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Abstract

We study letter grading schemes, which are routinely em-
ployed for evaluating student performance. Typically, a nu-
merical score obtained through one or more evaluations is
converted into a letter grade (e.g., A+, B-, etc.) by associating
a disjoint interval of numerical scores to each letter grade.
We propose the first model for studying the (de)motivational
effects of such grading on the students and, consequently, on
their performance in future evaluations. We use the model to
compare uniform letter grading schemes, in which the range
of scores is divided into equal-length parts that are mapped to
the letter grades, to numerical scoring, in which the score is
not converted to any letter grade (equivalently, every score is
its own letter grade).
Theoretically, we identify realistic conditions under which
numerical scoring is better than any uniform letter grading
scheme. Our experiments confirm that this holds under even
weaker conditions, but also identify other realistic conditions
under which uniform letter grading schemes outperform nu-
merical scoring.

Introduction
Student evaluations and grading play an integral and influ-
ential role in every individual’s academic experience. Natu-
rally, there has been widespread debate among researchers
and policy-makers about the efficacy of various grading sys-
tems such as letter v.s. number grades. For instance, coarse-
grained grading schemes (i.e., letter grades) are considered
to be less noisy indicators of performance, and stronger
signals of status, and consequently, are the norm in North
American universities. At the same time, there is also grow-
ing awareness that the grade itself affects performance in-
dependent of student ability, i.e., the grades are “not just
an output of the educational process, they may also be an
input” (Gray and Bunte 2022). For example, empirical ev-
idence suggests the disclosure of midterm grades may mo-
tivate or demotivate students to perform better in a future
exam, controlling for other effects. In light of this evidence,
it is clear that the design of a grading system must be a delib-
erate choice that takes into account student welfare in addi-
tion to other extraneous factors (Guskey 2011). In this work,
we take an analytical approach and study the design of an
optimal grading system with a particular focus on numeric

v.s. uniform letter grades.1 As far as we are aware, this work
is among the first to look at the problem of designing a grad-
ing scheme with the explicit objective of improving student
performance in future tests. Our model captures the impact
of grades on future performance via two well-motivated ef-
fects:

1. Anchoring: In any given test, students anchor them-
selves to a specific score or performance level based on
their intrinsic ability which directly impacts their perfor-
mance. We refer to this anchor as the intrinsic quality.

2. (De)Motivation: When the student’s actual score
falls above (below) their intrinsic quality, they get
(de)motivated and subsequently, their expectation in-
creases (decreases) for future tests. This is a phenomenon
that has been widely noticed in practice (Deci, Koestner,
and Ryan 1999; Dev 1997; Cameron and Pierce 1994).

In this regard, our work departs from other papers in
this area, where students are often modelled as status-
maximizers (Dubey and Geanakoplos 2010), i.e., their in-
trinsic motivation for a better grade stems from a desire to
rank above their fellow students. Our model does not induce
any artificial scarcity (status) and instead the fundamental
friction is result of noisy performance and how the same
grading rule affects different students differently.

To better illustrate how different grading schemes impact
student performance under our model, consider the case of
two students with the same intrinsic quality q1 = q2 =
85. Due to random factors, the first student’s score in the
midterm is given by s1 = 81 while the second student
matches expectations and scores s2 = 85. In this case, dis-
closing the numeric score may demotivate student 1, lead-
ing to an effective intrinsic quality for the final exam that is
lower than 85. On the other hand, under a coarser scheme,
both students could receive a letter grade (say) A− captur-
ing all scores in the range [80, 90], which limits the adverse
effect on future performance. At the same time, a third stu-
dent who’s intrinsic quality is q3 = 91 and whose midterm
score is s3 = 89 may also be bracketed into the same letter
grade A−, leading to severe demotivation. In this scenario,
the disclosure of the numeric grade would inform the third

1We use the term uniform letter grades to refer to letter grad-
ing schemes where each letter grade corresponds to an equal sized
score range, e.g., [90, 100]→A+, [80, 90]→A-, and so on.



student that their performance was actually close to their in-
trinsic quality.

This example crucially illustrates that the way that stu-
dents perceive a non-numerical grade plays a key role, and
this often depends on how such grades are perceived in
the outside world. We study a scheme of mapping letter
grades to percentages, which is widely used in practice (see,
e.g., (University of Western Ontario 2022; Victoria Univer-
sity of Wellington 2022)), where the grade of the student
is given by the midpoint of the interval containing all the
scores that map to that letter grade. For example, if a student
receives A−, which captures all scores in the range [80, 90],
the student effectively receives a grade of 85, and this grade
is what the student compares to her intrinsic quality.

Building on the ideas presented in this example, we de-
velop a framework to compare various grading systems in
an environment with sequential testing. This includes eval-
uations within a course, e.g., a midterm followed by a final
exam, but also grading across related courses, e.g., a stu-
dent taking Calculus 101 followed by Calculus 102. Since a
student’s intrinsic quality increases after a test if the grade
received is higher than her intrinsic quality and decreases
otherwise, our aim is

...to compare different grading schemes and choose
the one that provides a higher quality improvement
(or a lower quality degradation).

Our results. In this work, we compare the numerical scor-
ing scheme, where the student learns her exact score in an
evaluation, to uniform letter grading schemes, where the in-
terval of scores is partitioned into T equal-length intervals
mapping to different letter grades (and each interval is rep-
resented by its midpoint). Note that under uniform (or even
non-uniform) letter grading schemes, one cannot simply as-
sign all students a grade of 100 to maximally motivate them:
for example, if the entire range of [0, 100] is mapped to one
letter grade (T = 1), all students would receive a grade of
50 due to the midpoint representation.

First, we theoretically study the case where two sequen-
tial evaluations take place. We show that under natural con-
ditions, numerical scoring and all uniform letter grading
schemes have equal performance when the motivational and
demotivational effects are equally strong, and otherwise, ei-
ther numerical scoring outperforms all uniform letter grad-
ing schemes or the opposite happens. By assuming addi-
tional conditions, such as when the intrinsic qualities of
the students follow a uniform distribution, we can conclude
that numerical scoring outperforms all uniform letter grad-
ing schemes when the demotivational effect is stronger than
the motivational effect, and the opposite happens when the
demotivational effect is weaker than the motivational effect.
Since there is significant evidence that negative events have
a greater impact than positive events (Baumeister et al. 2001;
Coleman, Jussim, and Abraham 1987), we expect the demo-
tivational effect to be stronger than the motivational effect;
thus, our results are in favour of numerical scoring.

Next, we empirically compare numerical scoring to uni-
form letter grading schemes. Under two sequential evalua-
tions, we observe that numerical scoring continues to out-

perform uniform letter grading when the demotivational ef-
fect is stronger (and the opposite continues to hold when
the motivational effect is stronger), even under more realis-
tic conditions than in our theoretical analysis, such as when
the true qualities of the students follow a (truncated) nor-
mal distribution. However, surprisingly, when more that two
evaluations take place, the effect is reversed. Even after just
six sequential evaluations, uniform letter grading begins to
outperform numerical scoring when the demotivational ef-
fect is stronger (and the opposite holds when the motiva-
tional effect is stronger). In the intermediate stage between
these two regimes, there is another surprising effect: with
four sequential evaluations, numerical scoring outperforms
uniform letter grading regardless of which effect is stronger!

Our results indicate that the choice of the grading scheme
depends on the application at hand: with fewer evaluations
(e.g., courses with just a few tests or shorter education pro-
grams with just a few semesters), numerical scoring may
be better, while with many evaluations (e.g., courses with
weekly tests or longer education programs), uniform letter
grading may be better.
Related work. There are a rich literature on comparing
grading schemes using various objectives. However, to the
best of our knowledge, none of these papers study the objec-
tive of improving student quality that we focus on.

Several works have studied, both theoretically and empir-
ically, how the effort exerted by students for an evaluation
depends on the grading scheme to be used (Paredes 2017;
Brownback 2018; Main and Ost 2014; Czibor et al. 2020).
For example, when using pass/fail grading, a student may
try hard enough to pass (with high probability), but not any
harder. Our work is orthogonal to this: we focus on effect of
the outcome of one evaluation on the student motivation in
subsequent evaluations. Future work may combine the two
approaches by modeling student motivation as a function of
both the grading scheme to be used in the present evaluation
as well as performance in the past evaluations.

Another related work is that of Sikora (2015), who also
compares grading schemes, but his goal is to study the trade-
off between conveying the most information about the stu-
dent’s true quality and minimizing noise due to factors un-
related to the true quality, not the (de)motivational effects of
the grading scheme in subsequent evaluations. In our work,
the task of keeping the grades “consistent” with the actual
performance is indirectly performed by our use of the mid-
point representation; e.g., as mentioned before, it prevents
the instructor from simply assigning a grade of 100 to all the
students regardless of their scores.

Rohe et al. (2006) and Bloodgood et al. (2020) also study
how the grading scheme used may impact students’ psycho-
logical well-being and stress levels, but do not focus on the
impact of this in subsequent evaluations.

Model
Define [k] = {1, . . . , k} for k ∈ N. We introduce a model
in which the grading scheme used in one evaluation can mo-
tivate or demotivate students, affecting their performance in
future evaluations.



True qualities. A student begins with an intrinsic (true)
quality q drawn from a (nonatomic) priorQ with probability
density function (PDF) fQ(·). For simplicity, let the support
of Q be [0, 1].

Scores. There is a score model S such that the numeri-
cal performance (score) of a student with true quality q in
the first evaluation, denoted s ∈ [0, 1], is drawn from the
(nonatomic) distribution S(q) with PDF fS(·; q). We focus
on score models in which the expected score of a student
is equal to their true quality, i.e., Es∼S(q)[s] = q for all
q ∈ [0, 1].

Grades. A grading scheme is a function B : [0, 1] → [0, 1]
that maps the score to a grade.

Letter grading. A letter grading schemeB~c is specified by
a vector ~c = (c0 = 0, c1, . . . , cT−1, cT = 1), for some T ∈
N (referred to as the number of grades) and ci > ci−1 for all
i ∈ [T ], and is given by B~c(s) = ci−1+ci

2 for all i ∈ [T ] and
s ∈ [ci−1, ci). That is, it partitions [0, 1) into finitely many
disjoint intervals (one for each grade) and maps a score to
the midpoint of the interval containing it.

Uniform letter grading. We are particularly interested in
the uniform letter grading (ULG) scheme. For a given num-
ber of grades T ∈ N, uniform letter grading with T grades,
denoted ULGT , is specified by ci = i/T for each i ∈ [T ]. In
other words, it partitions [0, 1) into T equal-length intervals.
We will use ∆(T ) = 1/T to denote the length of the inter-
val, dropping T from the argument when it is clear from the
context. Formally, we have that for all s ∈ [0, 1),2

ULGT (s) = (bs/∆c+ 1/2) ·∆.

For instance, ULG10 maps all scores in [0, 0.1) to 0.05, all
scores in [0.1, 0.2) to 0.15, and so on.

Numerical scoring. We will compare (uniform) letter
grading to numerical scoring (NS), given by NS(s) = s
for all s ∈ [0, 1]. Under numerical scoring, scores are not
rounded to any grades. This can also be viewed as the limit
of uniform letter grading with T →∞ grades.

(De)motivation. The grades affect students’ level of moti-
vation in subsequent evaluations. Under grading scheme B,
a student compares their true quality q to the obtained grade
B(s). If the grade is higher than the true quality, the stu-
dent experiences a motivational boost, but in the converse
case, gets demotivated. We model this by assuming that the
effective true quality of the student for the next evaluation
changes to q′ = q + h(q,B(s)), where

h(q,B(s)) =

{
αm · (B(s)− q), if B(s) > q,

−αd · (q −B(s)), if B(s) < q.

We refer to αm, αd ∈ R>0 as motivation and demoti-
vation coefficients, respectively. Note that the amount of
(de)motivation is proportional to the difference between the
obtained grade and the true quality. In the next evaluation,
the student obtains a score s′ drawn from S(q′). We re-

2Because we assume nonatomic distributions, it does not matter
what ULGT (1) is. We will use the convention that ULGT (1) = 1.

mark that when αm, αd ∈ [0, 1], we automatically have
q′ ∈ [0, 1]; thus, we focus on this range of parameters.3

Goal. Intuitively, we are interested in choosing grading
schemes that achieve a higher increase (or a lower decrease)
in the average student quality. Thus, we define the perfor-
mance of a grading scheme B as:

perf(B) , Eq∼Q,s∼S(q)[q
′ − q]

where q′ = q + h(q,B(s). Due to linearity of expectation,

perf(B) = Eq∼Q,s∼S(q)[q
′−q] = Eq∼Q,s∼S(q)[h(q,B(s)].

Thus, we compare Eq∼Q,s∼S(q)[h(q,B(s)] under numeri-
cal scoring and uniform letter grading. Hereinafter, we omit
q ∼ Q and s ∼ S(q) from an expression of expectation,
whenever it is clear from the context.

Note that for our theoretical analysis, we focus on the case
of two evaluations. Later, we empirically study the case of
more than two evaluations.

Uniform Letter Grading vs Numerical Scoring
In this section, we derive theoretical results for the per-
formance of uniform letter grading schemes and numerical
scoring, when students participate in two sequential evalu-
ations. We identify conditions under which numerical scor-
ing outperforms every uniform letter grading scheme, and
conditions under which the converse holds. Let us begin by
introducing two useful definitions.

Definition 1 (Jointly Symmetric Distributions). We say that
the true quality prior Q and the score model S are jointly
symmetric if fQ(q) · fS(s; q) = fQ(1− q) · fS(1− s; 1− q)
for all s, q ∈ [0, 1].

Joint symmetry requires that true qualities and scores are
symmetric across [0, 1]. That is, the probability of having
true quality q and receiving score s should be the same as the
probability of having true quality 1 − q and receiving score
1−s. If the true quality prior is uniform, then this means the
score distribution S(q) should be the mirror image of the
score distribution S(1 − q). Note that joint symmetry does
not necessarily require symmetry of the “noise” contained
in the score compared to the true quality. For example, we
do not necessarily need fS(s = 0.4; q = 0.5) = fS(s =
0.6; q = 0.5).

Definition 2 (Symmetric Grading Scheme). We say that a
grading scheme B is symmetric if B(1− s) = 1−B(s) for
all s ∈ [0, 1].

The reader can check that numerical scoring (NS) and
uniform letter grading schemes (ULGT for any T ∈ N) are
symmetric.

Our first result shows that under such symmetry, the per-
formance of the grading scheme is linear in the difference
between the motivation and demotivation coefficients. As
we later show in Corollary 1, this allows us to compare nu-
merical scoring to uniform letter grading.

3In principle, one can also use larger coefficients and truncate
q′ to lie in [0, 1].



Theorem 1. When the true quality prior Q and the score
model S are jointly symmetric, and the grading scheme B is
symmetric, then we have

perf(B) =
αm − αd

2
· Eq∼Q,s∼S(q)

[
|q −B(s)|

]
. (1)

Proof. Note that due to Q and S being jointly symmetric,
the pairs (q, s) and (1 − q, 1 − s) are sampled with equal
density. Hence, we have that

E
[
h(q,B(s))

]
=

1

2
· E
[
h(q,B(s)) + h(1− q,B(1− s))

]
.

(2)
Due to the symmetry of the grading scheme, we have

B(1 − s) = 1 − B(s), which implies that the two terms
h(q,B(s)) and h(1−q,B(1−s)) are motivation and demo-
tivation by the same amount (but with different coefficients).
Hence,

E
[
h(q,B(s)) + h(1− q,B(1− s))

]
= (αm − αd) · E

[
|q − s|

]
.

Plugging this into Equation (2), we obtain the desired re-
sult.

Corollary 1. Assume that the true quality prior Q and the
score model S are jointly symmetric. Then, all symmetric
grading schemes have equal performance when αm = αd.
Further, when αm 6= αd, for every T ∈ N one of the follow-
ing conditions holds.
1. Uniform letter grading with T grades is at least as good

as numerical scoring when αm > αd, and the converse
holds when αm < αd.

2. Uniform letter grading with T grades is at least as good
as numerical scoring when αm < αd, and the converse
holds when αm > αd.

Proof. The first claim regarding αm = αd follows immedi-
ately from Equation (1) in Theorem 1. For the second claim
regarding αm 6= αd, note that the comparison between nu-
merical scoring and uniform letter grading with T buckets
reduces to the sign of E[|q − NS(s)| − |q − ULGT (s)|],
and depending on this sign, one of the two statements in the
corollary holds.

Corollary 1 tells us that having equal motivation and de-
motivation coefficients (αm = αd) is the turning point: be-
tween uniform letter grading with a fixed number of grades
and numerical scoring, one is better when αm < αd but the
other becomes better when αm > αd. But it does not tell us
which one is better in each case.

Our next result identifies a sufficient condition under
which this dilemma is settled: uniform letter grading is bet-
ter when αm > αd and numerical scoring is better when
αm < αd. To introduce this sufficient condition, we need to
define the following natural property of the score model.
Definition 3 (Ex-Ante Single-Peaked Score Model). We say
that the score model S is ex-ante single-peaked if, for every
q ∈ [0, 1], fS(·; q) is single-peaked with the peak at q, i.e.,
fS(s; q) 6 fS(s′; q) for all s 6 s′ 6 q and s > s′ > q.

Intuitively, in an ex-ante single-peaked score model,
scores closer to the true quality are more likely than scores
farther from the true quality.

For a fixed T , we also denote with D the set of all pairs
of true qualities and scores that belong to the same letter
grade interval, i.e., D = {(q, s) : ULGT (q) = ULGT (s)}.
For example, if T = 10, (q = 0.51, s = 0.59) ∈ D but
(q = 0.51, s′ = 0.49) /∈ D.
Theorem 2. Fix any T ∈ N. Assume that the true quality
prior Q and the score model S satisfy the following.
1. Q and S are jointly symmetric;
2. S is ex-ante single-peaked; and
3. E

[
|q − s|

∣∣∣ (q, s) ∈ D
]
6 E

[
|q −ULGT (s)|

∣∣∣ (q, s) ∈ D
]
.

Then, the first implication of Corollary 1 holds. That is,
uniform letter grading with T grades is at least as good
as numerical scoring when αm > αd, the converse holds
when αm < αd, and the two have equal performance when
αm = αd.

Before diving into the proof, let us make a remark regard-
ing the third technical condition in Theorem 2. The techni-
cal condition states that, averaged over all such pairs, the
true quality is closer to the score than to the midpoint of the
interval that they both belong to. Later, we show that this
condition is satisfied in two natural cases. Intuitively, if the
score distribution is sufficiently concentrated near the true
quality, the expected distance between the score and the true
quality will be sufficiently small, satisfying the condition.
Let us now turn to the proof of Theorem 2.

Proof. Given Theorem 1, we simply need to show that
E
[
|q − s|

]
6 E

[
|q − ULGT (s)|

]
. We already assume that

this holds conditioned on (q, s) ∈ D. Hence, we only need
to show that it also holds conditioned on (q, s) /∈ D. We
show this given the additional single-peakedness property.

We show that, conditioned on (q, s) /∈ D, the desired
equation actually holds for every q ∈ [0, 1], and, thus, in
expectation over q ∼ Q too. Fix any q ∈ [0, 1]. Note that

E
[
|q − s|

∣∣∣ (q, s) /∈ D
]

= Pr
[
ULGT (s) < ULGT (q)

∣∣∣ (q, s) /∈ D
]

· E
[
q − s

∣∣∣ ULGT (s) < ULGT (q)
]

+ Pr
[
ULGT (s) > ULGT (q)

∣∣∣ (q, s) /∈ D
]

· E
[
s− q

∣∣∣ ULGT (s) > ULGT (q)
]

6 Pr
[
ULGT (s) < ULGT (q)

∣∣∣ (q, s) /∈ D
]

· E
[
q −ULGT (s)

∣∣∣ ULGT (s) < ULGT (q)
]

+ Pr
[
ULGT (s) > ULGT (q)

∣∣∣ (q, s) /∈ D
]

· E
[
ULGT (s)− q

∣∣∣ ULGT (s) > ULGT (q)
]

= E
[
|q −ULGT (s)|

∣∣∣ (q, s) /∈ D
]
,



where the first transition holds because
[0, 1]2 \ D = {(q, s) : ULGT (s) < ULGT (q)} ∪
{(q, s) : ULGT (s) > ULGT (q)}; and the second tran-
sition holds due to linearity of expectation and because the
single-peakedness assumption implies

E
[
s
∣∣∣ ULGT (s) < ULGT (q)

]
> E

[
ULGT (s)

∣∣∣ ULGT (s) < ULGT (q)
]
,

and

E
[
s
∣∣∣ ULGT (s) > ULGT (q)

]
6 E

[
ULGT (s)

∣∣∣ ULGT (s) > ULGT (q)
]
.

This completes the proof.

In Theorem 2, we argued that single-peakedness of S es-
tablishes the desired inequality of E

[
|q − s|

]
6 E

[
|q −

ULGT (s)|
]

at least conditioned on (q, s) /∈ D, leaving only
the case of (q, s) ∈ D, which was stated as an assumption
in. Next, we show that if the true quality prior Q is uniform
over [0, 1], and it satisfies two natural assumptions, given in
the next definitions, jointly with the score model S, then the
desired inequality also holds conditioned on (q, s) ∈ D.

Definition 4 (Ex-Post Single-Peaked Score Model). We say
that the score model S is ex-post single-peaked if, for every
s ∈ [0, 1], fS(s; ·) is single-peaked with the peak at s, i.e.,
fS(s; q) 6 fS(s; q′) for all s 6 q′ 6 q and q 6 q′ 6 s.

Definition 5 (Probabilistic Single-Dipped Score Model).
We say that the score model S is probabilistic single-dipped
if, for every x ∈ [0, 1], Pr

[
s ∈ [q, x] ∪ [x, q]

∣∣∣ q] (let us call
this p(x, q)) is single-dipped in q with the dip at q = x, i.e.,
p(x, q) 6 p(x, q′) for all x 6 q′ 6 q and q 6 q′ 6 x.

Before we state the next theorem, we further partition D
into two sub-spaces, Dsame and Dopp, such that Dsame con-
tains the set of all pairs of true qualities and scores such that
either both are at most or both are at least the midpoint of
their common letter grade interval, i.e.

Dsame = {(q, s) : q, s 6 ULGT (q) = ULGT (s)

∨ q, s > ULGT (q) = ULGT (s)}

and Dopp = D \ Dsame. For example, when T = 10, (q =
0.54, s = 0.51) ∈ Dsame, but (q = 0.54, s′ = 0.56) ∈
Dopp. We are now ready to state the result.

Theorem 3. Fix arbitrary T ∈ N. Assume the following
regarding the true quality prior Q and the score model S.

1. Q is uniform over [0, 1];
2. Q and S are jointly symmetric;
3. S is ex-ante and ex-post single-peaked, and probabilistic

single-dipped; and

4. Pr
[
(q, s) ∈ Dsame

]
> 2(γ + 1) · Pr

[
(q, s) ∈ Dopp

]
,

where γ = maxa,b∈[0,1]
fS(a;b)
fS(b;a) .

Then, the first implication of Corollary 1 holds. That is,
uniform letter grading with T grades is at least as good
as numerical scoring when αm > αd, the converse holds
when αm < αd, and the two have equal performance when
αm = αd.

The proofs of Theorems 3 and 4 are our most intricate
proofs. However, due to space constraints, we have deferred
them to the appendix.

Let us however understand the strength of the assump-
tions in Theorem 3. A natural choice of S under which As-
sumptions 3 and 4 in Theorem 3 are satisfied is when S(q)
is a symmetric distribution around q, i.e., the noise in the
score follows a symmetric zero-mean distribution. Further,
for such a score model, we have γ = 1, so Assumption
4 becomes Pr[(q, s) ∈ Dsame] > 4 · Pr[(q, s) ∈ Dopp].
More general, from the definitions ofDsame andDopp, when
the variance of the score distribution is sufficiently small,
we can expect Pr[(q, s) ∈ Dsame] to be much higher than
Pr[(q, s) ∈ Dopp]. For further intuition regarding the com-
parison between Pr[(q, s) ∈ Dsame] and Pr[(q, s) ∈ Dopp],
see Figure 2 in Appendix A.

Ex-ante single-peakedness, ex-post single-peakedness,
and probabilistic single-dippedness can be subsumed into a
single property that captures a stronger form of symmetry,
in which the noise in the score is symmetric and zero-mean.
Definition 6 (Strongly Symmetric Score Model). We say
that the score model S is strongly symmetric if fS(s; q) =
`(|s−q|) for some non-increasing function ` : R>0 → R>0.

Under a strongly symmetric score model, we have γ = 1
in Assumption 4 of Theorem 3, which means a constant of
2(γ + 1) = 4 would needed. However, using very different
techniques, we can show that even a constant of 3 suffices to
obtain the same result under strong symmetry. This broadens
the scope of the result to include slightly less concentrated
score models.
Theorem 4. Fix arbitrary T ∈ N. Let D, Dsame, and Dopp

be defined as in Theorem 3. Assume the following regarding
the true quality prior Q and the score model S.
1. Q is uniform over [0, 1];
2. S is strongly symmetric; and

3. Pr
[
(q, s) ∈ Dsame

]
> 3 · Pr

[
(q, s) ∈ Dopp

]
.

Then, the first implication of Corollary 1 holds. That is,
uniform letter grading with T grades is at least as good
as numerical scoring when αm > αd, the converse holds
when αm < αd, and the two have equal performance when
αm = αd.

We remark that in the proof of Theorem 4, we only really
need strong symmetry for pairs of true qualities and scores
that belong to the same letter grade interval.

Experiments
In the previous section, we proved that whenQ is uniformly
distributed and the variance of the score model is small, we
can conclude that the first implication of Corollary 1 holds.
In this section, we empirically compare numerical scoring
and uniform letter grading while relaxing these assumptions.



0.0 0.2 0.4 0.6 0.8 1.0
Motivation Coefficient

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Pe

rfo
rm

an
ce

ULG4
ULG8
ULG12
ULG16
ULG20
NS

(a) r = 2

0.0 0.2 0.4 0.6 0.8 1.0
Motivation Coefficient

3

2

1

0

1

Pe
rfo

rm
an

ce

ULG4
ULG8
ULG12
ULG16
ULG20
NS

(b) r = 4
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(c) αm = 0.2
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(d) αm = 0.8

Figure 1: Performance of numerical scoring and different uniform letter grading schemes, with µ = 65, σ = 12, γ = 1.5 and
αd = 0.5 over different motivation coefficients (top) and number of evaluations (bottom). 95% confidence intervals are shown.

First, it is widely believed that students’ true qualities, at
least in large classes, are normally distributed based on the
evidence that

...exam scores tend to be normally distributed for
well-constructed, norm-referenced, multiple choice
tests...(Wedell, Parducci, and Roman 1989).

Hence, we empirically study the case where Q is normally
distributed, truncated to [0, 1]. We also consider cases where
the score is not necessarily very-well concentrated around
the true quality. Finally, our theoretical analysis was lim-
ited to two sequential evaluations; in our experiments, we
also consider more than two evaluations. When a student
participates in r sequential evaluations, after each evalua-
tion the student compares her “current” true quality to the
obtained grade, and experiences (de)motivation that affects
her effective true quality in the next evaluation. Formally,
for j ∈ [r], let qj and sj denote her effective true quality
and score in evaluation j, respectively. Then, sj ∼ S(qj) for
each j ∈ [r], and for j ∈ [r − 1], we have:

qj+1 =

{
qj + αm · (B(sj)− qj), if B(sj) > qj ,

qj − αd · (qj −B(sj)), if B(sj) < qj .

We measure the performance of a grading scheme by
comparing the final true quality, qr, to the initial true qual-
ity q1, which extends the performance measure introduced
in preliminaries for two evaluations:

perfF (B) , Eq∼Q,s∼S(q)[qr − q1].

We remark that measuring average improvement in qual-
ity, E[(1/r)

∑r
j=1 qj − q1], yield qualitatively the same re-

sults, so we omit them from the paper.
Data generation. For all the simulations, we compare nu-
merical scoring (NS) to uniform letter grading (ULGT )
with T ∈ {4, 8, 12, 16, 20} grades. We scale the interval of
grades to [0, 100] to resemble percentage grades. We simu-
late n = 5000 students (average results are plotted with 95%
confidence intervals), where the initial true quality q1 of each
student is drawn i.i.d. from a truncated normal distribution
capped to [0, 100], with the underlying normal distribution
characterized by mean µ and standard deviation σ. Given a
true quality q in an evaluation, the score s is drawn from an-
other truncated normal distribution capped to [0, 100], with
the underlying normal distribution characterized by mean q
and standard deviation γ.



Results. Figure 1 shows how the final quality improves (or
degrades) with respect to the motivation coefficient (top) and
the number of evaluations (bottom). In Figure 1a, the moti-
vation coefficient takes values in {0, 0.1 . . . , 0.9, 1}, the de-
motivation coefficient is set to 0.5 and the number of evalua-
tions is set to r = 2. We see that when αm < αd, numerical
scoring is better than any uniform letter grading (and uni-
form letter grading with more grades is better than uniform
letter grading with fewer grades), whereas when αm > αd,
the opposite is true. Hence, it seems that the first implication
of Corollary 1 continues to hold, even when the true quality
is drawn from a more realistic distribution than the uniform
distribution assumed in Theorems 3 and 4. The comparison
between uniform letter grading schemes with different num-
bers of grades is intuitive: uniform letter grading essentially
converges to numerical scoring when T goes to infinity, so
larger T should resemble numerical scoring more. The ex-
periments show that this holds even with small values of T .

Going beyond our theoretical analysis for r = 2 evalu-
ations, we consider the case where students participate in
more than two evaluations. Surprisingly, as seen in Fig-
ures 1c and 1d, the comparison between numerical scoring
and uniform letter grading flips completely with large val-
ues of r: numerical scoring becomes worse than uniform
letter grading (and ULGT becomes worse than ULGT ′ for
T > T ′) when αm < αd, but better when αd < αm.
This shows that the choice of the grading scheme depends
not only on the comparison between the strengths of mo-
tivational and demotivational effects (αm vs αd) but also,
crucially, on the number of evaluations r. With fewer evalu-
ations (e.g., courses with fewer tests or curricula with fewer
semesters), use of numerical scoring may be recommended,
whereas with many evaluations (e.g., courses with frequent
tests or curricula with many semesters), use of uniform letter
grading with fewer letters may be more appropriate.

The transition between the regimes of few evaluations and
many evaluations is even more surprising. As seen in in Fig-
ure 1b, with r = 4 evaluations, numerical scoring seems to
outperform uniform letter grading schemes regardless of the
comparison between αm and αd. Hence, in general, it is al-
ways best to simulate different grading schemes under the
model and the number of evaluations of interest in order to
pick a suitable grading scheme.

Finally, we observe that under numerical scoring, as the
number of evaluations increases, the average student quality
declines linearly when αm < αd (Figure 1c) and improves
linearly when αm > αd (Figure 1d). This is expected be-
cause it can be shown that under numerical scoring, every
evaluation changes the expected student quality by the same
amount, which is proportional to αm−αd, leading to a linear
decline or growth. In contrast, under uniform letter grading
schemes with very few grades (small T ), the average student
quality seems to converge and remain stable as the number
of evaluations increases, regardless of the comparison be-
tween αm and αd. This can be explained due to the follow-
ing stabilizing effect. Let [`, h] be a letter grade interval and
m be its midpoint. Consider a student who starts with a true
quality q ∈ [`, h]. The student is likely to receive a score s
in the same interval [`, h] (so that (q, s) ∈ D), and thus, a

grade of m. This causes the true quality to update in a man-
ner so that it gets closer to m, leading it to converge to m
over many evaluations. Once the true quality becomes very
close to m, the student experiences very little motivation or
demotivation due to receiving a grade that is almost equal to
her true quality with high probability. Of course, the effect is
more pronounced when T is small, so letter grade intervals
are large compared to the variance of the score model.

Due to the space constraints, we have presented only the
most striking empirical observations here; the rest are de-
ferred to Appendix C, where we notice that the first implica-
tion of Corollary 1 continues to hold even when the score is
not well-concentrated around the true quality.

Discussion

Our work takes the first step towards proposing a statistical
model of the psychological impact of letter grading schemes
on student performance in sequential evaluations and using
it to compare uniform letter grading schemes to numerical
scoring. Obviously, we model one specific (de)motivational
effect and future work must combine it with many other
well-known effects in educational settings, but we view our
work as a stepping stone and outline several appealing ex-
tensions below.

Beyond midpoint grading. In our model, we assume that
if all the scores from an interval [`, u] are mapped to the
same grade, they are effectively mapped to the midpoint
grade (` + u)/2. This is a common method in practice of
converting letter grades to percentages (University of West-
ern Ontario 2022; Victoria University of Wellington 2022),
but other values within the range [`, u] are also sometimes
used (University of Waterloo 2022).

Non-uniform letter grading. Our analysis is limited to uni-
form letter grading schemes, which are used less often in
practice. It would be interesting to extend our analysis to
non-uniform letter grading schemes. More broadly, in our
model, the grading scheme maps the score to a grade from
[0, 1], which allows a student to compare the grade to their
true quality, which is also from [0, 1]. If the grade is instead
in a different numerical range, the model can be easily ex-
tended by renormalization (for example, grade point aver-
ages lie in [0, 4], which is often mapped to [0, 1] by divid-
ing by 4). How can our model be extended to incorporate
truly non-numeric grades (e.g., A, B, etc.) without convert-
ing them to numeric grades somehow (e.g., 4, 3.7, etc.)?

Non-linear (de)motivation. Our model assumes that the in-
crease or decrease in the true quality is linear in the dif-
ference between the received grade and true quality. Evi-
dence from prospect theory suggests that motivational ef-
fects from positive outcomes are typically concave (dimin-
ishing rewards) while demotivational effects from negative
outcomes are typically convex (increasing losses) (Kahne-
man and Tversky 1979). It would be interesting to extend
our theoretical results to nonlinear (de)motivational effects.
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Appendix
A Intuition Regarding Dsame vs Dopp & Single-Peakedness

Dsame

Dopp
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(a) With a small value of γ, one can see that within the grade interval [70, 80] containing the true quality q =
73, the probability of the score being on the same side of the midpoint as the true quality (i.e., in [70, 75]) is
significantly higher than the probability of it being on the opposite side of the midpoint (i.e., in [75, 80]). The
former region contributes to Dsame while the latter contributes to Dopp. Their difference is the most pronounced
when the true quality is near the interval endpoints (e.g., q ≈ 70, 80) and gradually vanishes when it is near
the midpoint (e.g., q ≈ 75). In expectation over the true quality, one can still expect Pr[(q, s) ∈ Dsame] to be
sufficiently higher than Pr[(q, s) ∈ Dopp], satisfying the conditions in Theorem 3 and Theorem 4.
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(b) Due to single-peakedness of the score distribution, the expected score in any interval lower than the interval
containing the true quality q = 73 is at least its midpoint (e.g., the expected score subject to the score being in
[60, 70] is at least 65). In contrast, the expected score in any interval higher than the interval containing the true
quality q = 73 is at most its midpoint (e.g., the expected score subject to the score being in [80, 90] is at most
85). This observation is used at the end of the proof of Theorem 2.

Figure 2: Both figures show the probability density function of the score distribution S(q) when the true quality is q = 73. The
distribution is a truncated normal distribution with mean q = 73, and standard deviation γ = 1.7 (top figure) and γ = 6 (bottom
figure). The top figure conveys the intuition behind the conditions in Theorem 3 and Theorem 4, which assume Pr[(q, s) ∈
Dsame] to be sufficiently higher than Pr[(q, s) ∈ Dopp]. The bottom figure conveys the intuition behind the observation used at
the end of the proof of Theorem 2.

B Missing Proofs
Useful Lemmas
Before we dive into the missing proofs, we state the integral version of the well-known Chebyshev’s inequality and its two
useful implications.

Lemma 1 (Integral Chebyshev Inequality). If functions f, g : [a, b] → R>0 are either both non-increasing or both non-
decreasing, then

1

b− a

∫ b

a

f(x)g(x) dx >

(
1

b− a

∫ b

a

f(x) dx

)
·

(
1

b− a

∫ b

a

g(x) dx

)
.



If one of them is non-decreasing while the other is non-increasing, the inequality is reversed.

The following inequality is obtained by substituting f(x) = x (and thus, 1
b−a

∫ b
a
f(x) dx = a+b

2 ) into Lemma 1.

Lemma 2. If g : [a, b]→ R>0 is a non-increasing function, then we have∫ b

a

xg(x) dx 6
a+ b

2
·
∫ b

a

g(x) dx,

and the inequality is reversed if g is a non-decreasing function.

If g is a probability density function over [a, b], then
∫ b
a
g(x) dx = 1, yielding the following (quite natural) implication.

Lemma 3. Let X be a random variable over [a, b] with a non-increasing probability density function g : [a, b] → R>0. Then,
E[X] 6 (a+ b)/2, and the inequality is reversed if g is non-decreasing.

Finally, we use the following strengthening of the integral Chebyshev inequality when one of the functions is linear and the
other is concave non-increasing.
Lemma 4. Let g : [a, b]→ R>0 be a concave function with g(b) = 0. Then, we have∫ b

a

(b− x)g(x) dx 6
2(b− a)

3

∫ b

a

g(x) dx.

Proof. Due to concavity of g, we have ∫ b

x

g(t) dt >
1

2
(b− x)g(x).

Hence, we have∫ b

a

1

2
(b− x)g(x) dx >

∫ b

x=a

∫ b

t=x

g(t) dtdx

=

∫ b

t=a

∫ t

x=a

g(t) dx dt (Fubini’s theorem)

=

∫ b

t=a

(t− a)g(t) dt

=

∫ b

x=a

(x− a)g(x) dx (Change of variable name)

=

∫ b

a

(b− a)g(x) dx−
∫ b

a

(b− x)g(x) dx.

Rearranging the terms yields the desired inequality.

Proof of Thereom 3
Proof. Given Theorem 2, we only need to show that

E
[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ D
]

= Pr[(q, s) ∈ Dsame
∣∣∣ (q, s) ∈ D] · E

[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ Dsame
]

+ Pr[(q, s) ∈ Dopp
∣∣∣ (q, s) ∈ D] · E

[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ Dopp
]

6 0.

(3)

Let us analyze the expected value of |q − s| − |q − ULGT (s)| conditioned on both (q, s) ∈ Dsame and (q, s) ∈ Dopp

separately.

Analyzing Dsame. For k ∈ {0, 1, . . . , T − 1}, define `(k) = k∆, m(k) = (k + 1/2)∆, and h(k) = (k + 1)∆. These are
respectively the lower end, midpoint, and upper end of the k-th grade interval under ULGT . Note that

Dsame =
{

(q, s) :(`(k) 6 q 6 s 6 m(k)) ∨ (`(k) 6 s 6 q 6 m(k))∨

(m(k) 6 q 6 s < h(k)) ∨ (m(k) 6 s 6 q < h(k)), k ∈ {0, 1, . . . , T − 1}
}
.



Fix an arbitrary k ∈ {0, 1, . . . , T − 1}; write `, m, and h while omitting the fixed k in the argument; and let us analyze the
desired expression |q − s| − |q − ULGT (s)| conditioned on each of the four cases for this fixed k separately. We will derive
bounds that will hold regardless of the value of k, and, therefore, also conditional on (q, s) ∈ Dsame (i.e., aggregated across all
k). Note that in each case, we have ULGT (q) = ULGT (s) = m.

1. ` 6 q 6 s 6 m. In this case, |q − s| − |q −ULGT (s)| = s−m. Note that

E
[
s−m | ` 6 q 6 s 6 m

]
=

∫m
q=`

∫m
s=q

fQ(q) · fS(s; q) · (s−m) dsdq

Pr[` 6 q 6 s 6 m]

=

∫m
q=`

1 · E
[
s−m

∣∣∣ q, s ∈ [q,m]
]
· Pr
[
s ∈ [q,m]

∣∣∣ q] dq∫m
q=`

1 · Pr
[
s ∈ [q,m]

∣∣∣ q] dq

6
−
∫m
q=`

(
m−q

2

)
· Pr
[
s ∈ [q,m]

∣∣∣ q] dq∫m
q=`

1 · Pr
[
s ∈ [q,m]

∣∣∣ q] dq

6
− 1
m−` ·

(∫m
q=`

m−q
2 dq

)
·
(∫m

q=`
Pr
[
s ∈ [q,m]

∣∣∣ q] dq
)

∫m
q=`

1 · Pr
[
s ∈ [q,m]

∣∣∣ q] dq

= − 1

(∆/2)

∫ ∆
2

r=0

r

2
dr = −∆

8
.

Here, the third transition holds because conditioned on a given value of q and on s ∈ [q,m], the distribution of s ∈ [q,m]
is single-peaked with peak at q (Assumption 3). Hence, E[s|q, s ∈ [q,m]] 6 (q + m)/2. The fourth transition is the
integral Chebyshev inequality (Lemma 1), which holds because both (m − q)/2 and Pr

[
s ∈ [q,m]

∣∣∣ q] are non-negative,
non-increasing functions of q in [`,m] (Assumption 3).

2. ` 6 s 6 q 6 m. In this case, |q − s| − |q −ULGT (s)| = 2q −m− s. Note that

E
[
2q −m− s | ` 6 s 6 q 6 m

]
=

∫m
q=`

∫ q
s=`

fQ×S(q, s) · (2q −m− s) dsdq

Pr[` 6 s 6 q 6 m]

=

∫m
s=`

fS(s)E
[
2q −m− s

∣∣∣ s, q ∈ [s,m]
]
· Pr
[
q ∈ [s,m]

∣∣∣ s] ds

Pr[` 6 s 6 q 6 m]
.

Here, we use fQ×S(q, s) = fQ(q) · fS(s; q) to denote the joint probability density of q and s, and fS(s) =∫ 1

q=0
fQ(q)fS(s; q) dq to denote the marginal probability density of s.

We argue that E
[
2q − m − s

∣∣∣ s, q ∈ [s,m]
]
6 0. Intuitively, this is because the posterior distribution of q ∈ [s,m]

conditioned on a fixed value of s and on q ∈ [s,m] is single-peaked with peak at s by Assumptions 1 and 3. Hence,
E
[
q
∣∣∣ s, q ∈ [s,m]

]
6 (s+m)/2. Formally, this can be viewed as

E
[
2q −m− s

∣∣∣ s, q ∈ [s,m]
]

=

∫m
q=s

f(q; s)(2q −m− s) dq∫m
q=s

f(q; s) dq

6

1
m−s ·

(∫m
q=s

f(q; s) dq
)
·
(∫m

q=s
(2q −m− s) dq

)
∫m
q=s

f(q; s) dq
= 0,

where f(q; s) = fQ(q)·fS(s;q)
fS(s) denotes the probability density of true quality being q conditioned on the score being s; the

second transition is the integral Chebyshev inequality (Lemma 1), which holds because f(q; s) is a non-increasing function
of q whereas 2q −m − s is a non-decreasing function of q;4,5 and the final transition holds because the second integral in
the numerator is 0.
4To see why f(q; s) =

fQ(q)·fS(s;q)
fS(s)

is non-increasing in q, note that the denominator does not depend on q whereas the numerator is
equal to fS(s; q) (Assumption 1), which is non-increasing in q (Assumption 3).

5Technically, integral Chebyshev inequality requires non-negative functions, and 2q − (m + s) can be negative when q < (m + s)/2.



3. m 6 q 6 s < h. In this case, |q− s| − |q−ULGT (s)| = m+ s− 2q. Due to the same reasoning as in Case 2, we have that
E
[
m+ s− 2q

∣∣∣m 6 q 6 s < h
]
6 0.

4. m 6 s 6 q < h. In this case, |q − s| − |q − ULGT (s)| = m − s. Due to the same reasoning as in Case 1, we have that
E
[
m− s

∣∣∣m 6 s 6 q < h
]
6 −∆/8.

Let p1, p2, p3, p4 respectively denote the total probabilities of the above four cases across all values of k ∈ {0, 1, . . . , T − 1},
conditioned on (q, s) ∈ Dsame. Then, p1 + p2 + p3 + p4 = 1. Because fS(a; b)/fS(b; a) 6 γ for all a, b ∈ [0, 1], it follows that
p1 > p2/γ and p4 > p3/γ. Hence, p1 + p4 > (p2 + p3)/γ. Using p1 + p2 + p3 + p4 = 1, we get p1 + p4 > 1/(γ + 1).

Combining the analysis from the four cases above, we have

E
[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ Dsame
]
6 −(p1 + p4) · ∆

8
6 − ∆

8(γ + 1)
. (4)

Analyzing Dopp. Note that

Dopp = ∪k∈{0,1,...,T−1} {(q, s) : (`(k) 6 q 6 m(k) 6 s 6 h(k)) ∨ (`(k) 6 s 6 m(k) 6 q 6 h(k))} .

Fix an arbitrary k ∈ {0, 1, . . . , T − 1}; as before, write `, m, and h while omitting the fixed k in the argument. Once again,
we analyze the desired expression |q−s|−|q−ULGT (s)| conditioned on each of the two cases in the above expansion ofDopp

for this fixed k separately. We will derive bounds that will hold regardless of the value of k, and, therefore, also conditional on
(q, s) ∈ Dopp (i.e., aggregated across all k). Note that we still have ULGT (q) = ULGT (s) = m.

1. ` 6 q 6 m 6 s 6 h: In this case, we have |q − s| − |q −ULGT (s)| = s−m. Note that

E
[
s−m

∣∣∣ ` 6 q 6 m 6 s 6 h
]
6 ∆/4. (5)

This is because s ∈ [m,m + ∆/2] and, due to single-peakedness of the score model and q 6 m, it is at most m + ∆/4 in
expectation.

2. ` 6 s 6 m 6 q 6 h: In this case, we have |q− s| − |q−ULGT (s)| = m− s, and the same reasoning as above shows that

E
[
m− s

∣∣∣ ` 6 s 6 m 6 q 6 h
]
6 ∆/4. (6)

Combining Equations (5) and (6) and aggregating over all k ∈ {0, 1, . . . , T − 1}, we get that

E
[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ Dopp
]
6 ∆/4. (7)

Finally, combining Equations (4) and (7), we have that

E
[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ D
]

6 Pr
[
(q, s) ∈ Dsame

∣∣∣ (q, s) ∈ D
]
·
(
− ∆

8(γ + 1)

)
+ Pr

[
(q, s) ∈ Dopp

∣∣∣ (q, s) ∈ D
]
· ∆

4
6 0,

where the final transition holds because Pr
[
(q, s) ∈ Dsame

]
> 2(γ + 1) · Pr

[
(q, s) ∈ Dopp

]
(Assumption 4), which is

equivalent to
Pr
[
(q, s) ∈ Dsame

∣∣∣ (q, s) ∈ D
]
> 2(γ + 1) · Pr

[
(q, s) ∈ Dsame

∣∣∣ (q, s) ∈ D
]
.

This completes the proof.

Proof of Theorem 4
Proof. As in the proof of Theorem 3, note that given Theorem 2, we only need to prove

E
[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ D
]

= Pr[(q, s) ∈ Dsame
∣∣∣ (q, s) ∈ D] · E

[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ Dsame
]

+ Pr[(q, s) ∈ Dopp
∣∣∣ (q, s) ∈ D] · E

[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ Dopp
]

6 0.

(8)

However, one can equivalently separate out the −(m + s) term, apply the integral Chebyshev inequality to 2q, and recombine with the
−(m+ s) term to achieve the same conclusion.



In the proof of Theorem 3, we analyzed the expected value of |q − s| − |q −ULGT (s)| conditioned on both (q, s) ∈ Dsame

and (q, s) ∈ Dopp separately: the former was shown to be at most − ∆
8(γ+1) whereas the latter was shown to be at most ∆

4 ,
yielding the desired Equation (8) when Pr[(q, s) ∈ Dsame] > 2(γ + 1) · Pr[(q, s) ∈ Dopp].

With strong symmetry (Assumption 2), we improve the former upper bound to −∆
12 , which improves the sufficient condition

to Pr[(q, s) ∈ Dsame] > 3 · Pr[(q, s) ∈ Dopp]. That is, our goal is to prove

E
[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ Dsame
]
6 −∆

12
.

Note that Dsame = ∪k∈{0,1,...,T−1}Dsame
k , where Dsame

k = Dsame ∩ [k∆, (k + 1)∆)2. We show that E
[
|q − s| −

|q − ULGT (s)|
∣∣∣ (q, s) ∈ Dsame

k

]
6 −∆

12 for all k ∈ {0, 1, . . . , T − 1}, which implies the desired result. Fix any
k ∈ {0, 1, . . . , T − 1}, and write ` = k∆, m = (k + 1/2)∆, and h = (k + 1)∆.

Let us further partitionDsame
k asDsame

k,low∪Dsame
k,high, whereDsame

k,low = {(q, s) : ` 6 q, s < m} (both the true quality and the score
are lower than the midpoint) and Dsame

k,high = {(q, s) : m 6 q, s < h} (both the true quality and the score are at least as high as
the midpoint). Crucially, we note that

E
[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low

]
= E

[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,high

]
.

This is because the transformation (q, s)→ (q′, s′), where q′ = m+(m−q) and s′ = m+(m−s), is a bijection mapping each
point (q, s) ∈ Dsame

k,low to a point (q′, s′) ∈ Dsame
k,high with |q−s|−|q−m| = |q′−s′|−|q′−m| as well as fQ×S(q, s) = fQ×S(q′, s′);

the last observation relies on Q being a uniform distribution (Assumption 1) and S being strongly symmetric (Assumption 2).
Hence, it is sufficient to show that

E
[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low

]
6 −∆

12
.

Next, we further partition Dsame
k,low as Dsame

k,low,inc ∪ Dsame
k,low,dec, where Dsame

k,low,inc = {(q, s) : ` 6 q 6 s < m} (the score is at least
as much as the true quality) and Dsame

k,low,dec = {(q, s) : ` 6 s 6 q < m} (the score is at most as much as the true quality). Note
that

E
[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low

]
= Pr

[
(q, s) ∈ Dsame

k,low,inc

∣∣∣ (q, s) ∈ Dsame
k,low

]
· E
[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low,inc

]
+ Pr

[
(q, s) ∈ Dsame

k,low,dec

∣∣∣ (q, s) ∈ Dsame
k,low

]
· E
[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low,dec

]
.

First, we argue that

Pr
[
(q, s) ∈ Dsame

k,low,inc

∣∣∣ (q, s) ∈ Dsame
k,low

]
= Pr

[
(q, s) ∈ Dsame

k,low,dec

∣∣∣ (q, s) ∈ Dsame
k,low

]
=

1

2
.

This follows by noting the bijection from Dsame
k,low,inc to Dsame

k,low,dec given by (q, s) → (q′, s′), where q′ = m − (q − `) and
s′ = m− (s− `); due to strong symmetry of S and |q − s| = |q′ − s′|, we have fQ×S(q, s) = fQ×S(q′, s′).

Next, recall that in the proof of Theorem 3 (Case 2 in the analysis of Dsame), we had already argued

E
[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low,dec

]
= E[2q − s−m|` 6 s 6 q < m] 6 0.

Hence, we have

E
[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low

]
6

1

2
· E
[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low,inc

]
,

which means it is sufficient to argue

E
[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low,inc

]
= E

[
s−m

∣∣∣ ` 6 q 6 s < m
]
6 −∆

6
.

Note that

E
[
s−m

∣∣∣ ` 6 q 6 s < m
]

= −
∫m
q=`

∫m
s=q

(m− s)fS(s; q) dsdq

Pr[` 6 q 6 s < m]
(Q is uniform)



6 −

∫m
q=`

1
m−q

(∫m
s=q

(m− s) ds
)
·
(∫m

s=q
fS(s; q) ds

)
dq

Pr[` 6 q 6 s < m]
(Lemma 1)

= −1

2

∫m
q=`

(m− q) Pr[s ∈ [q,m]] dq

Pr[` 6 q 6 s < m]

6 −1

2

2(m−`)
3 ·

∫m
q=`

Pr[s ∈ [q,m]] dq

Pr[` 6 q 6 s < m]
(Lemma 4)

= −1

2

2(m−`)
3 · Pr[` 6 q 6 s < m]

Pr[` 6 q 6 s < m]
= −∆

6
,

as needed. Here, in the application of Lemma 4 in the fourth transition, we use the fact that g(q) = Pr[s ∈ [q,m]] =∫m
s=q

fS(s; q) ds is a concave function and g(m) = 0. To see concavity, note that strong symmetry of S means that there

is a distribution with probability density z such that fS(s; q) = z(s − q). Then, g(q) =
∫m
s=q

z(s − q) ds =
∫m−q
x=0

z(x) dx.
Hence, g′(q) = −z(m− q) and g′′(q) = z′(m− q). Due to the single-peakedness of S, we have that z′(x) 6 0 for all x > 0,
so g′′(q) 6 0, which proves concavity of g.

C Additional Experimental Results
In our experiments, we compared numerical scoring to uniform letter grading schemes with T ∈ {4, 8, 12, 16, 20} grades. In
the main text, we presented results that show the impact of two parameters, the number of evaluations r and the motivation
coefficient αm, when one of them is varied while keeping the other fixed.

Here, we present additional experimental results, which show the impact of varying the mean µ of the true quality distribu-
tion (Figure 3), the standard deviation σ of the true quality distribution (Figure 4), and the standard deviation γ of the score
distribution (Figure 5).6

Overall, the mean true quality µ has little impact on the performance of different grading schemes. Similarly, the standard
deviation σ of the true quality prior also does not significantly affect the performance of the grading schemes, but somewhat
strikingly, it has a dramatic impact on the performance of ULG4 (uniform letter grading with 4 grades).

The impact of the standard deviation γ of the score distribution is more significant, since as γ increases, the performance of
the different grading schemes becomes more similar. However, we see that even for quite large values of of γ, our theoretical
results seem to hold. In particularly, we see that when two evaluations are taken place, numerical scoring is better when
αm < αd whereas uniform letter grading is better when αm > αd. This observation is quite encouraging since it probably
indicates that our results can be extended for cases where the score is not very well-concentrated around the true quality.

6Technically, these are the mean and the standard deviations of the respective underlying normal distributions before truncation.
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(b) αm = 0.2, r = 4
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(c) αm = 0.8, r = 2
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(d) αm = 0.8, r = 4

Figure 3: Performance of numerical scoring and different uniform letter grading schemes, with σ = 12, γ = 1.5 and αd = 0.5,
over different values of µ.
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(c) αm = 0.8, r = 2
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(d) αm = 0.8, r = 4

Figure 4: Performance of numerical scoring and different uniform letter grading schemes, with µ = 65, γ = 1.5 and αd = 0.5,
over different values of σ.
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(d) αm = 0.8, r = 4

Figure 5: Performance of numerical scoring and different uniform letter grading schemes, with µ = 65, σ = 12 and αd = 0.5,
over different values of γ.
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