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Abstract

We design online algorithms for the fair allocation of public goods to a set of N
agents over a sequence of T rounds and focus on improving their performance
using predictions. In the basic model, a public good arrives in each round, the
algorithm learns every agent’s value for the good, and must irrevocably decide the
amount of investment in the good without exceeding a total budget of B across
all rounds. The algorithm can utilize (potentially inaccurate) predictions of each
agent’s total value for all the goods to arrive. We measure the performance of the
algorithm using a proportional fairness objective, which informally demands that
every group of agents be rewarded in proportion to its size and the cohesiveness of
its preferences.
In the special case of binary agent preferences and a unit budget, we show that
O(logN) proportional fairness can be achieved without using any predictions, and
that this is optimal even if perfectly accurate predictions were available. How-
ever, for general preferences and budget no algorithm can achieve better than
Θ(T/B) proportional fairness without predictions. We show that algorithms with
(reasonably accurate) predictions can do much better, achieving Θ(log(T/B)) pro-
portional fairness. We also extend this result to a general model in which a batch
of L public goods arrive in each round and achieve O(log(min(N,L) · T/B))
proportional fairness. Our exact bounds are parametrized as a function of the error
in the predictions and the performance degrades gracefully with increasing errors.

1 Introduction

In classic online algorithms, the input is presented in stages and the algorithm needs to make
irrevocable decisions at each stage without knowing the input from future stages. Its performance,
called the competitive ratio, is measured by comparing the worst-case ratio of the achieved solution
quality to the optimal solution quality in hindsight [1]. The uncertainty regarding the future often
forces such algorithms to make overly cautious decisions, resulting in pessimistic competitive ratios.

An emerging line of research asks whether one can improve the performance of online algorithms
using predictions regarding the future [2]. Ideally, we would like the algorithm to perform well
when the predictions are good, yet maintain reasonable performance even when the predictions are
bad. More generally, one can hope to express the competitive ratio of the online algorithm directly
in terms of the error in the predictions. This powerful paradigm has already received significant
attention, for problems such as caching [3–5], the secretary problem [6–8], scheduling [9], the ski
rental problem [10–12], set cover [13], and other problems [14–22].



However, all of this work is limited to single-agent decision-making problems. Recently, Banerjee
et al. [23] applied this paradigm to design online algorithms for a multi-agent resource allocation
problem, in which a set of private goods (which can only be allocated to and enjoyed by a single
agent) need to be divided amongst a group of agents in a fair manner. This problem has direct
applications to settings like inheritance division and divorce settlement, and has garnered interest
from various research communities, dating back to Steinhaus [24]. Using the Nash welfare from
bargaining theory [25] as their notion of fairness, Banerjee et al. [23] show that predictions about
agents’ total value for all goods can be utilized to achieve significantly improved approximations.

The solutions proposed by Banerjee et al. [23], however, do not capture resource allocation settings
involving public goods, i.e., goods whose benefit can be enjoyed by multiple agents (e.g., a highway
or a park). In many important problems, like participatory budgeting, committee selection, or shared
memory allocation, some scarce resources need to be dedicated to make each public good available,
and an algorithm needs to decide which goods to invest in, aiming to make the agents happy. Fairness
in these settings is often captured by notions like the Nash welfare and the core [26]. Yet, despite
the significance of its applications, only a few papers have successfully studied the fair allocation of
public goods [27–33] (relative to the extensive literature on private goods; see [34]), even fewer have
provided online algorithms for this problem [35], and none utilize machine-learned predictions.

We address this gap by designing online algorithms for fair allocation to public goods using predictions
about how agents value the goods. The key research questions we address are:

How can we allocate public goods in an online yet fair manner? To what extent
can predictions about agent preferences help improve the fairness guarantees?

1.1 Our Results

We study the design of online algorithms for the fair allocation to public goods arriving over a
sequence of T rounds based on the preferences of N agents. In the basic model a new public good in
each round t (which we refer to as good t), and the algorithm learns the value vi,t of each agent i for
this good. Using this information, the algorithm needs to make an irrevocable decision regarding an
amount xt ∈ [0, 1] to invest in this good. This value xt can be interpreted as the amount of a scarce
resource (e.g., money) devoted toward making this good available, or the probability of implementing
the good. Each agent i then receives value vi,t · xt from this investment, and the total value derived
by an agent is the sum of the values gained across rounds.

Clearly, the algorithm would like to increase the xt’s as much as possible, but the algorithm is
limited by a total budget constraint:

∑
t xt ⩽ B, where B is given. Informally, the budget constraint

forces the algorithm to invest more in goods that are highly valued by many agents. However, this
is challenging since the agents’ values for future goods are unknown. To deal with this uncertainty,
the algorithm has access to predictions regarding the total value of each agent i: this prediction Ṽi

provides an estimate on the total value Vi =
∑

t vi,t of agent i for all goods to arrive.

We focus on a quantitative fairness objective, called proportional fairness (Definition 1), which is
stronger than previously considered objectives of the Nash welfare and the core (see Section 2.1).
Lower objective values indicate better fairness, with 1 indicating perfect proportional fairness.

In Section 3, as a warm-up, we consider the setting where agent values are binary (i.e., vi,t ∈ {0, 1}
for all agents i and goods t) and the budget is B = 1. Binary values correspond to approval voting –
where agents either like a good or not; the unit budget forces

∑
t xt ⩽ 1, meaning that xt can also be

viewed as the fraction of an available resource invested in good t. For this special case, we show that
it is already possible to achieve O(logN) proportional fairness without using any predictions and
this is optimal even if the algorithm had access to perfect predictions (Ṽi = Vi for each agent i).

In Section 4, we consider general values and budget, and show that this is no longer true: without
access to predictions, no algorithm can achieve o(T/B) proportional fairness even when with N = 1
agent. Our main positive result shows that, by using the predictions, we can achieve an exponential
improvement to O(log(T/B)) proportional fairness for N agents, as long as the predictions are
reasonably accurate (constant multiplicative error). We also show this to be optimal given predictions.

Finally, in Section 5 we extend our model even further by allowing a batch of L public goods to arrive
in each round t and achieve O(log(min(N,L) · T/B)) proportional fairness. In fact, we show that
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this model strictly generalizes not only our initial public-goods model, but also the private-goods
model of Banerjee et al. [23], and our positive result in this very broad model (almost) implies theirs.

1.2 Related Work

Allocation of private goods. The majority of the prior work on online fair division has focused
on private goods, for which achieving even basic notions of fairness comes at the cost of extreme
inefficiency in the absence of any predictions regarding agents’ values for future goods [36, 37].
Banerjee et al. [23] show that total value predictions can be leveraged to achieve improved fairness
guarantees with respect to the Nash social welfare objective. Note that assuming access to predictions
of agents’ total values for all goods is related to work which assumes that the values of each agent are
normalized to add up to 1 [38, 39] or that they are drawn randomly from a normalized distribution [40].
Our work reinforces the findings of Banerjee et al. [23] that predictions help significantly improve
fairness guarantees, but in our more general model with public goods.

Allocation to public goods. Much of the literature on public goods focuses on the offline setting –
agents have approval preferences, and we have a fixed budget (i.e., the offline version of the setting
in Section 3). This offline version has been studied under various names, such as probabilistic
voting [41], fair mixing [42], fair sharing [43], portioning [44], and randomized single-winner
voting [45]. Ebadian et al. [45] show that with access to only ranked preferences, Θ(log T ) is the
best possible proportional fairness in the offline setting. Interestingly, we show that incomplete
information resulting from online arrivals leads to the same Θ(log T ) proportional fairness.

Multi-winner voting extends this by selecting a subset of k candidates, which is the offline version of
our model in Section 4 with B = k. Multi-winner voting can be extended to fair public decision-
making [30] and participatory budgeting [27, 46], which are further generalized by the public good
model of Fain et al. [31]. These generalizations allow more complex feasibility restrictions on the
allocations than our budget constraint, but work in the offline setting. To the best of our knowledge,
the only work to consider online allocation to public goods is that of Freeman et al. [35], who
consider optimizing the Nash welfare in a model similar to ours. However, they do not provide any
approximation guarantees; instead, they study natural online algorithms from an axiomatic viewpoint.

Primal-dual analysis. Finally, we remark that our main positive result is derived using a primal-dual-
style analysis (see the survey of Buchbinder and Naor [47] for an excellent overview). Almost all of
this work deals with additive objective functions. Two notable exceptions to this are the work of [48],
who show how to extend these approaches to non-linear functions of additive rewards, as well as Azar
et al. [49], who consider a variant of the proportional allocation objective, but require additional
boundedness conditions on the valuations. Bamas et al. [13] show how to adapt primal-dual analyses
to incorporate predictions for a number of single-agent problems.

2 Model

We study an online resource allocation problem with N agents and T rounds. Our algorithms observe
the number of agents N , but they may not know the number of rounds T , in advance. We study both
horizon-aware algorithms which know T and horizon-independent algorithms which do not. For
simplicity we use [k] to denote the set {1, . . . , k} for a given k ∈ N.

Online arrivals. In the basic version of the model, in each round t ∈ [T ], a public good, which we
refer to as good t, “arrives”. Upon its arrival, we learn the value vi,t ⩾ 0 of every agent i ∈ [N ] for it.
In Section 5, we extend the model to allow a batch of L public goods arriving in each round.

Online allocations. When good t arrives, the online algorithm must irrevocably decide the allocation
xt ∈ [0, 1] to good t, before the next round.1 We use x = (xt)t∈[T ] to denote the final allocation
computed by the online algorithm. In the absence of any further constraints, the decision would be
simple: allocate as much as possible to every good by setting xt = 1 for each t ∈ [T ]. However,
the extent to which the algorithm can allocate these goods is limited by an overall budget constraint:∑T

t=1 xt ⩽ B, where B ⩾ 0 is a fixed budget known to the online algorithm in advance.

Linear agent utilities. Choosing to allocate xt to good t simultaneously yields utility vi,t · xt to every
agent i ∈ [N ]. Moreover, we assume that agent utilities are additive across goods, i.e., the final

1In this work we focus on deterministic algorithms, but this is w.l.o.g. since we consider fractional allocations.
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utility of agent i is given by ui(x) =
∑T

t=1 vi,t · xt. This class of linear agent utilities is widely
studied and it admits several natural interpretations, depending on the application of interest. In
applications like budget division, each public good t is a project (e.g., an infrastructure project), and
xt is the amount of a resource (e.g., time or money) invested in the project. In applications such as
participatory budgeting or voting, each public good t is an alternative or a candidate, and xt is the
(marginal) probability of it being selected (indeed, one can compute a lottery over subsets of goods
of size at most B under which the marginal probability of selecting each good t is precisely xt).

When working with fractions x/y with x, y ⩾ 0, we adopt the convention that x/y = 1 when both
x = y = 0, while x/y = +∞ if y = 0 and x > 0. We use Hk = 1 + 1

2 + 1
3 + . . .+ 1

k to denote the
k-th harmonic number.

2.1 Proportional Fairness

We want the allocation x computed by our online algorithm to be fair. In this work, we use the notion
of proportional fairness, which is a quantitative fairness notion that was first proposed in the context
of rate control in communication networks [50].
Definition 1 (Proportional Fairness). For α ⩾ 1, allocation x is called α-proportionally fair if for
every other allocation w we have 1

N

∑N
i=1

ui(w)
ui(x)

⩽ α. If x is 1-proportionally fair, we simply refer
to it as proportionally fair2. We say that an online algorithm is α-proportionally fair if it always
produces an α-proportionally fair allocation.

It is known that in the offline setting, where all agent values are known up front, a 1-proportionally
fair allocation x always exists, and this is the lowest possible value of proportional fairness [31]. It
is also known that proportional fairness is a strong guarantee that implies several other guarantees
sought in the literature. Below, we show two examples: the core and Nash social welfare.

Proportional fairness implies the core. For α ⩾ 1, allocation x is said to be in the α-core if there is
no subset of agents S and allocation w such that |S|

N · ui(w) ⩾ α · ui(x) for all i ∈ S and at least
one of these inequalities is strict. We say that an online algorithm is α-core if it always produces an
allocation in the α-core. The following is a well-known relation between proportional fairness and
the core.
Proposition 1. For α ⩾ 1, every α-proportionally fair allocation is in the α-core.

Proof. If an α-proportionally fair allocation x is not in the α-core, then by definition, there exists a
subset of agents S and an allocation w such that |S|

N ui(w) ⩾ α · ui(x) for all i ∈ S and at least one
of these inequalities is strict. Then, ui(w)

ui(x)
⩾ α · N

|S| for all i ∈ S and at least one of these inequalities
is strict, which implies∑

i∈S

ui(w)

ui(x)
> α ·N ⇒ 1

N

N∑
i=1

ui(w)

ui(x)
⩾

1

N

∑
i∈S

ui(w)

ui(x)
> α,

contradicting the fact that x is α-proportionally fair.

Proportional fairness implies optimal Nash welfare. A common objective function studied in multi-
agent systems is the Nash social welfare, which aggregates individual agent utilities into a collective
measure by taking the geometric mean. That is, the Nash social welfare of allocation x is given by

NSW(x) =
(∏N

i=1 ui(x)
)1/N

. For α ⩾ 1, we say that allocation x achieves an α-approximation

of the Nash welfare if NSW(w)
NSW(x) ⩽ α for all allocations w. We say that an online algorithm achieves

an α-approximation of the Nash welfare if it always produces an allocation that achieves an α-
approximation of the Nash welfare. It is also well-known that α-proportional fairness implies an
α-approximation of the Nash welfare (in particular, a proportionally fair allocation has the maximum
possible Nash welfare).
Proposition 2. For α ⩾ 1, if allocation x is α-proportionally fair, then x achieves an α-
approximation of the Nash welfare.

2The 1-proportional fair criterion is more commonly (but equivalently) written as 1
N

∑N
i=1

ui(w)−ui(x)
ui(x)

⩽ 0.
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Proof. Take any allocation w. The result follows by observing that

NSW(w)

NSW(x)
=

(
N∏
i=1

ui(w)

ui(x)

)1/N

⩽
1

N

N∑
i=1

ui(w)

ui(x)
⩽ α,

where the second transition is the AM-GM inequality.

We remark that the upper bounds derived in this work hold for the stronger notion of proportional
fairness, while the lower bounds hold even for the weaker notion of Nash welfare approximation.

2.2 Set-Aside Greedy Algorithms

In order to compute (approximately) proportionally fair allocations, we consider a family of online
algorithms, called Set-Aside Greedy Algorithms. Recent work [23, 39] has demonstrated how such
algorithms can be used to get strong performance guarantees for online allocation of private goods;
we show that with non-trivial modifications, they can also achieve compelling fairness guarantees for
allocating public goods.

At a high level, an algorithm in this family divides the overall budget B into two equal portions.

1. The first half, called the set-aside budget, is used to allocate yt ∈ [0, 1] to each good t in
such a manner that

∑T
t=1 yt ⩽ B/2 and this portion of the allocation guarantees each agent

i a certain minimum utility of ∆i (i.e.,
∑T

t=1 vi,t · yt ⩾ ∆i). For example, if yt = B/(2T )

for each t ∈ [T ], then we can use ∆i =
B
2T ·

∑T
t=1 vi,t. This ensures that in the proportional

fairness definition (Definition 1), the ratio ui(w)
ui(x)

is not excessively large for any agent i.

2. The second half, called the greedy budget, is used to allocate zt ∈ [0, 1− yt] to each good
t in such a manner that

∑T
t=1 zt ⩽ B/2. This portion of the budget is used in a adaptive

greedy-like fashion toward online optimization of the desired objective.

We refer to yt and zt as semi-allocations to good t, and the final allocation to good t is determined by
combining these two semi-allocations, i.e., xt = yt+ zt. An important quantity in both our algorithm
design and its analysis is the promised utility to an agent, defined next.
Definition 2 (Promised Utility). The semi-allocations y1, . . . , yT guarantee that by the end of the
algorithm each agent i will receive a utility of

∑T
t=1 vi,t · yt ⩾ ∆i from the set-aside portion of

the budget. By round t the algorithm has already set semi-allocations z1, . . . , zt−1 using the greedy
portion of the budget, and needs to now decide zt. At this stage, as a function of zt, the algorithm can
guarantee that each agent i will eventually receive utility at least ũi,t(zt) = ∆i+

∑t
τ=1vi,τ · zτ , even

if they do not benefit from any more of the greedy budget. We refer to this as the promised utility.

3 Warm Up: Binary Utilities and Unit Budget

Before presenting our main results, we first build some intuition regarding our online setting and the
proportional fairness objective by considering the interesting special case where agents have binary
utilities for goods (i.e., vi,t ∈ {0, 1} for each i, t) and the total budget is B = 1. In this setting, which
is motivated by approval voting, we say that agent i “likes” good t if vi,t = 1, and does not like good
t otherwise. Note that with B = 1, the budget constraint is

∑T
t=1 xt ⩽ 1, which means xt can be

interpreted as the fraction of an available resource (e.g., time or money) that is dedicated to good t.

On the negative side, we show that no online algorithm can achieve o(logN)-proportional fairness,
or even the weaker guarantee of o(logN)-approximation of the Nash welfare. On the positive side
we provide a set-aside greedy algorithm that achieves O(logN) proportional fairness (and therefore,
O(logN)-NSW optimality), thus establishing Θ(logN) as the best possible approximation in this
restricted scenario.

First, in the trivial case with a single agent (N = 1), we can simply set xt = 1 when the first good t
liked by the agent arrives,3 which easily yields (exact) proportional fairness.

3If the agent does not like any good, (exact) proportional fairness is trivially achieved.
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It is tempting to extend this idea to the case of N > 1 agents. However, we find that even in this
restricted scenario with binary utilities and unit budget, no online algorithm achieves o(logN)-
proportional fairness, or even the weaker guarantee of o(logN)-approximation of the Nash welfare.
In fact, this remains true even if the algorithm is horizon-aware (i.e., knows T in advance) and knows
precisely how many goods each agent will like in total. Intuitively, this is because we show that no
online algorithm can sufficiently distinguish between instances where many agents like the same
goods and those where agents like mostly disjoint goods.
Theorem 1. With binary agent utilities (vi,t ∈ {0, 1} ,∀i, t) and unit budget (B = 1), every online
algorithm is Ω(logN)-proportionally fair (in fact, achieves Ω(logN)-approximation of the Nash
welfare), even if the algorithm is horizon-aware and knows in advance the total number of goods
each agent will like.

Before we prove the theorem, we need the following technical lemma. Recall that for k ∈ N, Hk is
the k-th harmonic number.
Lemma 1. For every S ∈ N, W ⩾ 1, and y = (yℓ)ℓ∈[S] ∈ [0, 1][S] with

∑S
ℓ=1 yℓ ⩽ W , we have

max
ℓ∈[S]

ℓ+ 1

W +
∑ℓ

j=1 j · yj
⩾

HS

2W
.

Proof. Suppose for contradiction that there exist S ∈ N, W ⩾ 1, and y = (yℓ)ℓ∈[S] ∈ [0, 1][S] such
that

∑S
ℓ=1 yℓ ⩽ W and, for every ℓ ∈ [S],

ℓ+ 1

W +
∑ℓ

j=1 j · yj
<

HS

2W
⇒
∑ℓ

j=1j · yj >
2W · (ℓ+ 1)

HS
−W.

Dividing the above equation by ℓ · (ℓ+ 1) and summing over ℓ ∈ [S], we have that

S∑
ℓ=1

ℓ∑
j=1

j · yj
ℓ · (ℓ+ 1)

>

S∑
ℓ=1

(
2W

HS · ℓ
− W

ℓ · (ℓ+ 1)

)
. (1)

Let us analyze the LHS in Equation (1) by exchanging the order of summations. We have

LHS =

S∑
j=1

j · yj ·

 S∑
ℓ=j

1

ℓ · (ℓ+ 1)

 =

S∑
j=1

j · yj ·

 S∑
ℓ=j

1

ℓ
− 1

ℓ+ 1


=

S∑
j=1

j · yj ·
(
1

j
− 1

S + 1

)
⩽

S∑
j=1

yj ⩽ W,

where the third transition holds due to the telescopic sum.

Now, let us analyze the RHS in Equation (1) using the same telescopic sum.

RHS =
2W

HS

S∑
ℓ=1

1

ℓ
−W ·

S∑
ℓ=1

(
1

ℓ
− 1

ℓ+ 1

)
=

2W

HS
·HS −W ·

(
1− 1

S + 1

)
⩾ W.

Hence, we proved that in Equation (1), the LHS is at most W and the RHS is at least W . But the
equation proves the LHS to be strictly greater than the RHS, which is the desired contradiction.

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. We prove that the Nash social welfare approximation of every online algorithm
is at least HN/2 = Ω(logN). Suppose for contradiction that there is an online algorithm with a
smaller approximation ratio.

Set T = N · (N2 + N − 2)/2. We use vt = (vi,t)i∈[N ] to denote the vector of values of all
the agents for good t ∈ [T ]. For r ∈ [N ] ∪ {0}, we denote with Sr a sequence of N goods that
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t
1 2 3 4 5− 8 9 10 11 12

13
17

14
18

15
19

16
20

21
25
29
33

22
26
30
34

23
27
31
35

24
28
32
36

v1,t 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0
v2,t 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
v3,t 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
v4,t 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

S2 S0 S1 2×S1 4×S1︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
L1 L′

2 L′
3

vt

t
1 2 3 4 5− 8 9 10 11 12

13
17

14
18

15
19

16
20

21− 24 25− 36

v1,t 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0
v2,t 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0
v3,t 0 1 1 0 0 1 1 1 0 0 0 0 0 1 0
v4,t 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

S2 S0 S3 2×S1 S4 3×S0︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
L1 L2 L3

Figure 1: Instances I1 (top) and I3 (bottom) when N = 4.

arrive consecutively for which the agents have the following valuations. For the first good in the
sequence, vi,1 = 1 for i ⩽ r and vi,1 = 0 for i ⩾ r + 1. For t ∈ {2, . . . , N}, vt is obtained by
cyclically permuting vt−1 to the right. For example, if N = 3, then S2 consists of 3 goods that arrive
consecutively with v1 = (1, 1, 0), v2 = (0, 1, 1), and v3 = (1, 0, 1). Notice that Sr consists of N
goods such that each good is liked by r agents and each agent likes r goods. Also, notice that S0

consists of N goods for which all agents have zero value.

Next, we use Sr to construct two building blocks of our adversarial instances.

• For r ∈ [N − 1], let Lr be a sequence of consecutive goods constructed by concatenating
Sr+1 followed by r copies of S0.

• For r ∈ [N − 1], let L′
r be a sequence of consecutive goods constructed by concatenating

r + 1 copies of S1.

Notice that for each r ∈ [N − 1], Lr and L′
r both consist of (r + 1) ·N goods of which each agent

likes exactly r + 1 goods.

Finally, for each k ∈ [N −1], define instance Ik = (L1, L2, . . . , Lk, L
′
k+1, . . . , L

′
N−1), i.e., instance

Ik is constructed by concatenating L1, L2, . . . , Lk, L
′
k+1, . . . , L

′
N−1 in that order. Figure 1 shows

instances I1 and I3 with N = 4. Notice that for each k ∈ [N − 1], instance Ik consists of a total of
T goods of which each agent likes (N2 +N − 2)/2 goods. We let the algorithm know in advance
that it will see instance Ik for some k ∈ [N − 1], and prove that it still cannot achieve proportional
fairness better than HN/2.

With slight abuse of notation, for r ∈ [N − 1], let Lr also denote the set of goods that appear in the
sequence Lr. Let x denote the allocation produced by the online algorithm on instance IN−1, i.e.,
when the algorithm observes L1, L2, . . . , LN−1. For k ∈ [N − 1], let xLk

=
∑

t∈Lk
xt denote the

total allocation to goods in Lk.

Now, fix k ∈ [N − 1] and let xk denote the allocation produced by the algorithm on instance Ik with
values vi,t. Because the algorithm cannot distinguish between Ik and IN−1 for the first k blocks
(namely, L1, . . . , Lk), even under instance Ik, the algorithm must assign a total allocation of xLℓ

to
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block Lℓ for each ℓ ⩽ k. Hence, we have

NSW(xk) =

 N∏
i=1

 k∑
ℓ=1

∑
t∈Lℓ

vi,t · xk
t +

N−1∑
ℓ=k+1

∑
t∈L′

ℓ

vi,t · xk
t

1/N

⩽
1

N
·

 N∑
i=1

 k∑
ℓ=1

∑
t∈Lℓ

vi,t · xk
t +

N−1∑
ℓ=k+1

∑
t∈L′

ℓ

vi,t · xk
t


=

1

N
·

 k∑
ℓ=1

∑
t∈Lℓ

N∑
i=1

vi,t · xk
t +

N−1∑
ℓ=k+1

∑
t∈L′

ℓ

N∑
i=1

vi,t · xk
t


⩽

1

N
·

 k∑
ℓ=1

∑
t∈Lℓ

(ℓ+ 1) · xk
t +

N−1∑
ℓ=k+1

∑
j∈L′

ℓ

xk
t


⩽

1

N
·

(
k∑

ℓ=1

(ℓ+ 1) · xLℓ
+ 1−

k∑
ℓ=1

xLℓ

)

where the second transition follows from the AM-GM inequality and the fourth transition follows
because, for each ℓ ∈ [N − 1], each good t ∈ Lℓ is liked by at most ℓ + 1 agents and each good
t ∈ L′

ℓ is liked by a single agent.

Consider an alternative allocation yk which allocates 1/N to each of the first N goods of Lk (i.e.,
goods of its Sk+1 portion). This provides each agent utility equal to (k + 1)/N , thus achieving Nash
social welfare equal to (k + 1)/N .

Hence, the algorithm’s approximation ratio αk on instance Ik satisfies

αk ⩾
k + 1∑k

ℓ=1(ℓ+ 1) · xLℓ
+ 1−

∑k
ℓ=1 xLℓ

⩾
k + 1

1 +
∑k

ℓ=1(ℓ+ 1) · xLℓ

.

Hence, the worst-case approximation ratio is at least maxk∈[N−1] αk. Applying Lemma 1 with
S = N and W = 1, we get that this is at least HN/2, as desired.4

Next, we provide a set-aside greedy algorithm that achieves O(logN) proportional fairness (and
therefore, O(logN)-NSW optimality), thus establishing Θ(logN) as the best possible approximation
in this restricted scenario. We remark that this restricted case of binary utilities and unit budget already
poses an interesting challenge by preventing constant approximation, but O(logN) approximation
is still quite reasonable as it does not depend on the horizon T (which can typically be very large)
and in practice the number of agents N is reasonably small. We also remark that we achieve the
O(logN) upper bound using a horizon-independent algorithm, while the lower bound of Theorem 1
holds even when the algorithm is horizon-aware.

The algorithm (Algorithm 1), works as follows: it uses the set-aside portion of the budget to set
yt = 1/(2N) whenever good t is the first liked good of at least one agent (note that

∑
t yt ⩽ 1/2).

This ensures that each agent i gets utility at least ∆i = 1/(2N).5 Based on this, the algorithm uses
the following expression of promised utility to agent i in round t: ũi,t(zt) =

1
2N +

∑t
τ=1vi,τ · zτ .

The algorithm chooses zt in a greedy manner (i.e., smallest possible) such that, for each agent i,
the ratio of her value vi,t for good t to her promised utility ũi,t(zt) is at most a target quantity. We
defer the proof of this result to the appendix because we will present this technique in much more
generality in Section 5.1 (the only adjustment required in the proof of the next result is the slightly
different expression of ∆i = 1/(2N) specific to this case of binary utilities and unit budget).

Theorem 2. Algorithm 1 with α ⩾ 2 ln(2N) realizes an α-proportional fair allocation.

4We can set y1 = 0 and yℓ = xLℓ−1 for all ℓ ∈ {2, . . . , N} when applying the lemma.
5Agents who do not like any good can only improve the approximation.
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ALGORITHM 1: Set-Aside Greedy Algorithm for Binary Values and Unit Budget
Input: Target proportional-fairness level α
1: for all t = 1 to T do
2: (Set-aside semi-allocation) If there exists i ∈ [N ] with vi,t = 1 and vi,τ = 0 for each τ ∈ [t− 1], then

set yt = 1/(2N), else set yt = 0.

3: (Greedy semi-allocation) Compute zt = min
{
zt :

1
N

∑N
i=1

vit
ũit(zt)

⩽ α, zt ⩾ 0
}

.
4: Allocate xt = yt + zt to good t.
5: end for

4 General Utilities and Budget

Having built some intuition about the online setting and the proportional fairness objective by
considering the restricted special case of the problem wherein all values vit are in {0, 1} and the
budget is B = 1, we now turn to the more general model described in Section 2. Recall that this
model generalizes the setting in Section 3 in two ways:

1. Agent values vi,t can now be any (non-negative) real number.

2. The budget constraint is
∑T

t=1 xt ⩽ B, for an arbitrary B ⩾ 0, so the per-round constraint
of xt ⩽ 1, for each t ∈ [T ], is no longer redundant.

4.1 The Case for Predictions

In this general case, we prove that the problem becomes significantly more difficult: without access
to any predictions, every online algorithm is Ω(T/B)-proportionally fair (in fact, achieves Ω(T/B)-
approximation of the Nash welfare), in stark contrast to the O(logN)-proportional fairness that we
were able to achieve in the previous section.
Proposition 3. Under general agent values and budget B, every online algorithm is Ω(T/B)-
proportionally fair (in fact, achieves Ω(T/B)-approximation of the Nash welfare).

Proof. The hardness instances we consider will have N = 1 agent. In this case, the proportional
fairness of an online algorithm on a given instance is equal to the maximum possible utility the agent
could have obtained in hindsight divided by the utility she obtained under the algorithm; this is also
equal to the approximation ratio for the Nash welfare. For clarity, we will omit the subscript i in the
notation in this proof, so that vt is the value that the agent has for good t, and u(x) is the utility of
the agent under allocation x. With N = 1, a problem instance is defined by a sequence of T values
(v1, v2, . . . , vT ).

Consider the following family of T instances: for t ∈ [T ], instance It := (1,M, . . . ,M t−1, 0, . . . , 0),
where M is a sufficiently large number. The algorithm knows in advance that it will see instance It
for some t ∈ [T ], and prove that it still cannot achieve proportional fairness better than T/2B.

Let x = (x1, . . . , xT ) be the allocation produced by the algorithm on instance IT =
(1,M, . . . ,MT−1). For any t ∈ [T ], since the algorithm cannot distinguish between It and IT
up to round t, the allocation up to round t under instance It must also be (x1, . . . , xt). Further,
without loss of generality, we can assume that the algorithm allocates 0 in any round where the
value is 0. Therefore, for each t ∈ [T ], the allocation produced by the algorithm on instance It is
(x1, . . . , xt, 0, . . . , 0).

We claim that in order to be T
2B -proportionally fair, the algorithm needs to set xt ⩾ B

T for all t. To
see this, suppose to the contrary that xt <

B
T for some t. Then on instance It, the agent’s utility

under the algorithm is

u(x) =

t∑
τ=1

xτM
τ <

t−1∑
τ=1

Mτ +
B

T
·M t <

2B

T
M t,

where the last inequality holds when M is large enough. On the other hand, the hindsight-optimal
allocation on It is to simply set x∗

t = 1, which gets utility M t. Therefore, if xt < B
T then the

algorithm cannot be T
2B -proportionally fair on It.

9



We have shown that xt ⩾ B
T for all t is necessary for the algorithm to be T

2B -proportionally fair.
However, since the overall budget is B, the only way this can happen is if xt =

B
T for all t. The same

calculation as above shows that under this allocation, the algorithm is at most (T/2B)-proportionally
fair, establishing the desired Ω(T/B) lower bound.

The hardness instance used above is specifically engineered to exploit the fact that the algorithm
has no information about the future. In most practical settings, it is reasonable to assume that the
algorithm has access to some information about the input. This could come from historical data,
stochastic assumptions, or simply from properties of the problem at hand (e.g. if vi,t represents the
monetary value that agent i has for good t, then we may have bounds on how large vi,t can be.)

Motivated by this, we now turn to prediction-augmented algorithms and allow the algorithm access
to additional side-information about agents’ valuations. Clearly, if the entire valuation matrix
(vi,t)i∈[N ],t∈[T ] is available beforehand, then the problem is trivial; the challenge lies in understanding
what minimal additional information (or ‘prediction’) can lead to sharp improvements in performance,
and how robust these improvements are to errors in these predictions. To this end, we now adapt an
idea introduced by Banerjee et al. [23] for online allocation with private goods, and assume that the
algorithm has side information about each agent’s total value for all the goods.

Definition 3 (Total Value Predictions). For any agent i, we define her total value to be Vi =
∑T

t=1 vi,t.

Moreover, for ci, di ⩾ 1, Ṽi is said to be a [ci, di]-prediction of Vi if Ṽi ∈
[

1
di
Vi, ciVi

]
.

In other words, ci and di denote the multiplicative factors by which the prediction Ṽi may overestimate
and underestimate, respectively, the value of Vi. When ci = di = 1, we call them perfect predictions.

In the next section, we assume that we have access to Ṽi for each agent i. The purpose of the ci and
di is to parameterize the robustness of our algorithm, i.e., the degradation in its performance as the
predictions get worse. Our algorithm does need to know (an upper bound on) the di’s for tuning one
of its parameters; it does not however need to know the ci’s (these are only used in the analysis).

4.2 Achieving Proportional Fairness with Predictions

Using the above notion of predictions, we design Algorithm 2, a variant of our earlier Set-Aside
Greedy algorithm that has a dramatically better proportional fairness guarantee compared to the
hardness result of Ω(T/B) in Proposition 3. Given perfect predictions, our algorithm achieves a
proportional fairness of O(log(T/B)). Moreover, Algorithm 2 turns out to be remarkably robust to
prediction errors; in particular, all our asymptotic guarantees remain unchanged as long as all the
ci = O(1) and di = O(log(T/B)).

As before, the algorithm splits the budget into two parts, and the total allocation to the good in round
t is obtained by adding the contributions (semi-allocations) from each part, i.e., xt = yt + zt. The
semi-allocation from the first (set-aside) part is yt = B/(2T ) for each t ∈ [T ]. This portion of the
allocation guarantees each agent i utility at least ∆i =

B
2T · Vi. Now in each round t ∈ [T ], the

algorithm uses the second the part of the budget to compute a greedy semi-allocation zt. This is done
by choosing zt to optimize a function of the agents’ predicted promised utilities.

Definition 4 (Predicted Promised Utility). Given a prediction Ṽi of the total value of agent i, the
predicted promised utility of agent i in round t ∈ [T ] is defined as

ũi,t(zt) =
B

2T
· Ṽi +

t∑
τ=1

vi,τ · zτ . (2)

We omit z1, . . . , zt−1 from the argument of ũi,t since they are fixed prior to round t.

Note that this quantity can be computed by the algorithm, as a function of zt it wants to choose, since
it has knowledge of Ṽi (prediction) and semi-allocations {zτ}τ<t from the previous rounds. We use
these predicted promised utilities in Algorithm 2 to achieve the following guarantee.

Theorem 3. For any α ⩾ 4 ln
(
2T
B

)
+ 4

N

∑
i ln(di), Algorithm 2 produces a feasible allocation x,

which satisfies maxw
1
N

∑N
i=1

ui(w)
ci·ui(x)

⩽ α, where the maximum is over all feasible allocations w.
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ALGORITHM 2: Set-Aside Greedy algorithm for the non-batched setting.

Input: Target threshold α; total value predictions (Ṽi)i∈[N ]

1: for all t = 1 to T do
2: Set-aside semi-allocation: set yt = B

2T
.

3: Greedy semi-allocation: zt = min{z∗t , 1− yt}, where z∗t = min
{
z ⩾ 0 : 1

N

∑N
i=1

vi,t
ũi,t(z)

⩽ α
2B

}
.

4: Allocate xt = yt + zt.
5: end for

This result is almost subsumed by our positive result (Theorem 5) for the more general model in the
next section, in which we allow a batch of L public goods to arrive in each round; setting L = 1
recovers precisely the bounds derived in this section. The only difference is that in the algorithm for
the batched model (Algorithm 3), the greedy semi-allocation step is a convex optimization problem,
which can be solved up to an ϵ error; for the single-good-per-round case, we are able to replace this
with a combinatorial step in Algorithm 2 that can be performed exactly in polynomial time. This
requires us to show that the greedy semi-allocations computed by this combinatorial step satisfy
the same properties (specifically, those in Proposition 4) that a solution to the convex optimization
problem would have satisfied. We present this result and its proof in the appendix as Proposition 6.

Let us consider the implications of Theorem 3. The expression in the statement of Theorem 3 is not
exactly the proportional fairness objective, since the term for each agent i is scaled with a (potentially
different) factor ci. However, applying the arguments in Section 2.1, we can nonetheless convert this
into an approximation of proportional fairness, the core, and the Nash social welfare. The proof is in
the appendix.
Corollary 1. For α ⩾ 4 ln

(
2T
B

)
+ 4

N

∑
i ln(di), Algorithm 2 is

1. (α ·maxi∈[N ] ci)-proportionally fair, and hence in the (α ·maxi∈[N ] ci)-core, and

2. achieves (α · (
∏

i∈[N ] ci)
1
N )-approximation of the Nash welfare.

Proof. (1) Theorem 3 implies that

1

maxi ci
·max

w

1

N

N∑
i=1

ui(w)

ui(x)
⩽ max

w

1

N

N∑
i=1

ui(w)

ciui(x)
⩽ α,

which directly implies the desired proportional fairness guarantee and, by Proposition 1, the desired
core guarantee. While the same guarantee carries over to Nash welfare approximation, repeating the
proof of Proposition 2 actually provides a better approximation.

(2) Let x∗ be the allocation maximizing the Nash social welfare in hindsight. We have

max
w

1

N

N∑
i=1

ui(w)

ciui(x)
⩾

1

N

N∑
i=1

ui(x
∗)

ciui(x)

(a)

⩾

(
N∏
i=1

ui(x
∗)

ciui(x)

) 1
N

(b)
=

(
N∏
i=1

1

ci

) 1
N

NSW(x∗)

NSW(x)

where (a) is by the AM-GM inequality, and (b) is by the definition of the Nash welfare. This, together
with Theorem 3, yields the second part of the corollary.

4.3 Hardness with Predictions

Theorem 3 shows that in online allocation of public goods with general values and budget, having
access to reasonable predictions of each agent’s total value can lead to a dramatic improvement
in the proportional fairness guarantee from Ω(T/B) to O(log(T/B))). Given the size of the side
information (which lies in RN , since we need one prediction per agent) relative to the ambient
size of the input (which lies in RNT , with one valuation per agent per round), this is a surprising
improvement in performance.

One may wonder whether these predictions are so strong that one can do even better. The following
result shows, however, that even with a single agent, and perfect knowledge of her total value V1, any
online algorithm is Ω(log(T/B))-proportionally fair. Thus Algorithm 2 is essentially optimal for our
setting.
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Theorem 4. For N = 1 agent, every online algorithm is Ω(log(T/B))-proportionally fair (in fact,
achieves an Ω(log(T/B))-approximation for the Nash welfare), even with perfect knowledge of
horizon T and the total value of the agent Ṽ1 = V1 =

∑T
t=1 vi,t.

Proof. As in the proof of Proposition 3, approximations to proportional fairness and Nash welfare
are equivalent with N = 1 agent, both coinciding with the ratio of the agent’s maximum utility in
hindsight to the agent’s utility under the algorithm.

For the sake of contradiction, suppose that that there exists an online algorithm whose approximation
ratio is o(log(T/B)). Let T = B · (T ′(T ′ + 1) − 2)/2 for some T ′. For r ∈ [T ′ − 1], we denote
with Sr the sequence of B · (r + 1) goods that arrive consecutively for which the agent has utility
equal to (r + 1)/T ′ for the first B goods and utility equal to 0 for the remaining goods and with S′

r
the sequence of B · (r + 1) goods such that the agent has utility equal to 1/T ′ for each of the goods.
Now, for each k ∈ [T ′ − 1], let Ik = (S1, S2, . . . , Sk, S

′
k+1, . . . , S

′
T ′−1), i.e. Ik be the instance

that is constructed by concatenating S1, S2, . . . Sk, S
′
k+1, . . . , ST ′−1 in that order. Notice that for

r ∈ [T ′ − 1], Sr and S′
r have the same number of goods, equal to B(r+ 1), and for each of them the

agent has the same accumulated utility, equal to B(r + 1)/T ′. Hence, each instance Ik consists of
T goods and the agent has the same accumulated utility for all these instances. We assume that the
algorithms is aware that it will see instance Ik for some k ∈ [T ′ − 1].

With slight abuse of notation, for r ∈ [T ′ − 1], we let Sr to also denote the set of goods that appear
in the sequence Sr. We denote with x the allocation produced by the online algorithm on instance
IT ′−1. For r ∈ [T ′ − 1], let xSr

=
∑

t∈Sr
xt denote the total allocation to goods in Sr. Now, for

k ∈ [T ′ − 1], let xk denote the allocation produced by the algorithm on instance Ik. As the algorithm
cannot distinguish between Ik and IT ′−1 for the first k blocks (i.e. S1, . . . , Sk), under instance Ik,
the algorithm must assign a total allocation of xSℓ

to block Sℓ for each ℓ ⩽ k.

Moreover, under instance Ik, the optimal algorithm allocates 1 to each of the first B goods of Sk.
Hence, we have that under instance Ik, if αk is the approximation ratio of the algorithm, then

αk ⩾
B · (k + 1)/N

(2 · xS1
+ 3 · xS2

+ . . .+ (k + 1)xSk
+ (1− xS1

− xS2
− . . .− xSk

))/N

= B · (k + 1)

xS1 + 2 · xS2 + . . .+ kxSk
+ 1

.

Hence, if α is the worst-case approximation ratio over all the instances Ik, we have

α ⩾ B · max
k∈[T ′−1]

(k + 1)

xS1
+ 2 · xS2

+ . . .+ kxSk
+ 1

and by applying Lemma 1, with S = T ′ and W = B, we get that α ⩾ B ·HT ′/(2B). Thus, we have
that α = Ω(log(T ′)) = Ω(log(T/B)).

5 Batched Arrival of Public Goods

In this section, we present our most general setting, which we refer to as the batched public goods
model. This not only generalizes the model in Section 2 with a single good per round, but also the
setting of Banerjee et al. [23] with private goods.

In each round t ∈ [T ], a batch of L public goods arrive (as opposed to a single public good). Upon
their arrival, the algorithm learns the value vi,ℓ,t ⩾ 0 of each agent i ∈ [N ] for each good ℓ ∈ [L]
in the batch. It then must irrevocably decide the allocation xℓ,t ∈ [0, 1] to each good ℓ in the batch,
before the next round. We use xt = (xℓ,t)ℓ∈[L] to denote the allocation in round t, and x = (xt)t∈[T ]

to denote the final allocation. We also incorporate two types of constraints on the allocation x:

1. (Per-round constraint)
∑L

ℓ=1 xℓ,t ⩽ 1 for all t ∈ [T ].

2. (Overall constraint)
∑T

t=1

∑L
ℓ=1 xℓ,t ⩽ B for B ⩾ 0 known to the algorithm in advance.

The allocation xℓ,t to good ℓ in round t yields utility vi,ℓ,t · xℓ,t to every agent i. We assume that
agent utilities are additive, i.e., the final utility of agent i is given by ui(x) =

∑T
t=1

∑L
ℓ=1 vi,ℓ,t · xℓ,t.
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Our aim, as before, is is to realize an α-proportionally fair allocation (Definition 1 does not require
any modifications except using these new utility functions) for the smallest possible α.

Note that the overall constraint is the same as in the model in Section 2 with a single good per round.
However, in the batched model, the per-round constraint can place additional restriction on how much
budget can be spent in any single round. Note also that choosing the per-round bound to be 1 is
without loss of generality; in particular, since agent utilities are linear, having a per-round constraint
of b can be reduced to our setting by scaling each allocation, as well as the total budget, by a factor of
b. Finally, the per-round constraint becomes vacuous if B ⩽ 1, and the overall constraint becomes
vacuous if B ⩾ T ; therefore, we assume, without loss of generality, that 1 ⩽ B ⩽ T .

This model captures the following special cases. Before we dive into the algorithm and analysis, we
briefly mention some special cases of interest which this model generalizes.

1. Single public good. When L = 1, we trivially recover the setting of Section 4, where there
is one public good in each round.

2. Single private good. When L = N , B = T , and vi,ℓ,t = 0 if i ̸= j, we recover the setting
studied by Banerjee et al. [23]. In their setting, there is a single private good arriving in each
round, which the algorithm needs to split among the N agents. When cast in our model,
vi,i,t is the value that agent i has for the good in round t, and xi,t is the fraction of good t
that agent i is allocated. Note that Banerjee et al. only study per-round constraints, so one
of our contributions is a generalization of their result to the budgeted setting.

3. Batched private goods. When L = L′ ·N , B = T , and vi,ℓ,t = 0 if i ̸≡ j (mod N), we
capture a setting where there are L′ private goods arriving in each round, and the algorithm
can (fractionally) allocate at most 1 good in total among the agents in each round.

5.1 The Set-Aside Greedy Algorithm for Batched Public Goods

We present an algorithm, Algorithm 3, for the batched public goods model which generalizes our
guarantees from Section 4 and, partly, from the work of Banerjee et al. [23] as well. First, we need to
extend predicted promised utilities to the batched model.
Definition 5 (Predicted Promised Utility). The predicted promised utility of agent i in round t is

ũi,t(z1, . . . , zt) =
B

2min{N,L}T
· Ṽi +

t∑
τ=1

L∑
ℓ=1

vi,ℓ,τzℓ,τ (3)

For clarity, we will often omit the dependence on z1, . . . , zt−1 and just write ũi,t(zt).

ALGORITHM 3: Set-Aside Greedy Algorithm for Batched Public Goods

Input: Target proportional-fairness level α; total value predictions (Ṽi)i∈[N ]

1: Define q = α
2B

.
2: for all t = 1 to T do
3: Given values {vi,ℓ,t}i∈[N ],ℓ∈[L], find ‘favorite goods’ set Ft as follows: Initialize Ft ← ∅.
4: for all i = 1 to N do
5: Let ℓi ← argmaxℓ{vi,ℓ,t} (breaking ties arbitrarily), and update Ft ← Ft ∪ {ℓi}.
6: end for
7: Set-aside semi-allocation: set yℓ,t = B

2|Ft|T · 1{ℓ ∈ Ft}.
8: Greedy semi-allocation: Let (zt, λt) be an optimal solution to the following optimization problem:

Maximize 1
N

∑N
i=1 ln (ũi,t(z)) + λq subject to

∑L
ℓ=1 zℓ + λ = 1− B

2T
and z, λ ⩾ 0.

9: Allocate xℓ,t = yℓ,t + zℓ,t.
10: end for

At a high level, Algorithm 3 takes in as input a target approximation factor α (which we set later)
and proceeds as follows. In round t, let Ft be the set of ‘favorite goods’, which satisfies that for each
agent i, there exists some good ℓ ∈ Ft such that ℓ is among the most preferred goods of i in round t.
Note that this guarantees that |Ft| ⩽ min{N,L}. The algorithm allocates xℓ,t = yℓ,t + zℓ,t, where
the set-aside allocation is yℓ,t = B

2|Ft|T · 1{ℓ ∈ Ft} for each ℓ ∈ [L] and the greedy allocation zt is
computed by an optimization problem. Note that the objective function maximized is concave and
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the constraints are linear. Hence, this is a convex optimization problem, which can be solved up to
any ϵ > 0 accuracy in time that is polynomial in the input size and 1/ϵ. For simplicity, we present
our proof assuming that the optimization problem is solved exactly, but solving it up to a sufficiently
small error does not change our proportional fairness guarantee asymptotically.

The purpose of the yt part of the allocation is to guarantee each agent a minimum share of their
total utility Vi: Note that since |Ft| ⩽ min{N,L}, every agent i is guaranteed to receive at least
maxℓ{vi,ℓ,t} · B

2min{N,L}T utility from the yt set-aside semi-allocation in each round t. Summing
over all T rounds, each agent is guaranteed to receive at least Vi · B

2min{N,L}T from the set-aside
semi-allocation. Algorithm 3 achieves the following guarantee; its proof is in Section 5.2.

Theorem 5. In the batched public goods model, for any α ⩾ 4 ln
(

2min{N,L}T
B

)
+ 4

N

∑
i ln(di),

Algorithm 3 produces a feasible allocation x, which satisfies maxw
1
N

∑N
i=1

ui(w)
ci·ui(x)

⩽ α, where the
maximum is over all feasible allocations w.

Using exactly the same proof as that of Corollary 1, we obtain the following guarantees for Algo-
rithm 3 with respect to proportional fairness, the core, and the Nash social welfare.

Corollary 2. For α ⩾ 4 ln
(

2min{N,L}T
B

)
+ 4

N

∑
i ln(di), Algorithm 3 is

1. (α ·maxi ci)-proportionally fair, and hence in the (α ·maxi ci)-core.

2. achieves (α · (
∏

i∈[N ] ci)
1
N )-approximation of the Nash social welfare.

Recall that the private goods setting of Banerjee et al. [23] is a special case of our setting in which
L = N , B = T , and the valuation matrix of the N agents for the N public goods in each round
is a diagonal matrix. For this special case, our Nash welfare approximation is O((

∏
i∈[N ] ci)

1/N ·
(lnN + (1/N) ·

∑
i ln di)). The Nash welfare approximation obtained by Banerjee et al. [23] is

almost the same, except that lnN is replaced by min {lnN, lnT}. Thus, for T = Ω(N), our result
strictly generalizes theirs and they prove this bound to be almost tight. For T = o(N), they derive
a better approximation that depends on lnT instead of lnN , (and it is unknown if this is tight). It
would be interesting to see if our result can also be improved in this case.

5.2 Proof of Theorem 5

Let x denote the final allocation produced by Algorithm 3. Central to our analysis is the following
linear program (and its dual), which essentially tries to maximize (i.e., find the worst case) the
proportional-fairness level achieved by Algorithm 3:

(P ) max
w∈RLT

1

N

N∑
i=1

ui(w)

ciui(x)

s.t.
T∑

t=1

L∑
ℓ=1

wℓ,t ⩽ B

L∑
ℓ=1

wℓ,t ⩽ 1 ∀ t ∈ [T ]

wℓ,t ⩾ 0 ∀ ℓ ∈ [L], t ∈ [T ]

(D) min
p∈RT , q∈R

T∑
t=1

pt +Bq

s.t. pt + q ⩾
1

N

N∑
i=1

vi,ℓ,t
ciui(x)

∀ ℓ ∈ [L], t ∈ [T ]

pt, q ⩾ 0

Note that the dual constraints can be written more compactly as

pt + q ⩾
1

N
max

ℓ

N∑
i=1

vi,ℓ,t
ciui(x)

∀ t ∈ [T ].

From now on we will work with the dual constraints in the form above.

Algorithm 3 can now be viewed as choosing x in a manner such that it forces the LP (P ) to
have as small a value as possible. One way to achieve this is to consider a ‘target’ dual solution
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q = α
2B and pt = max{0, 1

N maxℓ
∑N

i=1
vi,ℓ,t
ui(x)

− q} (for some appropriate choice of α). To realize
this, Algorithm 3 wants to set the vector of allocations xt for each round t, as well as the corresponding
dual variable pt, in a manner such that the primal and dual solutions are consistent (i.e., all constraints
are feasible, and they obey complementary slackness).

The challenge in generating allocation x and dual certificate (pt, q) in an online fashion is that at
time t, the dual constraint depends on ui(x), the final utilities under the entire allocation made by the
algorithm. However, these quantities are not known to the algorithm at time t, because it cannot look
into the future. To work around this, we use the predicted promised utilities (Definition 5) as proxy in
place of ui(x) when making the decision in round t.

The next lemma explains the sense in which the predicted promised utilities serve as a proxy; in
particular, we show that under Algorithm 3, the predicted promised utility ũi,t(zt) is a lower bound
on the true final utility of agent i under x up to a multiplicative factor of ci, for each agent i and in
each round t.
Lemma 2. For every agent i ∈ [N ] and time t ∈ [T ], we have ũi,t(zt) ⩽ ci · ui(x).

Proof. We have

ui(x) =
T∑

τ=1

L∑
ℓ=1

vi,ℓ,τ (yℓ,τ + zℓ,τ )

=

T∑
τ=1

L∑
ℓ=1

vi,ℓ,τyℓ,τ +

T∑
τ=1

L∑
ℓ=1

vi,ℓ,τzℓ,τ

We next bound the contribution due to the set-aside allocations y. At any time t ∈ [T ], agent i
receives at least maxℓ{vi,ℓ,t} yℓ,t = maxℓ{vi,ℓ,t} B

2|Ft|T utility from the set-aside semi-allocation
yℓ,t. Since |Ft| ⩽ min{N,L}, we get

T∑
τ=1

L∑
ℓ=1

vi,ℓ,τyℓ,τ ⩾
T∑

τ=1

max
ℓ

{vi,ℓ,t} ·
B

2min{N,L}T
⩾

Ṽi

ci
· B

2min{N,L}T
.

Substituting this back in the above expression, and using the fact that ci ⩾ 1 for all i, we have

ui(x) ⩾
Ṽi

ci
· B

2min{N,L}T
+

t∑
τ=1

L∑
ℓ=1

vi,ℓ,τzℓ,τ

⩾
1

ci

(
B

2min{N,L}T
Ṽi +

t∑
τ=1

L∑
ℓ=1

vi,ℓ,τzℓ,τ

)
=

1

ci
ũi,t(zt).

Using this, we now formally define our new dual certificates, and list some key properties of the
allocation and certificate which we need for our performance guarantee. Define

Φℓ(z) =
1

N
·

N∑
i=1

vi,ℓ,t
ũi,t(z)

=

N∑
i=1

vi,ℓ,t

γi +
∑L

ℓ=1 vi,ℓ,tzℓ,t
,

where γi = BṼi

2min{N,L}T +
∑t−1

τ=1

∑L
ℓ=1 vi,ℓ,τzℓ,τ ; for the last transition, see the definition of

predicted promised utilities (Equation (3)).
Proposition 4 (Some Properties of the Algorithm). Consider the dual certificate:

q =
α

2B
⩾

2

B

[
ln

(
2min{N,L}T

B

)
+

1

N

∑
i

ln(di)

]

pt = max

{
0,max

ℓ
Φℓ(zt)− q

}
Then, the allocation x = y + z returned by Algorithm 3 satisfies the following for each t ∈ [T ]:
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1. For each ℓ ∈ [L], zℓ,t > 0 =⇒ Φℓ(zt) = maxℓ′ Φℓ′(zt).

2.
∑

ℓ zℓ,t < 1− B
2T =⇒ pt = 0.

3.
∑

ℓ zℓ,t > 0 =⇒ pt + q = maxℓ Φℓ(zt).

It is easy to argue the existence of a greedy semi-allocation zt satisfying the three properties above
using Kakutani’s fixed point theorem. However, in Algorithm 3, we are able to constructively find such
an allocation by maximizing a concave objective function subject to a budget-like constraint. To show
that an optimal solution to this optimization problem satisfies the three properties in Proposition 4,
we need the following technical lemma.

Proposition 5. Let f1, . . . , fn : Rn → R, such that fi = ∂F
∂xi

for some concave differentiable
function F : Rn → R. Then, the solution x∗ to the optimization problem max{F (x) : x ∈ ∆n}
satisfies, for all i ∈ [n],

x∗
i > 0 =⇒ fi(x

∗) = max
j∈[n]

fj(x
∗).

Proof. Written out in full form, the optimization problem is

max F (x)

s.t. x1 + · · ·+ xn = 1

xi ⩾ 0 ∀ i ∈ [n]

Let λ be the Lagrangian multiplier for the equality constraint and (θi : i ∈ [n]) be the multipliers for
the non-negativity constraints. The Lagrangian is given by L(x, λ,θ) = F (x) + λ(

∑
i∈[n] xi − 1) +∑

i∈[n] θixi. The KKT conditions require that there exist λ,θ satisfying the following constraints:

• (Primal feasibility) x∗ ∈ ∆n,

• (Dual feasibility) θ∗i ⩾ 0 for all i ∈ [n],

• (Complementary slackness) x∗
i θ

∗
i = 0 for all i ∈ [n],

• (Stationarity) ∂F (x∗)
∂xi

− λ∗ + θ∗i = 0 for all i ∈ [n].

Since ∂F
∂xi

= fi, the stationarity condition can be written as fi(x
∗) = λ∗ − θ∗i . This implies

fj(x
∗) ⩽ λ∗ for all j since θ∗ ⩾ 0. On the other hand, consider some i with x∗

i > 0. By
complementary slackness, θ∗i = 0, and hence fi(x

∗) = λ∗. Thus

x∗
i > 0 =⇒ fi(x

∗) = λ∗ = max
j

fj(x
∗),

which completes the proof.

We are now ready to prove Proposition 4.

Proof of Proposition 4. Let F (z, λ) be the objective of the optimization problem for computing the
greedy semi-allocation in Algorithm 3:

F (z, λ) =
1

N

N∑
i=1

ln (ũi,t(z)) + λq.

Define f1, . . . , fL+1 : RL+1 → R as follows:

• fi(z, λ) = Φi(z) for i = 1, . . . , L,

• fL+1(z, λ) = q.
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It can be checked that F is concave and differentiable, ∂F
∂zi

= fi for all i ∈ [L], and that ∂F
∂λ = fL+1.

Thus, applying Proposition 5,6 the solution (zt, λt) to the optimization problem satisfies

• λt > 0 implies q ⩾ maxj{Φj(zt)}, and

• For all ℓ ∈ [L], zℓ,t > 0 implies Φℓ(zt) = max{q,maxj Φj(zt)}.

We now check that zt satisfies the conditions in Proposition 5.

1.
∑L

ℓ=1 zℓ,t ⩽ 1− B
2T : This follows directly from the constraints of the optimization problem.

2. zℓ,t > 0 =⇒ Φℓ(zt) = maxj{Φj(zt)}: This holds because zℓ,t > 0 implies Φℓ(zt) =
max{q,maxj Φj(zt)}. But since Φℓ(zt) is a term in maxj Φj(zt), this means Φℓ(zt) =
maxj Φj(zt).

3.
∑

ℓ zℓ,t < 1 − B
2T =⇒ maxj Φj(zt) ⩽ q: If

∑
ℓ zℓ,t < 1 − B

2T then λt > 0, which
implies q ⩾ maxj Φj(zt).

4.
∑

ℓ zℓ,t > 0 =⇒ q ⩽ maxj Φj(zt): If
∑

ℓ zℓ,t > 0 then zℓ,t > 0 for some ℓ ∈ [L], which
implies Φℓ(zt) = max{q,maxj Φj(zt)}. Thus q ⩽ maxj Φj(zt).

This completes the proof.

We can now prove our main performance guarantee for Algorithm 3, which we restate below.

Theorem 5. In the batched public goods model, for any α ⩾ 4 ln
(

2min{N,L}T
B

)
+ 4

N

∑
i ln(di),

Algorithm 3 produces a feasible allocation x, which satisfies maxw
1
N

∑N
i=1

ui(w)
ci·ui(x)

⩽ α, where the
maximum is over all feasible allocations w.

Proof. To prove the theorem, it suffices to check the following 3 statements:

1. Algorithm 3 returns a feasible allocation x.

2. The dual certificate (pt, q) in Proposition 4 is feasible to the dual LP (D).

3.
∑

t pt +Bq ⩽ α.

Given these properties, the guarantee follows via weak LP duality for programs (P ) and (D).

For Claim (2), note that by Lemma 2, predicted utilities are a lower bound on ciui(x) for all
i ∈ [N ], t ∈ [T ]. Now by definition of our dual certificate, we have for all i ∈ [N ], t ∈ [T ]

pt + q ⩾ max
ℓ

N∑
i=1

vi,ℓ,t
ũi,t(zt)

⩾ max
ℓ

N∑
i=1

vi,ℓ,t
ciui,t(x)

Claims (1) and (3) are implied by the following key invariant:

Key Invariant.
∑

t(pt + q)
∑

ℓ zℓ,t ⩽
α
4 .

We first show how this key invariant implies Claims (1) and (3).

(1) Clearly x satisfies the per-round constraints by definition of the algorithm, so we just need
to show that it satisfies the overall budget constraint. Since the set-aside semi-allocation

6From the proof of Proposition 5, it can be seen that it still holds even if the constraint set is a scaling of the
unit simplex.
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is chosen such that
∑

ℓ,t yℓ,t =
B
2 , we only need to check that

∑
ℓ,t zℓ,t ⩽

B
2 . Now, since

pt ⩾ 0 ∀ t, the key invariant implies∑
t

∑
ℓ

zℓ,t ⩽
1

q
· α
4
=

B

2
,

by the definition of q = α
2B , and our choice of α.

(3) By (the contrapositive of) item 2 of Proposition 4, we have that if pt > 0 then
∑

ℓ zℓ,t =

1− B
2T . Using this and the key invariant, we have∑

t

pt

(
1− B

2T

)
=
∑
t

pt
∑
ℓ

zℓ,t ⩽
α

4
.

Moreover, since B ⩽ T , this implies
∑

t pt ⩽
α
2 . Now, by our choice of q = α

2B , we have∑
t

pt +Bq ⩽
α

2
+

Bα

2B
= α.

Finally we turn to the proof of the key invariant. We have∑
t

(pt + q)
∑
ℓ

zℓ,t =
∑
t

(
1

N
max
ℓ′

∑
i

vi,ℓ′,t
ũi,t(zt)

)∑
ℓ

zℓ,t (by item 3 of Proposition 4)

=
1

N

∑
t

∑
ℓ

zℓ,t ·max
ℓ′

∑
i

vi,ℓ′,t
ũi,t(zt)

=
1

N

∑
t

∑
ℓ

zℓ,t ·
∑
i

vi,ℓ,t
ũi,t(zt)

(by item 1 of Proposition 4)

=
1

N

∑
t

∑
i

∑
ℓ zℓ,tvi,ℓ,t
ũi,t(zt)

=
1

N

∑
t

∑
i

ũi,t(zt)− ũi,t(0)

ũi,t(zt)

Where the last equality follows from our choice of the predicted utility (Definition 5). Now, using the
fact that 1− x ⩽ − ln(x)∀x ∈ R, we have∑
t

(pt + q)
∑
ℓ

zℓ,t ⩽
1

N

∑
t

∑
i

[ln (ũi,t(zt))− ln (ũi,t(0))]

=
1

N

∑
i

[ln (ũi,t(zT ))− ln (ũi1(0))] (by telescoping)

=
1

N

∑
i

[
ln

(
B

2min{N,L}T
Ṽi +

∑
t

∑
ℓ

vi,ℓ,tzℓ,t

)
− ln

(
B

2min{N,L}T
Ṽi

)]

= ln

(
2min{N,L}T

B

)
+

1

N

∑
i

ln

(
B

2min{N,L}T
+

1

Ṽi

∑
t

∑
ℓ

vi,ℓ,tzℓ,t

)

⩽ ln

(
2min{N,L}T

B

)
+

1

N

∑
i

ln

(
B

2T
+

1

Ṽi

∑
t

∑
ℓ

vi,ℓ,tzℓ,t

)
Now, observe that∑

t

∑
ℓ

vi,ℓ,tzℓ,t ⩽
∑
t

max
ℓ′

{vi,ℓ′,t}
∑
ℓ

zℓ,t

⩽
∑
t

max
ℓ′

{vi,ℓ′,t}
(
1− B

2T

)
= Vi

(
1− B

2T

)
,

where the second inequality is because
∑

ℓ zℓ,t ⩽ 1− B
2T , by the stopping condition. Thus

B

2T
+

1

Ṽi

∑
t

∑
ℓ

vi,ℓ,tzℓ,t ⩽
B

2T
+

(
1− B

2T

)
Vi

Ṽi

⩽
B

2T
+

(
1− B

2T

)
di ⩽ di.
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Therefore, we conclude that∑
t

(pt + q)
∑
ℓ

zℓ,t ⩽ ln

(
2min{N,L}T

B

)
+

1

N

∑
i

ln(di) ⩽
α

4
,

which concludes the proof of the key claim.

6 Discussion and Future Directions

The Geometry of Online Fair Allocation. While we focus on the proportional fairness objective, a
natural question is whether our results can be extended to other non-linear objective functions, such
as the class of generalized p-mean welfare measures [39, 51]. Similarly, while our results give insight
into the interaction between per-round budget constraints and overall budget constraints, one can ask
if these ideas can be extended to more complex constraints such as general packing constraints [31].

Alternate Information Structures. An interesting direction for future research is to develop a better
understanding regarding whether what types of predictions would be the most appropriate for online
fair division. For example, what if the algorithm is also provided with a prediction regarding the total
value of each good across all agents, but not specifying which of the agents will like it and by how
much? Could this additional information allow us to overcome the logarithmic lower bounds and
maybe even achieve a constant approximation? Would it help to know more detailed patterns about
agent valuations — for example, if they take discrete values, or are periodic, or have low variance?

Alternate Arrival Models. A related question to the one above is in regards to the process for
generating agent valuations. In our model, the values V = (vi,t)i∈[N ],t∈[T ] are allowed to arrive in
an adversarial order. What if we consider slightly more optimistic models such as the random-order
model or the stochastic model [1]? It is possible that predictions are not needed when studying these
arrival models since they inherently already give the algorithm some information about the input.

Incentives. Finally, one of the most important open questions is how to convert online algorithms to
online mechanisms, whereby agents report their private vi,t values in each round. In such a setting,
can we design mechanisms which are incentive compatible? There has been recent work on similar
questions for static fair allocation [52–55], as well as online welfare maximization [56–59]; extending
these ideas to online fair allocation is an important open problem.
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Appendix

A Proof of Theorem 2

Proof. Let x denote Algorithm 1’s final allocation, and consider the following LP and its dual:

(P ) max
w∈RT

+

1

N

N∑
i=1

ui(w)

ui(x)

s.t.
T∑

t=1

wt ⩽ 1

(D) min
p∈R+

p

s.t. p ⩾
1

N

N∑
i=1

vi,t
ui(x)

∀ t ∈ [T ]

By construction, γ is feasible to the dual LP, because

γ
(a)

⩾
1

N

N∑
i=1

vit
ũit(zt)

(b)

⩾ max
i

1

N

N∑
i=1

vit
ui(x)

,

where (a) is by definition of the algorithm, and (b) is because promised utilities are a lower bound on
the true final utility. Thus by weak duality,

max
w∈RT

+

1

N

N∑
i=1

ui(w)

ui(x)
⩽ γ = 2 ln(2N).

To complete the proof, it remains to show that x is a feasible allocation. Since
∑T

t=1 yt ⩽ 1
2 , it

suffices to show that
∑T

t=1 zt ⩽
1
2 . Now we have

γ

T∑
t=1

zt =

T∑
t=1

zt ·
1

N

N∑
i=1

vit
ũit(zt)

(
since zt > 0 implies γ =

1

N

N∑
i=1

vit
ũit(zt)

)
=

1

N

N∑
i=1

T∑
t=1

ztvit
ũit(zt)

=
1

N

N∑
i=1

T∑
t=1

(
1− ũit(0)

ũit(zt)

)

⩽
1

N

N∑
i=1

T∑
t=1

[ln(ũit(zt))− ln(ũit(0))] (since 1− x ⩽ − ln(x)∀x ∈ R)

=
1

N

N∑
i=1

[ln(ũiT (zT ))− ln(ũi1(0))] =
1

N

N∑
i=1

[
ln(ũiT (zT ))− ln

(
1

2N

)]

=
1

N

N∑
i=1

ln (ũi(x)) + ln(2N) (since predicted utility lower bounds final utility)

⩽ ln(2N). (since final utilities are at most 1)

Hence, in order for
∑T

t=1 zt ⩽
1
2 , it suffices to have γ = 2 ln(2N). This is why we defined γ to be

equal to this quantity in the algorithm.

B Proof of Theorem 3

As indicated in Section 4.2, we only need to prove that the greedy semi-allocations combinatorially
computed in Algorithm 2 still satisfy the properties in Proposition 4. The result below states these
properties for L = 1. Note that the first property in Proposition 4 becomes vacuous for L = 1.
Proposition 6 (Some Properties of the Algorithm). Consider the dual certificate:

q =
α

2B
⩾

2

B

[
ln

(
2T

B

)
+

1

N

∑
i

ln(di)

]

pt = max

{
0,

1

N

N∑
i=1

vi,t
ũi,t(zt)

− q

}
.

Then, the allocation x = y + z returned by Algorithm 2 satisfies the following:
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1. zt < 1− B
2T =⇒ pt = 0.

2. zt > 0 =⇒ pt + q =
∑N

i=1
vi,t

ũi,t(zt)
.

Proof. (1) follows because if zt < 1− B
2T , then that must mean zt = z∗t . Hence, 1

N

∑N
i=1

vi,t
ũi,t(zt)

⩽
α
2B = q, which implies pt = 0.

(2) follows because if zt > 0, then that must mean z∗t > 0. Let Φ(z) = 1
N

∑N
i=1

vi,t
ũi,t(z)

. Since Φ is a
continuous function in z, this implies Φ(z∗t ) =

α
2B = q. Because zt = min{z∗t , 1− yt} ⩽ z∗t and Φ

is decreasing, we have Φ(zt) ⩾ Φ(z∗t ) = q. Thus pt = max{0,Φ(zt)− q} = Φ(zt)− q.
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