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This work considers a variety of notions of computationally efficient samplability. Introduced

here for the first time is the sampling class ExactPSamp, consisting of those distributions from which

samples may be produced efficiently by an inputless probabilistic machine where the accuracy of

approximation, for samples of a given size, depends only on the amount of time given. This class

will be contrasted with the previously considered more general class PSamp, where the accuracy of

the sampling machine is allowed to depend on an input term. The task of providing evidence for the

separation or collapse of these sampling classes is explored, in particular in relation to complexity

theoretic assumptions. Also discussed are the monotonic properties of ExactPSamp which lead

to the definition of intermediate classes and an alternative characterization of ExactPSamp. The

sampling classes are related to their ensemble analogues and, finally, we consider the task of sampling

uniformly from the certificates to an NP problem, with attention to completeness and the difficulty

of using completeness to provide evidence for the separation of our sampling classes.
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Chapter 1

Introduction

There are a variety of approaches to the representation of probability distributions by computation,

in particular as it pertains to efficient sampling. Broadly speaking, computationally efficient sam-

pling means the representation of a probability distribution by a probabilistic Turing machine for

which the probability of producing a particular sample as output approximates the probability of

the sample as determined by the given distribution. However, there are variety of approaches to the

precise formulation of this general concept.

It is illustrative to consider the following example. A probabilistic Turing machine has access

to independent uniformly random bits. In other words, any number of times, it may observe the

outcome of a fair coin toss. Now suppose one wishes to use such a machine to simulate the result

of an unfair coin toss where, with probability 1
3 , the result is 1, and, with probability 2

3 , the result

is 0. If it is required that an output is produced after a fixed number k of random bits have been

observed, then there are 2k possible outcomes for the sequence of random bits. In particular, on a

subset of these of size `, the machine would return 1. On all other 2k − ` possible outcomes for the

sequence of random bits, the machine would return 0. Hence, the probability of the output being 1

would be `
2k . However, `

2k cannot equal 1
3 for integers ` and k, since 2k is not a multiple of 3. Thus,

the machine cannot not sample exactly from the target distribution.

One possible way of resolving this issue is to provide the machine with an error ε as input and

then require only that the probability that the machine produces 1 differs from 1
3 by at most ε.

However, there is another approach to the computational simulation of an unfair 1
3 -coin that

does not rely on an input term. Consider the algorithm which, on iteration k, observes the outcome

of a pair of random bits. If the result is (0, 0), then it halts and returns 1 as output. If the result is

either (0, 1) or (1, 0), then it halts and returns 0 as output. However, if the result is (1, 1), it proceeds

to iteration k + 1. Then, for all k, conditioned on having halted on iteration k, the probability of

producing 1 is 1
3 . Hence, the probability of ever producing 1 is also 1

3 , so that the machine samples

from the 1
3 coin exactly. Moreover, the probability of not halting within at most k steps is

(
1
4

)k
,

which decreases exponentially with k.

This last algorithm motivates the definition of the class ExactPSamp which is introduced here for

the first time, and consists of those distributions from which samples may be produced efficiently by

1



Chapter 1. Introduction 2

an inputless machine for which the error of approximation depends only on the time it is given to run

and the size of the sample produced. In particular, if the machine is allowed to run indefinitely, then

the probability of it producing a sample is exactly the probability of the sample as determined by

the target distribution. This will be contrasted with the class of distributions PSamp, as it consists

of distributions that are samplable in a more general sense, where the error of approximation is

determined by the machine’s input.

The primary question which will be explored is whether PSamp and ExactPSamp are in fact

distinct. Since ExactPSamp is a subset of PSamp, an equivalent question is whether the containment

is proper. Towards addressing this question, we will examine some of the practical challenges to

the task of translating from a machine witnessing a distribution in PSamp to a machine witnessing

that the distribution is in ExactPSamp. Furthermore, we will consider the task of providing formal

evidence for the separation of PSamp and ExactPSamp. However, separating these would imply

P 6= PP, and thereby resolve a major open problem. For this reason, we consider the possibility

of obtaining the separation of PSamp and ExactPSamp as a consequence of complexity theoretic

assumptions, as well as some of the barriers to doing so.



Chapter 2

Basic definitions and notation

2.1 Strings and sets

Let N be the set of all nonnegative integers and let R be the set of all real numbers. For n ∈ N, let

{0, 1}n denote the set of all binary strings of length n. Then let {0, 1}∗ denote the set of all finite

binary strings. Let {0, 1}∞ denote the set of all infinite binary strings where the characters of the

string are indexed over N. If α ∈ {0, 1}, then, for n ∈ N, let αn denote the string made up of n

repetitions of α. The symbol λ will represent the empty string. Moreover, define the relation v, for

a, b ∈ {0, 1}∗ ∪ {0, 1}∞, by a v b iff either a = b or a is a proper prefix of b.

2.2 Turing machines

For either a deterministic or probabilistic Turing machine M , as usual let

M(x1, . . . , xk)

denote its output given as input the tuple of strings (x1, . . . , xk) encoded in some canonical way. If

M does not halt on input (x1, . . . , xk), then let

M(x1, . . . , xk) = ⊥

Using subscript, let

Mt(x1, . . . , xk) = M(x1, . . . , xk)

assuming the machine halts within t time steps on the given input. Otherwise, let

Mt(x1, . . . , xk) = ⊥.

If M is a probabilistic Turing machine, then, at every time step, M observes a random bit. In

particular, interpreting b ∈ {0, 1}∞ as the outcome of an infinite sequence of random bits, let

M b(x1, . . . , xk)

3



Chapter 2. Basic definitions and notation 4

denote the output of M on input (x1, . . . , xk) when acting with respect to b, so long as M halts then.

Otherwise, let M b(x1, . . . , xk) = ⊥. Extending the earlier notation, for t ∈ N, let M b
t (x1, . . . , xk) =

M b(x1, . . . , xk) if M halts within t time steps on input (x1, . . . , xk) when acting with respect to b.

Otherwise, let M b
t (x1, . . . , xk) = ⊥.

Finally, using less conventional notation, for a ∈ {0, 1}∗, let

Ma(x1, . . . , xk) = y

if it holds that

∀b ∈ {0, 1}∞, a v b =⇒ M b(x1, . . . , xk) = y

If no such y exists, then Ma(x1, . . . , xk) = ⊥. Similarly, let

Ma
t (x1, . . . , xk) = y

if it holds that

∀b ∈ {0, 1}∞, a v b =⇒ M b
t (x1, . . . , xk) = y

Again, if no such y exists, then Ma
t (x1, . . . , xk) = ⊥.

2.3 Probability theory

Typically, we consider probability distributions over the set {0, 1}∗ ∪ {⊥}. For this purpose, it is

usual to order the set {0, 1}∗ of binary strings first by length and then lexicographically, with x− 1

denoting the predecessor of the string x according to this order. Then a (cumulative) distribution

over {0, 1}∗ ∪ {⊥} is a nondecreasing function µ : {0, 1}∗ → [0, 1]. Here, µ(x) is interpreted as the

total probability of the occurrence of a sample less than or equal to x. Its associated density function

µ̂ : {0, 1}∗ ∪ {⊥} → [0, 1] is defined by

µ̂(x) =


µ(λ), if x = λ

µ(x)− µ(x− 1), if x ∈ {0, 1}∗ \ {λ}

1− supx∈{0,1}∗ µ(x), if x = ⊥

Note that
∑
x∈{0,1}∗ µ̂(x) = 1 is not required since positive probability may be assigned to the

additional symbol ⊥.

For a function f : {0, 1}∗ → {0, 1}∗, write µf−1 to denote the distribution with density function

defined by

µ̂f−1(x) = µ̂({z | f(z) = x})

Intuitively, it is useful to think of µf−1 as the distribution from which samples are produced by

sampling first from µ and then applying the function f to the result.

Occasionally, it will be useful to consider distributions over S ∪{⊥} where S ⊆ {0, 1}∗. Thus we

will refer to cumulative distributions of the form µ : S → [0, 1] with corresponding density function
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of the form µ̂ : S ∪ {⊥} → [0, 1]. However, formally this may be represented as a distribution of

the form µ : {0, 1}∗ → [0, 1] where the corresponding density function µ̂ : {0, 1}∗ ∪ {⊥} → [0, 1] is

supported on the set S ∪ {⊥}, which is to say that µ̂(x) = 0 for x ∈ {0, 1}∗ \ S.



Chapter 3

Computational representation of

distributions

3.1 Efficient computability

Before considering definitions of efficient samplability, it is worthwhile to introduce efficient com-

putability, so that the former concept may be related to the latter.

A real number b ∈ [0, 1] may be expressed by its signed digit binary representation b =
∑∞
k=1 ak ·

2−k, ak ∈ {−1, 0, 1}, a representation which is considered computationally efficient if there is a Turing

machine which, on input k, produces ak in polynomial time of k. This somewhat unconventional

representation is useful in a computational context where it guarantees closure under basic operations

such as addition and multiplication, in contrast to standard binary representation which would not.

Note that the existence of such a machine is equivalent to the existence of a machine which, on

input k, produces an integer M(k) satisfying
∣∣b− 2−k ·M(k)

∣∣ ≤ 2−k. Generalizing these ideas to

functions leads to the following definition [5].

Definition 1. Let µ : {0, 1}∗ → R be a distribution. Then say µ ∈ PComp (polynomial-time

computable) if µ has a signed-digit representation µ(x) =
∑∞
k=1 ax,k · 2−k, ax,k ∈ {−1, 0, 1}, and

there exists a polynomial-time Turing machine M such that M(x, 0k) = ax,k.

One might ask why we consider efficient computability of only the cumulative distribution func-

tion µ and not that of the density function µ̂. This is because the efficient computability of µ̂ does

not guarantee that samples may be generated efficiently from µ according to the definitions of the

following section. For further discussion, refer to the work of Luca Trevisan [10].

3.2 Efficient samplability

The distribution of outputs of a probabilistic Turing machine M running in fixed time t has the

property that, for any particular sample x, the probability that M produces x is an integer multiple

6



Chapter 3. Computational representation of distributions 7

of 2−t, known as a dyadic rational. This poses a severe limitation to the range of expression of a

sampling machine running in fixed time, or even to more general machines where the running time

is a function of only the size of the sample produced, such as those considered by Ben-David et al.

[3]. In particular, it is evident, since PComp includes distributions with probabilities that are not

dyadic, that these cannot be sampled exactly by a machine of the type just described.

This has caused a number of authors to consider a definition of efficient samplability where the

sampling machine takes an accuracy parameter determining the error by which the probabilities of

the machine’s outputs are allowed to differ from the probabilities given by the original distribution.

Paradigmatic of these definitions is the following [12].

Definition 2. Let µ : {0, 1}∗ → R be a distribution. Then say µ ∈ PSamp if there exists a

polynomial p and a probabilistic Turing machine M such that, for all i ∈ N, for all x ∈ {0, 1}∗,

∣∣µ̂(x)− Pr
(
Mp(|x|,i)(0

i) = x
)∣∣ ≤ 2−i

When µ ∈ PSamp, then the pair, consisting of the machine M and the polynomial p which

satisfy the previous definiton, will be said to witness µ ∈ PSamp. This terminology will be adopted

throughout for similar definitions also.

Above it is noted the importance of allowing the running time of M to depend on the error

of approximation. It is also worth emphasizing here that the running time required to obtain a

particular error is allowed to depend on the size of the sample. In particular, until the machine

runs for at least time p(n, 0), there are no guarantees on the approximation of µ̂(x) for |x| = n,

and the probability of having produced a sample of size n may even be zero. This contrasts with

definitions where the total variation between µ and the distribution of the output of our machine is

bounded by a function of the input and the running time. Indeed, the latter concept is not useful

in a computational context where the distributions are over infinite sets since a probabilistic Turing

machine, having run for a finite amount of time, has at most finitely many outputs that may be

produced with positive probability.

For sake of clarity, it is worth pointing out that there are no explicit requirements regarding the

machine’s approximation of µ̂(⊥) and the sampling machine never produces ⊥.

The definition of PSamp allows the machine a great deal of flexibility in that the sampling

procedure is allowed to depend on the required accuracy. By contrast, the next definition does not

provide the machine with an accuracy term as input, so that, for samples of a particular size, the

accuracy depends only on how much time the machine is given to run.

By contrast, we introduce here the class ExactPSamp, consisting of distributions from which

samples may be produced efficiently by a machine that does not take input. Rather, for samples of

a particular size, the accuracy attained depends only on the time given.

Definition 3. Let µ : {0, 1}∗ → R be a distribution. Then say µ ∈ ExactPSamp if there exists a

polynomial p and an inputless probabilistic Turing machine M such that

∣∣µ̂(x)− Pr
(
Mp(|x|,i) = x

)∣∣ ≤ 2−i
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Clearly, ExactPSamp ⊆ PSamp, since a machine which is witness to µ ∈ ExactPSamp is a

machine witness to µ ∈ PSamp that simply ignores its input. On the other hand, it is far from

evident that PSamp ⊆ ExactPSamp, a problem that will be the primary focus of this work.

Significantly, a machine M witnessing µ ∈ ExactPSamp satisfies

lim
i→∞

∣∣µ̂(x)− Pr(Mp(|x|,i) = x)
∣∣ ≤ lim

i→∞
2−i

=⇒
∣∣∣µ̂(x)− lim

i→∞
Pr
(
Mp(|x|,i) = x

)∣∣∣ ≤ lim
i→∞

2−i

=⇒ |µ̂(x)− Pr (M = x)| ≤ 0

=⇒ Pr(M = x) = µ̂(x)

In other words, if the machine M is allowed to run indefinitely, then the probability of it producing

a sample x is exactly µ̂(x). It is by this property that the name of the class is justified. Furthermore,

∀x ∈ {0, 1}∗, Pr(M = x) = µ̂(x)

=⇒
∑

x∈{0,1}∗
Pr(M = x) =

∑
x∈{0,1}∗

µ̂(x)

=⇒ 1−
∑

x∈{0,1}∗
Pr(M = x) = 1−

∑
x∈{0,1}∗

µ̂(x)

=⇒ Pr(M = ⊥) = µ̂(⊥)

Hence, µ̂(⊥) corresponds to the probability that M does not halt.

The last notion of efficient samplability to be introduced in this section relies on the concept of

p-honesty [6] [12].

Definition 4. A function f : {0, 1}∗ → {0, 1}∗ is p-honest if there exists a polynomial p such that

|x| ≤ p(|f(x)|).

Definition 5. Let µ : {0, 1}∗ → R be a distribution. Then say µ ∈ IPSamp if there exists ν ∈ PComp

and p-honest f ∈ FP such that µ = νf−1

At first glance, this may appear to be an unusual definition of samplability. However, it is

justified by the fact that samples from µ = νf−1 may be generated by sampling first from ν and

then applying the function f to the result. Having f be p-honest guarantees that samples from νf−1

correspond to samples from ν that are not too large. These ideas are discussed formally in the next

section.

3.3 Class containments

We will show that

PComp ⊆ IPSamp ⊆ ExactPSamp ⊆ PSamp
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Indeed, it is immediate from the definitions that PComp ⊆ IPSamp and ExactPSamp ⊆ PSamp.

Furthermore, the following containment may be obtained by application of inverse sampling. It is

an extension of the result PComp ⊆ PSamp, due to Ben-David et al. [3].

Proposition 6. PComp ⊆ ExactPSamp.

Proof. Let µ ∈ PComp. Then a sampling machine M for µ may be defined by considering its

random bittape as the binary representation of a real number w. Then, by binary search, M finds

x ∈ {0, 1}∗ such that either: x = λ and w ≤ µ(λ); or, x 6= λ and µ(x− 1) < w ≤ µ(x).

In detail: M first determines n = |x| by iterating over index m ∈ N, at each iteration deciding

µ(0m) ≤ w or µ(0m) > w by inspecting as many digits of µ(0m) and w as are needed. Upon discov-

ering the least value m where µ(0m) > w, the procedure terminates. Then, since µ is nondecreasing

and µ(0|x|) ≤ µ(x) < µ(0|x|+1), it holds that n = m− 1.

Subsequently, M performs a binary search on strings of length n to find x. Supposing that a prefix

d of x has been decided, then it is necessary to extend d to a prefix of x of length |d|+ 1. To do so,

compare as many digits as is necessary to decide either µ(d0111 . . . ) < w or µ(d0111 . . . ) ≥ w. Then,

since µ is nondecreasing, µ(d0111 . . . ) < w implies that d1 is a prefix of x, and µ(d0111 . . . ) ≥ w

implies that d0 is a prefix of x.

To analyze the algorithm, consider the case where

µ(x− 1) + 2−i−1 ≤ w ≤ µ(x)− 2−k−1

for some i ∈ N. Then, it also holds that, for all x′ ∈ {0, 1}∗, |µ(x′)− w| ≥ 2−i. A prefix of length

i + 3 of the signed digit binary representation determines a real number within an error of 2−i−3.

Hence, in comparing the pair of reals w and µ(x′) which satisfy |w − µ(x′)| ≥ 2−i−1, it suffices,

to observe only the first i + 3 digits of each to decide which is the larger. The first i + 3 digits

of µ(x′) may be enumerated in polynomial time in |x′| and i, since µ ∈ PComp, and all necessary

operations may computed in time polynomial in i. Hence, deciding which is the larger of w and

µ(x′) requires only time polynomial of |x′| and i. Furthermore, the number of comparisons made is

at most polynomial in |x| and each involves a comparison between w and µ(x′) for some x′ where

|x′| ≤ |x| + 1. It follows that, in this case, the entire algorithm runs in time polynomial of |x| and

k. Let p be that polynomial.

Since the condition

µ(x− 1) + 2−i−1 ≤ w ≤ µ(x)− 2−i−1

occurs with probability µ̂(x)−2−i, it holds that Pr(Mp(|x|,i) = x) ≥ µ̂(x)−2−i. Since the algorithm

does not produce x unless µ(x − 1) < w ≤ µ(x), it also holds that Pr(Mp(|x|,k) = x) ≤ µ̂(x).

Therefore, ∣∣Pr(Mp(|x|,i) = x)− µ̂(x)
∣∣ ≤ 2−i �

The stronger containment IPSamp ⊆ ExactPSamp may be obtained as a consequence of the closure

properties of ExactPSamp.

Lemma 7. If ν ∈ ExactPSamp and f ∈ FP is p-honest, then νf−1 ∈ ExactPSamp.
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Proof. By generating a sample x from ν and returning the result of f(x), one obtains a sample from

νf−1 . The condition of p-honesty guarantees that samples from νf−1 correspond to reasonably small

samples from ν, lest generating a sample y from νf−1 requires waiting for a sample x from ν where

|x| is exponential in relation to |y|.

In detail: Let f be p-honest according to the polynomial q so that, for all x ∈ {0, 1}∗, |x| ≤
q(|f(x)|). Also, let ν ∈ ExactPSamp be witnessed by machine M and polynomial p. Without loss

of generality, assume that p and q are both nondecreasing. Then define M as the machine which

simulates M until a sample x is produced and then returns f(x).

Since, for all t ∈ N,

Pr(Mt = x) ≤ ν̂(x)

it is easy to show that, for all t ∈ N,

Pr(M t = x) ≤ µ̂(x)

Thus, it remains to provide the necessasry lower bound on Pr(Mp(|x|,i) = x).

Let i ∈ N. Then, for all x ∈ {0, 1}∗,

Pr(Mp(|x|,i) = x) ≥ ν̂(x)− 2−i

Since Pr(Mt = x) is nondecreasing with respect to t, |x| ≤ q(|f(x)|) implies

Pr(Mp(q(|f(x)|),i) = x) ≥ ν̂(x)− 2−i

For an arbitrary string y, taking the sum of this inequality over x ∈ f−1(y) yields∑
x∈f−1(y)

Pr(Mp(q(|y|),i) = x) ≥
∑

x∈f−1(y)

ν̂(x)− 2−i ·
∣∣f−1(y)

∣∣ ≥ ∑
x∈f−1(y)

ν̂(x)− 2−i+q(|y|)

Then, by substitution of

ν̂f−1(y) =
∑

x∈f−1(y)

ν̂(x)

and

Pr(f(Mp(q(|y|),i))) = y) =
∑

x∈f−1(y)

Pr(Mp(q(|y|),i) = x)

we obtain

Pr(f(Mp(q(|y|),i))) = y) ≥ ν̂f−1(y)− 2−i+q(|y|)

Conditioned on the event that Mp(q(|y|),i)) = y, then the simulation of Mp(q(|y|),i)) together with

the computation of y = f(x) is achieved within time p′(|y|, i) where p′ is some fixed polynomial.

Hence,

Pr(Mp′(|y|,i) = y) ≥ Pr
(
f(Mp(q(|y|),i)) = y

)



Chapter 3. Computational representation of distributions 11

which implies

Pr(Mp′(|y|,i) = y) ≥ ν̂f−1(y)− 2−i+q(|y|)

Finally, taking

p′′(|y|, j) = p′(|y|, q(|y|) + j)

gives the desired result

Pr(Mp′′(|y|,j) = y) ≥ ν̂f−1(y)− 2−j

�

Proposition 8. IPSamp ⊆ ExactPSamp.

Proof. Suppose that µ ∈ IPSamp is witnessed by distribution ν ∈ PComp and p-honest function

f ∈ FP so that µ = νf−1 . By Proposition 6, ν ∈ ExactPSamp, and then, by Lemma 7, we have

µ = νf−1 ∈ ExactPSamp. �



Chapter 4

Hardness

Recall that PP is the class of decision problems L ⊆ {0, 1}∗ for which there exists a polynomial time

probabilistic machine M satisfying, for all x ∈ {0, 1}∗,

x ∈ L iff Pr(M(x) = 1) >
1

2

As it turns out, the separation of PComp from any one of our sampling classes is equivalent to the

separation of P and PP. The equivalence of P = PP and PComp = PSamp is due to Miltersen

[9]. That this result could be adapted to show the equivalence of P = PP and a number of other

statements, including PComp = IPSamp, was later noted by Yamakami [12].

Proposition 9. The following statements are equivalent.

1. P = PP

2. PComp = IPSamp

3. PComp = ExactPSamp

4. PComp = PSamp

Proof.

(A) PComp = IPSamp =⇒ P = PP: Assume PComp = IPSamp. Let M be a polynomial-time

probabilistic Turing machine witnessing L ∈ PP. In particular, for all x ∈ {0, 1}∗, x ∈
L iff Pr(M(x) = 1) > 1

2 . Also, there exists a polynomial p : N → N such that, for all

x ∈ {0, 1}∗, the running time of M on input x is at most p(|x|). We will make use of the encoding

γ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ where γ(x, b) is the concatenation of the strings x10x20 . . . x|x|0,

11, and b. Although not strictly a pairing function since it is not surjective, γ has the useful

property that γ(x, b) < γ(x′, b′) implies both x < x′ and b < b′.

Now consider the distribution µ defined by the following sampling procedure:

i. Sample x ∈ {0, 1}∗ with probability 2−2|x|;

12
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ii. Sample b uniformly from {0, 1}p(|x|);

iii. Run M b(x);

iv. If M b(x) = 1, then return 1x. Otherwise, return 0x.

To see that µ ∈ IPSamp, let ν be the distribution which, for x ∈ {0, 1}∗ and b ∈ {0, 1}p(|x|),
satisfies ν̂(γ(x, b)) = 2−2|x|−p(|x|). If x ∈ {0, 1}∗ but b 6∈ {0, 1}p(|x|), then ν̂(γ(x, b)) = 0. Also,

if y ∈ {0, 1}∗ is not a valid encoding of an ordered pair, which is to say y 6= γ(x, b) for all

x, b ∈ {0, 1}∗, then ν̂(x) = 0. To see that ν ∈ PComp, consider arbitrary y ∈ {0, 1}∗. Let

x, b ∈ {0, 1}∗ maximize γ(x, b) subject to the constraints γ(x, b) ≤ y and |b| = p(|x|). Both x

and b may be computed as a function of y in polynomial time. Then,

ν(y) = ν(γ(x, b))

=
∑
n<|x|

2−2n−p(n) + w(x) · 2−2n−p(n)

where w(x) = |{x′ ∈ {0, 1}|x| : x′ ≤ x}|. It holds that w(x) may be computed in polynomial time

of x since it is simply the integer whose binary representation is x. Since all other operations

involved are also efficiently computable, it follows that ν ∈ PComp.

It remains to define a p-honest function f ∈ FP such that µ = νf−1 . To this end, for x, b ∈
{0, 1}∗, |b| = p(|x|), let f(γ(x, b)) = M b(x). If y 6= γ(x, b) for all x, b ∈ {0, 1}∗ satisfying

|b| = p(|x|), then let f(y) = y. It is immmediate that f ∈ FP. Moreover, since the sampling

procedure for νf−1 which generates a sample from ν and applies f to the result evidently

corresponds to the same distribution determined by the sampling procedure given for µ, it

follows that µ = νf−1 .

Furthermore, when x, b ∈ {0, 1}∗ satisfy |b| = p(|x|), then |f(γ(x, b))| = |x| + 1 and |γ(x, b)| =
2|x|+ 2 + p(|x|) imply |γ(x, b)| ≤ q(|f(γ(x, b))|), where q is the polynomial defined by p′(m) =

2m + p(m− 1). When y 6= γ(x, b) for all x, b ∈ {0, 1}∗ satisfying |b| = p(|x|), then |y| = |f(y)|
implies |y| ≤ q(|f(y))|. In short, for all y ∈ {0, 1}∗, |y| ≤ q(|f(y))|. Hence f is p-honest.

Therefore, µ ∈ IPSamp so that, by consequence of the assumption that PComp = IPSamp, it

also holds that µ ∈ PComp.

To decide, for arbitrary x ∈ {0, 1}∗, whether x ∈ L, it suffices to decide µ(1x) > µ(0x). Since

µ ∈ PComp, the first k digits of both µ(1x) > µ(0x) may be enumerated in time polynomial of

|x| and k. Thus, it suffices to verify that the number of digits of µ(1x) and µ(0x) required to

decide µ(1x) > µ(0x) is polynomial in |x|. Indeed, since M(x) runs in time p(|x|), the output

of M depends on the outcome of p(|x|) random bits. It follows that Pr(M(x) = 1) = k · 2−p(|x|)

for some k ∈ N. Likewise, Pr(M(x) = 0) = k′ · 2−p(|x|) for some k′ ∈ N. Hence

Pr(M(x) = 1) > Pr(M(x) = 0)

is equivalent to

Pr(M(x) = 1)− Pr(M(x) = 0) > 2−p(|x|)
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In turn, this is equivalent to

µ(x1)− µ(x0) > 2−p(|x|)−2|x|

Thus, the first p(|x|) + 2|x| + 2 digits of the signed digit binary representations of µ(x0) and

µ(x1), which determine their values up to an error of 2−p(|x|)−2|x|−1, are sufficient to decide

µ(x1) > µ(x0). Therefore, L ∈ P.

(B) P = PP =⇒ PComp = PSamp: Assume P = PP. Let µ ∈ PSamp be witnessed by the machine

M and the polynomial p. Then define a probabilistic Turing machine M ′ which takes as input:

an accuracy term 0i; a string e[r], interpreted as the truncated binary representation of a

dyadic real r ∈ [0, 1]; and a string x ∈ {0, 1}∗. On this input, M ′ executes either of the

following processes with equal probability.

• Compute M(0i). If M(0i) > x, then return 1. Otherwise, return 0.

• Sample 0 with probability r and 1 with probability 1− r.

Then M ′ has the important property that the probability of M ′(0i, e[r], x) = 1 is strictly greater

than 1
2 if and only if the probability of M(0i) > x is strictly greater than r. Moreover, since

P = PP, there exists a deterministic machine M ′′ such that M ′(0i, e[r], x) > 1
2 if and only if

M ′′(0i, e[r], x) = 1.

This allows us to recursively define a machine M where M(0i, x) produces the ith digit of a

fixed signed-digit binary representation of µ(x). In particular, given yi =
∑i
j=0M(0j , x) which

satisfies |µ(x) − yi| ≤ 2−i, then M(0i+1, x) is computed by evaluating M ′′(0i+2, e[r], x) for

r = yi − 2−i−2 and r = yi + 2−i−2. The individual cases are covered as follows.

Case 1: If M ′′(0i+2, e[yi − 2−i−2], x) = 0, then Pr(M(0i+2) = x) ≤ yi − 2−i−2. Hence,

µ(x) ≤ Pr(M(0i+2) = x) + 2−i−2 ≤ yi

Furthermore, by the precondition, µ(x) ≥ yi − 2−i−1. Thus by taking M(0i+1, x) to be −1 it

holds that

yi+1 :=

i+1∑
j=0

M(0j , x)

satisfies |µ(x)− yi+1| ≤ 2−i.

Case 2: If M ′′(0i+2, e[yi − 2−i−2], x) = 1 and M ′′(0i+2, e[yi + 2−i−2], x) = 0, then

yi − 2−i−2 < Pr(M(0i+2) = x) ≤ yi + 2−i−2
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from which it follows that

yi − 2−i−1

≤ Pr(M(0i+2) = x)− 2−i−2

≤ µ(x)

≤ Pr(M(0i+2) = x) + 2−i−2

≤ yi + 2−i−1

Thus, by taking M(0i+1, x) to be 0 it holds that

yi+1 :=

i+1∑
j=0

M(0j , x)

again satisfies |µ(x)− yi+1| ≤ 2−i.

Case 3: Finally, if M ′′(0i+2, e[yi + 2−i−2], x) = 1, then an argument similar to that of Case 1

shows that it suffices to take M(0i+1, x) to be 1. In particular, it holds then that

yi+1 :=

i+1∑
j=0

M(0j , x)

satisfies |µ(x)− yi+1| ≤ 2−i.

Having covered each case, it may be concluded that the recursive procedure is valid. Indeed,

by induction, for all i, the value yi =
∑i
j=0M(0j , x) satisfies |µ(x)− yi| ≤ 2−i. Therefore,

µ(x) =

∞∑
i=0

ax,i · 2−i

where ax,i := M(0i, x). Since this is true for arbitrary x, it follows that µ ∈ PComp.

(C) It has been shown that PComp = IPSamp implies P = PP. The contrapositive says that

P 6= PP implies PComp 6= IPSamp. By the containments

PComp ⊆ IPSamp ⊆ ExactPSamp ⊆ PSamp

it holds that PComp 6= IPSamp implies both PComp 6= ExactPSamp and PComp 6= PSamp.

In short, P 6= PP implies that PComp is not equal to any of IPSamp, ExactPSamp or PSamp.

For the converse, it has already been shown that P = PP implies PComp = PSamp. By

the above containments, PComp = PSamp implies PComp = IPSamp = ExactPSamp =

PSamp. �

Corollary 10. P = PP implies IPSamp = ExactPSamp = PSamp.

By Proposition 9, progress on separating PComp from our sampling classes is inextricable from
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the question of P = PP. Indeed, in light of the widely held assumption that P 6= PP, Proposition 9

provides evidence that none of our sampling classes are equal to PComp.

Corollary 10 says that the separation of any of our sampling classes, for instance PSamp 6=
ExactPSamp, would imply P 6= PP and thereby resolve a major open problem. For this reason it

should not be expected that a separation of PSamp and ExactPSamp can be obtained in the absence

of complexity theoretic assumptions. However, Corollary 10 only provides the implication in one

direction, leaving little idea of what particular assumptions might be required to separate PSamp

from ExactPSamp.



Chapter 5

Average-case complexity

agnosticism

In consideration of the implications that the separation of PSamp and ExactPSamp might have,

it is natural to look for areas in complexity theory where there is an explicit appeal to probability

distributions on the space of finite strings. Thus we are motivated to consider the domain of average-

case complexity.

In this section, we only consider distributions µ : {0, 1}∗ → [0, 1] satisfying µ̂(⊥) = 0. Let T be

the class of all distributions of this form. Then, for µ ∈ T , a machine M is said to be polynomial-time

on µ-average if the running time t(x), of M executing on input x, satisfies

∑
x∈{0,1}∗

µ̂(x)
t(x)ε

|x|
<∞

for some constant ε > 0. Also, a decision problem L ∈ {0, 1}∗ is said to be polynomial-time decidable

on µ-average if there exists a machine M , that is polynomial-time on µ-average, which decides L.

By extension, when F ⊆ T is a class of distributions, then PF consists of those decision problems

L ⊆ {0, 1}∗ which, for all µ ∈ F , are polynomial-time decidable on µ-average.

The concept of p-domination is essential in this context. The distribution ν is said to p-dominate

the distribution µ, written µ �P ν, if there exists a polynomial p such that µ̂(x) ≤ p(|x|)ν̂(x) for all

x ∈ {0, 1}∗. When ν �P µ and µ �P ν, write ν ≈P µ. Likewise, when F and G are both classes of

distributions, write F �P G if

∀µ ∈ F , ∃ν ∈ G, µ �P ν

When F �P G and G �P F , write F ≈P G.

Since containment implies p-domination, it is immediate that IPSamp �P PSamp. Yamakami

shows that the inverse relation holds as well [12] .

Proposition 11. PSamp ∩ T �P IPSamp ∩ T .

Corollary 12. IPSamp ∩ T ≈P ExactPSamp ∩ T ≈P PSamp ∩ T .

17
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Proof. By Proposition 11 together with the containments IPSamp ⊆ ExactPSamp ⊆ PSamp. �

The significance of p-domination is the following simple fact, originally used by Levin [8] to define

problems that are average-case complete.

Proposition 13. Suppose µ, ν ∈ T satisfy µ �P ν. Then any machine M that is polynomial-time

on ν-average is also polynomial-time on µ-average.

Corollary 14. Suppose F ,G ⊆ T satisfy F �P G. Then, PF ⊆ PG.

Corollary 15. PIPSamp∩T = PExactPSamp∩T = PPSamp∩T .

Proof. By Corollary 12. �

Corollary 11 illustrates one sense in which IPSamp, ExactPSamp and PSamp are all “close” to

each other. By contrast, the following fact, also due to Yamakami [12], shows that, in the same

sense, PComp is “far” from each of our sampling classes, predicated on the separation of P and NP.

Proposition 16. P 6= NP =⇒ PSamp ∩ T 6�P PComp ∩ T .

Whereas Proposition 13 guarantees that p-equivalence implies average-case agnosticism, it does

not guarantee the converse. In particular, Proposition 16 does not permit any immediate conclusions

in the context of average-case complexity.

This topic has been taken further by Impagliazzo and Levin [6], whose result addresses the

relevance, in the context of average-case complexity, of the distinction between PComp and PSamp.

Their discussion relies on the notion of average-case completeness. It is enough to know that the

formalization of reduction from (L, µ) to (L′, µ′) guarantees that, if there exists a probabilistic

machine M ′ which decides the problem L′ in polynomial time on µ′-average, then there exists a

probabilistic machine M which decides the problem L in polynomial time on µ-average. Levin

had previously shown that there existed a problem L′ ∈ NP and a distribution µ′ ∈ PComp such

that, for all problems L, for all distributions µ ∈ PComp, (L, µ) is reducible to (L′, µ′) [8]. In

particular, if L′ is decidable by a probabilistic machine in polynomial time on µ′-average, then,

for every L ∈ NP, for every µ ∈ PComp, L is decidable by a probabilistic machine in polynomial

time on µ-average. The pair (L′, µ′) is said to be average-case complete with respect to the class

of distributions PComp. The consequence, of the result due Impagliazzo and Levin, is that, any

problem (L′, µ′), where L′ ∈ NP and µ′ ∈ PComp, which is average-case complete with respect to

PComp, is average-case complete with respect to IPSamp in the following sense. Every pair (L, µ),

where L ∈ NP and µ ∈ IPSamp, is reducible to (L′, µ′). Although this result is surprising, it does

not give much reason to suppose that there does not exist a meaningful distinction between PComp

and IPSamp in the context of average-case complexity. For instance, it remains a possibility that

some L ∈ NP is decidable in polynomial time on µ-average for all distributions µ ∈ PComp, while,

for some more exotic distribution ν ∈ IPSamp, it holds that (L, ν) is average-case complete with

respect to IPSamp. In particular, although Impaliazzo and Levin’s result would then guarantee the

existence of some L′ ∈ NP and some µ′ ∈ PComp such that (L, ν) reduced to (L′, ν′), it would still

allow for the possibility of L 6= L′. For a hypothetical situation which is less elaborate, consider a
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problem L ∈ NP and a distribution ν ∈ IPSamp where L is not decidable in polynomial time on

ν-average. Although L is not decidable in polynomial time on ν-average, it may be that (L, ν) is

still not average-case complete with respect IPSamp. In the absence of completeness, the result of

Impagliazzo and Levin bears no immediate consequeneces, and it remains possible that L is decidable

on µ-average for all µ ∈ PComp.



Chapter 6

The random bit-tape view

Distributions in the sampling classes PSamp and ExactPSamp are witnessed by probabilistic Turing

machines whose outputs depend on the configuration of their random bit-tape. For an arbitrary

probabilistic machine M , which takes inputs of the form 0i, let

A[M, t, x, i] := {b ∈ {0, 1}∗ | M b
t (0i) = x and ∀b′ v b M b′(0i) = ⊥}

where b′ v b is the relation satisfied iff either b′ = b or b′ is a proper prefix of b. Thus, A[M, t, x, i]

consists only of strings b of length at most t where, for all strings a of length t satisfying b v a,

it holds that Ma
t (0i) = x. Moreover, because the sets are prefix-free, it is possible to assign them

probabilities according to the function Λ, given for prefix-free S ⊆ {0, 1}∗ by

Λ(S) =
∑
b∈S

2−|b|

In turn, this allows us to rephrase our sampling definitions. In particular,

Λ(A[M,p(x, i), x, i]) = Pr(Mp(|x|,i)(0
i) = x)

Thus, for instance, a distribution µ is a member of PSamp iff there exists a machine M and a

polynomial p such that

∀x ∈ {0, 1}∗, ∀i ∈ N, |µ̂(x)− Λ(A[M,p(x, i), x, i])| ≤ 2−i

6.1 Monotonicity

Consider an arbitary probabilistic Turing machine M which does not take input. If M halts and

produces the string x within t time steps when acting on a particular random bit-string b ∈ {0, 1}∞,

then trivially it is true that M , acting with respect to b, would produce the same output in t′ > t

time-steps. It follows from this that Pr(Mt = x) is nondecreasing as a function of t. Thus, if a

20
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distribution µ ∈ ExactPSamp is witnessed by the machine M and a polynomial p, assumed to be

strictly increasing without loss of generality, then it holds that Pr(Mp(|x|,i) = x) is nondecreasing

with respect to i. Indeed, it is implicit in the definition of ExactPSamp that the approximation

comes from below, namely,

∀i ∈ N, ∀x ∈ {0, 1}∗, Pr(Mp(|x|,i) = x) ≤ µ(x)

These ideas motivate the definition of an intermediate sampling class, originally proposed by To-

moyuki Yamakami in our personal communications.

Definition 17. Let MonoPSamp ⊆ PSamp be the set of distributions µ whose membership in PSamp

is witnessed by a machine M and a polynomial p where

Pr(Mp(|x|,i)(0
i) = x) = Λ(A[M,p(x, i), x, i])

is nondecreasing as a function of i.

Thus, a machine which is witness to µ ∈ MonoPSamp is allowed to vary its procedure depending

on the accuracy parameter given as input, but it is required to obey the monotonicity properties of

a ExactPSamp witness.

It is evident that

ExactPSamp ⊆ MonoPSamp ⊆ PSamp

Hence, the separation of MonoPSamp from either of the classes ExactPSamp or PSamp would imply

the separation of ExactPSamp and PSamp. In particular, although the separation of ExactPSamp

and MonoPSamp appears to be as elusive as the separation of ExactPSamp and PSamp, the question

of the separation of MonoPSamp and PSamp may provide some focus in addressing our main

questions.

Naive attempts fail to transform the witness M of a distribution µ ∈ PSamp into a witness M of

µ ∈ MonoPSamp. One particular barrier here is that the probability of Mp(|x|,i)(0
i) = x may be as

much as 2−i even if µ̂(x) = 0. By contrast, if M is to be a valid witness of µ ∈ MonoPSamp, then

µ̂(x) = 0 implies that the machine never produces x as output. At the same time, it is required by

definition, for some polynomial p′, that whenever µ̂(x) ≥ 2−i+1, then the probability of Mp(|x|,i) = x

is at least 2−i.

6.2 Consistent samplability

It is possible to take Yamakami’s notion of monotonic sampling even further by requiring that, if

the machine M , acting with respect to the random bit-tape configuration b ∈ {0, 1}∞ on input 0i,

returns x in time p(|x|, i), then the machine M , still acting with respect to b but now on input 0i+1,

will return x in time p(|x|, i+ 1).

Definition 18. Let ConsistentPSamp ⊆ PSamp be the set of distributions µ whose membership in
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PSamp is witnessed by a machine M and polynomial p which satisfy,

∀b ∈ {0, 1}∞, ∀x ∈ {0, 1}∗, ∀i ∈ N, M b
p(|x|,i)(0

i) = x =⇒ M b
p(|x|,i+1)(0

i+1) = x

An alternative characterization of ConsistentPSamp in terms of the sets A[M, t, x, i] may be

obtained by introducing a partial ordering of finite prefix-free sets.

Definition 19. Let A,B ⊆ {0, 1}∗ be prefix-free sets. Then define the partial ordering ≤ by A ≤ B
iff, for all a ∈ A, there exists b ∈ B such that b v a.

Proposition 20. For a distribution µ : {0, 1}∗ → R, it holds that µ ∈ ConsistentPSamp iff µ ∈
PSamp is witnessed by a machine M and a polynomial p which satisfy, for all x ∈ {0, 1}∗, for all

i ∈ N,

A[M,p(|x|, i), x, i] ≤ A[M,p(|x|, i+ 1), x, i+ 1]

Proof. (⇒) Assume µ ∈ ConsistentPSamp is witnessed by the machine M and the polynomial p.

Let a ∈ A[M,p(|x|, i), x, i] so that Ma
p(|x|,i)(0

i) = x 6= ⊥. Then, by definition, for all b ∈ {0, 1}∞

where a v b, it holds that M b
p(|x|,i)(0

i) = x. It follows that there must exist some string a′ v a

of minimal length which satisfies, for all b ∈ {0, 1}∞, a′ v b implies M b
p(|x|,i)(0

i) = x. Hence,

a′ ∈ A[M,p(|x|, i+ 1), x, i+ 1]. Since a is arbitrary, we may conclude that

A[M,p(|x|, i), x, i] ≤ A[M,p(|x|, i+ 1), x, i+ 1]

(⇐) To prove the converse, suppose that µ ∈ PSamp is witnessed by a machine M and a

polynomial p which satisfy, for all x ∈ {0, 1}∗, for all i ∈ N,

A[M,p(|x|, i), x, i] ≤ A[M,p(|x|, i+ 1), x, i+ 1]

If, for some b ∈ {0, 1}∞, x ∈ {0, 1}∗, and i ∈ N, it holds that M b
p(|x|,i)(0

i) = x, then there must

exist some a ∈ {0, 1}∗ of minimal length which satisfies Ma
p(|x|,i)(0

i) = x. Since A[M,p(|x|, i), x, i] ≤
A[M,p(|x|, i+ 1), x, i+ 1], it follows that there exists some a′ ∈ A[M,p(|x|, i+ 1), x, i+ 1] such that

a′ v a. Moreover, a′ ∈ A[M,p(|x|, i+ 1), x, i+ 1] implies that a′ is a minimal length string satisfying

Ma′

p(|x|,i+1)(0
i) = x. Hence, a′ v a v b implies M b

p(|x|,i+1)(0
i) = x. Since b, x, and i are arbitrary,

we may conclude that µ ∈ ConsistentPSamp. �

To see that ConsistentPSamp ⊆ MonoPSamp, consider the consequence that our partial ordering

of prefix-free sets bears with regards to the order of their measures.

Proposition 21. Let A,B ⊆ {0, 1}∗ be finite prefix-free sets. If A ≤ B, then Λ(A) ≤ Λ(B).

Proof. Assume A ≤ B. For all q ∈ {0, 1}∗, let Aq = {a ∈ A : q v a}. Given b, b′ ∈ B, and a ∈ A
satisfying a ∈ Ab ∩ Ab′ , then b v a and b′ v a so either b v b′ or b′ v b. Since B is prefix-free, this

implies b = b′. Hence, the sets {Ab}b∈B are disjoint. Moreover, since A ≤ B, for all a ∈ A, there

exists some b ∈ B such that b v a and hence a ∈ Ab. Therefore, {Ab}b∈B is a partitioning of the set
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A. Consequently,

Λ(A) =
∑
b∈B

Λ(Ab)

Also, for arbitrary q ∈ {0, 1}∗, since Aq is prefix free and contains only strings prefixed by q, it may

be shown that Λ(Aq) ≤ 2−|q|. Therefore, Λ(A) ≤
∑
b∈B 2−|b| = Λ(B).

�

Corollary 22. ConsistentPSamp ⊆ MonoPSamp.

It is also evident that ConsistentPSamp contains ExactPSamp since a machine witnessing a

distribution µ ∈ ExactPSamp is a witness to µ ∈ ConsistentPSamp which simply ignores its input.

As it turns out, the converse holds as well.

Proposition 23. ConsistentPSamp = ExactPSamp.

Proof. Let µ ∈ ConsistentPSamp be witnessed by the machine M and the polynomial p so that

A[M,p(|x|, i), x, i] ≤ A[M,p(|x|, i+ 1), x, i+ 1]

It will be useful to order the pairs (n, i) ∈ N × N first by n + i and then by n. In other words,

(n, i) < (n′, i′) iff n+ i < n′+ i′ or both n+ i = n′+ i′ and n < n′. Let {(nk, ik)}k∈N be the sequence

of all pairs in N× N in increasing order according to this ordering.

We wish to define a machine M witnessing µ ∈ ExactPSamp. To this end, for a random bit-tape

configuration b ∈ {0, 1}∞, let M b be defined by the algorithm which, on the kth iteration, computes

M b
p(n,i)(0

i) for (n, i) = (nk, ik). If M b
p(n,i)(0

i) ∈ {0, 1}n, which is to say that a string of length n is

produced, then our algorithm halts and outputs M b
p(n,i)(0

i). Otherwise, the algorithm continues to

iterate.

Now supposing that the algorithm does not halt before reaching the ordered pair (n, i) and that

M b
p(n,i)(0

i) ∈ {0, 1}n, then the ouput of the algorithm agrees with M b
p(n,i)(0

i).

On the other hand, consider the case where M b
p(n,i)(0

i) ∈ {0, 1}n but the algorithm halts when

acting on some earlier pair (n′, i′) < (n, i). If i 6= i′, then, by the definition of ConsistentPSamp,

M b
p(n,i)(0

i) ∈ {0, 1}n implies

M b
p(n,i)(0

i) = M b
p(n,i′)(0

i′)

Then M b
p(n,i′)(0

i′) 6= ⊥ and M b
p(n′,i′)(0

i′) 6= ⊥ imply

M b
p(n,i′)(0

i′) = M b
p(n′,i′)(0

i′)

Hence,

M b
p(n,i)(0

i) = M b
p(n′,i′)(0

i′)

The case where i′ = i and n′ < n may be easily dealt with, to show that then also M b
p(n,i)(0

i) =

M b
p(n′,i′)(0

i′).

To summarize, if M b
p(n,i)(0

i) ∈ {0, 1}n, then our algorithm either produces M b
p(n,i)(0

i) when

acting on the pair (n, i) or it produces M b
p(n,i)(0

i) when acting on some earlier pair (n′, i′). Thus,
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taking T (n, i) ∈ O(p(n, i)2) to be the time required for our algorithm to execute on each of the pairs

(n′, i′) ≤ (n, i), it holds that M b
p(n,i)(0

i) ∈ {0, 1}n implies M
b

T (n,i) = M b
p(n,i)(0

i). Hence,

Pr(M
b

T (|x|,i) = x) = Pr(M b
p(|x|,i)(0

i) = x)

It remains to show that T is bounded by a polynomial. Indeed,

T (n, i) =
∑

(n′,i′)<(n,i)

O(p(n′, i′))

≤
∑

(n′,i′)<(n,i)

O(p(n+ i, n+ i))

≤ O((n+ i)2 · p(n+ i, n+ i))

�



Chapter 7

Relationship to ensemble

definitions

7.1 Numerically indexed ensembles

Our previous definitions consider only distributions over {0, 1}∗. However, in many circumstances,

it is useful instead to consider an ensemble of distributions {µn}n∈N where each µn is a distribution

over strings of size n. A sampling machine for such an ensemble takes the index n as an input

parameter and produces samples of size n according to the distribution µn.

Definition 24. Let {µn}n∈N be an ensemble of distributions µn : {0, 1}n → R. Then,

1. {µn}n∈N ∈ PCompNUM if {µn}n∈N has a signed-digit representation µ|x|(x) =
∑∞
k=1 ax,k · 2−k,

ax,k ∈ {−1, 0, 1}, and there exists a polynomial-time Turing machine M such that M(x, 0k) = ax,k

2. {µn}n∈N ∈ ExactPSampNUM if there exists a polynomial p and a probabilistic Turing machine

M such that
∣∣µ̂|x|(x)− Pr

(
Mp(|x|,i)(0

|x|) = x
)∣∣ ≤ 2−i

3. {µn}n∈N ∈ PSampNUM if there exists a polynomial p and a probabilistic Turing machine M such

that
∣∣µ̂|x|(x)− Pr

(
Mp(|x|,i)(0

|x|, 0i) = x
)∣∣ ≤ 2−i

To transform an ensemble {µn}n∈N into a distribution over the set {0, 1}∗ of all finite strings, we

view each µn as a distribution on {0, 1}n and then form the mixture µ =
∑
cnµn, where

∑
n∈N cn = 1.

In particular, it is convenient to take cn to be 2−2llog(n)−1 which is bounded above and below by the

reciprocals of polynomials. This property is important in that the probability of seeing a sample of

size n remains reasonably high for large n.

Not surprisingly, this prior takes an ensemble in PCompNUM, ExactPSampNUM or PSampNUM

to a distribution of the corresponding class PComp, ExactPSamp or PSamp, as illustrated by the

following proof.

Proposition 25. Let {µn}n∈N ∈ ExactPSampNUM. Then the distribution π : {0, 1}∗ → R defined

by π̂(x) = 2−2llog(|x|)−1 · µ̂|x|(x) satisfies π ∈ ExactPSamp.

25
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Proof. Let {µn}n∈N ∈ ExactPSampNUM be witnessed by a machine M and the polynomial p. Then

let M be the machine that produces samples from π by way of the following procedure:

i. Sample n = |x| with probability 2−2llog(n)−1 as follows:

(a) Sample k = llog(n), with probability 2−k−1, in O(k) times-steps, by taking k to be the

number of coin flips observed up until first observing heads;

(b) Sample n uniformly from the interval [2k − 1, 2k+1− 1). To achieve this in O(n) time, first

sample n+ 1 from the interval [2k, 2k+1) by sampling each of its non-leading binary digits

independently and uniformly. Then subtract by one to obtain n.

ii. Using the machine M , sample x from the distribution µn.

Then

Pr
(
Mp(|x|,i)+O(|x|) = x

)
= 2−2llog(|x|)−1 · Pr

(
Mp(|x|,i)(0

|x|) = x
)

so that ∣∣µ̂|x|(x)− Pr
(
Mp(|x|,i) = x

)∣∣ ≤ 2−i

implies ∣∣π̂(x)− Pr
(
Mp(|x|,i)+O(|x|+llog(|x|)) = x

)∣∣ ≤ 2−i−2llog(|x|)−1 ≤ 2−i �

In the cases of PSamp and PComp, the converse also holds, as formulated in the following

proposition. This enables any discussion of these classes to implicitly encompass the corresponding

ensemble classes so that, for instance, the collapse PSamp = PComp would imply the collapse

PSampNUM = PCompNUM.

Proposition 26. Let {µn}n∈N be an ensemble of distributions of the form µn : {0, 1}n → R. Let

π : {0, 1}∗ → R be the distribution defined by π̂(x) = 2−2llog(|x|)−1 · µ̂|x|(x). Then,

1. {µn}n∈N ∈ PCompNUM iff π ∈ PComp

2. {µn}n∈N ∈ PSampNUM iff π ∈ PSamp

Proof.

1. By the fact that multiplication and division of signed-digit reals is polynomial-time computable.

2. (⇒) The proof is similar to that of Proposition 25.

(⇐) Let π ∈ PSamp be witnessed by the machine M and polynomial p. We will define

a machine M , takes inputs 0n and 0j denoting sample size and accuracy respectively, and

executes M(0i) up to k times. As soon as a sample x of size n is obtained, it is returned as

the output of M . If no such sample is obtained, then M produces no output.

It remains to show that i and k need only be polynomial in j and n to approximate µ̂n(x)

with error at most 2−j .
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(A) First, we wish to lower bound the probability that M(0i) produces a sample of size n.

This is obtained by taking the sum, over samples x of size n, of the lower bound provided

by the definition of PSamp:

Pr
(∣∣Mp(n,i)(0

i)
∣∣ = n

)
=

∑
|x|=n

Pr
(
Mp(n,i)(0

i) = x
)

≥
∑
|x|=n

(
π(x)− 2−i

)
= 2−2llog(n)−1 − 2n−i

(B) It follows that, after k iterations of M(0i), the probability of not seeing a sample of size

n is bounded above by

Ψ :=
(

1− 2−2llog(n)−1 + 2n−i
)k

≤
(

1− 2−2llog(n)−1
)k

+ 2n−i+k, since (α+ β)k ≤ αk + β · 2k for α, β ∈ [0, 1]

≤ e−k·2
−2llog(n)−1

+ 2n−i+k, since 1 + α ≤ eα

≤ 2
− k

2·(n+1)2 + 2n−i+k

Note that the inequality (α+β)k ≤ αk+β ·2k is obtained as a consequence of the binomial

theorem. Indeed, for α, β ∈ [0, 1],

(α+ β)k =

k∑
t=0

(
k

t

)
αk−tβt = αk +

k∑
t=1

(
k

t

)
αk−tβt ≤ αk +

k∑
t=1

(
k

t

)
β = αk + 2k · β

Now by taking k to be polynomial p1(n, j) := 2(j + 2)(n+ 1)2 and taking i to be at least

polynomial p2(n, j, k) := n+ j+k+2, we can guarantee that the probability of not seeing

a sample of size n is at most 2−j−1.

(C) Next we show that, conditioned on producing a sample of size n, the probability that M

produces any sample x of size n approximates µ̂(x). Let

A := π(x) ∆A := Pr(Mp(n,i) = x)−A

B :=
∑
|y|=n

π(y) ∆B := Pr(|Mp(n,i)| = |x|)−B

Q :=
A

B
=

π(x)∑
|y|=n π(y)

= µ̂n(x) ∆Q :=
Pr(Mp(n,i) = x)

Pr(|Mp(n,i)| = |x|)
−Q
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Then, we may bound ∆Q as follows

|∆Q| = Q · |(A+ ∆A) ·B − (B + ∆B) ·A|
A · (B + ∆B)

≤ 2Q · |(A+ ∆A) ·B − (B + ∆B) ·A|
A ·B

if |∆B| ≤ B/2

= 2Q ·
∣∣∣∣∆AA − ∆B

B

∣∣∣∣
≤ 2Q ·

(
max(∆A,∆B)

min(A,B)

)
≤ 2Q ·

(
2n−i

π(x)

)
= 2n−i+1 · µ̂n(x)

π(x)
since Q = µ̂n(x)

= 2n−i+1 · 22llog(n)+1

≤ 23n−i+2

By taking i to be at least polynomial p3(n, j) := j + 3n+ 3, we obtain |∆Q| ≤ 2−j−1.

(D) In short, it is enough to take k to be polynomial p1(n, j) and i to be polynomial p4(n, j) :=

p2(n, p1(n, j)) + p3(n, j). Then,

• By part (B), with probability at least 1− 2−j−1, executing M(0i) iteratively k times

produces a sample of size n;

• By part (C), conditioned on having produced a sample of size n, the probability

that M(0i) produces a particular sample x of size n is approximately µ̂n(x), within

additive error 2−j−1.

Furthermore, the time required for k iterations of M(0i) is O(p4(n, j)) where p4(n, j) =

p1(n, j) · p(n, p4(n, j)). Combining these results, we obtain

µ̂n(x)− 2−i ≤ (1− 2−i−1)(µ̂n(x)− 2−i−1) ≤ Pr(Mp4(n,j)(0
n, 0i) = x) ≤ µ̂n(x) + 2−i−1

�

By contrast, for an ensemble {µn}n∈N and the corresponding distribution π over the set {0, 1}∗

of all finite strings, it is not evident that π ∈ ExactPSamp implies {µn}n∈N ∈ ExactPSampNUM.

Supposing that π ∈ ExactPSamp is witnessed by a machine M and polynomial p, it may be natural

to define M(0n) by the procedure which iteratively executes M , each time running M until halting,

and continues iterating until observing a sample of size n. This is closely related to the strategy

used in Proposition 26 to show that π ∈ ExactPSamp implies {µn}n∈N ∈ ExactPSampNUM, the

difference now being that the execution of M cannot be guaranteed to halt in a fixed amount time.

To see why this should not be expected to work in general, it suffices to consider the special case

where M does not produce any sample x of size n before p(n, 0) time steps, where it is assumed that

p(n, 0) ∈ Ω(n). Then, for all m > n, the probability that |M | 6= n and M does not halt in p(m, 0)
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time steps is at least ∑
|x|=m+1

π(x) = 2−2llog(m)−1

which decreases only polynomially with respect to m. It follows that, in polynomial time, M

approximates µn with at best polynomial error, rather than with exponential error as required.

To remedy the shortcomings of our machine M , it is tempting to modify M so that the simulation

of M is halted in a predetermined amount time. Unfortunately, at best, this type of strategy results

in a sampling machine of the PSamp rather than ExactPSamp type. Variations of this strategy,

which place greater probability on halting M early, simply skew the probability of those samples

that would be produced later on.

Another strategy is to adjust the prior which places a probability of 2−llog(n)−1 on samples of

length n. However, here there is a trade-off between the halting time of the machine M witnessing

π ∈ ExactPSamp versus the number of iterations of M required to observe a sample of size n. For

instance, if the probability of length n samples was taken to be 2−n−1, one could guarantee that the

probability of M not halting would decrease exponentially over time. However, then the expected

number of iterations of M required to observe a sample of size n would be 2O(n).

With these ideas in mind, the question of whether π ∈ ExactPSampNUM implies {µn}n∈N ∈
ExactPSamp appears to present many of the same challenges as the main question of ExactPSamp =

PSamp.

7.2 String-indexed ensembles

Certain conceptions of ensembles are not accounted for by our previous definitions. Indeed, it is

sometimes useful to allow the distributions to be indexed by arbitrary strings. Thus, consider the

ensemble {µx}x∈{0,1}∗ where, for some strictly increasing polynomial q, each µx is a distribution

over strings of length p(|x|). Then a sampling machine for such an ensemble takes the string x as

an input parameter and produces samples of size p(|x|) according to the distribution µx.

Definition 27. Let {µx}x∈{0,1}∗ be an ensemble of distributions of the form µx : {0, 1}q(|x|) → R
where q is a strictly increasing polynomial. Then,

1. {µx}x∈{0,1}∗ ∈ PCompSTR if {µx}x∈{0,1}∗ has a signed-digit representation µx(y) =
∑∞
k=1 ax,y,k ·

2−k, ax,y,k ∈ {−1, 0, 1}, and there exists a polynomial-time Turing machine M such that M(x, y, 0k) =

ax,y,k

2. {µx}x∈{0,1}∗ ∈ ExactPSampSTR if there exists a polynomial p and a probabilistic Turing machine

M such that

∀x ∈ {0, 1}∗, ∀y ∈ {0, 1}q(|x|),
∣∣µ̂x(y)− Pr

(
Mp(|x|,i)(x) = y

)∣∣ ≤ 2−i

3. {µx}x∈{0,1}∗ ∈ PSampSTR if there exists a polynomial p and a probabilistic Turing machine M
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such that

∀x ∈ {0, 1}∗, ∀y ∈ {0, 1}q(|x|),
∣∣µ̂x(y)− Pr

(
Mp(|x|,i)(x, 0

i) = y
)∣∣ ≤ 2−i

Unfortunately, ExactPSampSTR and even PSampSTR do not easily relate in the way one might

hope to any of their previously discussed analogues. Consider for instance the ensemble {µx}x∈{0,1}∗
where µx denotes a distribution over {0, 1}|x|. This may be tranformed to a numerically indexed

ensemble by considering x to have be drawn uniformly from {0, 1}n and y from µx. Supposing that

the pairing function satisfies |〈x, y〉| = c · |x| for some constant c, then the ensemble {πn}n∈N consists

of distributions πn : {0, 1}n → R defined by

π̂c·m(〈x, y〉) =
∑
|x|=m

2−n · µ̂x(y)

As a formality, when n is not a multiple of c, µn is taken to be the uniform distribution over {0, 1}n.

Now it is not difficult to see that {µx}x∈{0,1}∗ ∈ PSampSTR implies {πn}n∈N ∈ PSampNUM since

a sample from πc·m may be obtained simply by first sampling x ∈ {0, 1}m with probability 2−n,

then sampling y from µx, and finally returning 〈x, y〉.
On the other hand, it is not evident that {πn}n∈N ∈ PSampNUM implies {µx}x∈{0,1}∗ ∈ PSampSTR.

Given a sampling machine for {πn}n∈N, the natural approach to producing samples from µx may

be to sample from πc·|x| until a sample of the form 〈x, y〉 is observed, at which point y is returned.

However, since the probability of observing x is 2−|x|, the expected number of steps required will be

2Ω(|x|).



Chapter 8

Uniform Sampling of NP-witnesses

8.1 Jerrum, Valiant and Vazirani

So far we have only considered classes for which in some sense efficient sampling is possible. It is

also useful to consider broader classes of distributions from which we might wish to produce samples

efficiently. In this direction, inspiration may be taken from the dichotomy between P and NP .

Jerrum, Valiant and Vazirani consider the task of sampling uniformly from the set of certificates to

an accept instance of an NP -decision problem [7]. The task may be viewed as a way to observe

a typical solution to the problem instance. In particular, Jerrum et al. consider both exact and

approximate notions of uniform sampling which we introduce now.

A relation R ⊆ {0, 1}∗ × {0, 1}∗ is called an p-relation if it is computable in deterministic

polynomial time and is satisfied only by pairs of the form (x, y) where |y| ≤ p(|x|) for some fixed

polynomial p. Given L ⊆ {0, 1}∗, then by definition L ∈ NP iff there exists a p-relation R such that

∀x (x ∈ L ⇔ ∃y R(x, y) = 1)

When x ∈ L, the string y here is commonly referred to as a certificate of x.

Now given a p-relation R, witness to some L ∈ NP, the exact sampling task is to provide a

polynomial-time probabilistic machine M which on input x produces any one of the certificates y

satisfying R(x, y) with equal probability. Strings that are not certificates are not produced, so no

output is produced if x 6∈ L. Furthermore, when x ∈ L, it is allowed that the machine does not

produce a sample with probability at most 1
2 , an arbitrary constant which allows us to guarantee that

samples are produced with high probability when the procedure is repeated iteratively. Formally,

an exact uniform generator for R is a polynomial-time probabilistic machine M for which:

1. There exists a function ψ : {0, 1}∗ → (0, 1] such that, for all x, y ∈ {0, 1}∗,

Pr(M(x) = y) =

ψ(x) if 〈x, y〉 ∈ R

0 if 〈x, y〉 6∈ R

31
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2. For any input x ∈ {0, 1}∗ where {y ∈ {0, 1}∗ : R(x, y)} is non-empty,

Pr(M(x) 6= ⊥) ≥ 1

2

Supposing that a uniform generator M exists for R, it may be seen to represent the ensemble of

distributions {µx}x∈{0,1}∗ where:

1. For x ∈ L, µx is the distribution that assigns the same probability to all strings y ∈ {0, 1}p(x)

satisfying M(x, y) = 1 and null probability to everything else;

2. For x 6∈ L, µx is the distribution which assigns probability 1 to ⊥, and null probability to

everything else.

Indeed, if M exists, then {µx}x∈{0,1}∗ ∈ ExactPSampSTR. To see this, take M to be the machine

which, on input x ∈ {0, 1}∗, iteratively executes M on input x until an output y ∈ {0, 1}∗ is

produced, at which point M returns y. Then, conditioned on M having halted, the probability that

M produces a particular string y ∈ {0, 1}∗ is exactly µx(y). Furthermore, on each execution of M ,

the probability that M produces output is 1
2 , so that, after k iterations of M , the probability that

M has not halted is 2−k−1. Since k iterations of M require time k · t(|x|), where t(|x|) is the running

time of M on x, it follows that M approximates µ according to the following expression.

(1− 2−k−1) · µx(y) ≤ Pr(M(x)k·t(|x|) = y) ≤ µx(y)

Thus M is a witness to {µx}x∈{0,1}∗ ∈ ExactPSampSTR. Actually, the approximation is considerably

stronger than needed since the error attained is multiplicative whereas ExactPSampSTR requires only

additive error.

It is primarily this context, namely the sampling of NP-witnesses, which causes us to allow

distributions that assign positive probability to ⊥. In particular, when x 6∈ L, then µx(⊥) = 1 and,

hence, for all y ∈ {0, 1}∗, µx(y) = 0. Thus, the definition of ExactPSampSTR allows the sampling

machine M to not halt on input x. This is essential since an exact uniform generator M for L
provides no mechanism for recognizing with certainty, after any amount of time, when x 6∈ L.

When uniform generation is not possible for the given p-relation R, witness to L ∈ NP, it may still

be possible to solve the approximate version of the task. Here, in addition to the input x ∈ {0, 1}∗,
the machine takes an accuracy term k ∈ Zk≥1, which determines by how much the probabilities, of

producing the various certificates y satisfying R(x, y), are allowed to vary. Formally, a probabilistic

machine M is called an almost uniform generator for R if:

1. There exists a function φ : {0, 1}∗ → (0, 1] such that, for all 〈x, k〉 ∈ {0, 1}∗ × Z≥1,

〈x, y〉 ∈ R⇒ (1 + 1/k)−1φ(x) ≤ Pr(M(x, 0k) = y) ≤ (1 + 1/k)φ(x)

〈x, y〉 6∈ R⇒ Pr(M(x, 0k) = y) = 0
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2. For any input 〈x, k〉 where {y ∈ {0, 1}∗ : R(x, y)} is non-empty,

Pr(M(x, 0k) 6= ⊥) ≥ 1

2

Whereas it was possible to relate exact uniform generation to ExactPSamp, this does not appear

to be the case in relating almost uniform generation to PSamp. In particular, the definition of

PSamp uses additive error whereas almost uniform generators are defined with multiplicative error,

which one should expect to be much more difficult to attain. On the other hand, the definition of

PSamp requires that the error decreases exponentially in polynomial time whereas the definition of

an almost uniform generator requires only that the error decreases polynomially in polynomial time.

Thus the definitions of PSamp and of an almost uniform generator are not immediately comparable.

Jerrum et al. find that, for all R ∈ NPrel, there exists a machine equipped with an NP-oracle

that is an almost uniform generator for R. They also find that, for all R ∈ NPrel, there exists a

machine equipped with a Σp2-oracle that is an exact uniform generator for R. These results alone

may have provided some circumstantial evidence that almost uniform generation could be harder

than exact uniform generation, since it appeared that stronger machinery was used to obtain the

latter. However, it was later shown by Bellare, Goldreich and Petrank that, for all R ∈ NPrel, access

to an NP oracle is sufficient for exact uniform generation [2].

8.2 Main uniform sampling definitions

Because the definitions of Jerrrum, Valiant and Vazirani are not immediately comparable to our

definitions of PSampSTR and ExactPSampSTR, we introduce our own analgous definitions.

Definition 28. NPrel is the set of all p-relations. That is, for R ⊆ {0, 1}∗×{0, 1}∗, then R ∈ NPrel

iff R is computable in deterministic polynomial time and, for some polynomial p, satisfied only by

pairs of the form (x, y) where |y| ≤ p(|x|).

Definition 29. Let R ∈ NPrel so that (x, y) ∈ R implies |y| ≤ p(|x|) for some fixed polynomial p.

Assume that R is witness to L ∈ NP. Then the corresponding ensemble {µR,x}x∈{0,1}∗ consists of

distributions of the form µR,x : {0, 1}≤p(|x|) ∪ {⊥} → R defined, for x ∈ L, by

µ̂R,x(y) =

|{y′ : R(x, y′)}|−1
if 〈x, y〉 ∈ R

0 otherwise.

and, for x 6∈ L, by

µ̂R,x(y) =

1 if y = ⊥

0 if y 6= ⊥

Definition 30. PS ⊆ NPrel is the set of all p-relations R for which {µR,x}x∈{0,1}∗ ∈ PSampSTR.

Definition 31. PS∗ ⊆ NPrel is the set of all p-relations R for which {µR,x}x∈{0,1}∗ ∈ ExactPSamp.
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8.3 A notion of reduction

To demonstrate the existence of a complete sampling problems, a simple type of reduction is intro-

duced, where the problem instance of one class is taken to a problem instance of the second class

with an equal number of certificates. In turn, certificates of the second class are mapped to back to

certificates of the first class by an efficiently computable bijection.

Definition 32. Let R,S ∈ NPrel. Then say that R is sample-to-sample reducible to S if there exist

functions f : {0, 1}∗ → {0, 1}∗ and g : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that

1. f, g ∈ FP

2. |{y : R(x, y)}| = |{y : S(f(x), y)}|

3. The function gx defined by gx(y) = g(x, y) is a bijection from {y : S(f(x), y)} to {y : R(x, y)}

The following fact guarantees that both PS and PS* are closed under these reductions.

Proposition 33. Let R,S ∈ NPrel and suppose that R is sample-to-sample reducible to S. Then,

1. S ∈ PS* ⇒ R ∈ PS*

2. S ∈ PS⇒ R ∈ PS

Proof. Suppose that R is sample-to-sample reducible to S by way of the functions f and g as

in Definition 32. Then consider the case where S ∈ PSampSTR, as witnessed by the machine

M . Take M to be the machine which, on input (x, 0i), computes M(f(x), 0i). Supposing that

M(f(x), 0i) 6= ⊥, have M return g(M(f(x), 0i)). Otherwise, M does not halt. It is easy to verify

that M defined in this way is a witness to {µR,x}x∈{0,1}∗ ∈ PSampSTR. Therefore, R ∈ PS. A

similar argument shows that S ∈ PS* implies R ∈ PS*. �

Many p-relations may be shown to be complete for the class NPrel. The p-relation SATrel is

given for illustration.

Definition 34. Let SATrel ∈ NPrel be the relation for which (x, y) ∈ R iff x is the encoding of a

boolean formula and y is the encoding of a satisfying assignment to x.

The completeness of SATrel, and the completeness of a number of other p-relations, may be

viewed as slight variations on the completeness of various counting problems, demonstrated by

Leslie Valiant [11].

Proposition 35. For all R ∈ NPrel, it holds that R is sample-to-sample reducible to SATrel.

Proof. First consider the special case where, for some polynomial p : N→ N, it holds that R(x, y) is

satisfied only by pairs of the form (x, y) where |y| = p(|x|). For an arbitrary p-relation of this form,

the standard proof that SAT is NP-complete constructs a polynomial-time computable mapping

x 7→ ϕx from strings to boolean formulas such that R(x, y) iff ϕx(y ◦ z) for some string z [4] [1].

Careful consideration of the construction involved leads to the stronger conclusion that, if R(x, y),
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then there exists a unique string z such that ϕx(y ◦ z). Assume that the mapping x 7→ ϕx has this

property. Then let f ∈ FP be the function defined by f(x) = ϕx. Also, let g ∈ FP be the function

which maps (x, v) to (x, y) where y is the length-p(|x|) prefix of v. Since, for y ∈ p(|x|), φx(y ◦ z)
implies R(x, y), it follows that the function

gx : {y : SATrel(f(x), y)} → {y : R(x, y)}

given by gx(y) = g(x, y) is well-defined. Moreover, gx is injective since strings in {y : S(f(x), y)} are

uniquely determined by their length-p(|x|) prefix. That gx is surjective follows from the fact that

R(x, y) implies φx(y ◦ z) for some string z.

To apply this argument to the more general case where R(x, y) is satisfied only by pairs of the

form (x, y) where |y| ≤ p(|x|), it suffices to first convert R to a relation of the more restrictive form

by way a padding scheme applied to the certificates y.

�

Corollary 36.

1. SATrel ∈ PS⇒ PS = NPrel

2. SATrel ∈ PS* ⇒ PS* = NPrel

Proof. By Propositions 33 and 35. �

8.4 Can completeness provide evidence for the separation of

PS and PS*?

While the existence of complete problems for NPrel is useful in designating sampling tasks which one

expects to be difficult or impossible to perform efficiently, it remains to be seen whether completeness

may be leveraged in separating PS from PS*.

Given a problem X in the class of computational problems B, it may be broadly defined, without

reference to a particular formalization of reducation, that X is B-complete relative to the subclass

A ⊆ B if

X ∈ A⇒ A = B

In this sense, Corollary 36 says that SATrel is both NPrel-complete relative to PS and NPrel-complete

relative to PS*.

If we were to find a problem Q ∈ NPrel that was shown to be both NPrel-complete relative to

PS* and, at the same time, approximately samplable in the sense Q ∈ PS, this could provide strong

evidence for the separation of PS and PS*. In particular, it would require only the assumption that

not all relations R ∈ NPrel have exact uniform generators, in other words PS∗ 6= NPrel, to obtain

PS 6= PS*.

However, if we are to make the slightly stronger but also reasonable assumption that PS 6= NPrel,

which is to say that not all relations R ∈ NPrel have almost uniform generators, then SATrel is not
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a valid candidate for Q, since SATrel ∈ PS implies PS = NPrel. Likewise, it would follow that any

relation P ∈ NPrel, which is NPrel-complete relative to PS, could not be a candidate for Q since

then it would again follow from Q ∈ PS that PS = NPrel.

In short, in searching for a relation Q ∈ NPrel that is both NPrel-complete relative to PS as well

as a member of PS, we should expect Q to not be NPrel-complete relative to PS*. This motivates us

to consider whether there is a useful form of reduction under which PS* is closed but under which

PS is not. It is precisely at this point that the paradigm begins to appear untenable since in general

it is to be expected that a reduction which preserves samplability in a ExactPSampSTR sense should

preserve samplability in the more general PSampSTR sense. It remains possible that the membership

of a relation in PS* may be exploited by some form of reduction so as to produce new relations in

PS*, in such a way that the same form of reduction cannot exploit membership in PS to produce

even members of PS. Nevertheless, such a technique would be far removed from usual approaches

to reduction in the context of computation. Lacking further direction on how such a barrier might

be overcome, it is necessary to look elsewhere for strategies in proving the separation of PSampSTR

and ExactPSampSTR.



Chapter 9

Conclusion

This work has introduced the class ExactPSamp and considered the question of the separation of

PSamp from previously studied sampling classes, most notably ExactPSamp. By consequence of

the nearness of ExactPSamp and PSamp in terms of p-domination, we have noted that average-case

complexity is agnostic with regards to these. In considering the task of transforming a machine

that witnesses a distribution’s membership in PSamp into a machine which witnesses the distribu-

tion’s membership in ExactPSamp, we have noted basic barriers such as the fact that PSamp allows

samples assigned null probability to be produced with small positive probability whereas this is dis-

allowed by PSamp. Further considering challenges to the demonstration of PSamp = ExactPSamp,

we have studied Yamakami’s notion of monotonic sampling, formalized by the class MonoPSamp.

We have extended these ideas of monotonicity to that of consistent monotonicity and defined the

class ConsistentPSamp which, as it turns out, is equal to ExactPSamp and thereby provides an

alternative characterization of the latter class. Characterization of each of PSamp, MonoPSamp,

and ExactPSamp in terms of their random bittape configurations has also been provided. In the

context of the study of the ensemble versions of our sampling classes, a practical advantage of

PSamp has been demonstrated, namely that PSamp relates naturally to the analogous class of en-

sembles PSampNUM, where ExactPSamp is not known to relate to ExactPSampNUM in the same

way. Whereas PSampNUM and ExactPSampNUM consist of ensembles where the distributions are

indexed over sample length, we have also considered the classes PSampSTR and ExactPSampSTR

consisting of ensembles with their distributions indexed by strings, where the sample size is poly-

nomial in the size of the index. This enables the discussion of sampling from the witnesses of an

NP relation. In this context, we have considered using completeness to provide evidence for the

separation of PSampSTR and ExactPSampSTR, and it has been argued why this approach is likely

to be fruitless.

Altogether, the question of the separation or collapse of PSamp and ExactPSamp has remained

elusive. While it is not surprising that PSamp 6= ExactPSamp has not been shown, since this would

imply P 6= PP, it remains an open problem as to whether PSamp 6= ExactPSamp may be obtained,

even as a consequence of traditional complexity theoretic assumptions. Indeed, it may be overly

optimistic to take for granted that this more modest goal may be attained. After all, it is due to the

37
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phenomenon that the relationship between complexity classes is so often only weakly understood,

that an abundant ‘zoo’ of complexity classes continues to be studied. Considering the subtlety of the

difference between the definitions of PSamp and ExactPSamp, it is credible that the gap between

PSamp and ExactPSamp, supposing it exists, might be in some sense small, relative to the gap

between more traditional complexity classes, such as that which may exist between P and NP.
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