We begin by considering double envy-freeness up to one match (DEF1), requiring that EF1 hold for both sets of
agents simultaneously. We show that a carefully designed version of the classic round robin algorithm finds a complete
matching that guarantees a slight strengthening of DEF1 when agents on both sides have identical ordinal preferences.
However, when agents on even one side can have non-identical preferences, then a complete matching satisfying the
aforementioned strengthening is not guaranteed to exist except in very special cases.

We also ask whether it is possible to find matchings that satisfy double maximin share guarantee (DMMS), i.e., the
maximin share guarantee for both sets of agents simultaneously. Even when both sides have identical preferences, a
complete DMMS matching may not exist, in contrast to the one-sided fair division setting in which an MMS allocation
is guaranteed to exist when agents have identical preferences. In general, we show that approximate DMMS and
approximate DEF1 are incompatible, although in the special case where the degree constraint is equal to two we can
achieve exact versions of both simultaneously.

Related work. Most related to our work is that of Patro et al. [16], who draw on the resource allocation literature
to guarantee fairness for both producers and consumers on a two-sided platform. However, in their model, producers
are always indifferent between the customers; thus, only one side has interesting preferences. Other work [7, 22] has
focused on guaranteeing fairness in two-sided platforms over time, rather than in a one-shot setting.

The theories of matching and fair division each have a rich history. Traditional work in matching theory has
focused on one-to-one or many-to-one matchings, beginning with the seminal work of Gale and Shapley [11] and
finding applications in aras such as school choice [2, 1, 12], kidney exchange [20], and the famous US resident-to-
hospital match.3 We note that EF1 as a condition becomes vacuous whenever a set of agents has a maximum degree
constraint of one, so we focus instead on the more general case of many-to-many matchings. This case has also been
well-explored in the matching literature [18, 21, 19, 8], although that literature focuses on stability notions, which
have a very different flavor to our guarantees.

Our work draws extensively on notions from the fair division literature, particularly envy-freeness and its relax-
ations [9, 4, 14] and the maximin share guarantee [4]. Prior work has studied the satisfiability of these properties in
the resource allocation setting [6, 17, 13] but, to our knowledge, no work has considered satisfying them on both sides
of a market simultaneously.

2 Preliminaries
For n ∈ N, define [n] = {0, . . . , n− 1}. There are two disjoint groups of agents, denotedN ` (“left”) andNr (“right”),
of sizes n` and nr, respectively. For simplicity of notation, we write N ` = [n`] and Nr = [nr]; when referring to an
agent by only its index, the group she belongs to will be clear from the context. We use indices i ∈ [n`] and j ∈ [nr]

3https://www.nrmp.org/
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to refer to agents on the left and right, respectively. We are given degree constraints d` and dr such that each i ∈ N `

and each j ∈ Nr can be matched to at most d` and dr agents on the opposite side, respectively.
A (many-to-many) matchingM is represented as a binary n`×nr matrix, whereM(i, j) = 1 if i ∈ N ` and j ∈ Nr

are matched, andM(i, j) = 0 otherwise. With slight abuse of notation, we denoteM `
i = {j ∈ Nr : M(i, j) = 1} and

Mr
j =

{
i ∈ N ` : M(i, j) = 1

}
as the sets of agents on the opposite side that agents i ∈ N ` and j ∈ Nr are matched

to, respectively. We say that M is valid if it respects the degree constraints, i.e., if |M `
i | ≤ d` for each i ∈ N l and

|Mr
j | ≤ dr for each j ∈ Nr. Hereinafter, we omit the term valid, but will always refer to valid matchings. We say

that M is complete if |M `
i | = d` for each i ∈ N l and |Mr

j | = dr for each j ∈ Nr. Most of our results are for the
case where the maximum total degree is equal on both sides, i.e., n` · d` = nr · dr, which allows us to find a complete
matching.4

Each agent i ∈ N ` has a valuation function u`i : Nr → R≥0 and each agent j ∈ Nr has a valuation function
urj : N ` → R≥0. When agents i ∈ N ` and j ∈ Nr are matched, they simultaneously receive utilities u`i(j) and urj(i),
respectively. We assume that utilities are additive. Thus, with slight abuse of notation, the utilities to agents i ∈ N `

and j ∈ Nr under matching M are u`i(M
`
i ) =

∑
j∈M`

i
u`i(j) and urj(M

r
j ) =

∑
i∈Mr

j
urj(i), respectively.

Our main constructive results take only the agents’ preference orders as input. For agent i ∈ N ` (resp. j ∈ Nr),
we denote by σ`i (resp. σrj ) a linear order over Nr (resp. N `) which is consistent with the valuation function u`i (resp.
urj ), i.e., j �σ`

i
j′ whenever u`i(j) > u`i(j

′) (resp. i �σr
j
i′ whenever urj(i) > urj(i

′)).5

Inspired by envy-freeness up to one good (EF1) from classical fair division [4, 14], we define the following fairness
guarantee in our setting.

Definition 1 (Double Envy-Freeness Up To c Matches (DEFc)). We say that matching M is envy-free up to c matches
(EFc) over N ` if for each pair of agents i, i′ ∈ N `, there exists S` ⊆ M `

i′ with |S`| ≤ c such that u`i(M
`
i ) ≥

u`i(M
`
i′ \ S`). Similarly, we say that it is EFc over Nr if, for each pair of agents j, j′ ∈ Nr, there exists Sr ⊆ Mr

j′

with |Sr| ≤ c such that u`j(M
r
j ) ≥ u`j(Mr

j′ \ Sr). We say that M is DEFc if it is EFc over both N ` and Nr.

When an algorithm takes as input only the preference rankings, it must ensure that the matching it returns is DEFc
for all possible valuation functions which could have induced the rankings. It is easy to observe that this is equivalent
to satisfying the following stronger guarantee which uses the stochastic dominance (SD) relation.6 This is akin to the
SD-EF1 strengthening of EF1 [10, 3].

Definition 2 (SD Double Envy-Freeness Up To c Matches (SD-DEFc)). We say that matching M is SD-envy-free up
to c matches (SD-EFc) over N ` if, for every t ∈ [nr],

t∑
p=0

M(i, σ`i (p)) ≥
t∑

p=0

M(i′, σ`i (p))− c,∀i, i′ ∈ N `,

and is SD-EFc over Nr if, for every t ∈ [n`],

t∑
p=0

M(σrj (p), j) ≥
t∑

p=0

M(σrj (p), j
′)− c,∀j, j′ ∈ Nr.

M is called SD-DEFc if it is SD-EFc over both N ` and Nr.

Finally, we extend a different fairness notion from classical fair division called the maximin share guarantee
(MMS).

Definition 3 (α-Double Maximin Share Guarantee (α-DMMS)). LetM denote the set of valid matchings. The max-
imin share value of agent i ∈ N ` is defined as

MMS`i = max
M∈M

min
i′∈N`

u`i(M
`
i′),

4Our main algorithmic results can be extended to handle a relaxation of this assumption, as we discuss in Section 3.1.
5Ties among agents with equal utility are broken arbitrarily.
6While the SD relation is typically used to compare randomized outcomes, it can be used to compare deterministic ones as well.
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and the maximin share value of agent j ∈ Nr is defined as

MMSrj = max
M∈M

min
j′∈Nr

urj(M
r
j′).

Given α ∈ [0, 1], matching M is called α-maximin share fair (α-MMS) over N ` if u`i(M
`
i ) ≥ α ·MMS`i for every

i ∈ N `, and α-MMS over Nr if urj(M
r
j ) ≥ α ·MMSrj for every j ∈ Nr. It is called α-DMMS if it is α-MMS for

both Nr and Nr. When α = 1, we simply write DMMS instead of 1-DMMS.

3 Double Envy-Freeness Up To One Match
In this section, we focus on double envy-freeness up to one match, more specifically, its strengthening SD-DEF1.
In Section 3.1, we show that when both groups of agents have identical ordinal preferences, an SD-DEF1 matching
always exists and can be computed efficiently. In Section 3.2, we show that SD-DEF1 matchings are generally not
guaranteed to exist when agents in at least one group have non-identical ordinal preferences, except under further
restrictions.

3.1 Identical Ordinal Preferences On Both Sides
In this subsection, we consider the special case where agents on both sides have identical ordinal preferences, i.e.,
σ`i = σ`i′ for all i, i′ ∈ N ` and σrj = σrj′ for all j, j′ ∈ Nr. We simply denote with σ` and σr the ordinal preferences
of the agents in N ` and Nr, respectively. Further, without loss of generality, we assume that σ` = 0 � . . . � nr − 1
and σr = 0 � . . . n` − 1. Our goal is to design an efficient algorithm for finding an SD-EF1 matching in this case.

We begin with the simplest case in which both sides have equal number of agents (n` = nr = n), both sides have
equal degree constraints (d` = dr = d), and n and d are coprime. Later, we progressively reduce the general case to
this simple case.

In this simple case, let us denote σ = σ` = σr = 0 � . . . � n − 1. We want to find an SD-DEF1 matching
under which each agent is matched to exactly d agents on the opposite side. A natural idea is to let agents on one side
pick agents on the other side in a round-robin fashion. That is, we construct an ordering R over agents on one side,
and these agents take turns according to R in a cyclic fashion with each agent, in her turn, making one match to her
most preferred agent (i.e. lowest indexed agent) on the opposite side who has less than d matches so far. A standard
argument from classical fair division shows that regardless of the ordering R, the resulting matching will be SD-EF1
over over the side that does the picking. However, as the example below shows, not all orderings R lead to a matching
that also satisfies SD-EF1 over the other side.

Example 1. Consider the case where n = 5 and d = 2. Suppose the ordering is R = 0 � . . . � 4. Then, agent 0 on
the right will be matched to agents 0 and 1 on the left, while agent 1 on the right will be matched to agents 2 and 3 on
the left. Given that the preference ranking for agents on the right is also 0 � . . . � 4, SD-EF1 is violated as agent 1
significantly envies agent 0 on the right side.

We now show that when R is carefully designed, SD-EF1 can also be satisfied over the other side, resulting in SD-
DEF1. Algorithm 1 takes as input parameters a ∈ [n] and x ∈ {d, n− d}, and for any choices of these parameters,
constructs an ordering R over the agents on (say) the left side. Algorithm 2 then uses this ordering to run the round-
robin procedure while respecting the degree constraints. The next result shows that for any choices of the parameters,
the resulting matching is SD-DEF1.

Algorithm 1 Round-Robin-Ordering(n, a, x)

1: for i ∈ [n] do
2: p = i · x (mod n)
3: R(p) = a+ i (mod n)

4: return R

4



Algorithm 2 Restricted-Round-Robin-Coprime(n, d)

1: Choose a ∈ {0, . . . , n− 1} and x ∈ {d, n− d}
2: R =Round-Robin-Ordering(n, a, x)

// Round-robin with ordering R over agents on the left
3: M(i, j) = 0,∀i, j ∈ [n]
4: for j ∈ [n], t ∈ [d] do
5: M(R(j · d+ t (mod n)), j) = 1

6: return M

Theorem 1. When n` = nr = n and d` = dr = d are coprime, and both groups of agents have identical ordinal
preferences, Algorithm 2 efficiently computes a complete SD-DEF1 matching.

Proof. To avoid the (mod n) notation in this proof, we will treat integers as belonging to the ring Z/nZ of integers
modulo n. Thus, addition and multiplication will be modulo n, and multiplicative inverses will also be modulo n. Note
that x ∈ {d, n− d} = {d,−d} is coprime with n, so x−1 exists.

We first claim that the ordering R constructed in Algorithm 1 is a valid ordering over the agents in N `. Notice that
because x ∈ {d,−d} is coprime with n, (i · x)i∈[n] = [n]. Thus, each index of R is set exactly once in the for loop. R
can equivalently be represented as R(p) = a+ px−1 for all p ∈ [n]. Because agents on the left take d turns in a cyclic
fashion, it is convenient to think of an extended ordering R which is the original R concatenated with itself d times:
interestingly, one can check that this still obeys R(p) = a+ px−1 for all p ∈ [nd].

Next, we argue that the matching returned is a valid complete matching. Notice that during the round-robin, d
agents on the left that are consecutive in the ordering pick a given agent on the right before moving on to the next
lowest indexed agent on the right. Further, each agent on the left gets d turns. Hence, it is easy to see that every agent
is matched to exactly d agents on the opposite side.

As mentioned earlier, the fact that the returned matching M is SD-EF1 over N ` follows directly from the standard
round-robin argument in classical fair division: given any pair of agents i, i′ ∈ N `, if we ignored the first turn taken
by i′, then in each round agent i would get a turn before agent i′ does, and hence, would not envy agent i′ in the SD
sense. It remains to show that M is also SD-EF1 over Nr. We show that for each agent j ∈ Nr, there exists an agent
i ∈ N ` such that Mr

j = M `
i . SD-EF1 over Nr will then follow from SD-EF1 over N ` given that σ` = σr.

Let us focus on agent j ∈ Nr. Because agents on the right are picked from lowest-indexed to highest-indexed,
agent j is picked by the d agents from N ` who appear consecutively in the (extended) ordering R at indices jd+ t for
t ∈ [d]. Given that R(p) = a+ px−1 for all p ∈ [nd], we immediately have

Mr
j =

{
a+ (jd+ t)x−1 : t = [d]

}
.

Next, let us focus on agent i ∈ N `. If she is matched to some agent j ∈ Nr in a particular turn, then from
the observation above, it must be that i = a + (jd + t)x−1 for some t ∈ [d]. Solving this for j, we get that j =
((i− a)x− t)d−1. Varying t ∈ [d] in this equation gets us the d agents on the right that agent i is matched to:

M `
i =

{
((i− a)x− t)d−1 : t = [d]

}
.

To show that for each j ∈ Nr, there exists i ∈ N ` with M `
i = Mr

j , we take two cases.
If x = n− d = −d, then x−1 = (−d)−1 = −d−1. In this case, it is easy to check that taking i = j suffices as

Mr
j = M `

j =
{
a− j − td−1 : t = [d]

}
.

If x = d, then we have that

Mr
j =

{
j + a+ td−1 : t = [d]

}
,

while

M `
i =

{
i− a− td−1 : t = [d]

}
=
{
i− a− (d− 1− t)d−1 : t = [d]

}
.

Notice that Mr
j coincides with M `

j+2a−d−1+1.
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Algorithm 2 executes round-robin with the left side taking turns, and allows freely choosing a ∈ [n] and x ∈
{d, n− d} to decide their ordering. Note that if the right side takes turns instead, the algorithm still produces a com-
plete SD-DEF1 matching. However, this extension does not find any new matchings. When x = n − d, the matching
produced is symmetric (M `

i = Mr
i for all i ∈ [n]), and thus the same regardless of which side takes turns. When

x = d, the allocations on one side are cyclic shift of the allocations on the other side. Hence, any matching produced
by the right side taking turns can also be produced by the left side taking turns with appropriately chosen (a, x).

What about allowing choices of x other than just d and n − d? At least for n = 7, d = 3, and a = 0, it is easy
to check by hand that no other choices of x produce an SD-DEF1 matching. On the other end, could it be that some
of the 2n choices of (a, x) are redundant and lead to the same matching as other choices? The following result shows
that in every instance, all 2n choices lead to different matchings.

Proposition 1. For any inputs n and d to Algorithm 2, the 2n possible choices of (a, x) result in distinct matchings.

Proof. Using the same reasoning as in the proof of Theorem 1, for each p ∈ [n], we have

R(p) = a+ p · x−1 =

{
a+ p · d−1, if x = d,

a− p · d−1 = a+ n− p · d−1, if x = n− d.

Note that if (a, x) generates an ordering (a, a1, . . . , an−1), then (a, x̂) with x̂ 6= x generates the ordering (a, an−1, . . . , a1).
Moreover, using different choices of a while fixing the choice of x generates orderings that are cyclically shifted ver-
sions of one another.

Let us denote with R and R̂ the orderings generated by Algorithm 1 using choices (a, x) and (â, x̂), respectively,
and let M and M̂ denote the allocations returned by Algorithm 2 with orderings R and R̂, respectively. Suppose for
contradiction that (a, x) 6= (â, x̂) but M = M̂ .

Let R = (a, a1, ..., ad−1, ..., an−1). Then, because agents in N ` pick agents on the opposite side in a round-robin
fashion, we immediately have that Mr

0 = {a, a1, ..., ad−1}. If d < n/2, then an−1 /∈ Mr
1 , while if d > n/2, then

a ∈Mr
1 . Note that d = n/2 is not possible because d and n are coprime. We now consider two cases.

Case I: x = x̂. As R and R̂ are just cyclically shifted, it is easy to observe that Mr
0 = M̂r

0 implies a = â, which is a
contradiction.

Case II: x 6= x̂. Let R′ be the ordering obtained with (a, x̂). Then, R′ = (a, an−1, ..., ad−1, ..., a1). Further, note
that R̂ is a cyclically shifted version of R′, and we want M̂r

0 = Mr
0 = {a, a1, . . . , ad−1}. It is easy to notice that

the only way to obtain this is by setting â = ad−1, which will induce R̂ = (ad−1, ..., a1, a, an−1, ..., ad), making
ad−1, . . . , a1, a the first d agents. If d < n/2, then we have an−1 ∈ M̂r

1 but an−1 /∈ Mr
1 , while if d > n/2, then we

have a /∈ M̂r
1 but a ∈Mr

1 . In either case, we have that Mr
1 6= M̂r

1 , which is a contradiction.

While the 2n choices of (a, x) lead to distinct complete SD-DEF1 matchings, they do not generate all possible
complete SD-DEF1 matchings, as the following example shows.

Example 2. Consider the instance with n = 5, d = 2, and identical ordinal preferences on both sides. Let us focus on
the following complete matching M .

• M `
0 = Mr

0 = {0, 2}

• M `
1 = Mr

1 = {1, 3}

• M `
2 = Mr

2 = {0, 4}

• M `
3 = Mr

3 = {1, 4}

• M `
4 = Mr

4 = {2, 3}
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x = d x = n− d
a = 0 [0, 3, 1, 4, 2] [0, 2, 4, 1, 3]
a = 1 [1, 4, 2, 0, 3] [1, 3, 0, 2, 4]
a = 2 [2, 0, 3, 1, 4] [2, 4, 1, 3, 0]
a = 3 [3, 1, 4, 2, 0] [3, 0, 2, 4, 1]
a = 4 [4, 2, 0, 3, 1] [4, 1, 3, 0, 2]

Table 1: Round-robin orderings returned by Algorithm 1 for different choices of (a, x) when n = 5 and d = 2.

It is easy to verify that this matching is SD-DEF1. Without loss of generality, we can assume that agents in N `

choose agents on the opposite side during the round robin procedure. Then, agents 2 and 3 should be in the last two
positions of the round-robin ordering as they are matched to the least preferred agent in Nr.

Table 1 shows the round robin orderings produced by all the choices of (a, x). The reader can verify that neither
places agents 2 and 3 in the last two positions. Hence, M is not returned by any of the choices.

This leaves open the question of characterizing the set of all complete SD-EF1 matchings.

Algorithm 3 Restricted-Round-Robin(n, d)

1: g = gcd(n, d), n′ = n/g, and d′ = d/g
2: for k,m ∈ [g] do
3: î = {n′ · k + i : i ∈ [n′]}
4: ĵ = {n′ ·m+ j : j ∈ [n′]}
5: M (̂i, ĵ)=Restricted-Round-Robin-Coprime(n′, d′)
6: return M

Next, we address the case where n and d are not coprime by reducing it to the coprime case. Letting g = gcd(n, d),
we divide both sides into g sub-groups of n′ = n/g agents each. Then, we run Algorithm 2 a total of g2 times to match
agents from each sub-group on the left to d′ = d/g agents from each sub-group on the right. This matches each agent
with exactly d agents from the opposite side. Note that we allow each of the g2 calls to Algorithm 2 to use arbitrary
choices of a and x. Nonetheless, we show that the resulting complete matching must be SD-EF1.

Theorem 2. When n` = nr = n, d` = dr = d, and both groups of agents have identical ordinal preferences,
Algorithm 3 efficiently computes a complete SD-EF1 matching.

Proof. For k,m ∈ [g], define the sets B`k = {n′ · k + i : i ∈ [n′]} and Brm = {n′ ·m+ j : j ∈ [n′]} as used in
Algorithm 3. Note that Algorithm 3 calls Algorithm 2 on each pair (B`k, B

r
m), and as a result, each agent in B`k is

matched to exactly d′ agents in Brm, and vice-versa.
We want to show that the overall matching M produced by Algorithm 3 is SD-DEF1. Let us first show that it is

SD-EF1 over N `. Consider two arbitrary agents i, i′ ∈ N `. Given that their preference rankings are 0 � . . . � n− 1,
to show that SD-EF1 holds for these two agents, we need to show that for all t ∈ [n],

t∑
p=0

M(i, p) ≥
t∑

p=0

M(i′, p)− 1.

Fix t ∈ [n]. Because {Brm : m ∈ [g]} forms a partition of Nr = [n], there exists a unique m ∈ [g] such that t ∈
Brm. For each m′ < m, each of agents i and i′ are connected to exactly d′ agents in Brm′ . Hence,

∑n′·m−1
p=0 M(i, p) =∑n′·m−1

p=0 M(i′, p) = m · d′. Thus, it remains to show that∑
p∈Br

m:p≤t

M(i, p) ≥
∑

p∈Br
m:p≤t

M(i′, p)− 1. (1)
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Let k and k′ be such that i ∈ B`k and i′ ∈ B`k′ . Let R and R′ denote the round-robin orderings constructed in
Line 2 of Algorithm 2 when called on (B`k, B

r
m) and (B`k′ , B

r
m), respectively. Let i′′ be the agent whose position in R

matches the position of i′ in R′. Then, i′′ is matched to the same set of agents from Brm during the call to Algorithm 2
on (B`k, B

r
m) as i′ is matched to during the call to Algorithm 2 on (B`k′ , B

r
m). Because Algorithm 2 produces an

SD-DEF1 matching, Equation (1) holds when i′ is replaced by i′′, and therefore, must also hold for i′.
Due to the exact same argument, matching M is also SD-EF1 over N `, as desired.

Finally, we turn our attention to the general case in which we drop the constraints n` = nr and d` = dr. As noted
in Section 2, we still require n` · d` = nr · dr. The following result shows that a trick of adding dummy agents to the
side with fewer agents, running Algorithm 3 (Restricted-Round-Robin) appropriately, and then removing the dummy
agents works. The key is to show that the removal of dummy agents reduces the degrees of the agents on the opposite
side exactly as intended and SD-DEF1 is preserved.

Theorem 3. When n` ·d` = nr ·dr, and both groups of agents have identical ordinal preferences, a complete SD-DEF1
matching always exists and can be computed efficiently.

Proof. Without loss of generality, assume that n` ≤ nr, and hence, d` ≥ dr. We add nr − n` dummy agents with
indices n`, . . . , nr − 1 to the left, so each side has exactly nr agents. We extend the preferences of the agents on the
right so that the dummy agents, indexed higher than the real agents, appear at the bottom of their preference rankings.

Now, we run the Restricted-Round-Robin algorithm (Algorithm 3) with inputs nr and d`. LetM denote the match-
ing returned. Note that while each agent on the left has the intended degree d`, each agent on the right has degree d`,
instead of dr.

Finally, we remove the dummy agents from the left, which reduces the degrees of the agents on the right who were
matched to them. Let M̂ = M([n`], [nr]) be the matching M restricted to the real agents. Our goal is to show that M̂
is a complete SD-DEF1 matching for the original problem.

First, note that all agents on the left still have degree d` under M̂ . To show that all agents on the right now have
degree dr under M̂ , we need to show that they are matched to an equal number (d` − dr) of dummy agents under
M . Suppose this is not the case. Then, there exist agents j, j′ ∈ Nr such that j is matched to at least two more
dummy agents than j′ under M . It is easy to check that this violates SD-DEF1 of M , which is a contradiction because
Algorithm 3 returns an SD-DEF1 matching. Thus, after removing the dummy agents, the degree of all agents on the
right drop to precisely dr. Hence, M̂ is a complete matching.

To show that M̂ is SD-DEF1, note that it is trivially SD-EF1 over the left because M is SD-EF1 over the left and
allocations to the agents on the left do not change. It is also SD-EF1 over the right because M is SD-EF1 over the
right and exactly d` − dr least-preferred agents are removed from the allocations of every agent on the right.

We note that it is possible to extend our constructive result slightly beyond the case of n` · d` = nr · dr. Without
loss of generality, assume that n` · d` < nr · dr. First, note that in this case, no matching is complete. We can still
make the degree of each agent on the left equal to d`, but the best we can hope for is that the degrees of agents on
the right differ by at most 1, i.e., they are either

⌊
n`·d`/nr

⌋
or
⌈
n`·d`/nr

⌉
.7 In this case, the trick outlined in Theorem 3

only works when the dummy agents are added to the left side, i.e., if n` ≤ nr. We conjecture that such an SD-DEF1
matching always exists even when n` > nr, but leave it as an open question.

3.2 Identical Ordinal Preferences On One Side
In Section 3.1, we focused on the case where both groups of agents have identical ordinal preferences. In this section,
we relax this assumption, and consider the case where at least one group has heterogeneous ordinal preferences. An
immediate question is whether Theorem 3 can be extended to show that a complete SD-DEF1 matching still exists.

We begin by showing a positive result in a restrictive case.

Theorem 4. When n` = nr = n, d` = dr = 2, and at least one group of agents has identical ordinal preferences, a
complete SD-DEF1 matching always exists and can be computed in polynomial time.
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Algorithm 4 Three-Phase-Round-Robin-I (n, d, πr )

Phase 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1: for j = 0, . . . , n/2− 1 do
2: Match agent j on the right to her most preferred agent on the left with no existing matches.

Phase 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3: for j = n/2, . . . , n− 1 do
4: Match agent j on the right with her most preferred agent on the left which already has one match.

Phase 3: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5: for j = n− 1, . . . , n/2 do
6: Let i′ be the agent on the left that agent j on the right is already matched to.
7: Let j′ 6= j be the other agent on the right that i′ is matched to (j′ must exist).
8: Match both j and j′ to agent j’s most preferred agent on the left who has no existing connection.

The high-level idea is as follows. Algorithm 4 finds the desired complete SD-DEF1 matching when n is even; a
more intricate algorithm for the case of odd n is presented as Algorithm 5. Intuitively, the algorithm works in three
phases.

Let us divide Nr into two sets: Br1 = {0, . . . , n/2− 1} and Br2 = {n/2, . . . , n− 1}. In the first phase, one-by-one
we match agents in Br1 to their most preferred agent on the left who has no prior matches. We do so in the best-to-
worst order over agents in Br1 according to σ`. Let B` be the set of agents in N ` who now have degree 1; note that
|B`| = n/2.

In the second phase, we repeat a similar process, except with agents inBr2 , still in the best-to-worst order according
to σ`, and by matching them to their most preferred agent in B`. Note that at the end of this phase, all agents on the
right have degree 1, while agents in B` have degree 2 and agents in N ` \B` have degree 0.

In the last phase, we again consider agents in Br2 , but now in the worst-to-best order according to σ`. Note that
each such agent j is already matched to some agent i′ ∈ B`, and agent i′ is also matched to some agent j′ from Br1 .
We connect both j and j′ to the most preferred agent of j from N ` \ B`. Thus, in this phase, all agents on the right
gain one additional degree, while the agents in N ` \B` gain two degrees each.

The proof of correctness of this algorithm presented in the following lemma. Then, we present the algorithm for
the case of odd n (Algorithm 5), and prove its correctness as Lemma 2.

Lemma 1. When d = 2 and n is even, algorithm 4 returns a complete SD-DEF1 allocation.

Proof. First, observe that any agent inBr1 , and any agent inBr2 have one matching inB` and one matching inN `\B`.
Denote with yj and zj the matchings of agent j ∈ Nr in B` and in N ` \ B`, respectively. Moreover notice that for
every agent j ∈ Br1 there is an agent j′ ∈ Br2 , such that yj = yj′ and zj = zj′ , as in phase 3 when j′ is matched to zj ,
the same agent is also matched to j if yj = yj′ .

We can easily verify that the matching is SD − EF1 over N `, as each agent in N ` has one matching in Br1 , and
one matching inBr2 . Now, we prove that the matching is also SD−EF1 with respect to the agents inNr. We consider
the three following cases.

Case 1: j, j′ ∈ Br1 . Without loss of generality, we assume that j < j′. Then, yj �σr
j
yj′ , as j chooses before j′

in phase 1. Thus, j cannot envy j′ for more than one matchings. Moreover, as j has one matching in B`, and one
matching N ` \B`, and as j′ prefers yj′ to any agent in N ` \B` (otherwise she could have chosen an agent in N ` \B`
as in phase 1 all of them have no matchings), we conclude that j′ does envy j for more that one matchings.

Case 2: j, j′ ∈ Br2 . Without loss of generality, we assume that j < j′. Then, yj �σr
j
yj′ , as j appears before j′ in

phase 2. Thus, j cannot envy j′ for more than one matchings. On the other hand, zj′ �σr
j′
zj , as j′ appears before j

on phase 3. Hence j′ does envy j for more that one matchings.

7In case that n`·d`
nr is an integer, we can set this to be dr and achieve exactly equal degrees on the right side too.
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Case 3: j ∈ Br1 and j′ ∈ Br2 . If j and j′ share the same matchings, then obviously they don’t envy each other.
Otherwise, we denote with ĵ the agent in Br2 that has the same matchings with j, and with ĵ′ the agent in Br1 that has
the same matchings with j′. Then, the theorem follows from cases 2 and 3, as the matching is SD-EF1 with respect to
j and ĵ, and with respect to j′ and ĵ′.

Algorithm 5 Three-Phase-Round-Robin-II (n, d, πr)

Phase 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1: for j = 0, . . . , dn/2e − 1 do
2: Match agent j on the right to her most preferred agent on the left with no existing matches.

Phase 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3: for j = dn/2e , . . . , n− 2 do
4: Match agent j on the right with her most preferred agent on the left which already has one match.
5: Let i′ be the agent on the left that agent dn/2e − 1 on the right is matched to.
6: if i′ has only one match then
7: Match agent n− 1 on the right to agent i′ on the left.
8: else
9: Match agent n− 1 on the right to her most preferred agent on the left with no existing matches.

10: Match agent dn/2e−1 on the right with agent i′ on the left with exactly one existing match (such an i′ must exist)

Phase 3: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11: for j = n− 1, . . . , dn/2e do
12: Let i′ be the agent on the left that agent j on the right is already matched to.
13: Let j′ 6= j be the other agent on the right whose only match is to agent i′.
14: Match both agents j and j′ to agent j’s most preferred agent on the left who has no existing matches.
15: Match the agent on the right with one existing match, to the agent on the left with one existing match.

Lemma 2. When d = 2 and n is odd, algorithm 5 returns a complete DEF1 allocation.

Proof. Intuitively, the algorithm works in three phases. Let us divide Nr into two sets: Br1 = {0, ..., ceiln/2 − 1},
and Br2 = {dn/2e , ..., n − 1}. In the first phase, one-by-one we match agents in Br1 to their most preferred agent on
the left who has no prior matches. We do so in the best-to-worst order over agents in Br1 according to σ`. Let B` be
the set of agents in N ` who now have degree 1; note that |B`| = dn/2e.

In the second phase, we repeat a similar process, except with agents in Br2 \ n− 1, still in the best-to-worst order
according to σ`, and by matching them to their most preferred agent in B`. Then if i′ on the left side, with whom
dn/2e−1 on the right is matched to, has only one matching, n−1 on the right side connects with her, otherwise n−1
is matched with her best choice in B`. At this point, bn/2c agents in B` have degree 2, and only has degree 1, and
hence dn/2e − 1 agent on the right is matched to agent in B` with degree 1. So, at the end of this phase, all agents
on the right have degree 1, except for dn/2e − 1 that has degree 2, while agents in B` have degree 2 and agents in
N ` \B` have degree 0.

In the last phase, we again consider agents in Br2 , but now in the worst-to-best order according to σ`. Note that
each such agent j is already matched to some agent i′ ∈ B`, and agent i′ is also matched to some agent j′ from Br1 .
Note that all such j′ from Br1 \ dn/2e − 1 has degree 1. Hence, if j′ 6= dn/2e − 1 both j and j′ to the most preferred
agent of j from N ` \ B`, otherwise only j is matched to her. At the end, there is one j in Br1 , and one agent i in
N ` \B` that have degree one, and we matched them.

First, observe that any agent in Br1 \ dn/2e − 1, and any agent in Br2 has one matching in B` and one matching in
N `\B`, while dn/2e−1 has two matchings inB`. Denote with yj and zj the connections of agent j ∈ Nr \dn/2e−1
in B` and in N ` \B`, respectively.
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We denote with j∗ the agent in Br2 that share the same matching on the left with dn/2e − 1 on the right and with
ĵ∗ the agent in Br1 that share the same matching on the left with j∗. We see that for every agent j′ ∈ Br2 \ j∗ there is
an agent j ∈ Br2 , such that yj = yj′ and zj = zj′ , as in the third phase when j′ is matched to zj , the same agent is
also matched to j if yj = yj′ .

We can easily verify that the matching is SD−EF1 over N `, as each agent in N ` either has one matching in Br1 ,
and one matching in Br2 , or has two matchings in Br1 but one of them is with dn/2e − 1.

Now, we prove that the allocation is also SD − EF1 with respect to the agents in Nr. We consider the three
following cases.

Case 1: j, j′ ∈ Br1 . This case is similar as Case 1 of the proof of lemma 1, so we omit the details.

Case 2: j, j′ ∈ Br2 . This case is similar as Case 2 of the proof of lemma 1, so we omit the details.

Case 3: j ∈ Br1 and j′ ∈ Br2 . First we know j prefers yj to any agent in N ` \B`, and as j′ has only one matching in
B`, we conclude that j does not envy j′ for more than one matchings.

We denote and with ĵ the agent in Br1 that has the same matchings with j′ ∈ Br2 \ j∗.
We assume that j 6= {dn/2e − 1, ĵ∗}. Then, we know from case 2 that j′ does not envy ĵ for more than one

matching, and similar j. If j = dn/2e, then either j′ and j share the same matching in B`, or j′ before line 10 has
chosen a better agent rather than the one that j is matched to in this line.

Next, if j = ĵ∗ and j′ = j∗, j and j′ share one matching, and j′ does not envy j for more than one matchings,
while if j′ 6= j∗ we know that j′ prefers yj′ to yĵ∗ , as yĵ∗ has only one connection before line 10.

Proof of Theorem 4. The proof follows from Lemmas 1 and 2.

Next, we show that when we relax the restrictions placed in Theorem 4, a complete SD-DEF1 matching may no
longer be guaranteed to exist. First, we allow one group to have degree constraint greater than 3, while the other group
still has degree constraint equal to 2.

Theorem 5. Even when n` · d` = nr · dr, dr = 2, and at least one group of agents has identical ordinal preferences,
a complete SD-DEF1 matching is not guaranteed to exist.

Proof. Fix d` ≥ 3 and dr = 2. Choose n` = 12d` and nr = 6(d`)2. Let all agents in N ` have identical preference
ranking over agents in Nr, given by 0 � . . . � nr − 1. To define the ordinal preferences of agents in Nr over agents
inN `, let us partition the agents inNr into d` blocks:Brm = {6d` ·m, . . . , 6d` · (m+1)−1} form ∈ [d`]. We choose
one preference ranking ρm for each block Brm, and let all agents in the block have this preference ranking. The first
three rankings ρ0, ρ1, and ρ2 are shown below. The agents not shown in these rankings (marked “remaining agents”)
can appear in an arbitrary order at the end. Rankings ρ3, . . . , ρd`−1 can be completely arbitrary.

• ρ0 = 0 � . . . � 6d` − 1 � remaining agents

• ρ1 = 0 � 1 � . . . � 3d` − 1 � 6d` � remaining agents

• ρ2 = 3d` � . . . � 6d` − 1 � 6d` � remaining agents

We claim that this instance does not admit a complete SD-DEF1 matching. Suppose for contradiction that it does.
We start by showing that in such a matching, each agent in N ` should be matched to exactly one agent in Brm for

every m ∈ [d`]. Suppose for contradiction that this is not true; let m be the smallest index for which it fails. Then,
because the total degree of agents in Brm is 6d` · dr = n`, there must exist agents i, i′ ∈ N ` such that agent i is
matched to no agent in Brm while agent i′ is matched to at least two agents in Brm; recall that both agents are matched
to exactly one agent in Brm′ for each m′ < m. This violates the SD-EF1 condition with respect to agents i and i′.

Consider the set S0 = [6d`] ⊂ N `. We claim that each agent in Br0 must be matched to exactly one agent in S0.
This is because each agent in S0 is matched to exactly one agent in Br0 , |S0| = |Br0 | = 6d`, and if two agents in S0

are matched to the same agent j ∈ Br0 , then some other agent ĵ ∈ Br0 would not be matched to any agent from S0,
which would violate SD-EF1 with respect to agents j and ĵ.

Next, observe that agent 6d` ∈ N ` is also matched to exactly one agent j ∈ Br0 , who must be matched to exactly
one agent i ∈ S0. We consider two cases.
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Case 1: Suppose i ∈ [3d`]. In this case, we observe that because each agent in N ` is matched to exactly one agent
from Br1 , there must be an agent j′ ∈ Br1 who is not matched to any agent from S1 = [3d`] ∪

{
6d`
}
⊂ N ` (this is

because |S1| = 3d` + 1 < 6d` = |Br1 |). In contrast, agent j is matched to two agents from S1 — agents 6d` and i.
Thus, SD-EF1 is violated with respect to agents j and j′, which is a contradiction.

Case 2: Suppose i ∈ [6d`]\[3d`]. In this case, we observe that because each agent inN ` is matched to exactly one agent
from Br2 , there must be an agent j′′ ∈ Br2 who is not matched to any agent from S2 = ([6d`] \ [3d`]) ∪

{
6d`
}
⊂ N `

(this is because |S2| = 3d` + 1 < 6d` = |Br2 |). In contrast, agent j is matched to two agents from S2 — agents 6d`

and i. Thus, SD-EF1 is violated with respect to agents j and j′′, which is a contradiction.

Next, we require both groups to be equal in size and their degree constraint, but allow the degree constraint to be
greater than 2. The proof is in ??.

Theorem 6. Even when n` = nr = n, d` = dr = d ≥ 3, and at least one group of agents has identical ordinal
preferences, a complete SD-DEF1 matching is not guaranteed to exist.

Proof. Let d ≥ 3 and n = 4d. Let all agents in N ` have identical preferences over agents in Nr given by 0 �
. . . � n. To define the preferences of agents in Nr over N `, let us partition the agents in Nr into d blocks: Brm =
{4m, . . . , 4(m+ 1)− 1} for m ∈ [d]. We define a preference ranking ρm for each block Brm, and let all agents in
the block have this preference ranking. The first three rankings ρ0, ρ1, and ρ2 are shown below. Like in the proof of
Theorem 4, the agents not shown in these rankings (marked “remaining agents”) can appear in an arbitrary order at
the end. Rankings ρ3, . . . , ρd−1 can be completely arbitrary.

• ρ0 = 0 � 1 � 2 � 3 � . . .

• ρ1 = 0 � 1 � 4 � 5 � . . .

• ρ2 = 2 � 3 � 4 � 5 � . . .

Once again, we claim that this instance does not admit any complete SD-DEF1 matching. Suppose for contradiction
that it does.

Like in the proof of Theorem 4, we start by claiming that under such a matching, each agent inN ` must be matched
to exactly one agent inBrm for everym ∈ [d]. Suppose for contradiction that this is not true; letm be the smallest index
for which the statement fails. Then, because the total degree in Brm is 4d = |N `|, there must exist agents i, i′ ∈ N `

such that i is matched to no agent fromBrm, i′ is matched to at least two agents fromBrm, and both i and i′ are matched
to exactly one agent from Brm′ for each m′ < m. This would violate SD-EF1 with respect to agents i and i′.

Notice that each agent in Br0 must be matched to exactly one agent from S0 = {0, 1, 2, 3} ⊂ N `. If this is not
true, then because each agent in S0 is matched to exactly one agent from Br0 and |S0| = |Br0 | = 4, we must have
agents j, j′ ∈ Br0 such that agent j is matched to at least two agents from S0 while agent j′ is matched to none of
them. This would violate SD-EF1 with respect to agents j and j′. By a similar reasoning, every agent in Br1 must be
matched to exactly one agent in S1 = {0, 1, 4, 5} ⊂ N `, and every agent in Br2 must be matched to exactly one agent
in S2 = {2, 3, 4, 5} ⊂ N `.

Consider agent j ∈ Br0 that agent 4 from N ` is matched to. By the first observation above, there must be a unique
agent i ∈ S0 who is also matched to agent j. We take two cases.

Case 1: Suppose i ∈ {0, 1}. Then, agent j is matched to two agents from {0, 1, 4} ⊂ S1 — agents i and 4. In contrast,
the agent j′ ∈ Br1 who is matched to agent 5 from S1 is not matched to any agent from {0, 1, 4} ⊂ S1 by the second
claim above. Hence, SD-EF1 is violated with respect to agents j and j′, which is a contradiction.

Case 2: Suppose i ∈ {2, 3}. Then, agent j is matched to two agents from {2, 3, 4} ⊂ S2 — agents i and 4. In contrast,
the agent j′ ∈ Br2 who is matched to agent 5 from S2 is not matched to any agent from {2, 3, 4} ⊂ S2 by the third
claim above. Hence, SD-EF1 is violated with respect to agents j and j′, which is a contradiction.
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4 Double Maximin Share Guarantee
In this section, we focus first on the existence of DMMS matchings, and second on the existence of matchings that are
DMMS and SD-DEF1 concurrently.

We begin by considering the case where agents on both sides have identical preferences, i.e., u`i(j) = u`i(j), for
any pair of agents i, i′ ∈ N `, and any j ∈ Nr, and similarly urj(i) = urj′(i), for any pair of agents j, j′ ∈ Nr and any
i ∈ N `. We show the following negative result, which stands in contrast to the one-sided fair division setting in which
an MMS allocation is guaranteed to exist when agents have identical preferences.

While the proof is intricate, the counterexample itself is simple; it has n = n` = nr = 7 and d = d` = dr = 3,
u`i(j) = n− j − 1 for all i ∈ Nr and j ∈ N `, and urj(i) = n− i− 1 for all j ∈ Nr and i ∈ N `. The proof proceeds
by showing that, in every valid matching, some agent must receive utility less than or equal to 8, but the MMS value
of all agents is 9, thus yielding an 8/9 approximation.

Theorem 7. A 0.89-DMMS matching is not guaranteed to exist, even when agents on both sides have identical pref-
erences.

Proof. We denote by u` and ur the cardinal preferences of the agents in N ` and Nr respectively. As the utilities are
the same across the agents in the same group, we can defineMMS` = MMS`i for all i ∈ [n], andMMSr = MMSrj
for all j ∈ [n].

As noted earlier, consider an instance with n = 7, d = 3, u`(j) = n−j−1 for all j ∈ [n], and ur(i) = n−i−1 for
all i ∈ [n]. Thus, for any complete matching,

∑
i∈N` u`(M `

i ) =
∑
j∈Nr ur(M `

j ) = 63. This means that MMS` =
MMSr ≤ 9, because if all agents receive equal utility then they each get utility 9. Next, we construct a matching M
such that u`(M `

i ) = 9 for all i ∈ [n].
Without loss of generality, assume that M `

0 , M `
1 , and M `

2 all contain agent 0. Then, we know that agents 1 and
2 cannot be contained in these bundles, because then they would have value larger than 9, implying that some other
agent receives utility less than 9. Without loss of generality, we assume that bundles M `

3 , M `
4 , and M `

5 contain agent
1. Now, we observe that M `

6 = {2, 3, 4}, as there is no other way to have u`(M `
6) = 9. As 0 and 2 can not belong to

the same bundle (such a bundle would be valued at least 10), we may assume without loss of generality that agent 2 is
contained in M `

3 , and M `
4 . Then, the constraint that u`(M `

3) = u`(M `
4) = 9 dictates that M `

3 = M `
4 = {1, 2, 6}. With

these bundles fixed, it is easy to check that the only M `
5 that yields u`(M `

5) = 9 is M `
5 = {1, 3, 5} Lastly, without loss

of generality, we may assume that M `
0 = M `

1 = {0, 4, 5}, and M `
2 = {0, 3, 6}. Hence, we conclude that the following

matching is the only one (subject to permutations of N `) that satisfies MMS for agents on the left.

• M `
0 = M `

1 = {0, 4, 5}

• M `
2 = {0, 3, 6}

• M `
3 = M `

4 = {1, 2, 6}

• M `
5 = {1, 3, 5}

• M `
6 = {2, 3, 4}

Now, consider agents 0 ∈ Nr and 4 ∈ Nr. Both are matched to agents 0 ∈ N ` and 1 ∈ N `, but agent 0 ∈ Nr is
matched to agent 2 ∈ N ` while agent 4 ∈ Nr is matched to agent 6 ∈ N `. Therefore, ur(Mr

0 ) 6= ur(Mr
4 ) (and this

difference persists regardless of permutations of N `). It is therefore not the case that every agent on the right receives
utility 9; in particular, one agent receives utility 8 or less, producing the approximation ratio α = 8/9 < 0.89.

While a DMMS matching may not exist, even when preferences are identical, we can exploit the algorithms
presented in Section 3 to obtain an approximation to DMMS.

Theorem 8. When n` ·d` = nr ·dr and both groups of agents have identical utility functions, every complete SD-DEF1
matching M is also 1

d`
-MMS over N `, and 1

dr -MMS over Nr.
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Proof. Let M be a complete matching that is SD-EF1 over N `. Let u` denote the common utility function for agents
in N ` which induces (without loss of generality) the preference ranking 0 � . . . � nr − 1 over Nr. We show that M
is also 1/d`-MMS over N `. By symmetry, the MMS approximation for Nr also follows.

First, note that each agent in N ` must be matched to at least one agent in
{

0, . . . ,
⌈
n`/dr

⌉
− 1
}
⊂ Nr. This is

because if some agent i ∈ N ` is matched to none of these agents, then some other agent i′ ∈ N ` must be matched to
at least two of them, which would violate SD-EF1 over N `.

Let M̂ be a matching that is MMS over N `; it is easy to see that under identical cardinal valuations, an MMS
matching must exist. Because (

⌈
n`/dr

⌉
− 2) · dr ≤ (n`/dr − 1) · dr < n`, there must exist i ∈ N ` such that

M̂ `
i ∩

{
0, . . . ,

⌈
n`/dr

⌉
− 2
}

= ∅. In other words, if j∗ = argmax
j∈M̂`

i
u`(j), then j∗ ≥

⌈
n`/dr

⌉
− 1. Notice that

MMS` ≤ u`(M̂ `
i ) ≤ d` · u`(j∗) because |M̂ `

i | = d`.
Now, because each agent in N ` is matched to at least one agent in {0, . . . ,

⌈
n`/dr

⌉
− 1}, it follows that each agent

receives utility at least u`(j∗) ≥ 1/d` ·MMS`, as desired.

We next show an almost-matching upper bound that can be achieved by any SD-DEF1 matching, to complement
Theorem 8. In fact, we show a more general result that trades off the approximation to DMMS with the approximation
to double envy-freeness.

Theorem 9. When n ≥ d2, a c+2
d -DMMS matching is incompatible with a SD-DEFc matching for all c ∈ [d], even

when agents on both sides have identical preferences.

Proof. We present an example in which there is no matching that is concurrently c+2
d -MMS and SD-EFc over N `.

Let n be divisible by d. We consider an instance in which, for all i ∈ N `, u`i(j) = d+ 1 for j ∈ {0, ..., n/d− 2},
u`i(j) = 1 for j ∈ {n/d− 1, ..., n/d+ d− 2}, and u`i(j) = 0 for j ∈ {n/d+ d− 1, ..., n}. Hence, MMS` is equal to
d, as n− d agents of N ` can be connected with the first n/d− 1 agents of Nr and acquire utility equal to d+ 1, and
the remaining d agents can have d connections in the set {n/d − 1, ..., n/d + d − 2} ⊂ Nr and receive utility equal
to d. Because there are less than n+ d2 connections available in the subset {0, ..., n/d+ d− 2} ⊂ Nr, and n ≥ d2, it
must be the case that there are agents on the left that have at most one connection to this subset of Nr. So, to achieve a
SD-EFc allocation with respect to the agents in N `, each agent can have at most c+ 1 connections to this subset. But
then only n− d out of n agents have utility at least d+ 1, and the remaining ones have utility at most c+ 1. So, there
are agents that receive utility at most c+ 1 while MMS` = d.

For d ≥ 3, Theorem 9 rules out the possibility of a matching that satisfies SD-DEF1 and DMMS. In the next
theorem, we show that the two properties can be achieved simultaneously when d = 2.

Theorem 10. When d = 2, a matching satisfying SD-DEF1 and DMMS exists and can be computed efficiently.

Proof. Consider the following matching M . When n is even M `
i = {i, n − i − 1} for i ∈ [d], and when n is

odd M `
i = {i, n − i − 1} for i ∈ [d] \ {bn/dc − 1, bn/dc , dn/de}, while M `

bn/dc−1 = {bn/dc − 1, bn/dc},
M `
bn/dc = {bn/dc − 1, dn/de} and M `

dn/de = {bn/dc , dn/de}. Then, M `
i = Mr

j , when i = j. It is easy to verify
that this matching is SD-DEF1.

Let M `
min = argminM`

i∈M`u`(M `
i ). We show that u`(M `

min) = MMS`. Assume for contradiction that there

is another M̂ `, such that u`(M̂ `
min) > u`(M `

min), where M̂ `
min = argmin

M̂`
i∈M̂`u

`(M̂ `
i ). Consider the cases that

M `
min = {i, n−i+1}, with i ≤ bn/dc−2 when n is odd andM `

min = {i, n−i+1}, with i ≤ n/d−1, when n is even.
In order to have u`(M̂ `

min) > u`(M `
min), all the agents that are at least equal to n− i+ 1 should be included in a M̂ `

i

with an agent smaller than i, as otherwise the minimum value is not increased. Notice that there are 2 · i connections
that should be matched with 2(i − 1) connections which is impossible. Next, if M `

min = {bn/dc − 1, bn/dc}, or
M `
min = {bn/dc − 1, dn/de}, then all the agents that are at least equal to dn/de should be included in a M̂ `

i with an
agent smaller than bn/dc − 1 which is impossible. Lastly, if M `

min = {bn/dc , dn/de}, then all the agents that are at
least equal to bn/dc should be included in a M̂ `

i with an agent at most equal to bn/dc − 1 which is again impossible.
Hence, u`(M `

min) = MMS`.
With similar arguments it can be proved that ur(Mr

min) = MMSr, where Mr
min = argminMr

j ∈Mru`(Arj)
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Finally, we show that a strong impossibility persists even if we only require SD-EF1 on one side and MMS on the
other. In the proof of Theorem 11, we solve an ILP to check nonexistence.

Theorem 11. A matching that satisfies SD-EF1 over N ` and MMS over Nr is not guaranteed to exist, even when
agents on both sides have identical preferences.

Proof. We consider the instance that n` = nr = n = 11, and d` = dr = d = 3, while u` = u`i(j) = n− j − 1 for all
i ∈ N ` and j ∈ Nr and ur = urj(i) = n − i − 1 for all i ∈ N ` and j ∈ Nr. Finding MMS` can be done using the
following integer linear program ILP1(n, d, v`):

maximize MMS`

subject to
∑
j∈[n]M(i, j) · v`(j) ≥MMS`, ∀i ∈ [n]∑
j∈[n]M(i, j) = d, ∀i ∈ [n]∑
i∈[n]M(i, j) = d, ∀j ∈ [n]

M(i, j) ∈ {0, 1}, ∀i, j ∈ [n]

The first constraint ensures that the matchings is MMS over N `, and the remaining ones ensure that the matching is
valid.

Detecting whether it exists a matching that is SD-EF1 overNr and MMS overN ` can be done using the following
integer linear program ILP2(n, d, v`,MMS`):∑

i∈[r]M(i, j) ≥
∑
i∈[r]M(i, j′)− 1, ∀j, j′ ∈ [n],∀r ∈ [n]∑

j∈[n]M(i, j) · v`(j) ≥MMS`, ∀i ∈ [n]∑
j∈[n]M(i, j) = d, ∀i ∈ [n]∑
i∈[n]M(i, j) = d, ∀j ∈ [n]

M(i, j) ∈ {0, 1}, ∀i, j ∈ [n]

The first constraint ensures that the matchings is SD-EF1 over Nr, the second one that it is MMS over N `, and the
remaining ones ensure that the matching is valid.

Using the above ILP programs, we check that the aforementioned instance does not admit a matching that is
concurrently SD-EF1 over Nr and MMS over N `.

5 Discussion
We have introduced a model that bridges two-sided matching and fair division by requiring fairness on both sides of a
matching market. We have shown that SD-EF1 can be achieved for agents on both sides, as long as all agents on the
left (resp. right) share a common ordinal preference ranking over agents on the right (resp. left). When this condition
is not satisfied, there may exist no matching that satisfies SD-DEF1. We have also shown that there may not exist a
doubly MMS matching even when agents have identical preferences. While we do not rule out a good approximation
to DMMS, we show that it is essentially impossible to obtain a good approximation to DMMS is one also requires
SD-DEF1. In the appendix, we study other natural variants of DMMS, and the connection between DMMS and DEF1.

It is interesting to note that the proofs of Theorems 8 and 9 do not rely on the constraints that an agent in N ` can
have up to d connections, and can be connected with an agent in Nr at most once. Therefore, these theorems also hold
in a version of the one-sided fair division problem where there are n agents and n/d items with d copies each, and all
the agents have identical preferences.

Many interesting avenues for future rsearch remain. For example, future work could consider two-sided versions
of other fairness notions. It would also be interesting to extend our results to allow for each agent to have a different
degree constraint.
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[1] Abdulkadiroğlu, A.; Pathak, P. A.; Roth, A. E.; and Sönmez, T. 2005. The Boston public school match. American

Economic Review 95(2): 368–371.
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Appendix

A Other Versions of DMMS
DMMS without degree constraints When we defined the maximin share of agent i, we only considered allocations
A` that respect the degree constraint. One may ask how much this constraint affects the maximin share, relative to an
alternative definition where we maximize over all allocations in which each i ∈ N ` is matched with each j ∈ Nr at
most once, but degree constraints are not required to hold.

Relative to this stronger version of MMS, a MMS matching over N ` that respects the degree constraint may only
give a Ω(1/n) approximation. Consider an example with n even and d = 2, and u`(j) = n for any j ∈ [n/2 − 2],
while u`(j) = 1 for any remaining agents on the right. This means that n− 2 agents on the left can be connected with
one of the first agents on the right, and gain utility equal to n, while 2 agents can be connected with all the agents in
{n/2 − 1, ..., n − 1}, and gain utility equal to n/2 + 1. But as d = 2, this means that under a matching that respects
the degree constraint, there is an agent that has utility equal to 2. Hence, the approximation is Ω(1/n).

A weaker version of DMMS We have seen that DMMS can not be achieved, even when agents have identical
valuations, n` = nr = n, and d` = dr = d. However, consider the following relaxation of the MMS share (for
simplicity, consider the MMS share of an agent i ∈ N `). Instead of maximizing over all matchings that satisfy the
degree constraint, suppose that we instead maximize over all partitions π = {π1, . . . , πk} of Nr such that none of the
resulting bundles contain more than d` agents from Nr. That is, denoting by Π the space of all partitions of Nr that
respect the degree constraint, the weak MMS share of agent i is defined as

wMMS`i = max
π∈Π

min
πj∈π

u`i(πj).

When all agents in N ` and Nr have identical valuations and n, d are common, weak MMS can always be achieved.
First, find the partitions π` and πr that maximize the minimum value of any bundle, subject to respecting the degree
constraint and breaking ties between partitions by selecting those that minimize the total number of bundles. Therefore,
ui(π

r
j ) ≥ wMMS`i for all i ∈ N ` and πrj ∈ πr, and uj(πi) ≥ wMMSrj for all j ∈ Nr and π`i ∈ π`. Note that since

each bundle formed by π` and πr can have at most d members, there must by exactly dnd e bundles in each of π` and
πr (if there were fewer bundles, one must contain more than d agents, and if there were more bundles then it would
be possible to weakly increase the value of the lowest-valued bundle by merging two bundles). Now we can connect
each agent in π`i to each agent in πri for all i ∈ {1, . . . , dnd e}. This matching respects degree constraints and satisfies
weak MMS, by the definition of π` and πr.

B DMMS & DEF1
In this section we explore the relationship between DMMS and DEF1.
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Proposition 2. The existence of a DEF1 matching does not necessarily imply the existence of a DMMS matching.

Proof. We revisit the instance of the proof of theorem 7and set y0 = 0, y3 = 1 y2 = 2 y5 = 3 y6 = 4 y1 = 5 y4 = 6.
It is easy to verify that the matching is DEF1, and the proposition follows.

Proposition 3. A DMMS matching may not satisfy DFE1.

Proof. Consider the instance that n = 10, d = 3, and u`(0) = u`(1) = u`(2) = 2, and u`(j) = 1 for any
j ∈ {3, ..., 9}, while ur(i) = 1 for any i ∈ [n]. Hence, MMS` = 3 and MMSr = 3, and notice that any complete
matching is DMMS. Now, consider the matching that M `

0 = M `
1 = M `

2 = {0, 1, 2}. Clearly, M is not DFE1.

In the next theorem we prove that, given the existence of a DMMS matching that minimizes the number of agents
that receive utility equal to MMS` in N ` and simultaneously minimizes the number of agents that receive utility
equal to MMSr in Nr, we are guaranteed the existence of a DEF1 matching.

Theorem 12. A DMMS matching that minimizes the number of agents that receive utility equal to MMS` in N ` and
simultaneously minimizes the number of agents that receive utility equal to MMSr in Nr is also DEF1.

Proof. We show that when a (d`, dr)-matching is MMS over N ` and minimizes the agents on the left that receive
utility equal to MMS`, it should also be EF1 it.

For contradiction, suppose that there is a (d`, dr)-matching which is MMS over N `, minimizes the agents on the
left that receive utility equal to MMS`, but it is not EF1 over the left side. Let M `

i′ = argminM`
i∈M`u`(M `

i ) and
i′′ be an agent such that EF1 is violated between i′ and i′′. Notice that u`(M `

i′) = MMS`. As u`(M `
i′) < u`(M `

i′′),
there is at least one pair j ∈M `

i′ and j′ ∈M `
i′′ such that u`(j) < u`(j′). Now consider a different matching M̂ ` such

that M̂ `
i = M `

i , for every i 6= {i′, i′′}, M̂ `
i′ = M `

i′ \ j ∪ j′, and M̂ `
i′′ = M `

i′′ \ j′ ∪ j. Then, u`(M̂ `
i′) > u`(M `

i′), as
u`(j) < u`(j′). In addition, we have

u`(M̂ `
i′′) ≥ u`(M̂ `

i′′ \ j) > u`(M `
i′) = MMS`

where the third inequality follows from the fact that the allocation is not EF1, as M̂ `
i′′ \j = M `

i′′ \i′. Thus, we conclude
in a matching in which the number of agents that receive utility MMS` has been increased which is a contradiction.

The theorem follows by making similar arguments for Nr.

One may wonder whether it is always possible, given a DMMS matching, to find a DMMS matching that satisfies
the condition of Theorem 12. If this were true, then the existence of a DMMS matching would imply the existence of
a DEF1 matching. However, we now show that simultaneously minimizing the number of agents that receive utility
equal to MMS` in N ` and the number of agents that receive utility equal to MMSr in Nr may not be possible .

Proposition 4. There does not always exist a DMMS matching that minimizes the agents that receive utility equal to
MMS` in N ` and concurrently minimizes the agents that receive utility equal to MMSr in Nr.

Proof. Consider the instance that n = 7, d = 3, u`(0) = u`(1) = 3, u`(2) = u`(3) = u`(4) = 1, and u`(5) =
u`(6) = 0, while ur(0) = 9, ur(1) = ur(2) = ur(3) = ur(4) = 3, and ur(5) = ur(6) = 0. Notice that
MMSr = 9, and it should exist three agents j, j′, and j′′ such that Mr

j = Mr
j′ = Mr

j′′ = {0, 5, 6}, and hence
M `

0 = M `
5 = M `

6 = {j, j′, j′′}. Moreover, notice that MMS` = 3, and the agents that receive utility equal to 3 are
minimized if all the agents have two connections among the first 5 agents, except from one that is connected with 2,
3 and 4. Hence, we see that there is no way three agents on the left to be connected with the same three agents on the
right, and the proposition follows. However, notice that the following matching:

• Mr
0 = {0, 5, 6}

• Mr
1 = {1, 2, 3}

• Mr
2 = {4, 1, 2}

• Mr
3 = {4, 1, 3}
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• Mr
4 = {4, 2, 3}

• Mr
5 = {0, 5, 6}

• Mr
6 = {0, 5, 6}

is DMMS and DFE1.
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