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Abstract
In this work, we study fairness in centroid clustering. In this problem, k cluster centers must be
placed given n points in a metric space, and the cost to each point is its distance to the nearest
cluster center. Recent work of Chen et al. [6] introduces the notion of a proportionally fair clustering,
in which no group of at least n/k points can find a new cluster center which provides lower cost
to each member of the group. They propose a greedy capture algorithm which provides a 1 +

√
2

approximation of proportional fairness for any metric space, and derive generalization bounds for
learning proportionally fair clustering from samples in the case where a cluster center can only be
placed at one of finitely many given locations in the metric space.

We focus on the case where cluster centers can be placed anywhere in the (usually infinite)
metric space. In case of the L2 distance metric over Rt, we show that the approximation ratio of
greedy capture improves to 2. We also show that this is due to a special property of the L2 distance;
for the L1 and L∞ distances, the approximation ratio remains 1 +

√
2. We provide universal lower

bounds which apply to all algorithms.
We also consider metric spaces defined on graphs. For trees, we show that an exact proportionally

fair clustering always exists and provide an efficient algorithm to find one. The corresponding question
for general graph remains an interesting open question.

Finally, we show that for the L2 distance, checking whether a proportionally fair clustering
exists and implementing greedy capture over an infinite metric space are NP-hard problems, but
(approximately) solvable in special cases. We also derive generalization bounds which show that an
approximately proportionally fair clustering for a large number of points can be learned from a small
number of samples. Our work advances the understanding of proportional fairness in clustering, and
points out many avenues for future work.
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1 Introduction

Machine learning algorithms are increasingly being used for decision making in applications
where they affect human lives; popular examples include resume screening, evaluation of loan
applications, bail decisions, etc [25]. This has led to growing concern as to whether these
algorithms, which may view humans as “data points”, treat them fairly [3, 23]. Consequently,
research on designing fair machine learning algorithms is proliferating [22, 20].

Much of this literature focuses on fairness in classification [33, 32, 17], but the study
of fairness in other settings such as regression [1] and clustering [6] is also on the rise. In
this paper, we focus on fairness in clustering, specifically, in centroid clustering. In this
problem, we are given a set N of data points in a metric space, and a set M of possible
locations for cluster centers in the same metric space. Given k ∈ N, the task is to select a set
X ⊆M consisting of |X| = k cluster centers and assign each data point to a cluster center
— usually the closest — with the goal that data points are close to their assigned cluster
centers. Clustering has diverse applications in market research, pattern recognition, data
analysis, image segmentation, and facility location. In applications like image segmentation
or market research, often the goal is to simply identify different clusters of points among the
data. However, in facility location [12, 19, 13], where data points may represent locations of
houses in the neighborhood and cluster centers may represent locations where public facilities
(such as parks) will be built, it is of paramount importance that the facilities be distributed
to fairly serve the population.

Adapting an example given by Chen et al. [6], imagine that there is a dense urban
area with a population of 10,000, and far from it, there are 10 small communities with a
population of 100 each. The communities are closer to each other compared to how far they
are from the urban area, but still well distinguished. With k = 11, a standard clustering
algorithm such as k-means would identify the urban area as one cluster, and each small
community as one cluster. However, building just one park that serves 10,000 people in the
urban area, while each community of 100 people gets its own park violates the principle of
equal entitlement [21]; this principle would suggest that when allocating 11 parks among
a total of 11,000 people, the urban area consisting of 10,000 people should be allocated
their proportional share of 10 parks, and one park should serve the 10 smaller communities
consisting of 1,000 people altogether.

This notion of what a group deserves — group fairness — has been extensively studied
in machine learning, and a variety of definitions have been proposed [5, 14, 22, 17, 29].
Borrowing from a long line of literature on fair resource allocation [31, 27, 10, 7], Chen et
al. [6] proposed a novel definition of fairness in clustering that perfectly fits our motivation.
Given a metric d over a set N of n points and a set M of feasible cluster centers, they
say that clustering X ∈ Mk satisfies proportional fairness if there is no group of points
S ⊆ N with |S| ≥ n/k and a new cluster location y ∈M such that d(i, y) < minx∈X d(i, x)
for each member i ∈ S. Note that every group consisting of at least n/k points has a
proportional entitlement of at least one cluster center, so the existence of a y that reduces
the cost to each of them is violation of proportional fairness. Note that unlike many fairness
definitions in machine learning, which only provide fairness to groups of individuals that are
pre-defined based on certain protected attributes, this definition provides fairness to every
group of sufficient size. This may be helpful given recent observations that protecting groups
defined based on individual attributes may allow an algorithm to circumvent fairness [18],
or that information about which groups to protect may not be known in advance [15]. For
references to other related work, we direct the reader to the work of Chen et al. [6].
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1.1 Our Contribution
We build upon the work of Chen et al. [6]. While their work considers the metric d and the
set of feasible cluster center locationsM to be arbitrary (and |M| to be typically finite),
we focus on the case where the metric consists of usual distance functions such as L1, L2,
or L∞ over Rt, and cluster centers can be placed anywhere in the infinite metric space (i.e.
M = Rt). While this change is seemingly simple, the infinite cardinality ofM requires new
algorithmic tools and generalization bounds, which we provide in this work. In some cases,
we show that this in fact allows us to provide stronger approximation guarantees.

In Section 3, we analyze the greedy capture algorithm introduced by Chen et al. in the
case where d ∈ {L1, L2, L∞} andM = Rt. Chen et al. show that the algorithm provides
1 +
√

2 u 2.414 approximation to proportional fairness for all metric spaces. We show that
for d = L2 and M = Rt, it actually provides a better 2-approximation. We prove this
via a refinement of the result of Chen et al.: we express the approximation ratio obtained
by the algorithm in terms of a new characteristic of the metric that we term Apollonius
radius, and show that this radius is small for the L2 distance, allowing us to achieve a better
approximation ratio. However, we show that for L1 and L∞, the approximation ratio of
greedy capture is no better than 1 +

√
2.

In Section 4, we provide universal lower bounds which apply to all algorithms. Specifically,
we show that for d = L2 and M = Rt, no algorithm achieves better than 2/

√
3 u 1.155

approximation ratio, whereas for d ∈ {L1, L∞} andM = Rt, we get a lower bound of 1.4.
In Section 5, we consider the case whereM is the set of nodes of an unweighted graph,

and d measures the shortest distance between two nodes on the graph. When the graph is a
tree, we show that an exact proportionally fair clustering necessarily exists, and provide an
efficient algorithm to find one. When the graph is arbitrary, but k ≥ n/2 clusters need to
be placed, we show that a proportionally fair clustering again necessarily exists and can be
computed efficiently. Whether an exact proportionally fair clustering exists for all graphs
remains an interesting open question.

Next, in Section 6, we show that for d = L2 andM = Rt for t ≥ 2, checking whether a
proportional clustering exists is NP-hard. When t is large, even implementing the greedy
capture algorithm is NP-hard. However, this problem becomes efficiently solvable when t is
constant, and when t is large, using a PTAS for an important sub-routine of greedy capture,
we can efficiently compute a 2 · (1 + ε)-proportionally fair clustering for any fixed ε > 0.

Finally, in Section 7, we consider the problem of generalization: would a clustering
that is proportionally fair with respect to samples drawn from N remain (approximately)
proportionally fair with respect to the entire set N ? Chen et al. provide a positive answer
for the case when |M| is finite. Using the framework of VC dimension, we show that the
answer remains positive even whenM = Rt.

2 Preliminaries

Let N be a set of n data points (or agents), which lie in a metric space (X , d), where
d : X × X → R is a distance function satisfying the triangle inequality. For most of this
work, we consider the case where X = Rt for some t ∈ N, but in Section 5, we consider the
case where X is the set of nodes of a graph. We also focus on special distance functions
such as the Euclidean distance (L2), the Manhattan distance (L1), and the L∞ distance. Let
M⊆ X be a the set of locations where cluster centers can be placed. In this work, we focus
on the case whereM = X . Given k ∈ N, a k-clustering is a set X ∈Mk. We refer to each
x ∈ X as an open cluster center.



4 Proportionally Fair Clustering Revisited

The cost to agent i ∈ N induced by a cluster center x ∈M is the distance d(i, x), and
the cost to agent i ∈ N induced by a k-clustering X is the minimum distance from i to any
cluster center, i.e., d(i,X) , minx∈X d(i, x). Agent i is interested in minimizing her cost.

A set of points S ⊆ N containing at least dn/ke is entitled at least one cluster center. If
they can find a new cluster center that is better for each of them, we consider it a violation
of fairness. Formally:

I Definition 1. Given ρ ≥ 1, we say a k-clustering X ∈Mk is ρ-proportionally fair if there
is no S ⊆ N with |S| ≥ dn/ke and y ∈M such that ρ · d(i, y) < d(i,X) for all i ∈ S. If such
a coalition S and point y exist, we refer to S as a blocking coalition and y as the center that
they deviate to. When ρ = 1, we simply call this proportional fairness.

The reason to define ρ-proportionally fair solutions for ρ > 1 is because (exactly)
proportionally fair solutions may not exist [6].

In Section 5, we consider the problem of proportional fairness on graphs. Specifically,
given an undirected graph G = (V,E), we assume that N ⊆ V ,M = V (i.e. every node in
the graph is a feasible cluster center), and the distance between two nodes u, v ∈ V , denoted
by d(u, v), is the length of the shortest path connecting them. Notice that d satisfies the
triangle inequality.

3 Greedy Capture

In this section, we study the greedy capture algorithm defined by Chen et al. [6]. Put
succinctly, the algorithm starts with X = ∅. It grows a ball at every location inM at the
same rate. As soon as a ball contains at least dn/ke points, the corresponding center is
added to X and all the points covered by the ball are removed. As balls continue growing,
balls centered at previously added locations in X also continue growing with them and any
new points covered by such balls are immediately removed. We refer the reader to the work
of Chen et al. for full description of the algorithm. They show that for any metric space,
greedy capture is guaranteed to find a (1 +

√
2)-proportionally fair clustering.

We begin by providing a refined analysis of greedy capture by expressing the approximation
ratio in terms of a characteristic of the metric we call the Apollonius radius.

I Definition 2. Given ρ ≥ 1, the ρ-Apollonius radius of a metric (X , d) is defined as
AX ,d(ρ) = supx,y∈X ∆(ρ, x, y)/d(x, y), where ∆(ρ, x, y) is the radius of the smallest ball
centered at some point in X that contains the entire set {p ∈ X : ρ · d(p, y) ≤ d(p, x)}.

The reason that we term it the Apollonius radius is because the renowned Greek geometer
Apollonius of Perga was famously interested in the set {p ∈ Rt : ρ · d(p, y) ≤ d(p, x)} for
d = L2, and showed that this set is a ball already when ρ > 1. This special structure of L2

is what will allow us to achieve a better approximation guarantee for it.

I Theorem 3. For any metric (X , d) andM = X , greedy capture finds a ρ-proportionally
fair clustering, where ρ ≥ 1 is the smallest positive number satisfying AX ,d(ρ) · ρ+1

ρ ≤ 1.

Proof. Let X be the clustering returned by the algorithm. Suppose that X is not ρ-
proportionally fair for some ρ. Then, there exist S ⊆ N with |S| ≥ dn/ke and y ∈M such
that ρ · d(j, y) < d(j,X) for all j ∈ S.

Note that this implies y /∈ X. Let i be the first point in S that was covered during the
execution of greedy capture; suppose it was covered by a ball located at x ∈ X.

Note that for each j ∈ S, we have ρ · d(j, y) < d(j,X) ≤ d(j, x). Hence, S ⊆ {p ∈ X :
ρ · d(p, y) < d(p, x)}. Hence, by definition of ρ-Apollonius radius, there exists a ball of radius
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at most AX ,d(ρ) · d(x, y) that contains all points in S. Since i was the first point in S by
the ball centered at x, we must have d(i, x) ≤ AX ,d(ρ) · d(x, y). Further, since i ∈ S, we also
have d(i, y) < d(i, x)/ρ. Using the triangle inequality, we get

d(x, y) ≤ d(i, x) + d(i, y) < d(i, x) · ρ+ 1
ρ
≤ AX ,d(ρ) · ρ+ 1

ρ
· d(x, y)⇒ AX ,d(ρ) · ρ+ 1

ρ
> 1.

We have proved that if X is not ρ-proportionally fair, then AX ,d(ρ) · ρ+1
ρ > 1. Hence,

whenever AX ,d(ρ) · ρ+1
ρ ≤ 1, we have that X is ρ-proportionally fair. J

Let us argue that Theorem 3 is in fact a refinement of the (1 +
√

2)-approximation proved
by Chen et al. [6] that holds for all metrics.

I Theorem 4. For any metric (X , d), the ρ-Apollonius radius is AX ,d(ρ) ≤ 1
ρ−1 . Hence,

greedy capture finds a (1 +
√

2)-proportionally fair clustering for every metric.

Proof. Consider the set {p ∈ X : ρ·d(p, y) ≤ d(p, x)}. For any point p in this set, we have that
ρ ·d(p, y) ≤ d(p, x) ≤ d(p, y)+d(x, y) by the triangle inequality. Hence, d(p, y) ≤ d(x, y) · 1

ρ−1

for all p in the set. Thus, a ball centered at y ∈ M with radius d(x,y)
ρ−1 certainly covers the

entire set. Hence, AX ,d(ρ) ≤ 1
ρ−1 . Next, for ρ = 1 +

√
2, we have

AX ,d(ρ) · ρ+ 1
ρ
≤ ρ+ 1
ρ · (ρ− 1) = 1.

Hence, by Theorem 3, greedy capture finds a (1 +
√

2)-proportionally fair clustering. J

Next, we show that for d = L2, the ρ-Apollonius radius is slightly better, leading to a
better 2-approximation guarantee for greedy capture.

I Theorem 5. For the metric space (Rt, L2), where t ∈ N, the ρ-Apollonius radius is
ARt,L2(ρ) ≤ ρ

ρ2−1 , and hence, greedy capture finds a 2-proportionally fair clustering.

Proof. For the L2 norm in a Euclidean space, it is well-known that given x, y ∈ Rt and
ρ > 1, the set of points {p ∈ Rt : ρ · d(p, y) ≤ d(p, x)} is a ball of radius d(x, y) · ρ

ρ2−1 . This
is a simple algebraic exercise; its two-dimensional variant was known to Apollonius himself,
after whom the result is named (the derivation is widely available online, e.g., see [8]). This
immediately implies that ARt,L2(ρ) ≤ ρ

ρ2−1 .
Now, we have that

AX ,d(ρ) · ρ+ 1
ρ
≤ ρ

ρ2 − 1 ·
ρ+ 1
ρ

= 1
ρ− 1 .

This quantity is at most 1 when ρ is at least 2. Hence, by Theorem 3, greedy capture finds a
2-proportionally fair clustering for this metric. J

The obvious next question then is whether this refinement also provides an improved
approximation bound for other distance metrics. Unfortunately, for two other prominent
distance metrics, L1 and L∞, the answer is no. We show this by providing a direct
counterexample where greedy capture finds a clustering that is no better than (1 +

√
2)-

proportionally fair. The proof of the next result is in the appendix.

I Theorem 6. For the metric space (Rt, d) where t ≥ 2 and d ∈ {L1, L∞}, andM = Rt, there
exists an example in which the clustering produced by greedy capture is not ρ-proportionally
fair for ρ < 1 +

√
2.
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4 Universal Lower Bounds

In this section, we show lower bounds on approximation to proportional fairness that apply
to all algorithms, as opposed to the lower bounds in the previous section that apply only
to greedy capture. Chen et al. [6] show that when N , M, and the metric are arbitrary,
ρ-proportional fairness cannot be guaranteed for ρ < 2. They also consider the special case
where N =M, and prove a slightly weaker lower bound of 1.5. One question that they do
not address is whether greedy capture provides better than (1 +

√
2)-approximation in this

special case; in the appendix, we show that this is not the case.
In this section, we turn our attention to the case of our interest: M = X = Rt and

d ∈ {L1, L2, Linf}. When t = 1, it is easy to notice that an exactly proportionally fair
clustering always exists.1 When t ≥ 2, we provide a lower bound of 2/

√
3 for d = L2 and a

lower bound of 1.4 for d ∈ {L1, L∞}.

I Theorem 7. For the metric space (Rt, L2) where t ≥ 2 andM = Rt, there is an example
in which no clustering is ρ-proportionally fair for ρ < 2/

√
3 u 1.155.

Proof. Once again, we set t = 2 without loss of generality. Consider an instance in which
|N | = 6 and k = 3. Suppose |N | consists of two isomorphic sets of 3 points each, where each
set of 3 points forms an equilateral triangle of length 1 and the two sets are sufficiently far
from each other. Then, by the pigeonhole principle, under any clustering X, at least one set
of 3 points, say {p1, p2, p3}, must derive their costs from a single cluster center x.

Let a denote the circumcenter of their triangle. Then, d(a, p1) = d(a, p2) = d(a, p3) =
1/
√

3. Hence, d(a, p1) + d(a, p2) + d(a, p3) =
√

3. Notice that in an equilateral triangle, the
circumcenter is also the Fermat point, which minimizes the sum of distances from the three
vertices. Hence, for the cluster center x, we have d(x, p1) +d(x, p2) +d(x, p3) ≥

√
3. Without

loss of generality, assume d(x, p1) ≥ d(x, p2) ≥ d(x, p3). Then, d(x, p1) + d(x, p2) ≥ 2/
√

3.
Now, p1 and p2 can deviate, choose a location y on the line joining p1 and p2 such that

d(y, p1)/d(y, p2) = d(x, p1)/d(x, p2). Since d(y, p1) + d(y, p2) = d(p1, p2) = 1, this reduces
the cost to each point by a factor of 2

√
3. Hence, the clustering is not ρ-proportionally fair

for ρ < 2/
√

3. J

Note that the lower bound of 1.155 is significantly lower than the upper bound of 2
obtained by greedy capture for L2 as shown in Theorem 5. Closing the gap is an interesting
open question. Next, we show a lower bound for L1 and L∞. The proof is deferred to the
appendix.

I Theorem 8. For the metric space (Rt, d), where t ≥ 2 and d ∈ {L1, L∞}, and M = Rt,
there is an example in which no clustering is ρ-proportionally fair for ρ < 1.4.

5 Clustering in Graphs

In this section, we consider the special case where the metric space (X , d) is induced by an
undirected graph G = (V,E). Specifically, we let X = V be the set of nodes of the graph,
and assume that d(x, y) measures the length of the shortest path between nodes x and y. As
in the previous sections, we restrict our attention toM = X , i.e., when every point of the
metric space is a feasible cluster center.

1 For instance, opening a cluster at every n/k-th data point from left to right is proportionally fair.
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This is an important special case since clustering (or facility location) in graphs (or
networks) is very well studied. However, while objectives such as truthfulness [2] and social
welfare maximization (or social cost minimization) [11] have received significant attention,
fairness has not.

We study proportional fairness for this setting. Our first result shows that when the
graph G = (V,E) is a tree, an exact proportionally fair clustering always exists, and can be
computed by an efficient algorithm.

Intuitively, the algorithm works as follows. We first root the tree at an arbitrary node
r to obtain a rooted tree (G, r). We denote with h the height of the rooted tree, and with
level(x) the height of node x relative to the root r (with level(r) = 1). Let ST(x) denote the
subtree of node x (i.e. the set of nodes v such that with level(v) ≥ level(x) and the unique
path from v to r contains x). The algorithm starts from the highest level (the leaves), opens
a center every time it finds a node whose subtree contains at least dn/ke nodes, and deletes
this subtree from the graph. At the end, the cost to each node is still defined using the
closest node at which a center is opened by the algorithm.

Algorithm 1 Proportionally Fair Clustering for Trees

1: Root the tree G at an arbitrary node r
2: X ← ∅
3: Gd ← G

4: for ` = d to 1 do
5: G`−1 ← G`

6: for every x ∈ V with level(x) = ` and |ST(x)| ≥ dn/ke do
7: X ← X ∪ {x}
8: G`−1 ← G`−1 \ ST(x)
9: if G0 6= ∅ then
10: X ← X ∪ {r}

return X

I Theorem 9. Let G = (V,E) be an undirected tree, (V, d) be the metric induced by G,
N ⊆ V ,M = V , and k ∈ N. Then, Algorithm 1 yields a proportionally fair clustering.

Proof. Let X be the clustering returned by Algorithm 1. First, we notice that X contains
at most k centers. This is because every time the algorithm opens a center in the for loop, it
deletes at least dn/ke nodes from the graph. If n/k is an integer, then this happens exactly k
times and the remaining graph is empty. If n/k is not an integer, then this happens exactly
k − 1 times, the remaining graph is non-empty, and then the algorithm opens an additional
center at the root.

Next, suppose for contradiction that X is not proportionally fair. Hence, there exists a
set S ⊆ V with |S| ≥ dn/ke and y ∈ V such that d(i, y) < d(i,X) for all i ∈ S.

For each node i ∈ V , define p(i) to be its closest ancestor in X (i.e. p(i) ∈ X and
i ∈ ST(p(i)), and p(i) is the node of maximum level satisfying these two conditions). Note
that because the algorithm always opens a center at the root node, p(i) is well-defined for
each node i.

Further, note that for each i ∈ S, d(i,X) ≤ d(i, p(i)). And for nodes j /∈ ST(p(i)),
d(i, j) > d(i, p(i)). Hence, the cost to i can only reduce if the deviating center is in ST(p(i)).
We now consider two cases.

Case 1: ∃i, i′ ∈ S : p(i) 6= p(i′). First, suppose that p(i) and p(i′) are siblings (i.e.
ST(p(i))∩ST(p(i′)) = ∅). As i can only improve if the deviating center is in ST(p(i)) and
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i′ can only improve if the deviating center is in ST(p(i′)), we obtain that no deviating
center y can reduce the cost to i and i′ simultaneously, which is a contradiction.
Next, suppose that p(i) ∈ ST(p(i′)). Then, we must have y ∈ ST(p(i)), otherwise the
cost to i would not reduce. But then, d(i′, p(i)) ≤ d(i′, y). Hence, the cost to i′ does not
reduce due to y, which is also a contradiction.
The remaining case of p(i′) ∈ ST(p(i)) is symmetric to the last case.
Case 2: ∀i, i′ ∈ S, p(i) = p(i′) = p∗. Let O = X ∩ ST(p∗) \ {p∗} be the set of open
centers in ST(p∗) except p∗ itself. Note that by definition of p∗, we have that if i ∈ S,
then i /∈ ST(o) for any o ∈ O.
This implies that if y ∈ ST(o) for some o ∈ O, then for every point i ∈ S, we have
d(i, y) ≥ d(i, o) ≥ d(i,X), meaning that y would not reduce the cost to any point in S.
Hence, y ∈ ST(p∗) \ ∪o∈O ST(o).
In other words, if center p∗ was opened in the iteration with index ` (let ` = 0 if p∗ is the
root node that was opened outside of the for loop), then S ∪ {y} ∈ G` (any point from S

or y could not have been deleted in any previous iteration). However, for y to reduce the
cost to each i ∈ S, we must have S ⊆ ST(y). However, then, y is a node of higher level
than p∗ that still contains at least |S| ≥ dn/ke points, so it must have been removed in a
previous iteration. This is the desired contradiction.

This concludes the proof. J

This raises an immediate question: what about graphs that are not trees? We can
consider the universal lower bound for (R2, L1) metric from Theorem 8. If we construct a
very dense grid graph (in which the shortest path distance mimics the L1 distance in the
plane) in the relevant region of R2 from that example, we can derive the same lower bound
of 1.4 on the approximation ratio to proportional fairness for graphs. Whether better lower
bounds exist is an open question.

We do note that there is an interesting special case where N = V , i.e., where every
node of the graph is a data point itself. In this case, we do not know whether an exact
proportionally fair clustering always exists, and leave this as an interesting open question.
That said, we do note that if G is connected and we want to place a large number of clusters
k ≥ n/2, then it can be shown that a proportionally fair clustering exists. This is because
a dominating set2 of any size k ≥ n/2 is guaranteed to exist in a graph with n nodes [24]
and can be computed efficiently [16]. If nodes in such a set are chosen as the cluster centers,
then every node in the graph already has cost at most 1. So to deviate, all nodes in the
blocking coalition must achieve cost 0. However, since the blocking coalition must contain at
least n/k ≥ 2 nodes, this is impossible. Thus, the problem of finding a proportionally fair
clustering in general graphs with N =M = V becomes trivial when k ≥ n/2, but remains
open when k < n/2.

6 Computational Aspects

In this section, we consider computational aspects of two problems: the problem of checking
whether a proportionally fair clustering exists, and the problem of implementing the greedy
capture algorithm whenM = Rt. Note that because the naive description of greedy capture
requires simultaneously growing a ball from each point inM, this is easy to implement when

2 A set of nodes is called a dominating set if every node in the graph is either in this set or adjacent to a
node in this set.



E. Micha and N. Shah 9

v1 ∨ v3 ∨ v4

c1

v1 ∨ v3 ∨ v4

c2

v1 ∨ v2 ∨ v3

c3

v1 v2 v3 v4 v5 v6 v7

¬v3 ∨ ¬v4 ∨ ¬v5

c5

¬v1 ∨ ¬v2 ∨ ¬v6

c4

Figure 1 An example of labelling clauses and variables.

vi,1 v̄i,1 ai,1 bi,1 vi,2 v̄i,2 ai,2 bi,2 . . . vi,m v̄i,m ai,m bi,m

Figure 2 The variable gadget corresponding to variable vi. Directed edges indicate the closest
neighbour of each node.

M is finite (as shown by Chen et al. [6]) but difficult when M is infinite. We begin by
considering the former problem. The full proof is deferred to the appendix, but we provide a
sketch here.

I Theorem 10. Given finite N , finiteM, k ∈ N, and d = L2, checking whether a propor-
tionally fair clustering exists is NP-hard.

Proof Sketch. We first show a reduction which creates an instance of proportionally fair
clustering with n/k = 2, but later show how to extend this to the case where n/k is any even
integer. We use a polynomial-time reduction from the planar monotone rectilinear 3-SAT
problem, in which, given a 3-SAT formula, each clause cj consists of only positive or only
negative literals, the graph connecting clauses to literals they contain is planar, and this
graph has a planar embedding in which each variable vi is represented by a rectangle on the
x-axis and each positive (resp. negative) clause is represented by a rectangle above (resp.
below) the x-axis with three vertical lines or legs to its three variables. Figure 1 shows what
a planar monotone rectilinear 3-SAT instance looks like.

Let I be an instance of a planar monotone rectilinear 3-SAT which consists of l boolean
variables and m monotone clauses. Given I, we construct an instance I ′ of proportionally fair
clustering with |N | = Θ(lm2) andM = Θ(lm2) with N ,M⊂ R2 such that I is satisfiable if
and only if there exists a proportionally fair clustering in I ′.

First, for each variable vi, we construct a variable gadget which contains points vi,j , v̄i,j ,
ai,j and bi,j for j ∈ [m]. They are all on the line, and belong to both N andM. This gadget
is shown in Figure 2. The point vi,j (resp. v̄i,j) corresponds to the positive (resp. negative)
literal of vi, specifically reserved for clause cj (whether or not it appears in that clause). We
set the distances in a way that the closest node to any node is the node on its right, while
the closest node to the last node bi,m is its previous node ai,m.

All variable gadgets are located on the x-axis in such a way that the gadget of variable
vi is on the left of the gadget of variable vi+1, and from left to right, the distances between
two adjacent variable gadgets are slightly decreasing. (The exact construction is provided in
the full proof.)
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Next, we construct two clause gadgets, a basic and an auxiliary one, for each clause. The
auxiliary gadget of each clause is sufficiently far from all other gadgets in the construction.
It consists of 3 points and 3 feasible centers such that at least two centers must be placed
within each such gadget, otherwise, ρ-proportional fairness is violated for all ρ < 1.214. The
purpose of this gadget is to make fewer than a proportional number of centers available for
the rest of the construction.

In the basic gadget of a clause, we add points that form a rectangle with three legs.
The interaction of this gadget with variable gadgets is shown in Figure 3. Let yj be the
y-coordinate where we place all the points that consist the virtual rectangle of cj . We choose
the values of yi, i ∈ [m], such that each point in a basic gadget has as closest neighbour a
point in the same gadget. Let cj be a positive clause which contains the positive literals
of variables vq, vs and vt with q < s < t (respectively, if the clause is negative). We add a
virtual rectangle in the interval [(vq,j , yj), (vt,j , yj)] and add the three virtual legs that are
vertical at x-coordinates vq,j , vs,j , and vt,j , respectively. First, we place 2m(t − s) points
in the interval [(v̄s,j , 0), (vt,j , 0)]. Denote these points as r1

j,k, k ∈ [1, 2m(t− s)], where the
x-coordinate of r1

j,k is less than the x-coordinate of r1
j,k+1, and we set the distances such

that r1
j,k has as its closest neighbor r1

j,k+1. Second, we place in a similar way 2m(s − q)
points in the interval [(vq,j , yj), (as,j−1, yj)] (or [(vqj , yj), (as−1,m, yj)] if j = 1). We denote
these points as r2

j,k, k ∈ [1, 2m(s − q)], where the x-coordinate of point r2
j,k is larger than

the x-coordinate of point r2
j,k+1, and we set the distances such that r2

j,k has as its closest
neighbor r2

j,k+1.
It remains to construct the legs of each clause. First, we place 2nj points (see appendix

for the exact value of nj), denoted by l1j,k, k ∈ [1, 2nj ], with x-coordinate equal to vq,j and
y-coordinate less than yj . Specifically, we locate l1j,1 in a position such that the leftmost
point in the rectangle of cj has as its closest neighbor l1j,1, the closest neighbor of every
l1j,k, k ∈ [1, 2nj − 1], is l1j,k+1, and the closest neighbor of l1j,2nj

is vq,j . For the remaining
legs, we add points at exactly the same y-coordinates of the points in the first leg, but with
x-coordinates equal to vs,j and vt,j . Denote the points of the middle and the right leg as l2j,k
and l3j,k, k ∈ [1, 2tnj ], respectively.

Lastly, for each clause we add one more point, denoted by oj in a location such that it
is the circumcenter of the triangle with nodes r1

j,1, r2
j,1, and l2j,1, and these are the (tied)

closest neighbors of oj . Figure 3 shows this entire construction for an example instance which
consists of 2 positive clauses (only one of which is shown in the figure) and 3 variables.

In this construction, note that each clause gadget (the union of basic and auxiliary
gadgets) has an even number of points equal to 2n′j +4 (for some n′j ; see appendix for details),
and each variable gadget has 4m of points. Hence, we choose k = 2ml +

∑m
j=1(n′j + 2m), so

that n/k = 2. Now, we are ready to prove that I is satisfiable if and only if there exists a
proportionally fair clustering in I ′.

Note that in each variable gadget we need at least 2m cluster centers in order for the
clustering to be proportionally fair. This is because every pair of adjacent points can deviate
if neither of them is a cluster center. There are only two ways to place exactly 2m centers:
we can either open centers at vi,j and ai,j for all j ∈ [4m], or open centers at v̄i,j and bi,j for
j ∈ [4m]. The first choice corresponds to an assignment where xi is set to true, while the
second corresponds to an assignment where xi is set to false.

As we mentioned earlier, the auxiliary gadget of each clause needs at least two cluster
centers placed within it, otherwise a proportionally fair clustering cannot exist. This leaves
n′j centers for every basic clause gadget. However, each basic gadget needs at least n′j centers.
To see this, notice that from point r2

j,1 to the last point of the left leg, we need to add one
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v1,1 v̄1,1 . . . b1,2 v2,1 v̄2,1 . . . b2,2 v3,1 v̄3,1 . . .. . . b3,2

l11,4

l11,3

l11,2

l11,1

l21,4

l21,3

l21,2

l21,1

l31,4

l31,3

l31,2

l31,1l31,4 l31,4 y ≈ 7

l31,4 l31,4 y ≈ 5

l31,4 l31,4 y ≈ 3

l31,4 l31,4 y ≈ 1

r2
1,1

r2
1,1

r2
1,1

r1
1,1

r2
1,1

r2
1,1

r2
1,4

r2
1,1

r2
1,1

r1
1,4

r2
1,1

r2
1,1

. . . . . .l31,4 l31,4 y = 9
o1

Figure 3 The rectangle and the legs of clause c1 = v1 ∨ v2 ∨ v3 in an instance with m = 2 and
l = 3. A directed edge from one node points to the closest neighbor of the node.

center at every other point. Similarly, from point r1
j,1 to the last point of the right leg, we

also need a center at every other point. The same holds for the middle leg. As these are
2n′j points in total, this requires at least n′j centers in an alternating pattern. Notice that at
least one of r1

j,1, r2
j,1 and l2j,1 must also be an open center, otherwise oj can deviate with one

of them. This is possible only if at least one of the corresponding variable nodes is an open
center. The reason is that the last point of at least one leg is not an open center and this
point should not want to deviate with its closest node (which corresponds to the literal of
the clause). This happens if and only if this node is a center, and so the clause is satisfied.

This shows that I is satisfiable if and only if I ′ admits a proportionally fair clustering. J

Next, we consider implementing the greedy capture algorithm when M = Rt. As we
remarked earlier, this is tricky because the description of greedy capture requires simultan-
eously growing a ball from every location in M until a ball captures at least n/k points.
Let us focus on the first ball for which this happens. WhenM = Rt, this is the smallest
ball that contains at least n/k of n given points. The problem of finding the smallest ball
containing at least p of n given points is a well-studied problem in computational geometry.
This is known to be NP-hard, but admits a PTAS. We show that its NP-hardness easily
carries over to implementing the greedy capture algorithm, but we can also use its PTAS to
approximately implement greedy capture with only a slightly worse approximation guarantee
to proportional fairness than the 2-approximation guarantee derived in Theorem 5. The
proof of this result appears in the appendix.

I Theorem 11. Let t ∈ N, finite N ⊂ Rt, and k ∈ N be given as input. Suppose M = Rt
and d = L2. Then, the following hold.
1. The clustering returned by greedy capture algorithm cannot be computed in polynomial

time unless P = NP .
2. If t is constant, then it can be computed in polynomial time.
3. Even if t is not constant, for any constant ε > 0, there exists a polynomial-time algorithm

which finds a (2 + ε)-proportionally fair clustering.
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7 Learning Fair Clustering

A key concern in machine learning is generalization. In our context, the question is whether
a clustering that is (approximately) proportionally fair with respect to random samples taken
from an underlying population would remain (approximately) proportionally fair with respect
to the whole population. A positive answer to this question could be useful in two ways.

First, sometimes we may have access only to samples from an underlying population. In
this case, we can rest assured that by computing a clustering that is fair with respect to the
samples, it is also fair with respect to the population. Second, even if the entire population
is known, it may be very large. As we noticed in Section 6, finding a proportionally fair
clustering or even running the greedy capture algorithm is NP-hard; thus, these tasks may be
infeasible for a large population. However, it may be possible to do so on a smaller sample
taken from the population, which is where the generalization guarantee can be useful.

Chen et al. [6] show that generalization indeed holds for proportional fairness. Specifically,
they define the following relaxation of ρ-proportional fairness.

I Definition 12. We say that a k-clustering X is ρ-proportionally fair to (1 + ε)-deviations
with respect to N if for all S ⊆ N with |S| ≥ |N | · (1 + ε)/k and all y ∈M, there exists at
least one i ∈ S such that ρ · d(i, y) ≥ d(i,X).

Chen et al. show that if N ⊆ N is a uniformly random sample of size |N | = Ω
(
k3

ε ln |M|δ
)
,

and if X is ρ-proportionally fair with respect to N , then X is ρ-proportionally fair to (1 + ε)-
deviations with respect to N with probability at least 1− δ.

Unfortunately, this bound depends on |M|, and breaks down when |M| is infinite, which
is the focus of our work. We establish a stronger guarantee that does not depend on |M| by
utilizing the framework of VC dimension [30] for binary classifiers. First, we show that there
is a natural family of binary classifiers associated with a given clustering.

I Definition 13. Given a set of points N , a k-clustering X ∈Mk, and y ∈M, define the
binary classifier hX,y : N → {0, 1} such that hX,y(i) = 1 if and only if ρ · d(i, y) < d(i,X).
Define the “error” of this classifier on a set of points S ⊆ N as errS(hX,y) = (1/|S|) ·∑

i∈S hX,y(i).

Intuitively, hX,y(i) = 1 if and only if i can be part of a coalition that complains about
the unfairness of X by demonstrating y as a location that provides them ρ-improvement.
The use of the term “error” may be confusing. Unlike in traditional classification context,
where there is a true classifier and the error is measured in terms of the fraction of points on
which a given classifier differs from the true classifier, in our case the “error” is simply the
fraction of points that can deviate. One can equivalently think of the “true classifier” as the
one that outputs 0 on every point.

Note that X is ρ-proportionally fair to (1 + ε)-deviations with respect to N if and only
if errN (X, y) ≤ 1+ε

k for all y ∈ M. Our goal is to show that given a sufficiently large
random sample N ⊆ N , if we have a clustering X that is ρ-proportionally fair with respect
to N , then it is ρ-proportionally fair to (1 + ε)-deviations with respect to N with high
probability. However, note that we have no control over what X or y are. This is where the
stronger “uniform convergence” guarantee — this establishes that |errN (hX,y)− errN (hX,y)|
is bounded for all X, y — becomes useful. Let us begin by introducing the VC dimension
and a well-known uniform convergence guarantee that depends on the VC dimension.

I Definition 14 (VC Dimension). Let N be a set of points. Let H be a family of binary
classifiers over N . We say that H shatters S ⊆ N if for every labeling ` : S → {0, 1}, there
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exists a classifier h ∈ H such that h(i) = `(i) for all i ∈ S. The VC dimension of H, denoted
dimVC(H), is the size of the largest S that can be shattered by H.

I Proposition 15 ([26]). Let H be a family of binary classifiers over a set of points N . If
N ⊆ N is a uniformly random sample with |N | ≥ Ω

(
dimVC(H)+ln(1/δ)

ε2

)
, then with probability

at least 1− δ, |errN (h)− errN (h)| ≤ ε for all h ∈ H.

We show that the family of classifiers {hX,y|X ∈Mk, y ∈M} has finite VC dimension
whenM = Rt with finite t. This, along with Proposition 15, gives us the desired result.

I Theorem 16. Fix ε, δ > 0, ρ ≥ 1, k, t ∈ N, and metric (X , d) where X = Rt and d = L2.
Let N be a set of points and M = Rt be the set of feasible cluster centers. Let N ⊆ N be
sampled uniformly at random with |N | ≥ Ω

(
k2·(tk ln k+ln(1/δ))

ε2

)
. Then, with probability at

least 1 − δ, every k-clustering X ∈ Mk that is ρ-proportionally fair with respect to N is
ρ-proportionally fair to (1 + ε)-deviations with respect to N .

Proof. Given a pair of points x and y, note that the set of points i such that ρd(i, y) ≥ d(i, x)
is a half-space in Rt when rho = 1 and a ball in Rt when ρ > 1. Hence, given X ∈Mk, the
set of points i satisfying ρd(i, y) ≥ d(i,X) is the union of k half-spaces or balls in Rt. It is
known that the VC dimension of unions of k half-spaces or balls in Rt is O(tk ln k) [4].

Substituting this bound in Proposition 15, we get that |N | ≥ Ω
(
k2·(tk ln k+ln(1/δ))

ε2

)
is

sufficient to ensure that with probability at least 1− δ, errN (hX,y) ≤ errN (hX,y) + ε/k for
all X, y. In particular, when X is ρ-proportionally fair with respect to N , this ensures that
with probability at least 1− δ, X is ρ-proportionally fair to (1 + ε)-deviations with respect
to N . J

While we do not formally consider the case of infinite set of points (|N | = ∞) in this
work, one can define N as a distribution over infinitely many points, and ask whether a
probability mass of at least 1/k has a beneficial deviation. Note that Theorem 16 applies to
this case as well because it does not depend on |N |.

8 Discussion

In this work, we advanced the study of proportionally fair clustering in a metric space, and
focused on the case where the set of possible cluster centerM is the entire (usually infinite)
metric space. Our work leaves a number of open questions.

The most immediate question is to bridge the gap between our lower and upper bounds on
the approximation ratio to proportional fairness from Section 3 and Section 4. In particular,
we conjecture that for L2, the lower bound of 2/

√
3 from Theorem 7 may be achievable. This

specific number is reminiscent of Jung’s theorem, which states that for L2 distance in R2

(which is where the lower bound stems from), any set of points with diameter at most 1 is
contained in a ball of radius at most 1/

√
3. This could be useful in closing the gap for L2.

Section 5 leaves open an important question which is whether a proportionally fair clustering
exists for all graphs when N =M is the set of all nodes of the graph. Our hardness results
from Section 6 and learnability results from Section 7 only apply to the L2 distance because
they use results and techniques from the literature that are only available for L2. Deriving
similar results for other distance metrics would be very interesting.

More broadly, we find proportional fairness to be a very elegant fairness solution concept
for clustering. Adapting this idea of proportional fairness to other machine learning settings
such as regression or classification can lead to many avenues for future work.
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A Proof of Theorem 6

Proof. We provide an example with t = 2; for an example in higher dimension, we can
simply set the remaining coordinates to 0. Further, for R2, we remark that L1 and L∞ are
equivalent3 up to a rotation by 45 deg. Hence, a counterexample for L1, rotated by 45 deg, is
also a counterexample for L∞. Thus, let us use d = L1 without loss of generality.

In our example, we have |N | = 28 and k = 7. N consists of four isomorphic sets of 7
points each. The coordinates of one such set of points are given below.

p1 p2 p3 p4 p5 p6 p7

(0, 1) (1, 0) (0,−1) (−1, 0) (0,
√

2) (1 + ε,
√

2) (−1− ε,
√

2)

Each set is located sufficiently far from the other sets. Greedy capture opens the first
four cluster centers at coordinates (0, 0) in each set. Then, it opens the remaining three
cluster centers in three of the sets. Among points in the remaining fourth set, which derive
their cost from the single center at (0, 0) in their set, points {p2, p5, p6, p7} can deviate with
a center at (0,

√
2), which would reduce the cost to each point by a factor at least 1 +

√
2

as ε→ 0. Hence, the clustering produced by greedy capture is not ρ-proportionally fair for
ρ < 1 +

√
2. J

3 We say that two distance metrics d1 and d2 are equivalent if there exists a constant κ > 0 such that
for all x, y, d1(x, y) = κd2(x, y). In this case, the equivalence is achieved after the space is rotated by
45 deg.
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B Proof of Theorem 8

Proof. Once again, we set t = 2 without loss of generality, and using the earlier noted
equivalence between L1 and L∞ for R2 up to a rotation by 45 deg, we only need to derive
the lower bound for one of the two metrics. We do so for L∞ for simplicity of calculation.

Consider an instance in which |N | = 10 and k = 5. Note that n/k = 2. Let N consist of
two isomorphic sets of 5 points each; the coordinates of one of the sets is given below. The
other set, as usual, is assumed to be sufficiently far.

p1 p2 p3 p4 p5

(0, 5) (1, 0) (−1, 0) (3, 2) (−3, 2)

As before, by the pigeonhole principle, under any clustering X, at least one set of 5 points
(say the set described above, without loss of generality) must derive its costs from only two
cluster centers.

Let those cluster centers by c1 = (x1, y1) and c2 = (x2, y2). Let X = {c1, c2}. Suppose
for contradiction that the clustering is ρ-proportionally fair for some ρ < 1.4. We consider
different cases regarding the centers’ positions, and we prove that for each case, there exists
a pair of points that can deviate to a new center y and reduce the cost to each by a factor of
at least 1.4, establishing the contradiction.

First, we claim that min(x1, x2) < −0.6. Indeed, if min(x1, x2) ≥ −0.6, then d(p3, X) ≥
0.4 and d(p5, X) ≥ 2.4, while d(p3, p5) = 2. So, as in the proof of Theorem 7, they can choose
a point y on the line connecting them such that d(y, p3)/d(y, p5) = d(p3, X)/d(p5, X), and
reduce the cost to each by a factor of at least 1.4. A symmetric argument with points p2 and
p4 (instead of p3 and p5) shows that max(x1, x2) > 0.6.

Next, we claim that max(y1, y2) > 1.4. Indeed, if max(y1, y2) ≤ 1.4, then d(p1, X) ≥ 3.6
and d(p4, X) ≥ 0.6, while d(p1, p4) = 3. So, as before, they can choose a point on the line
connecting them such that the cost to each reduces by a factor of at least 1.4. A symmetric
argument with points p2 and p3 (instead of p1 and p4) shows that min(y1, y2) < 1.4.

Under these observations and as the instance is symmetric with respect to the y-axis,
without loss of generality, we assume that y1 > 1.4 and x1 < −0.6, while y2 < 1.4 and
x2 > 0.6. We distinguish between two cases.

Case 1: d(p3, X) = d(p3, c1). Let y1 = 1.4 + y′1. Then, d(p3, X) ≥ 1.4 + y′1. As
d(p2, c1) ≥ 1.6, we have that d(p2, X) = d(p2, c2) < 1.4− y′1, otherwise p3 and p2 could
choose a point on the line connecting them to reduce their costs by a factor of at least
1.4. Hence, x2 < 2.4 − y1 and y2 < 1.4 − y1. Then, notice that d(p4, c1) ≥ 3.6 and
d(p4, c2) ≥ 0.6 + y′1, while d(p1, c2) ≥ 3.6 and d(p1, c1) ≥ 3.6− y′1. Now, it is easy to see
that p1 and p4 can choose a center on the line connecting them and reduce their costs by
a factor of at least 1.4.
Case 2: d(p3, X) = d(p3, c2). Let x2 = 0.6 + x′2. Then, d(p3, X) ≥ 1.6 + x′2. As
d(p5, c2) ≥ 3.6, we must have d(p5, X) = d(p5, c1) < 1.2 − x′2. Hence, x1 < 1.8 − x′2
and y2 < 3.2− x′2. Then, notice that d(p1, c2) ≥ 3.6 and d(p1, c1) ≥ 5− 3.2 + x′2, while
d(p4, c1) ≥ 3.6 and d(p4, c2) ≥ 2.4 − x′2. Now, we observe that p1 and p4 can choose a
center on the line connecting them and reduce their costs by a factor of at least 1.4.

This concludes the proof. J

C Proof of Theorem 10

Proof. We begin by proving the theorem for the case that n/k = 2, and later we generalize
it for every case that n/k is equal to an even integer.
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We use a polynomial-time reduction from planar monotone rectilinear 3-SAT. Let φ be
an instance of 3-SAT with l boolean variables, m clauses, and each clause is monotone, i.e.
consists only of positive or negative literals. Let I be an instance of a planar monotone
rectilinear 3-SAT which consists of φ. In a rectilinear embedding of planar 3-SAT, each
variable is represented by a rectangle and all the rectangles are located on x-axis without
intersections. We denote with vi the variable with the ith leftmost variable rectangle in I.
Moreover, each clause is represented as a rectangle with three vertical lines or legs to its
three literals. In the planar monotone rectilinear 3-SAT, all positive clauses (consisting only
of positive literals), are drawn on the positive side of the variables and all negative clauses
(consisting only of negative literals) are drawn on the negative side of the variables. We
assume that there are cp positive and cn negative clauses (i.e. cp + cn = m). We label the
clauses as following: start from the positive side and label with cj the clause with the jth
largest y-value in I, and then continue with the negative side and label with cj+cp the clause
with the jth smallest y-value. We break ties from left to right. In figure 1, you can see a
planar monotone rectilinear 3-SAT instance with the corresponding labelling of the variables
and the clauses.

Let ε < min{ 2
16ml−2 ,

1
32lm2+12m2+8ml+4m ,

√
2−1

4
√

2lm−1 ,
1

8lm ,
2.86
32lm}. Given I, we will construct

an instance I ′ of data points in 2-dimensions such that if φ is satisfiable then there is a
proportionally fair clustering, otherwise there is no (1 + ε)-proportional solution. The high
level idea is that we will construct an image similar with an instance of planar monotone
rectilinear 3-SAT by placing points in the plane.

First, for each variable vi, we construct a variable gadget which contains the nodes vi,j ,
v̄i,j , ai,j and bi,j , for j ∈ [m]. So, each variable gadget contains 4m points, and all these
points are feasible cluster centers. The node vi,j (resp. v̄i,j) corresponds to the positive (resp.
negative) literla of vi, which may appear in clause cj . All these nodes form a line as it is
shown in figure 2. Regarding their distances, we set for every j ∈ [m− 1]

d(vi,1, v̄i,1) = 1− (l − 1)ε− (4m− 1)(i− 1)ε− ε
d(v̄i,j , ai,j) = d(vi,j , v̄i,j)− ε
d(ai,j , bi,j) = d(v̄i,j , ai,j)− ε
d(vi,j+1, v̄i,j+1) = d(bi,j , vi,j+1)− ε.

Intuitively, each node in a gadget has as closest neighbour the node on its right, and the
distance of every two points in x-axis is at least equal to 1 − (l − 1)ε − (4m − 1)lε =
1− 4mlε+ ε > 1− 4mlε.

All the variable gadgets are located in x-axis in such a way that the gadget of variable vi
is on the left of respective gadget of variable vi+1 and we set d(bi,m, vi+1,1) = 1− iε > 1− lε,
∀i ∈ [l − 1]. This means that every point in a variable gadget prefers a point in its gadget
than any point that belongs in a different one.

Then, we construct two clause gadgets, the basic and the auxiliary for each clause. We
start by making a gadget which captures the rectangle and the legs of each clause in I by
placing some points. Let yj be the y-coordinate where we place all the points that consist
the virtual rectangle of cj . We set the values of yj as follows: for each positive clause cj we
set yj = 8m+ 1− 8(j − 1) and for each negative clause cj we set yj = −(8m+ 1− 8(j − 1)).
Hence, the rectangles of two different clauses have distance at least equal to 8.

Let cj be a positive clause which contains the positive literals of variables vq, vs and
vt with q < s < t (respectively, if the clause is negative). Our goal is to design a virtual
rectangle in the interval [(vq,j , yj), (vt,j , yj)] and add the three virtual legs that are vertical
to (vq,j , 0), (vs,j , 0) and (vt,j , 0), respectively.

We start from the virtual rectangle. Notice that there are 2m(t− s) points in the interval
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[(v̄s,j , 0), (vt,j , 0)]. We place 2m(t − s) points in the interval [(v̄s,j , yj), (vt,j , yj)]. More
specifically, we add one point in position (as,j , yj) and then every two points in x-axis we
add one point at the respective x-coordinate with y-coordinate equal to yi. Denote these
points as r1

j,k, k ∈ [1, 2m(t− s)], where the x-coordinate of r1
j,k is less than the x-coordinate

of r1
j,k+1. At the end, given the distances of the points that are located in the interval

[(as,j , 0), (vt,j , 0)], we shift the points r1
j,k, with k ∈ [2, 2m(t − s) − 1] in such a way that

every node has as closest neighbour the point on its right. More precisely, let ~σ be a vector
that contains all the distances of the points in [(as,j , 0), (vt,j , 0)] in a decreasing order, then
we set d(r1

j,1, r
1
j,2) = σ(1) + σ(2), d(r1

j,2, r
1
j,3) = σ(3) + σ(4) and so on.

Next, we place in a similar way 2m(s − q) points in the interval [(vq,j , yj), (as,j−1, yj)]
(or [(vqj , yj), (as−1,m, yj)] if j = 1). We denote these points as r2

j,k, k ∈ [1, 2m(s − q)],
where the x-coordinate of point r2

j,k is larger than the x-coordinate of point r2
j,k+1 and

d(r2
j,k, r

2
j,k+1) > d(r2

j,k+1, r
2
j,k+2).

Notice that d(r1
j,1, r

2
j,1) > 4− 16mlε, while d(r1

j,1, r
1
j,2) < 2− 2ε and d(r2

j,1, r
2
j,2) < 2− 2ε.

Thus, by the definition of ε we have that the closest neighbour of r1
j,1 (resp. r2

j,1 ) is r1
j,2

(resp. r2
j,2 ). Lastly, as mentioned two points that belong in different rectangles have distance

at least 8 and so, the closest neighbour of every r1
j,k (resp. r2

j,k ) is r1
j,k+1 (resp. r2

j,k+1).
It remains to construct the legs of each clause. First, we place 4m − 4(j − 1) points,

denoted by l1j,k, k ∈ [1, 4m− 4(j − 1)], with x-coordinate equal to vq,j and y-coordinate less
than 8m+ 1− 8(j − 1). Specifically, we locate l1j,1 in a position such that its distance from
the leftmost point in the rectangle of cj is equal to 2− 8mlε and then we place all the points
in such a way that: d(l1j,k, l1j,k+1) = d(l1j,k−1, l

1
j,k)− ε. Hence, every two points in this leg have

distance at least equal to 2− 8mlε− 4mε. Notice that the closest neighbour of r2
j,2m(s−q) is

l1j,1, while the closest neighbour of every l1j,k with k ∈ [1, 4m− 4(j − 1)− 1] is l1j,k+1.
Now, we will show that the closest neighbour of l1j,4m−4(j−1) is vq,j . Instead, as every two

points in this leg have distance at least equal to 2− 8mlε− 4mε if we add all the distances
of the points in the leg, we conclude in a line with length at least equal to

4m−4(j−1)∑
k=1

2− 8mlε− 4mε = 8m− 8(j − 1)− (4m− 4(j − 1))(8mlε+ 4mε) ≥

4m− 4(j − 1)− (32lm2 + 16m2)ε.

Hence,

1 + (32lm2 + 16m2)ε ≥ d(l1j,4m−4(j−1), vq,j) ≥ 1

and from the definition of ε, we obtain that 2− 8mlε− 4mε > 1 + (32lm2 + 16m2)ε. However,
vq,j still prefers v̄q,j as d(vq,j , v̄q,j) < 1− lε.

In a similar way, we construct the two remaining legs. More specifically, we add points
at exactly the same y-coordinates of the points in the first leg, but with x-coordinates
equal to vs,j and vt,j . Denote the points of the middle and the right leg as l2j,k and l3j,k,
k ∈ [1, 4m− 4(j − 1)], respectively.

Now, we claim that d(r1
j,1, r

1
j,2) < d(r1

j,1, l
2
j,1). Instead, we already know that d(r1

j,1, (us,j , yj)) >
2− 8lmε and d(l2j,1, (us,j , yj)) = 2− 8lmε, and so from Pythagorean theorem we have that
d(r1

j,1, l
2
j,1) >

√
2 · (2 − 8lmε). Hence, from the definition of ε, we have that d(r1

j,1, r
1
j,2) <

2− 2ε <
√

2 · (2− 8lmε). With similar arguments, we conclude that d(r2
j,1, r

2
j,2) < d(r2

j,1, l
2
j,1).

At this point, notice that each clause gadget has an even number of points, denoted by
2nj , and these points are at most 12m+ 2m(l − 1). All the points that have been added are
feasible cluster centres, too. Now, for each clause we add one more point, denoted by oj in
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h1
j h2

j

h3
j

f1
j

f3
j

f2
j

Figure 4 The auxiliary clause gadget corresponding to a clause cj .

a location such that it is the circumcenter of the triangle with nodes r1
j,1, r2

j,1 and l2j,1, i.e.
d(oj , r1

j,1) = d(oj , r2
j,1) = d(oj , l2j,1).

The next lemma shows that oj has as closest neighbours the points r1
j1
, r2

j,1 and l2j,1.

I Lemma 17. The closest neighbours of oj are r1
j,1, r2

j,1 and l2j,1

Proof. Consider the right triangle that is formed from the vertices r1
j,1, (vs,j , yj) and l2j,1.

We know that d(r2
j,1, (vs,j , yj)) > d(l2j,1, (vs,j , yj)) and from the definition of ε, it holds that

d(l2j,1, (vs,j , yj)) = 2 − 8lmε > 1, while d(r2
j,1, (vs,j , yj)) < 2 − 2ε < 2. Hence, the angle

∠r1
j,1l

2
j,1(vs,j , yj) is less than 64◦ and more than 45◦. Now, consider the right triangle that

is formed from the vertices r2
j,1, (vs,j , yj) and l2j,1. With similar arguments, we obtain that

the angle ∠r2
j,1l

2
j,1(vs,j , yj) is less than 64◦ and more than 45◦. Thus, in the triangle that is

formed by the vertices r1
j,1, r2

j,1 and l2j,1, the angle ∠r1
j,1l

2
j,1r

1
j,1 is less than 128◦, and more

than 90◦. It is known that the diameter of the circumcircle, can be computed as the length
of any side of the triangle divided by the sine of the opposite angle. Thus, the diameter of
the circumcircle, with circumcenter oj is at most equal to d(r2

j,1, r
2
j,1)/sin(128◦) < 4/0.78,

and hence d(oj , r1
j,1) < 2.57.

Now, the distance of oj to the points of a different rectangle is at least 8− 2.57 > 2.57.
Moreover, the distance of oj to the points of a leg of a different clause is at least equal to
8− 32lε− 2.57 > 2.57, where the last inequality follows from the definition of ε. J

Lastly, for each clause we construct an extra auxiliary clause gadget as shown in figure 4.
More specifically, we add three points h1

j ,h2
j and h3

j which form an equilateral triangle with
sides equal to 1, and they are not feasible cluster centers. The red spots, f1

j , f2
j and f3

j , are
feasible cluster centers. The f1

j point is located on the edge of h1
j and h2

j in a position such
that d(h1

j , f
1
j ) = 0.25 and d(h2

j , f
1
j ) = 0.75. The f2

j point is located on the edge of h2
j and h3

j

in a position such that d(h2
j , f

2
j ) = 0.25 and d(h3

j , fs
1
j ) = 0.75. Lastly, the point f3

j is located
on the edge of h1

j and h3
j in a position such that d(h3

j , f
3
j ) = 0.25 and d(h1

j , f
3
j ) = 0.75.

Hence, we conclude in an instance in which each clause gadget, which contains the basic
and the auxiliary gadget, has an even number of points equal to 2nj + 4, and each variable
gadget has 4m of points. So, we choose k = 2ml +

∑m
j=1 nj + 2m, and hence n/k = 2. Now,

we are ready to prove that if φ is satisfiable, then there is a proportional solution in I ′ and
vice versa.

First, we show that if φ is satisfiable, then we can use the assignment of the variables to
find a proportional solution. Notice that in each variable gadget we need at least 2m points
in order to construct a proportional clustering, as every two consecutive points could deviate
if none of them is an open center. There are only two ways to place exactly 2m centers: the
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first choice is to open as centers the points vi,j and ai,j and the second choice is to open the
points v̄i,j and bi,j . The first way corresponds to the assignment of true to xi, while the
second corresponds to the assignment of false to xi.

Next, we observe that the auxiliary gadget of each clause always needs two cluster centers
to achieve a proportional clustering. So, nj centers remain for every basic clause gadget.
Moreover, we see that each basic gadget consumes at least nj centers. To see this notice that
starting from point r2

j,1 till the last point of the left leg, we need to add one center every
two points. Similarly, starting from point r1

j,1 till the last point of the right leg. In addition,
in the middle leg we consume one center every two points. As all these points are 2nj , we
need to place nj centers. However, at least one of r1

j,1, r2
j,1 and l2j,1 should be an open center,

otherwise oj has an incentive to choose one of them as center. This is possible only if at least
one of the corresponding variable nodes is an open center. The reason is that the last point
of at least one leg is not an open center and this does not have an incentive to deviate with
its closest node (which corresponds to the literal of the clause) if and only if this node is an
open center, and so the clause is satisfied.

From the above discussion immediately follows the opposite direction.
Regarding the generalization of the statement, if we replace each point with r points in

the same position, then n/k = 2r, and this instance is equivalent with the case that in each
position there is only one point and n/k = 2. J

D Proof of Theorem 11

Proof. The p-minimum enclosing ball problem consists of t ∈ N, a set N of n points in Rt,
and p ≤ n as input, and the goal is to compute the radius of the smallest ball that contains
at least p points. We note that this problem is NP-hard in general, but efficiently solvable
when t is constant [28].

For the first part, we reduce this problem to the problem of implementing greedy capture.
In particular, we choose k such that p = dn/ke, and run the greedy capture algorithm. Let
X be the set of cluster centers it returns. Note that the center of the smallest ball that
contains at least p points must be in X, as it must be the first location where greedy capture
opens a center. Thus, from each point x ∈ X, we compute the distances to all points in
N and compute the p-th smallest distance. This is precisely the smallest radius of a ball
centered at x that contains at least p points. Minimizing this over x ∈ X yields the smallest
radius of any ball that contains at least p points, and thus solves the p-minimum enclosing
ball problem.

For the second part, we note that implementing greedy capture simply requires iteratively
solving the dn/ke-minimum enclosing ball problem. In particular, once we solve the problem
in a given iteration, and if the radius returned is r, we can enlarge the balls at previously
opened centers to have radius r and check if they would cover any more points before we can
open the smallest new ball containing at least dn/ke points. If they do, then we remove such
points and then re-solve the dn/ke-minimum enclosing ball problem. Note that each such
iteration removes at least one point, and hence, we do not need to solve dn/ke-minimum
enclosing ball problem more than n times. Hence, greedy capture can be implemented
efficiently when t is constant.

For the third part, we note that there exists a PTAS for the dn/ke-minimum enclosing
ball problem [28]. That is, given any constant ε > 0, there exists a polynomial-time algorithm
that is guaranteed to find a ball of radius at most R · (1 + ε) containing at least dn/ke points,
if R is the smallest radius of any such ball. We note that running this subroutine instead of
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an exact algorithm for dn/ke-minimum enclosing ball problem approximately preserves the
approximation guarantee derived in Theorem 5. In particular, in the proof of Theorem 3, we
can guarantee that d(i, x) ≤ AX ,d(ρ) · d(x, y) · (1 + ε). This establishes that this variant of
greedy capture provides ρ-approximation if ρ satisfies AX ,d(ρ) · ρ+1

ρ · (1 + ε) ≤ 1. Substituting
the bound on ARt,L2(ρ) from Theorem 5, we get that the smallest ρ satisfying this equation
is 2 + ε, yielding the desired result. J

E Tight Example for Greedy Capture when N =M

Chen et al. [6] show that greedy capture always finds a (1+
√

2)-proportionally fair clustering.
They provide an example in which this approximation is tight, but the example has N 6=M.
They also pay special attention to the case where N = M, so one may wonder if greedy
capture has a better approximation guarantee in this case. As the example below shows, this
is not the case.

I Example 18. Let n = 45 and k = 9. We consider an instance in which N consists of
five isomorphic sets of 9 points each. Each set is sufficiently far from all other sets. Let us
describe one of the sets. Given five locations x1 < x2 < x3 < x4 < x5 on a line, the set
contains three points at x1, three points at x5, and one point at each of x2, x3, and x4. The
distances are as follows.

d(x1, x2) = 1 d(x2, x3) = 1 d(x3, x4) =
√

2− 1 d(x4, x5) = 1 + ε

Greedy capture first opens a center at x2 in each set, and then four centers in at most
four of the sets. Thus, in the remaining fifth set, all points derive their costs from a single
center located at x2. Then, the set of five points located at x3, x4, and x5 can deviate (since
n/k = 5) with y = x4, which would reduce the cost to each by a factor of at least 1 +

√
2.
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