
A binary operation  on a set  is a map
       

Write in infix.         instead of            

Group

                        
Associativity1)

                          
Identity2)

                                
Inverse3)

A group  or      is a non-empty set endowed with a binary operation  
satisfying the following properties:

We will often write 1 for  •
Sometimes we will use + as our binary operation, in which case 
we'll write 0 for  

•

Remarks

Notation
     = all    matrices over the field  
                       
                       

Order
If    , we say the order of x i   h   mall    na ural numb r ≥    , if it 
exists, such that       
If no such  exists, we say that  has infinite order.

We write     for the order.
The order of  is just the size of  . i.e., order of      

Conjugates
If      
Then      is called the conjugate of  

 and      have the same order
Fact:

                                           
Proof:

Abelian
A group G is abelian if 
               

Dihedral Groups
  = group of symmetries of a regular n-gon

Let   rotation by 
  

 
  radians

let  = reflection about  (line through 1)

Relation

The rule                     
is called a relation.
These relations show that any composition of    and    can be written 
in one of the forms
    or   

    i  n i    1)
Field, +2)
Let F be a field, let          then       is a group (with multiplication)3)

                       
   invertible matrices over a field  with multiplication4)

"Rubik's cube group"5)
Rotations/reflections that keep the shape of a square6)

Examples of Groups

Can rotate by multiples of 90 degrees or reflect
 is a non-empty set7)
 u              i      an   n   

   -

binary operation = composition

inverse:      

id = i            

                 8)

binary operator =  

                   m      

Facts

Identity is unique1)
Inverses are unique2)
             3)

         
         

Cancellation:4)

For a group      

Suppose   and   are identities.1)
           

Suppose  has two inverses  and  2)
                           
                            3)

Why?

We can speak unambiguously about products
                        

holds for higher n

Example
         

 
   

    means excluding zeros
What are the orders of
     
     
     
     
     
     

        

Let    
   
  

 

What is the order of  ? 6

    
   
  

  
   
  

   
    
  

 

        
    
  

  
   
  

   
   
   

    

         
To find the order more easily, look at the eigenvalues. They should be roots of unity 
if the element has finite order.

Example
Let  be a group and suppose that every element of  has order 1 or 2.
Show that G is abelian

Proof
Let      
Want to show      
We have                       
                
So              is abelian

Example Dihedral Group
   

Groups
September-10-13 10:03 AM
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Example Dihedral Group
   

      
The vertex 1 can be in 4 places, and 2 can be in 2 places for each.

For   , what is      
              

Notice that 
 has order n
 has order 2
          

Example
                                          

If we look at all elements in   formed by composing  's and  's we get
       elements. So     ≥   
Why are these all?
1 can go in  spots. for each, 2 can go in 2 spots. So        
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Proof of Lemma 1
    choices for               
Say that                 
Then            m     
There are   choices for  
Now by induction on        , show that there is at most one choice for     
So in total there are at most   symmetries.
 

Last time we constructed two symmetries:
   
          m     
               (reflection)

Proof of Lemma 2
First, if      for    ,          

Applying    gives                        rotation clockwise by 
       

 
         

                 m     

Similarly, if              
          since      we can cancel  
Finally, if       
         
               
         m        
         , contradiction.

This shows that        1)
This shows that   is generated as a group by  and  . This means that every element of   can be 
expressed as a finite composition (product in group) of elements from              

2)

The group structure can be completely understood via the relations                        3)

Remarks

Question
Show that   is not abelian for  ≥  
Answer
       . If   were abelian, then we would have
                       i 
   i for  ≥  

  is abelian
              i        
We will see later that
             

       •
Two ways of representing permutations•

Notes on Symmetry Groups

Example    

    
        
        

        

Or could represent in disjoint cycle notation

   
        
        

 1)

Disjoint cycle notation:                     2)
Or omit 1-cycles:                

Representations:•

Disjoint Cycles Permute•
Proof
                        are pairwise distinct
Let            ←  hi  m an   ha  if                   
Let            
Define                

The order of a cycle             is  •
The order of a set of disjoint cycles is the LCM of the orders of the individual cycles•

Then               
    

      
 

If                  
    

      
  i    

    
  i 

If          ,        disjoint cycles of length        , respectively

Show in assignment that         divides l m         
But if              l m        

     a          
    if     
    if     
   h r i  

       

  Dihedral group
A regular n-gon will be represented as a graph
        
           

                              

A symmetry of   is this setting is a map
     that is 1-1 and onto and preserves 
adjacency
                     

Lemma 1
Number of symmetries of   i     n

Lemma 2
The symmetries

    
   

   
      

   

   

are   distinct symmetries

Presentation
We call
           i          
a presentation of   

Symmetry Groups
For  ≥  
                             i      an   n   
Notice   is a group under composition
We technically should write      but we'll write   

Note
Disjoint cycles permute

Symmetry
September-12-13 10:00 AM
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But if                l m         
     such that   does not divide  
Then   

   and since all the cycles are disjoint, suppose             
 

then          such that   
        

        
    

    
        

        so   i 
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Field
A field is a set   with two binary operations  and  
such that      is an abelian group with identity 0
and          is an abelian group with identity 1.
Furthermore,                

Note
         is not a group because          

                where  is a prime.

Questions
What is the order of        ? 

 
                  

                  
              

          
  
  

   
  
  

   
  
  

   
  
  

   
  
  

   
  
  

  

So            

What is the size of        

If    , Answer is    
In general, the answer is 
                             

Proof
An    matrix               
is invertible  columns are linearly independent.
Choose columns one by one, maintaining linear independence. 
There are     ways of choosing    (all but 0) 

  an       consists of the  scalar multiples of    ,
so there are     choices for    

For    , can pick anything that is not in   an       

Since            are all linearly independent,
   an                     

So there are      choices for    

In general, can pick any    that is not in   an               

Quaternion Group
Group   of order 8
                

           
          
Note:   commutes

What is   ?
                        

               
     

Concrete representation
         

   
  
  

 

    
   
   

 

   
  
   

 

   
  

   
 

   
  
  

 

Linear Groups
September-12-13 11:00 AM
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Homomorphism
Let     be two groups. 
A map      is called a homomorphism if
                            

If      is a homomorphism and  is 1-1 and onto 
then  is called an isomorphism. Can be written    
If      is an isomorphism, we can also call it an 
automorphism of  .

Circle Group
                 

               m      

Proposition

If  is abelian and  is onto then  is abelian;1)
If  is abelian and  is 1-1 then  is abelian.2)
If  i  an i  m r hi m  h n   i  ab lian   H i  
abelian.

3)

Let    be groups and let      be a 
homomorphism.

Homomorphisms
Why does         ?
                            

         (cancel)

Also,                   
Why?                            

                       

Example 1

     
            

Trivial homomorphism

     
         

Example 2

    
  
  

      

         

 
  
  

   

 
  
  

  
  
  

   
    
  

 

Example 3

Example
If    are groups, we can make the direct product    into a group by declaring 
            

Then  is isomorphic to             a)
       b)
           

                           

Example
                   

Example
Let                  
This is a group under multiplication with identity 1
Let      ll n n  r    m l   numb r  un  r mul i li a i n 

Claim
             

Proof

If    then we can write  uniquely as          is 1-1 and onto 

                   

Example
                  l       l      l     
  l     

So        

Remark

   1)
       2)
             3)
                   

Isomorphism is an equivalence relation

Proof of Proposition

Assuming  is abelian and  is onto.1)
Let        .       such that         and         

                                               

Assuming  is abelian and  is 1-1.2)
Let        . Consider                                      
  is 1-1,            is abelian

3 follows from 1&2

Homomorphism
September-17-13 10:01 AM
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G is a group•
X is a nonempty set•

Group Actions

        , write      
A group action of  on  is a map      

                  1)
          2)

such that if            

Symmetric Group acting on X
Given a set   we let
            i      an   n   
Then   is a group under  

Theorem
Let  be a group acting on a nonempty set  .

      

Then there is a homomorphism

given by              f r        
Moreover,  is 1-                      
and in this case we say that the action is faithful. 

Group Actions
Example 1
Trivial action
              

Example 2
  actions on          
Rule     ,                      
        
                              

Example 3
  acts on             = power set of          = all subsets of          

                            
via the rule,      

Example 4
  acts on          
look at image of vertex  under symmetry

Example 5: Matrix multiplication

      acts on        

  

 
  

            

via left multiplication
          

Example 6
     
      (multiplication in the group)

Example 7
   
          (conjugation)
Properties:
           
                   

           
    

                
           

Note
If  is a group and    then conjugation by  is an automorphism of  
i.e. the map               is an automorphism

To see that   is an automorphism note that

                                   

Notice that                                    i    

&         i so   is an automorphism.

Proof of Theorem
Let      
We want to show that               
Let    , then 
                                                              

So                   is a homomorphism

If                     
    But                       
            is not 1-1

If  is not 1-1        such that          and    
So                     i 
                           
  

Claim
          

       acts on   
 
 
   

 
 
   

 
 
   

 
 
     

 but can exclude  
 
 
 since it is always mapped to itself.

So we get a homomorphism                

Why is  1-1? If          is s.t.         

  
  
  

  
 
 
   

 
 
    

  
  

  
 
 
   

 
 
     

  
  

   

So  is 1-1
Since                 ,  is onto
 it is an isomorphism

Group Actions
September-17-13 10:52 AM
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Orbit Examples
Example 1
  acting on          
Then             

Example 2
Look at   acting on itself by conjugation
         

What is      

        

id i           

                                  

(23)                               

(13)                                  

                                                   

                                                   

                         

Proof of Proposition
Let        and suppose    

    
  

Then     s.t.                             
We will show that    

    
and by symmetry    

    
    

    

Let      

Then       for some    
      

             
              

         
            

So    
    

  

Example Subgroups
Example 1
     
             

Example 2
                  i        

               

Example 3
   a vector space
   , a subspace of  is a subgroup

Example: General Linear Group
          all n n in  r ibl  r al ma ri    
                          

Proof of Lagrange's Theorem
Let  act on    via left-multiplication:             
If    , what is   ?
            . What is     ?          . Why?
    by      is 1-1 and onto (since  has an inverse).

We know that  is a disjoint union of orbits. Let's say there are  disjoint orbits making up  . 
Each orbit has size    so             

Proof of Fermat's Little Theorem
Let     

                                    

If    and      m     then       
 

Let    r  r     in   

Then                      is a subgroup of   
 

Then      and        
       

so         for some  ≥  
Then                                       m     

Example
    

                    
   

Find a set of left coset representations.
                  

   i       
                   
        
        

Proof of Proposition
Let  be a generator for  .

Orbit
Suppose that  is a group acting on a set  . Then given    , call 
the set
          the orbit of  and denote it   

Proposition
Let    "G acts on X"
If        then either    

    
or    

    
  

This says that  is partitioned into a disjoint union of orbits.

Subgroups
Let  be a group, we say that a subset    is a subgroup if it is 
closed under taking products and inverses (operations from  )

       
    

i.e.              

Lagrange's Theorem
Let  be a finite group and let  be a subgroup of  . "   "
Then    divides    .

Corollary (Fermat's Little Theorem)
If  is prime and      m     
          m     

Coset
In the case that    and    by left multiplication we 
usually write   for   and call it the right coset   .

Then                if      
In general, any group  is a disjoint union of  cosets but the 
number could be infinite if  is infinite.

A symmetric argument shows that  is a disjoint union of left 
cosets,   

We write      for the number of distinct left cosets = number 

of distinct right cosets = 
   

   
   if          

     - "Index of  in  "

Cyclic Groups
A group  is cyclic if it can be generated by one element.
In terms of generators & relations:
             for some  ≥  
or
       

Proposition 
If  is cyclic then either     for some  ≥  or    

Theorem
Let  be a cyclic group and let    . Then  is cyclic.

Orbits
September-19-13 10:01 AM
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Let  be a generator for  .

                    
We always have a homomorphism                  

Case 1
 has infinite order. Then  is onto   is cyclic and if  has infinite order
               ar  all  i  in      is 1-1

Case 2
 has order  ≥  

         

                 m                       

Now we make a map       

Onto:  has order  
1-1:           are distinct

Proof of Theorem
Let  generate        

If      then there is nothing to prove. So assume      

Then consider     ≥        . Then      if            
  

       

Let   smallest element of  .
Then     . Claim:       

Proof of Claim
Suppose   such that     and  is not a multiple of  .
WLOG we may assume that               

By division algorithm:             
Then                         
But this contradicts minimality of  . 
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Proposition
Let  be a finite group and let    .
Then     divides    .

Theorem
Let  be a finite group with the property that every element of  has 
order 1 or 2. Then   ≥  such that 

Group under +
       is identity

    
            

                                   

Proof of Proposition
Let        
Then    and         
By Lagrange's Theorem,    divides                
  

Proof of Theorem
We've shown that  is abelian. We will let '+' denote the operation on  and let 0 denote 
the identity.

We say that a subset          of  is linearly independent if                  , not 
all zero such that                   .
Let          be a maximally linearly independent subset of  

                             has size   1)

   2)

Claim

Suppose that               
        

              
      

       1)

        
    

 

   

  

      
               is linearly independent.

   has   distinct elements.
Suppose that    . i.e.    2)
Pick        
Show            is linearly independent.
Proof:
If                 ,                  not all 0.
If    , we get a contradiction         are linearly independent.

Contradiction since    
If    ,                              

So            is linearly independent if        
But          is a maximal linearly independent set. Contradiction.
Conclusion:    

Proof

      
 

                        
This is a homomorphism and 1-1 and onto.
    

 

Now we construct an isomorphism

Groups of Small Order

Order Groups Up to Isomorphism

1    

2   

3   

4         

5   

6      

7   

Order 4

Then                 is cyclic
Case I: G has an element  of order 4

Then all elements have order 1 or 2
     

 for some  
                 

Case II: All elements of  have order   

Order 6

(by homework assignment,       n    has element of order 2)
Since      we know that     of order 2

Let          

Let        f l f          f  . So       
   

   
   

           for some      

                    
 acts on  by left multiplication:

         

Recall that the action    gives a homomorphism

If  is 1-        

     
      
          
So        

What does     mean?

So                       

(Otherwise                 Contradiction)
                      

Notice that        . Define      

If  is not 1-        in  such that                   

Groups of Small Order
September-24-13 10:02 AM
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So      and        (Lagrange)
So          
But    has order 2 so                  

Notice that            . Define        

Gut      so  is abelian.

Now we have     or  is abelian.

      
 for some  

Contradiction since      

If  is abelian, we know     of order 2. All elements of  have order in 
         . If all elements have order 1 or 2

So     of order 3 or 6. If                

If       , let      Then               
But          and    so             
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Centralizers

                      

Given a subset    ,  a group, we define the centralizer 
of  in  

Notation
If      , we write      for        

    for      and we call      the centre of  
So                      

If    , we write

Proposition 1
If    , then      is a subgroup of  .

Normalizers
   

                         
We define the normalizer of A in G

Then            

Proposition 2
     is a group

Example Centralizer
Let     

Let    i        
What is      ?

             

  (123)      

(12)               

(13)               

(23)               

     (132)      

(132)                   

       i              

Example
        

    
  
  

       

What is      ?        

 
  
  

  
  
  

   
    
    

 

 
  
  

  
  
  

   
    
    

 

                 
Need                 

so  
  
  

               

Example
If         what is     ?

       
  
  

      (Exercise) 

                       1)

                                          
     

If                             2)

           
Similarly, if                                           3)

Proof of Proposition 1

      is a subgroup.

       1)

                
         and    ,                               f r   m     2)

           3)
         for some     
         
But notice              
Why?     

       
        

Exercise: finish the proof

                     
So                                    

Proof of Proposition 2

Example
Let    all     an   n   ma   fr m      i   lf 
 is a group under composition
Let.

       

          
            

                

Let               

                                    
                                     

If              

             
So              

So if            

Then                
But          

Centralizers
September-24-13 10:53 AM
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But          

Example

          
           
              
              
              

                  

Let       
What is      ? Answer?     

g      

1           

-1               
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Stabilizers
   ,      

If    , we define              

Remark 1
    (  is a subgroup of  )

Orbit-Stabilizer Theorem
Let  be a group acting on a set  .

            
       numb r  f l f  ri h            in  

If    then            

Corollary
If  is a finite group acting on a set  and    
then     divides    

Cauchy's Theorem
Let  be a prime number and let  be a finite group.
If         then  has an element of order  .

Conjugacy Classes

         
Let  be a group and let    by conjugation

If    , we call               the conjugacy 
class of  and denote it by   

If    and                   1)
 is a disjoint union of conjugacy classes. 2)

Remarks

Proposition
If    then              

Normal Group
Let  be a be a group.

           
We say that a subgroup    is normal if 

   is normal1)
           2)
         (  is normalizer)3)

The following are equivalent

            
                 

            
    

                

Theorem
Let  be a group and let    with        
Then  is normal in  . Denote    

If   and   are two left cosets, 1)
either      or        

Remark

Idea

          
If                            

                   
Similarly,

Normal Subgroup
   : N is a normal subgroup of G

             1)
           2)
       3)

if any of the following  hold

Proof of Remark 1
Since           

If                                

If                                         

So     . In particular, if      ,     divides    .

Example
Let     . Let            
        
What is   ?                 
How big is     ?       
What is   ?             
      
      
      

     
   

    
     

  

 
     

Proof of Orbit-Stabilizer Theorem (Finite)
Let         and let                 be a set of left coset representations

Claim
                  
This will then give              

Proof of Claim
Let     . Then     for some    
So   s.t.          i.e.           

So                        
So              

To finish, we must show that if    then        

    
       

    
               . Contradiction.

            

We do this by contradiction. Suppose that        

So          ar  all  i  in           

Proof of Corollary
           
But                        

Proof of Cauchy's Theorem
Let                                     

Why?                                     
  

          

Then           

In particular,        since        

i.e.                                    where subscripts are taken (mod  )

Let   act on  via cyclic permutation

               

Notice if                          
                 

               
      

So     acts on  .

If    what can we say about     ?
                               
Recall that  is partitioned into orbits. Also               m     
So the number of orbits of size 1 must be a multiple of  since orbits have size 1 or  
When does              have an orbit of size 1? When            for some    

Notice, we must have     by definition of  .
Notice            so there is at least 1 orbit of size 1
Since  ≥  and the number of orbits of size 1 is a multiple of  
    s.t.                         

Proof of Proposition
                                                    

Example Conjugacy Class
Let     . Find the conjugacy classes of  
    i                             
 i   i  
In general,                              

   

        

                            

                         

                       

            

Stabilizers & Conjugacy Classes
September-26-13 10:16 AM
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Example 1
    

         is normal
Why?        

Example 2
        i               i  n rmal
               

Proof of Theorem
Let    
Case 1:    
Then             
Case 2    
Then                          
So in either case,            

If  is abelian &         1)
Why?
              so abelian
                                 
If    and            2)
Why? If    ,                  

Normal Subgroups Facts

Groups of Order 6 Revisited
Let      
By Cauchy's theorem,       .              

Let           Then             
   

   
    

 

 
   

So     . Look at            . So           
Remark:        Why?                                    

2 Cases

  is abelian; check   has order 6
Case 1:            

So                               

Case 2:        

   PMATH 347 Page 15    



Kernel
Let    be groups and let      be a homomorphism. We defined the 
kernel of  to be 
  r                   

Theorem
Let      be a homomorphism. Then  is 1-1 if and only if   r        

Proposition
The kernel of a homomorphism is a normal subgroup.
i.e. if      is a homomorphism,   r      

Quotient Groups
Let  be a group and let    
 must be normal for this construction to work.

If  is finite, we'll see       
   

   
   •

We can form a quotient group    as follows

   as a set                   

              

How do we multiply?
                                

Notice that    is a group. 

The coset      is the identity 
and                  so            

Proof of Theorem
Suppose that   r           r        
So      in  such that        

             is not 1-1

Suppose that  is not 1-1.                           
                                 
        is in   r     so   r        
 

Note

                        
Recall that if    

  r                       

 

   

  n  r    i n  f all   abili  r   f  

Proof of Proposition
Let    and let     r   
                                                      

         r   
   if     r                                   
      

So              
    

Quotient Group Example 1
     
          
                                             m      

                                        m      
In this case, our cosets are 

We have  cosets              

Quotient Group Example 2
        
                               
Why?

                               
Let                   

  r                     
What does    look like?

Claim: A coset of  is all matrices with a given nonzero determinant. 
Why?
For                  
                         
Conversely, if                       

So there is a bijection.

        ←     
Left cosets of       in       ←   l m n    f   

                              

Kernel & Quotient Groups
October-01-13 10:18 AM
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Image
Let      be a homomorphism.
Then im                

First Isomorphism Theorem
Let      be a homomorphism. 
 h n     r    im   

Proposition
Let      
Then                has size

     
      

     
       

Image Subgroup
If       im                                    

                          im   

  
        

       
    im             im   

Proof of First Isomorphism
Let     r   . So             

Define       im   by           

 is well-defined1)
 is a homomorphsim 2)
 is 1-13)
 is onto4)

We have to check

 is well-defined1)
Suppose that           

          
         r        

         
    

                 
                      

So                      is well-defined

 is a homomorphism2)
                                                  

 is 1-1. What is the kernel of  ?3)

              i  n i   in    

 is onto4)

  r                But             r     

If   im   
                          is onto

elements are cosets   -

multiplication             -

identity     -

inverse            -

   is a group

Example
                

Example
      

                  

Why?

Define        by      
 

   
  homomorphism

  r       
 

   
          

Example
            
  r      
          

Example
               
  r                      
                 

Example
        i                  
      

Proof of Proposition

      

 

   

When is        ? 
          

          
         

                 
Notice that      
Let                  be the set of left    cosets in  . What is  ? 

          
   

     
       

Claim:
                
Once we have the claim, we see 

If    then        since otherwise1)

  
                                   . Contradiction

Now we'll show that        
 
   2)

It is enough to show that        
 
              

   
                             

 

   

Let       Consider               for some  

          
   

     
                  ill b    n 

First Isomorphism Theorem
October-01-13 10:55 AM
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Proposition
Let  be a group and let    be subgroups of  
Then   is a subgroup of         

Corollary
If      and                      
   is a subgroup of  .

2nd Isomorphism Theorem
Let  be a group and let      and suppose that        
Then     and      and             

3rd Isomorphism Theorem
 u       ha              

Then    and        and      
      

    

Correspondence Theorem
If  is a group, the collection of subgroups of  can be partially 
ordered w.r.t. inclusion. 

Proof of Proposition
Suppose   is a subgroup.
Then                is a group and       

If  is finite then      
      

     
               

What if  is infinite? Still OK. 
Have a bijection      where      

        , so     1)
If             then                        2)
                      s.t.          

                
If                          3)

Suppose that      

So   is a subgroup.

Proof of Corollary
Let      .               since               
If      . Then                              i  a  r u 
In particular       is a subgroup.

Proof of 2nd Isomorphism Theorem
To see that      let      
Then                                          
                     

Since     , we can form the quotient group     

Let         be defined by        

Claim:  is a sujective homomorphism.
Homomorphism:                                

        so  is onto.

Onto: If             for some        

The identity in     is  

  r                                       
So by the 1st isomorphism theorem,        im               

Proof of 3rd Isomorphism Theorem
To see that    notice that        ,      
                            
Now let's check that        

Consider

        

                                                           

So                                      

Define          by         

Well-defined1)
If           

         
                                

Homomorphism 2)
                                          

Check that this is a homomorphism

Notice if                so im       

What is   r   ?  is the identity in    so

  r                                                

So by the    isomorphism theorem, 
             im         

      
    

Example Correspondence   

         

          

                         

2nd & 3rd Isomorphism Theorems
October-03-13 10:21 AM
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Simple Groups
 is simple if its  only normal subgroups are    and  

Theorem
Let  be a  finite group and let    , then

               
   

       
       

What does this mean?
If  is finite,  is the disjoint union of conjugacy classes, say
     

    
      

        
      

        
  

   

        
           

   

        
        

Theorem

      

 

     

If  is a finite group and          is a complete set of conjugacy class 
representatives, ie.e

      
   

        
       

 

   

When is       ? 
              

 f                                           

Let        be a complete set of conjugacy class representatives for  and let 
         be the elements with     

   

 h n         
        

        
        

 

This gives

Class Equation

    
   

        
           

   

        
               

where        are a set of conjugacy class representatives for the conjugacy 
classes of size > 1

Theorem 3

  is called a p-group) 
Let  be a prime and let  be a group of size   for some  ≥  

Then  has a non-trivial centre; i.e.          for some            

Corollary
Let  be prime and let  be a group of size   . Then  is abelian.

Note, does not apply for higher powers.

  
   
   
   

           

is a non-abelian group of order   

Theorem 4
Let  be a finite group and suppose that  is the smallest prime dividing    . If 

   has index  (i.e. 
   

   
      then     

Theorem 5
Let    be primes with    and suppose that      m     .
Then if         is cyclic.

Lattice of Subgroups
IF  is a group, the set of subgroups of  has a partial order given by  .
So this gives us a picture of the subgroups of  , where we put bigger subgroups 
higher and we draw a line to two groups when one contains the other.

Example
    is simple

Why? If    then          (Lagrange)

           •
         •

          

Conjugacy classes
 acts on itself via conjugation

         

          

   

             
     
                      

   

                                  n u a    la    f  
orbit-stabilizer theorem

                 
   

    
     if   i  fini  

                                        
      

Proof of Theorem 3
By the class equation,

    
   

        
           

   

        
               

where each of 
   

        
        for        

For        

   

        
                

and since it is > 1 we have
   

        
           m      f r         an         m     

So           m     . Since              ≥  
So in fact       ≥  . This result follows by Lagrance's theorem.

Proof of Corollary
We just showed that              

If          then          is abelian.
                such that         
Pick           

Let        , then       
So             

           

But        by Lagrange's theorem

Claim,        

Now             so        is abelian.

Proof of Theorem 4
Let                    f l f        

Let    via         
So this gives a homomorphism          

By Q1 of assignment 4,

  r        

 

   

  

So   r   and also   r     i  i  a   rn l

       im     

So by 1st isomorphism theorem,

So
                              

               all  rim  fa   r   f   ar ≥  

So                             

But if           then   r     C n ra i  i n     r     

   r   
Why? 
             r       r   
This means we have equality so     r 
So     it is a kernel

             

Proof of Theorem 5
By Cauchy's theorem,     of order  .
Let        . (so      ) 

Notice       
   

   
    

  

 
    , the smallest prime dividing    

So    

Conjugacy Class Equation
October-08-13 10:03 AM
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So    

By Cauchy's theorem,
    of order  
notice that        

 h n 
             

             
                     

Why? Let        

        for some              
Since        

                                        
 
    

           

 h n            bu      

Thus             

       m     

By FLT        m     

Consider   
 group under  

                 has order dividing  
                   has order dividing    
                   
             m     

Look at       
 

             

So  is abelian         and      

Let     

                        
                        

                 

So                  

  

Groups of small order up to isomorphism

1    

2   

3   

4         

5   

6      

7   

8 TDB

9 abelian TDB

10       

11    

12 TBD

13    

14       
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Correspondence Theorem
Let  be a group and let    . 

               
Then there is a surjective homomorphism

which gives a bijective correspondence between the subgroup of    and 

the subgroups of  that contain  .

Bijection1)
              

          ←      

If                  2)
and if                        

If                          3)
If      then             4)

Canonical Surjective
The map             is called a canonical surjective.

                       

Problem
Let  be a group and let    . Show that if    is abelian, then all 

subgroups that contain  are normal in  . 

Cayley's Theorem
Let  be a finite group. Then  is isomorphic to some subgroup of   for 
some  ≥  . In fact, we can take      

Correspondence Theorem Example
                i          
Subgroups:
Order 12   

Order 6                   
             

Order 4                       

Order 3     

Order 2                                      

Order 1    

  has order 12:                            

If               1)

  
 

            im   
 
       ub r u 

Since            r   

If      then         and         

Notice                                                   

and                                    
So    and    

If      then what is           

Ans:            

We have                      

We want to show that            

If            then we have      

Pick      . Then        
So                for any    
          but                      

Why?      onto

Claim:                  

If              for some    
  

Contradiction

So            

Exercise
If                      

So this shows that  and    induce bijections between subgroups of  that contain 
 and subgroups of    

If                  2)
If                          

If        and                      3)

Proof
If                        , disjoint
                                     
So              

Claim
If                        

                         
  

               
             

    

                 

Proof of Correspondence Theorem

     

|          
      
|
           i  n i    f    

                  4)

Criterion for normality. Let    then                 

                 
Conversely, if             
                                

                         

Proof: If      every    is in normalizer of  

Let       

Then                                            

So        
                  

A similar argument shows that if               

Answer to Problem

Correspondence Theorem
October-10-13 10:20 AM
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Answer to Problem
     

|  
               ab lian     

 
 

Proof of Cayley's Theorem
Let    and let  act on  by left multiplication
                               
This gives a homomorphism
         

What is   r ?    r              f r             
So  is 1-1
So  gives an embedding of  and   im      

Important part  is a faithful action.
ie.e               

Equivalently,                   
This action is also transitive - this means that there is exactly one orbit
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 ≥                             i               

Disjoint cycle notation
e.g.    
1 2 3 4 5 6 7

1 2 3 4 5 6 7

(1 3 4)(2)(5 6)(7) = (2)(7)(5 6)(1 3 4) = (5 6)(1 3 4)

Conjugacy Classes
What is the conjugacy class of a permutation     ?
Let's first consider the case of a single cycle            
What is              

Let                

What does  do to      ?
                                       

In general, 
             sends              for        where we take        

If                  what is                 ? 
Answer: it is  
So                                    

Proof of Theorem
Suppose  has  disjoint cycles of lengths           ;             
Write            

             
                             

 

Let     

Then, as we just showed,
                                   

                                   
     

                                
                                   

  

Thus     all   rmu a i n   i h  am   i   in     l    ru  ur  

To finish, suppose that          
                        

 has the same cycle structure 

as  .
Thus,        , where  sends      for      so        hu   h  r  ul  f ll       

Example
  

Conjugacy class size

id 1

(1 2)  
 
 
   

(1 3 2) & (1 2 3)  
 
 
     

(1 2)(3 4) 3

(1 2 3 4) 6

Find all normal subgroups of   

Remember, 
       then              ; i.e.     

Assignment Q: N is a union of conjugacy classes
Answer:

                                                 

 i                                     l in    ub r u   f   

Proof of Theorem (Centre of   ) 
Let    . Let        and suppose that   i .
Then  has at least one k-cycle for some    . Then for any  with the same cycle structure   
such that        .
But note that there is some    with the same cycle structure

                
We know    

                          
Case 1:  ≥  

                       

             

Case 2:    ,    

Why?

So          and so                         

Automorphisms of   
Recall that if  is a group we have a homomomorphism
     u                          

  r          i                                          

        m      nn     h  inn r au  m r hi m  r u   f  
So by 1st isomorphism theorem, 

Theorem
Let  ≥  and let    . Then   consists of all     whose 
disjoint cycle structructure is the same as  's
i.e. if  has   i-cycles for      (disjoint) 
   has   i-cycles for      

Theorem (Centre of   )
If    , then        i  

Theorem
If      
Then  u       nn       

Remark 1
If      is an automorphism 
Then                                  

                                         

Remark 2:
If  has order        has order  .

                  

So             

Bu this holds for any automorphism

                                     

             

Why?

Corollary
Suppose        is an automorphism.
Then                                for some  ≥  

                 
 
 
 

 
  

          
            

                     
 
 
 
  

   
 

 

 
           

                           
 
 
 
  

   
 

  
   

 
 

  
                 

What is                        ?

                        
  

                       

Remark 3
If        is an automorphism and           

                     for some  ≥  then 

                                 
  

       
          

  

           
            

In particular
                              
Notice  ≥   so 
                   ≥         
     ≥       

                       
So equation (*) gives                

There are    terms on LHS
If  ≥                                      
       Contradiction.

                                          
So conclude that if 

   

If                         
 
 
  

 
 
 
  

   
 

 

 
       

   
          

 
             

             . No solutions

   

 f                              
 
 
  

 
 
 
  

   
 

  
   

 
 

 
                 

                        
has a solution only when    

Symmetric Groups Revisited
October-15-13 10:08 AM
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     u                          

  r          i                                          

        m      nn     h  inn r au  m r hi m  r u   f  
So by 1st isomorphism theorem, 

 f                              
 
 
  

 
 
 
  

   
 

  
   

 
 

 
                 

                        
has a solution only when    

Combining all of this, we see that if    and        then 
                

Fact
 an automorpthism of   that sends      to                 
Next time, we'll show that if        sends       to       

then  is given by conjugation. This will prove the result.
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Last Time
We showed that if        and    then                 , i.e.  takes transpositions to transpositions

Goal
To show that if       is inner (i.e.  a permutation     such that                  )

Remaining Steps
Step 1
Show that if  is a group and    generates  and      u    such that                  

Step 2
Show                      generates   

Step 3
Show that if    u     takes transpositions to transpositions then      such that 
                      for            

Proof of Step 1
Let    . We want to show          

Since  generates  , we can write     
    

     
    h r                        

Then          
     

        
        

         
                

               
     

        

Proof of Step 2

The set of all transpositions generates   1)

Since each     is a product of disjoint cycles, it is enough to show we can write any cycle as a product 
of transpositions.

Aside
                  
Similarly
                                   

So every cycle is a product of transpositions. This proves (1) 

                   generates   2)

Lemma

For (2), it suffices by (1) to show each transposition is a product of transpositions of the form        
                               
                                 

So by induction on    we can write each trasposition as a product of elements from 
                   

In general, if    ,    ≥                                

Proof of Step 3
Proposition
Let        be an automorphism that takes transpositions to transpositions. 
Then      such that                     for          

Before we begin, note that                          

Proof of Proposition
Since  takes transpositions to transpositions, 
                for some              and 

               for some             

                     so                            since  is 1-1

                                                               so                 

WLOG     so                                            pairwise distrinct   is 1-1

Similarly,                 for some   with            pairwise distinct. 

                      f r            
Continuing in this manner we see that         pairwise distinct such that

Let                  be given by           
So  is a permutation of        and                                               

  

Theorem
If    and        is an automorphsim then      such that                        i  inn r

Proof of Theorem
We showed last time that                 . By step 3,      such that

                      for          

By step 2,
                    generates   

Define           then               and so by step 1,    , i.e.                      

So  i  inn r   

Corollary
If      then  u       nn       

Proof of Corollary

Symmetric Groups Cont.
October-22-13 10:03 AM
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Proof of Corollary
If    , we have shown  u       nn    
We showed that for a group  ,  nn          (we showed for    ,        i  

So if    ,  nn            
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Finitely Generated
Saying that  is finitely generated means   ≥  and          such that every 
   can be written as                         

Let  be a finitely generated abelian group.1)
Then  a nonnegative integer  and a finite abelian group  such that 
      

Let         
    

     
              rim  2)

Then             were   is an abelian group of size  
 

  

If  is prime and  is an abelian group of order   then 3)

and             

                  for some  ≥  with           

Moreover,  and           are unique.

Structure Theorem for Finitely Generated Abelian Groups

Corollary to STFFGAG
If  is a group of size   then      or         

Lemma
Let      be an abelian group of order   with           
Then      with    abelian and      and      .

Note
Recall that any cyclic group  has the property that either
   or   ≥  such that      

Weak Structure Theorem for Finitely Generated Abelian Groups
Let  be an abelian group. Then  isi isomorphic to a finite product of cyclic groups.
More specifically,     ≥  and        ≥  not necessarily distinct such that
        

    
      

Moreover, if      
    

     
       

 

then     . We call  the rank of  . 

Strong Version of Structure Theorem
Let  be a finitely generated abelian group.
Then   ≥    ≥     

       
     prime powers, such that

        
        

  

Chinese Remainder Theorem
If        are pairwise relatively prime, i.e.    n               and 

         
Then     such that 
      m      
      m      
 
      m      

Example
What are the abelian groups of order 72?
        

If  is abelian of order 72 then by (2),                        

             

by (3),                     

So     one of                                        
                       

How may (up to isomorphism) abelian group of order   are there?
Answer: 7
                                  

                                 

Proof of Lemma
Let             and             
Claim:

                     
       . Why? If                        

Next we have      
Why? Since               such that        
So if                           
So                         

Proof of Weak Structure Theorem
Let        be a generating set for  . We prove this by induction on  .

Base Case:    
      is cyclic. We showed before that cyclic groups are either  or     ≥  

Induction
Assume the results holds whenever    and suppose that            

Let                             

Case 1

that is, if              ,          then             
       are  -linearly independent

In this case we claim that     

Proof of Claim

Define       by                           

                                       

                      

                            
                      

Notice that  iis a homomorphism.

                        

Note:        generates A. If               such that 

          

Notice that             r                              

So   r             is 1-1
So  i  a bi    i n h n   i  m r hi m       

Case 2

             
       are  -linearly dependent. i.e.           not all 0 such that 

Define             to be the smallest positive     that appears in some 
relation among        

             and     for some  
          = smallest positive integer  such that           and 

Example
Suppose   ,                                   
                         

      min                        

                  
Then             and          with     such that

Claim
            

Proof of Claim
By the division algorithm, we can write
        

      
   for        

            
              

      
                     

        
     

Let                    
     

     

 
     

       
        

     

If one of   
       

 is nonzero then            which contradictcts 

So                   

Structure Theorem
October-22-13 10:58 AM
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If one of   
       

 is nonzero then              which contradictcts 
minimality of  . We we have that   

      
         

Have               and      
We  claim that 
                         

Once we have this we are done since by the induction hypothesis,          , 
which is generated by a set of size      is a product of cyclic groups and 
    i     li     is isomorphic to a product of cyclic groups.

Let         
Let            
Then                   

         an           
                       

              such that              

This contradicts minimality of  . So        
                                  but      

Notice that        . To see this, if          

Now we have an isomorphism

Homomorphism•

                                                   

                                      

Onto                      •

1-1 If                                    

     

•

So   r           is 1-1

                    

So                     
  

to finish, we need to show that rank is an invariant. .e. if 
          

      
        

      

Then          ran     

Proof
Suppose WLOG      
Let          

      
        

      

be an isomorphism.

                    
                       

Let                       

Notice that        are  -linearly independent.
                               

      

 

                               

       

Then      so           are linearly dependent. 

So            not all 0 such that

                 . Let   common denominator for         

                        

                       
    

                         
                   

           

                                           for some    

Since  is a finite group,  has finite order so   ≥  such that     .

So                             

But                     
     and  is 1-1, a contradiction. 

So      

Proof of Strong Structure Theorem
We already have that 
         

      

So it is enough to show that if    then   is the product of cyclic groups of 
prime power order.

Write     
     

  

Claim     
  

      
  

  

We make a map

      
  

      
  

              
  

        
  

   

Notice that  is well-defined.

If                m     But     
     

  

           
              m     

       
 

 

      
 

 

  

Next Class
Key tool: Chinese Remainder Theorem
Says if        are pairwise relatively prime and if               
such that      m      for        
Last time , we constructed a map       

  
      

  
  

         
  

        
  

  

where   is the equivalence class of  in   ; i.e.          m    
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where     is the equivalence class of  in   ; i.e.              m      
Last time we showed this map is well-defined.
Notice that  is a homomorphism
                             

  
          

  
   

     
  

      
  

        
  

      
  

        
  

        
  

        
  

        
  

   

                

Notice that given        
           

     
  

      
  

  

by CRT     such that      m     

   for        

So             
  

        
  

           
           

   

So  is onto. Since          
     

       
      

  
   

we see  must be 1-  al   an  ha   i  i  an i  m r hi m    
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Ring
A ring  is a set equipped with two binary operations          
Denote           as        

     is an abelian group under addition, we let    denote the 
(additive) identity and   denote the inverse in  

1.

 is associative; i.e.                          2.
This allows us to unambiguously write the product         

We will assume that our rings have identity   

i.e.                          
Distributivity3.
                         

Such that the following hold:

Commutativity
A ring is commutative if             

Division Ring
More generally, we call a ring  a division ring if          is a group 
under multiplication.

Proposition

            1)
                       2)
           3)
The multiplicative identity is unique4)

Let  be a ring. Then we have

Zero divisor
Let  be a ring.
We say that  is a zero divisor if       such that either 
    or     (or both)

Units
Let  be a ring. We say that    is a unit if     such that        .
We denote the set of units in  by   . Notice that   is a group under 
multiplication.

Cartesian Product
If     are rings, we can make a new ring    
                             
                           
            
            

Proposition
            

Nilpotent
An element  of a ring  is called nilpotent if   ≥  such that     

Example Rings
   is a ring
A field  is a ring, where          is an abelian group under  

                                    
                        

                 

 
 

           
                

 

           
                 

 

           
                

 
 

           
                

    all polynomials with real coefficients

                 
                  

              i    n inu u  

But it is "close" to being commutative
Recall that  is commutative if              

(Wagner's Identity)                             
Similarly,      , while not commutative, satisfies the identity 

       is a non-commutative ring

                         1)
Similarly,      
                  So          2)
Similarly, for the other size
                                         3)
Since                                           
        
Suppose that  is another multiplicative identity. Then         4)
           

Proof of Proposition

Example Zero Divisor
                               

             
So        are 0-divisors

So  only works on one side.  is still a 0-divisor

   
  
  

     
  

    
           

  
    

   

         
  
  

     
  
  

         

Let   real vector space with basis           such that each element is a linear 
combination of finitely many basis vectors.
Let     = all linearly transformations      

                                 
Then     is a ring

     back shift:                       
                  

Let      be the forward shift                       

              
                         i  n i  

           but           contradiction
    and    so  is a zero divisor but            such that     
Why? If                            

 has a left inverse but cannot have a right inverse. Why? Suppose      

  a group
Notice if      ar  uni           such that                    
So                               
And similarly,               so                  

      is associative.  is associative under  .
Obviously              

If          uch that        so      and      so     

Example Sets of Units

Why? If    and     such that        then       
          

         
 

             
 

                                               

                    

                        

  
                            

                        

                      

Proof of Proposition

                                     
                                 
                             

            

                           such that 

Rings
October-29-13 10:15 AM
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So                                     

Example
                  

Example Nilpotent Elements
          is nilpotent since             
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Idempotent
Let  be a ring. We say that    is idempotent if     

Theorem (Jacobson)
We won't prove this

Let  be a ring and suppose that for each            ≥  such 
that     . Then  is commutative.

Integral Domain
A commutative ring  is called an integral domain if the only zero 
divisor in  is 0.
That is, if      ,             

Assignment
Prove that if  is a finite integral domain then  is a field.

Remark
If  i  an in   ral   main     an    ar   h   nl  i  m    n   in  . 

Characteristic
Let  be a ring.
We say that R has characteristic  ≥  if 
               
(n 1's) 

  (d 1's)
and if                    

In other words,       in the group      
If   ≥  s.t.            then we say  has characteristic 0.

Proposition 1
Let  be an integral domain. Then either  has characteric 0 or 
characteristic  ,  prime

Proposition 2
Let  b  a fini   in   ral   main  fr m a  i nm n    fi l  
Then  prime  such that  har     and       

Subrings
Let  be a ring and let    

     is a subgroup of      1)
 is closed under multiplication i.e. if               2)
    is the identity of  3)

Then  is a subring of  if

So  is a subset that is also a ring with    and      

Centre of a Ring
Let  be a ring. 

                     
Notice     is a subring of  1)
    is a commutative ring. 2)

why?                
If  is a division ring then     is a field3)

We define the centre of  

Ideals
Let  be a ring. 

     is a subgroup of      under  1)
If    and    then     2)

We say that    is a left ideal of  if  

Same1)
If    and    then     2)

Similarly if

we say I is a right ideal.
An ideal (2-sided ideal)  is a subset that is both a left and a right ideal.
Write    

Simple Ring
A  is called simple if    and  are the only ideals of  .

Theorem 1
Let  be a simple commutative ring.
Then  is a field. Conversely, a field is simple and commutative.

Theorem 2
Let  be a division ring.
Then      is simple.

Example Idempotent Elements
    and     so 0 and 1 are idempotent
           is idempotent

         
  
  

 is idempotent

Proof of Remark
Suppose     . Then                    r    

Example
  is an integral domain iff  is prime.
Why? If  is composite,             then               
           

If  is prime  and                              m                     

Example Characteristic
    has characteristic  
                       
         have characteristic 0

Proof of Proposition 1
Suppose  har     ≥  
If  is not prime,     ,        

    n times                a times        b times
Then                         

     a times                    b times 
So if  is an integral domain, either        or        

But this contradicts the fact that  har     

Proof of Proposition 2
Let      

m times
then                    cannot all be different

    i times              j times               times
So     such that                       har   is finite

So   prime such that  har     
Now we can regard  as a   -vector space. 

                       
                      a times           b times
    ,     

If      and       then

                                  
We say a subset        is linearly indepenent if 

As with vector spaces, we can pick a maximal linearly independent set and it will be a basis 
for  .
Let            be a basis for  (    since      ) 
Then                           

 times
So               

Example Subrings
       

               
          u   r  rian l  r al ma ri   
          

Example Ideals
Example 1
   
    

If                       
If     , and                   

Then  is an ideal of  . Why? 

Example 2
       

    
  
  

        

 is a right ideal but not a left ideal

 
  
  

  
  
  

   
          

  
   

 
  
  

  
  
  

   
  
  

   

Proof of Theorem 1
Let  be a simple commutative ring and let         
Let           

Why?                            so      is a subgroup
If    and                             

Notice that  is an ideal.

Also,            so      
Since  is simple,    

Ring Properties & Defs.
October-31-13 10:00 AM
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Theorem 2
Let  be a division ring.
Then      is simple.

If  is a ring and    then1)
             is a left ideal
             is a right ideal
     all fini    um   f  h  f rm           is a 2-sided 
ideal.

Remark

Proposition
Let  be a ring and let    . Then

           

 

   

  ≥                     

is an ideal and is the smallest ideal that contains  .

Remark

                   is a left ideal of R
If    are left ideals of  

Similarly for right ideals and ideals.

                
Why? Check that    is a group and if        and    then 

Why?                            so      is a subgroup
If    and                             

Notice that  is an ideal.

Also,            so      
Since  is simple,    
So                     so      
So  is a field.
Conversely, if  is a field and if I is a nonzero ideal of  
    in  . So                             is simple.

Proof of Theorem 2
Let     matrix with zeros everywhere except 1 at  -th row and  -th column.

                
    if    
    h r i  

Suppose that        (is an ideal of) and  that      

Since         

       

   
       

     

       

   
       

   

 

       

   
       

         

 

       

Since 

         

 

       

  

       

   
       

                    
  

              
         

 

   

 

   

                      

 

   

 

   

             

 

   

      
   

Since  is an ideal,
     

                    

 

     

  
  

   

       

  
      

               

                  i  n i    So                 

   is a subgroup under +:1)

       

 

   

    
    

 

 

   

      um                 
    

      
    

 

 f       

 

   

   an     

        

 

   

           

 

   

    

       

 

   

            

 

   

    

Proof that    is minimal: exercise2)

Proof of Proposition

Ideals of  
What are the ideals of  ? Answer:         for some    .

Proof
If           
If          in  and since       , we have a positive integer in  .
Let  be the smallest integer in  .
Claim:     .

    and if         then write             
Then            but this contradicts the minimality of  .
So     .

Why? 
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Let  be a ring and let    (ideal)
   means      is a subgroup of      and if    &            
 i  an i  al   if                              

Quotient Ring
Let    be a proper ideal of  
We can form a quotient ring,    as follows:

Transitivity
              
                                               

We say              . Then  is an equivalence relation.

Equivalence Classes
Given    , we let                    
This is the equivalence class of  .
As a set,              

                 
                
        

Well-Defined
Suppose that        and        

Want to show                

              

                

Notice                                  

Want to show              
                                               
                      
Last holds since                        

Finally,                    
So    is an identity. Associativity and distributive rules com from  . 
                                                

Addition and multiplication are defined as one would expect. Namely,

Quotient Rings
Example
          ≥  

              m                   
           

Example
       all   l n mial   i h r al    ffi i n  
                                is an ideal
What is    ? We'll show that    "looks like"  
Why?

If                 such that 
             
Why?

Polynomial division algorithm
                      h r          

                       
                     

Remark 1

+ and ×
                            
                               

                                             

                          
"Looks like"  .                               

Quotient Rings
November-05-13 10:04 AM
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Homomorphism
Let    be rings.

                       
                     
        

Note:
The last condition does not follow automatically from the first two.
For example            

Se say that a map      is a (ring) homomorphism if

Remark 1
        

Remark 2
  r                
  r   is an ideal of  .

                               r   
If     r                                   r   

Why? If       r                                    r   

Remark 3
 is 1-      r       

Then  is 1-1     r        
Why? Look at  has a group homomorphism of      to      

Proposition
If      is a homomorphism, then im                is a subring of  .

Isomorphism
     is an isomorphism if it is a homomorphism that is 1-1 and onto.

If it is an isomorphism, we call it an automorphism.
If      is a homomorphism, we call it an endomorphism

If      is an isomorphism,        is an isomorphism1)
If      and      are homomorphisms,        is a homomorphism.2)

Proposition

Proof on Assignment

First Isomorphism Theorem
Let    be rings and let      be a homomorphism.
Then     r    im     

             is a group homomorphism and im   is a 
subgroup.

 im      is a subgroup of        because 1)

 f     im    
       

       
                        im   2)

        3)

Proof of Proposition

First Isomorphism Theorem
Before we prove this, consider
          
                     homorphism

  r              

Proof of First Isomorphism Theorem
Define       r    im   
           

                                         
              

Notice that if        then         r   

                                                  1)
                                              2)
                3)

Now we'll check that  is a homomorphism

If   im                          so   im   
Notice  is onto.

                    r           
So   r           is 1-1. The result follows.

To show  is 1-1

Examples
Example 1
Let                   
What is    ?      

                                               

                                  

      

Why? Consider                      

 is onto,   r     
So im         

Example 2
                

        
   
        

   
       

What is    ? 

        
      by             

    . 

Then  is onto and   r     

Example 3
                             
Then          

                           is a homomorphism

       r                                      
       

Let               
 

 
        

 

 
       

                                 

 is onto. Given               

Why?             

Example 4

                  
                
     n  an  fun  i n  

Let                         i    n inu u  

Let          
 

 
     

What is    ?      
Proof

Consider                     
 

 
  

 is onto because constant map      
  r   
So      

Example 5
For each        
Let                       
If           and                    such that     

Proof

Then               such that        1)
For each   an     such that      for            2)

Suppose           and   such that     

Homomorphism
November-05-13 10:29 AM
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For each   an     such that        for              2)

  a                

 

       

      3)

        
       

 

 

   

      

So         such that 

          
 

 

   

                 4)

So      
 

    
   is continusous on      5)

So                   
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Correspondence Theorem
Let  be a ring and let    be a proper ideal.
Then there is a bijective correspondence between the ideals of    and the 
ideals of  that conatin  , given as follows:
                    
This is a homomorphism.

 i  al   f    ha    n ain      i  al   f     
                 
                     

Moreover,        in               in    

Remark
Let  and  be rings and let      be a homomorphism.

If                        is an ideal in  1)
If  is onto and           2)

Then we have

Maximal Ideals
Let  be a ring and let    be a proper ideal of  . We say that  is a 
maximal ideal of  if whenever    with      , we have either    
or    . 

Proposition 
Let  be a ring. Then an ideal    is maximal if and only if    is simple.

Corollary
Let  be a commutative ring. An ideal    i  ma imal      is a field.

Posets

   (reflexive)a)
              (anti-symmetry)b)
   and        c)

A poset  is a set with a partial order  such that

A totally ordered set is a poset  in which       either    or    

Chain
A chain in a poset  is a totally ordered subset of  . In other words,  a 
totally ordered set  and a map      such that    in             
in  .            is a chain.

if     such that  ≥      the chain
We say that a chain in  has an upper bound in  

Zorn's Lemma
(Equivalent to the axiom of choice)

Let  be a poset with the property that every chain has an uppoer bound in 
 . 
Then  has at least one maximal element.
i.e.     s.t. if    and  ≥  then    .

Applications of Zorn's Lemma
Every vector space has a basis.

Theorem
Let  be a ring. Then  has a maximal ideal.

So let    and let                                    
                   

1)

If    and                
                           

Similarly,                           

Suppose that  is onto and    2)
We want to show that       . 

                           
Suppose                s.t.              

Next, suppose that       and    . We must show that   and   ar in     
 g is onto     s.t.       and            s.t.       

                      
So                       

Proof of Remarks

Proof of Correspondence Theorem
   i  al   f     n ainin      i  al   f     

                 
                 
  r                         

If                    1)

If                  2)

To show these maps are inverses we must check

Notice                                      1)

Suppose that            . We must show that    

                                                   
       r            r             
So    

Notice that            2)

Why? If                            

                                    
Let    . Since  is onto     s.t.       

And we are done.

Proof of Proposition
Suppose that  is maximal. 
Then the only ideals of  that contain  are  and   
Let          
By the correspondence theorem, the only ideals of    are           and      
   . So the only ideals of  are    and  so      is simple.

Next, if      is simple then  has only two ideals    and  .

           r     and         
So by the correspondence theorem,  has only 2 ideals containing  :

So  is maximal.

Proof of Corollary
We showed that  i  a   mmu a i    im l  rin     is a field.

We showed that  i  ma imal      is simple and since  is commutative, this holds 
     is a field.

Example
What are the maximal ideals of  ?
Answer:    i  ma imal       
Ideals of  :
                  
|    \/   \/   \/
           
|
  
Notice     i  an in   ral   main      since a field is an integral domain and a 
finite integral domain is a field.     i  a fi l         ,  prime.

Example
If  does not have a 1 ( is a rng). Then  need not have any maximal ideals.

                   
      

    
           ≥   

 is an abelian group.
Show that  has no maximal proper subgroups. If          with    
Let    as a set
      in G,       

       

Proof of Theorem (Maximal Ideal)
Let    all  r   r i  al   f   ordered by inclusion.        

i.e.    in        

Let  be a totally ordered set and let        be a chain in  .

        

 

   

Correspondence Theorem
November-07-13 10:00 AM
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Claim
 is a proper ideal of  .

Proof
(ideal) if                           . 

Since this is a chain, either      or      . WLOG       

so                

Similarly,                        

Notice if  were not proper then         for some         
contradiction.
So  is proper.
So by Zorn's Lemma,  has a maximal element which by definition of  , is a maximal 
ideal.

   PMATH 347 Page 39    



Maximal Ideals
   is maximal if 
   and if    with        

 Z rn'    mma    Ma imal i  al    i  

Claim
In fact, we can say more.
If    is proper then  a maximal ideal  that contains  

   i  ma imal      is simple
and if  i    mmu a i        is a field

Prime Ideals
Let  be a ring and let    be a proper ideal of  .
We say that  is a prime ideal if whenever      are such that
              or    

               
Take                    

In the case that  is commutative, the definition becomes simpler:

If  is commutative and    we say that  is a prime ideal
if         or    

Comments

Any maximal ideal is a prime ideal.•
Why? Let    be maximal and suppose  is not prime.
Then         but     
So            and     such that        
and            and     s.t.        
Multiply                     
                      
        M            M             M                M        M
Contradiction.

For now,  is commutative.

Note
No symbol for normal subgroup but not equal to. Using  

Theorem
Let  be a commutative ring and let    be a proper ideal.
Then  is a prime ideal     is an integral domain.

Remark
If  is prime and               for some  .

Remark
 commutative
If    and         
(Take             )

Notation
If          we'll write          to denote the ideal generated by 
       

           (if  commutative =          ) 

Proof of Claim
Consider the ring      
We know  a maximal ideal    
By the correspondence theorem, if                    

We have         is an ideal that contains  .
        ←    
        ←    
By correspondence,  is a maximal ideal and it contains  

Example Ideals
           is a prime ideal
If          and                    or    

              

 

   

  

For         
             

         
   or       

Example
   

  ,  prime•
If      and               or         or     
IF    is not prime, write             . So      but         
     is not prime.
 is not a prime ideal because it is not proper•
       is prime. If         or    •

What are the prime ideals?

Example
   is not a prime ideal of    
                       
but                        

Proof of Theorem
Suppose that  is a prime ideal and suppose that            
and                
Then                         or            or        
   is an integral domain.

Conversely, suppose that    is not prime.
Then       such that        but     
       in    ,        in    
             is    
So    is not ain integral domain.

Proof of Remark
Proof by induction on  .
Base case.    : Holds.
Let                 if                       for some  
by inductive hypothesis.

Example generating ideals
If          then                           
                

Ideals
November-12-13 10:04 AM
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Polynomial Ring
Let  be a ring.
We write                      ≥             

                              

                                    
            

Multiplication

                       

                                 
        

Where                   

Addition

This is called the polynomial ring over  in one variable.

So                                  
In general,            we write            

More generally,                                

Proposition
Let    be a field.
Then every ideal of     is generated by a single element.

Group Ring
Let  be a ring.
The group ring of  over  is

            
                f r all all bu  fini  l  man      

     

 

   

      

 

   

            

 

   

  

 

   

                 

Multiplication

Matrix Ring
 is a ring,  ≥  

 h n         

       

   
       

        

                     

                             

 

   

Some Rings

Laurent Polynomials1)

              
 

 

    

    ≥        

      formal power series2)

             

 

   

           

           
               

    

                                    
   

Example

                

 

   

       

A few rings related to polynomial rings

Proof of Proposition
Let       . If      the result holds.
If              of smallest possible degree.

Claim
                 

Proof
Suppose that               . 

Then       ≥       by inimimality of  .
                  where       or                    

So                            

       this contradicts minimality of       
If                           

So                            . Contradiction

So         

Example Group Rings
             

                                             
                                 

               

Question
If  is a ring and  and  are groups,
Is it true that if          a  rin        as groups?

No
            

Claim:                  

              

                               

Let's show that             
                              
Let                    
                                         
                       
                       

                              

              
                
                
                 

 

    
      
      
      

   

so  is onto and since  im        im    and  is a linear transform
   is 1-1 and onto

Let               

Polynomial, Group, Matrix Rings
November-12-13 10:44 AM

   PMATH 347 Page 41    



Field of Fractions
Let  be a commutative integral domain. We will construct a field  
(  ra    ), called the field of fractions of  . 
Let                      . We put an equivalence relation ~ 

on  by declaring that                  

Claim
~ is an equivalence relation.

We define   field of fractions of  to be    
                             

                
 

 
   

 

 
   

     

  
                    

                         

                                       
                                  

Notice           

Notice  is a field.
If                         
So                           

So every nonzero element has in inverse.

Now that we've done this, we write 
 

 
 for          and we have

 

 
   

 

 
   

     

  
        

 

 
   

 

 
   

  

  
   

Chinese Remainder Theorem
Integer Version
If        ar  in    r  ≥    i h             for    and 

         
      s.t.      m              m      

General Ring Version
Let  be a ring and let        be ideals of  and suppose that        
are pairwise comaximal (i.e.        when    ) 

 h n       

 

   

                  

General

         •
       for    •

 ring

 h n       

 

   

             

Remark
If    , we'll write     for the equivalence class fo  in    .
If      . Then we have a "forgetful" surjective homomorphism
                      

                                   

This is well-defined

So                

Proof of Claim

                 , which is true
Reflexivity

                                   
Symmetry

If            and            
                            
    and  is an integral domain,                  

Transitivity

Example
     ra      

        ra           
    

    
                           

 ra                      
               
    

    
       

            

     
               

     

     
        

     

     
             

                   

Example General CRT
    

     
          distinct primes.

          
        

          
   

or      
  

      
  

  

     
         

           
   

             
So      

  
      

  
  

Example 2
Let                                      are distinct real numbers
Then                    ,   times

Why? Let                     

                                            

          . Why? 

Notice that                           

                                                        

                

Why?                    

So CRT
                                                        

To finish, if    we have a surjective homomorphism                      

  r                         
So             

                        im   

Proof of Chinese Remainder Theorem

         

 

   

  

Then             
So  a surjective homomorphism                        

                      
by                              

We define a homomorphism 

To show that  is an isomorphism, must check that  is 1-1 and onto.
To see that  is 1-1, let's find   r 
So     is in   r                                  

                                        

 

   

            

So   r          is 1-1
We now show that  is onto.

             such that                             1 in position  
Claim:

Once we have the claim, we are done because if 
                                         
Then                                                           
                 

Notice that                                                                        

                      

Proof of Claim
Let's see how to construct   .

                                        

 
                                        

Notice that                                         

Field of Fractions
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Let                               

Then                                  

         ≥     is an ideal and      
         for        

Notice                 ≥  

Also,                                                                
Notice      for         
so         m         
               
So                                

By symmetry, we can construct         .
The result follows.
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From Now On
 is a commutative integral domain

Principal Ideal Domain
Let  be a commutative integral domain. We say that  is a pricipal ideal 
domain (PID) if for every ideal    ,     s.t.         

Irreducible & Prime
In general, if  is a communtative integral domain and    is nonzero and 
not a unit, we say that  is irreducible if  cannot be written as a product of 
   with neither  nor  a unit. We say that  is prime if       is a 
prime ideal.

Example
If    ,  i  irr  u ibl     is a prime number or - a prime number.
If    ,  i   rim          prime

Remark
If  is prime then  is irreducible. 

Remark 2
 n a P D     ha   irr  u ibl     rim  

Unique Factorization Domain

If every nonzero, non-unit    can be written as a product of 
irreducible elements        

1)

If              are two factorizations into irreducibles then 

   and after a sutiable permutation of        we have

2)

          is a unit for        

Let  be a communtative integral domain. We say that  is a unique 
factorization domain 

Wilson's Theorem
 prime,                m     

   is a PID•
If  i  a fi l        is a PID•

(assignment)    
 

  
        ≥   is a PID•

A field  i  a P D    nl  ha      i  al            •
      is a PID•

Example PIDs

Proof that     is a PID
Let       .
If      , there is nothing to show,        
So assume that      
Given          , define              to the the norm of     
Pick      nonzero in  with smallest possible norm.
We claim that                    

Why?

Let       . Then let      
    

    
      

Pick          that is closest to      . 

Then                 
 

  
     

  
    

    
               

 

  
   

   

                     
      

  
   

         
     

 
       

       
 

So if                        and              
               

 
     
     

 

  n rm  f            
 

 
  norm of      

Since       is a nonzero element with emallest norm and norm of      is 
smaller
                                               

Proof of Remark
Suppose that  is prime. Let     with neighter  nor  a uni           
    is prime,             or      
WLOG           
                    is a unit. Contradiction.

Example
If          

     
          ≥                

  and   are irreducible in  
But     is not a prime ideal:                          

Proof of Remark 2
Let    with      
Since  is a PID,     s.t.      
So                 for some    
  is irreducible either a or b is a unit

                
Case I:  is a unit

     because                
So  i  ma imal        i  a  rim  i  al    is prime

Case II:  is a unit

Example Unique Factorization
in  UFD,                        

Example
Let's look at     . Want to show      m             

     m     

                  

                               
   

 
          

   

 
        

                 
   

 
      

 

      
   
      

   

 
        

 

So if      m     

   
   

 
        

 

     m     

   
   

 
        

 

      m     

Let    
   

 
     . Then                      in     

This shows that  is not prime in     
If  were prime we would have either    or                  

If                     
     . Contradiction

But this is impossible .

Since     is a PID and  is not prime.
So  is not irreducible
            

PIDs and UFDs
November-19-13 10:02 AM
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Take modulus squared
                  

Since  is a prime in  (not in     ),               
Case I:                     . All units, contradiction
Case II:                              Contradiction
Case III is only one allowed

       

Notice if      m     
       (0,1) mod 4 + (0,1) mod 4

       

So this characterizes the sum of squares
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Ascending Chains
Let  be a commutative ring.
If           are ideals of  with               
then we call         an ascending chain of ideals. We say that n ascending 
chain            terminate if   ≥  s.t.               
We say that a ring  satisfies the ascending chain condition (A.S.C.) on 
ideals if every chain of ideals terminates.

Noetherian Ring
A ring  is noetherian if it satisfies A.S.C on ideals

Theorem
If  is a PID then  is noetherian.

Theorem
A ring  i  n   h rian   
whenever  is a nonempty collection of ideals of   a maximal element of 
 w.r.t.  

Note
We will use these ideas to prove that a PID is a UFT.
 fi l                  mmu a i   in   ral   main 

Lemma
Let  be a PID and let  be nonzero and not a unit in  .
Then   ≥  and irreducible elements          s.t.          

Theorem
A PID is a UFD

Example
   is noetherian.
Why? 

                      ≥  
         so           
So we have an infinite sequence of decreasing positive integers. This is 
impossible. Contradiction

Suppose              

Example
   ,  a field is noetherian
Why?
         or    

Proof of Theorem
Let            be a chain of ideals of  .

         

 

   

  

Since  is a PID,     s.t.         

     

 

   

   ≥                              

Proof of Theorem
Suppose that  is noetherian and let  be a nonempty set of ideals. Let    .
If  is maximal in  , we are done.
If not,      s.t.      
If   is maximal in  , we're done. Otherwise                   
Continuing in this manner, we either produce a maximal element of  or we 
product a non-terminating ascneding chain:              
  is noetherian, the latter cannot occur. 

Other direction: Suppose that every non-empty set of ideals has a maximal 
element and let              be a chain. Let               
By assumption,      s.t.   is maximal. So               

Proof of Lemma
Suppose not.
Let        is not a unit,    and  doesn't factor into irreducibles 
Then    . since a PID is noetherian,     s.t.     is a maximal element.

(otherwise         is a factorization of  )
So  doesn't factor into irreducibles, in particular,  is not irreducible 

So            non-units such that                    

Claim
       and        

In integral domain so can cancel  in      
We'll show that        . Notice               

C n ra i  i n           
So if                                   is a unit.

Similarly,        

                 

Now       is a maximal element of  and since        are bigger, we see they 
cannot be in  .         by definition of  ,  and  factor into irreducibles,

                    . Contradiction. So    and everything factors into 
irreducibles. 

Proof of Theorem
Let    be a nonzero, non-identity element athat does not factor uniquely. 
Say                  irreducible,   irreducible.
Among all elements  with non-unique factorizations as above, pick one with 
min     minimal.
Notice that         is a prime ideal    i  irr  u ibl  an  irr       rim  in a 
PID.
Notice that             so             
     i   rim      s.t.        
By relabeling, we may assume that        
            s.t.       
   is irreducible,  must be a unit so       
So                                      

By minimality of min     ,  factors uniquely so        and        is  
up to permuting and mulitiplication by units,              

                  .    is a unit. The result follows.
i.e. after relabeling   again we have          ≥  

Noetherian Ring
November-21-13 10:03 AM
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Euclidean domains (Norm)

       1)
     ≥     when    2)
If          then       s.t.       and          
or    .

3)

A Euclidean domain (ED) is a commutative integral domain  with a 
function               called the norm such that

Proposition
Let  be a ED then the Euclidean algorithm holds in  .

Corollary
ED   P D

Examples
Example
   ,         

        is a field,                  

Example
   is a field,            

Example
      is a ED
             

                        

       
      

  
   

       

So         
       

 
      

Proposition
Step 1
     ,                    or     

Step 2
                       r     
                        r     
 
                       
So  some largest  s.t.     ,              
This   is called the gcd of  and  . Notice that         

               
 

Why? Induction,               

Also,     and     . Why? Induction in the reverse direction.
So           

                                  
Why?                    

So           

Proof of Corollary
If            is a ED
Pick    in I with     minimal.

Claim:      
If           
                                    

Euclidean Domains
November-21-13 10:58 AM
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Goal
If  i  a U D       i  a U D          i  a U D                 is a UFD.

Proof of Theorem
 lr a    n    rim    irr  u ibl  
It suffices to show that if    is irreducible then  is prime.
So suppose  is irreducible but       is not a prime ideal.
      neither a nor b in    , s.t.             s.t.      
Now we use that  is a UFD: factor                and        all 
irreducible. So we have two factorizations of   
                     
By uniqueness,   s.t.  is an associate of either   or   . 
WLOG,  is an associate of   . So        a unit. 
                                                        
This is a contradiction since      
So  i   rim    

Now we'll prove the last theorem of the course.

Theorem
Let  be an UFD. Then     is a UFD.

Strategy
If  i  a U D    i  an in   ral   main    has a field of fractions  .

   
 
   

            

Notice we have an injective ring homomorphism            
 

 
 

Henceforth we identify  with its image in  and we write    .
Key idea:          

Remark
If  is a commutative integral domain then         

                        
                          s.t. 
                                
Notice: If      the coefficient of      on the LHS  = 0, on RHS =       .
Contradiction
So                              

Why?

Conversely, if            s.t.          is also a unit in     

Proof of Lemma
Write                                      

We assume that           .
Suppose that       and       .
Then  some smallest   ≥  s.t.      and  some smallest   ≥  s.t.      

We have that                                          , so  
divides every coefficient of the product.
In particular,  divides the coefficient of       , which is:
        

                               
                    

  

 divides           and  divides           so  divides every term in the sum except 

possibly       
.  divides the whole sum, so         

. 

 i   rim         or      
. Contradiction.

The result follows.

Proof of Gauß's Lemma
Suppose that     is reducible in     .
Then                             , neither one a unit.

Write      
  

  
   

  

  
      

  

  
                      

Write      
  

  
   

  

  
      

  

  
                     

Let        ,        
Then           and           

So                                 

Let                      
Factor   into irreducibles:            not necessarily distinct.
Notice that                            
By our Lemma,        or        (divides in     )
Suppose        . Then                                   
So                                                          
Continuing in this manner, we get a factorization for
                          
Also,               and               so neither are units.
  

Example of Primitive Elements
   
         is not primitive.
         is primitive.

Proof of Proposition
If     is reducible in           is reducible in     (Gauß's Lemma)

If     is irreducible in           is irreducible in     .
In other words,

Also,     must be primitive, because if not     not a unit, that divides     in     . 
i.e.           . Contradiction.
So we've shown:

Associates
Let  be a UFD. We say that          are associates if 
      uni    f  s.t.     

UFD
Another way of stating the UFD property is:

 factors into irreducibles        1)
If                  and after relabelling the   we have   

and   are associates.
2)

If    is nonzero and not a unit then

GCDs and LCMs
If  and  are nonzero elements of    irr  u ibl   l m n           and 
units   and   s.t. 

      
     

  

      
     

  

Where      ≥  

We define a gcd of  and  to be:   
          

   
          

and an lcm of  and  to be:   
          

   
          

gcd is not unique, but if  and  are two gcds of  and  then    and    
so     ,  unit.

Notes
In general,   rim     irreducible.
W   h      rim    irr  u ibl  in a P D   n fa       ha  

Theorem
Let  be a UFD and let    . Then  is irreducible iff  is prime.

Lemma
Let  be a UFD and let    be irreducible (= prime) .
If               are such that           
then either       or       .

Note
Saying    divides                   in     
means           for some          
                                              

Gauß's Lemma (Gauss's Lemma)
Let  be a UFD and let  be the field of fractions of  . 
If          is reducible in     then     is reducible in     .

What does this mean?
    reducible in                    ,                 neither one is 
a unit
    reducible in                                    neither one a 
unit.

Primitive
Let                        be a nonzero polynomial.
We say that     is primite if whenever    ,              is a unit.

Goal
 i  a U D       is a UFD

Corollary
 i  a U D             is a UFD

Corollary
    is a UFD and it is not a PID
So ED  PID  UFD

Example:   
      

    

 
       

Won't prove inequality part of ED  PID

Criterion for Irreducibility
Proposition
Let  be a UFD and let          be a non-constant polynomial.
Then     is irreducible in     if and only if     is primitive AND     is 
irreducible in     .
 is the field of fractions of  .

So we're now ready to prove the ultimate theorem.

Theorem
Let  b ea UFD. Then     is a UFD.

Irreducibility in UFDs
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    irreducible in        rimi i   an  irr  u ibl  in     .
So we've shown:

Now we have to show the converse.
Suppose that     is not irreducible.
Then              with neither     nor     in         

If     and     b  h ha      r   ≥    h n     is reducible in     because           
        

So we may assume that       or       is zero, i.e. one is constant.
WLOG we may assume that         
So            . Notice                

So  is not a unit in   

                                    . So  divides every coefficient of 
    and  is not a unit so     is not primitive.
So we get the converse.

Proof of Theorem
The proof has two parts:
Part 1: Show every nonzero element of     factors into irreducibles
Part 2: Use the fact that     is a UFD to show that the factorization in     is unique up 
to permuting associate factors.

Proof of Part 1
We'll do this by induction on degree. Let                 .  has degree  .

Then         in  

Notice        are irreducible in     and        
Since  is a UFD,                            irreducible in  . 

Base Case:    

Induction
Now suppose all nonzero elements of degree   factor into irreducibles and consider 
the case when          
Case 1:          irreducible. Then we're done:          

Write                  primitive.
Then    , so it factors into irreducbles (base case)
If      is irredcible, then done.
If      is reducible then               and               
So              
By induction hypothesis, they both factor into irreducibles .
So                     ar    

Case 2:

Proof of Part 2
Let                          
Let   a gcd for           

Then           ,     is primitive.
Now suppose that we have two factorizations into irreducibles.
                              

    
            

            rimi i   an      ≥  
            rimi i   an      ≥  
So that means that             

      
  

So    and after permuting   is an associate of   
 

So it is enough to consider the factorization                        
Since each   is irreducible in     , it is irreducible in     
Since each   is irreducible in     , it is irreducible in     

                            
So consider               

Since     is a UFD, we have    and after permuting we have      and      are 
associates in     for        
So             s.t.              

So     = field of fractions so               s.t.    
  

  
  

So                
Let                      
Both   and   are gcds of coefficients of      

So       s.t.            
  

  
        

So                  and   are associates in     
    h  fa   ri a i n i  uniqu     

Note
If  has nonzero nilpotent elements, we do not have         

                                                   
e.g.     
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