Groups Examples of Groups

1) Z,+,identity =0
September-10-13 10:03 AM

2) Field, +
3) LetFbe afield, let F* = F\{0} then (F*,) is a group (with multiplication)
A binary operation * on a set S is a map 4) n X ninvertible matrices over a field F with multiplication
xSXS->S GL,(F) ={A € M,(F) : detA # 0}
5) "Rubik's cube group”
Write in infix. §; * S, = S5 instead of * (§;,5,) = S 6) Rotations/reflections that keep the shape of a square
Group L B
A group G or (G,") is a non-empty set endowed with a binary operation -
satisfying the following properties:
1) Associativity L|' 3]
g-(h-k)=(g-h)-kvghkei
2) Identity Can rotate by multiples of 90 degrees or reflect
JeeGste-g=g-e=gVgeG 7) Sisanon-empty set
3) Inverse Aut(S) = {f:S - S : f is 1-1 and onto}
VgEGAgleGst. g-gl=glg=e binary operation = composition
- feog
Remarks inverse: f = f~1
o We will often write 1 for e id=id(S) =S vs€S
¢ Sometimes we will use + as our binary operation, in which case )
we'll write 0 for e 8) S'={e®:0€10,2m)}

binary operator = -
ei81 . eiHZ — ei(91+92 mod 27)

Notation
M, (F) = all n X n matrices over the field F
GL,(F) = {A € M,,(F) : detA # 0} Facts
SL,(F) ={A € M, (F) : detA = 1} For a group (G,")

1) Identity is unique
Order 2) Inverses are unique
If x € G, we say the order of x is the smallest natural number > 1 n, if it 3) (g =h1g?
exists,suchthatx» =1 =-e 4) Cancellation:
If no such x exists, we say that x has infinite order. ax =ay =x=y

xb=yb=>x=y
We write o(x) for the order.

The order of G is just the size of G. i.e., order of G = |G| Why?
1) Suppose e; and e, are identities.

Conjugates € =e e =eé
2) Suppose g has two inverses h and k
Ifx,y€eaG
Then y~'xy is called the conjugate of x h=h-e=h-(g-k)=(h-g) k=ek=k
Fact: 3) (ghh gt =ghh™)g " =gg" =e
-1
Proof-x and y™"xy have the same order We can speak unambiguously about products
T “1y ) — (y—1 -1 — = lyny — =1y — 919293 = 91(9293) = (9192)93
P=1=207) =07 )Ty =y Tty =yTly =1 holds for higher n
Abelian Example
A group G is abelian if N
g-h=h-g Vg heag G:((Z/m)")

Dihedral Groups What are the orders of

D,, = group of symmetries of a regular n-gon E} : ;
. 21 .

Let o = rotation by = radians 3] -6
let 7 = reflection about L (line through 1) [4] - 4

[5]-6
Relation [6] - 2
Therulet-6-t1=0"'=1-0l=0"t1
is called a relation. G = SL,(R)
These relations show that any composition of ¢’s and t’s can be written Let A4 = (0 —1)
in one of the forms M1
gi-Torgl What is the order of A? 6

0 —-1\/0 -1 -1 -1
2 -
P00 -G
3 2= ("1 — -\_ (- - _
4 _AA_(1 o)(1 1)_(0 _1)_ !
A® = ABA3 =1
To find the order more easily, look at the eigenvalues. They should be roots of unity
if the element has finite order.

Example
Let G be a group and suppose that every element of G has order 1 or 2.
Show that G is abelian

Proof

Letg,h€G

Want to show gh = hg

We have 1 = (gh)? = ghgh = (gh)™! = gh
(g™t =h~'g™ = hg

Sogh =hgVg,h € G = G is abelian

Example Dihedral Group
N |_|

PMATH 347 Page 1



PMATH 347 Page 2

Example Dihedral Group
Dy =

|D4| =8
The vertex 1 can be in 4 places, and 2 can be in 2 places for each.

For D,, whatist-0- 7T
tT0-t=0"1=0¢"1

Notice that

o has order n
T has order 2

t-ol-t=0"1
Example

t-06?-t-0%-1-1=0"?

.T-T-03-
If we look at all elements in D,, formed by composing o's and t's we get
n+n = 2n elements. So |D,| = 2n

Why are these all?

1 can go in n spots. for each, 2 can go in 2 spots. So |D,,| < 2n

= Dyl =2n



Symmetry

September-12-13 10:00 AM

Proof of Lemma 1

3 < n choices for (1) € {1,2,...,n}

Say that (1) =i € {1,2,...,n}

Then ¢(2) — i = 1 (mod n)

There are < 2 choices for n

Now by induction on j = 3, ..., n, show that there is at most one choice for ¢ (j)
So in total there are at most 2n symmetries.

D,, Dihedral group
A regular n-gon will be represented as a graph

D, = (V: E) n

V={12,..,n}

E={{ij}:ijeV, i-j=21(modn)} Last time we constructed two symmetries:
a,

A symmetry of D,, is this setting is a map ¢(/;) =i+ 1 (modn)

¢:V — V thatis 1-1 and onto and preserves p(1) = 1,p(2) = n, ... (reflection)

adjacency

{ij}eE={p), oD} EE Proof of Lemma 2

Lemma 1 Firstifo' =g/ fori #j,0<i,j<n-1

) i _; . i . ) i . . 2m(j—i) 3
Number of symmetries of D, is < 2n Applyllnga tgivesotogt =07t oo/ = id = 0/7" rotation clockwise by —nrjl—l tid
1#0/7'(1)=1+4i—i(modn)

Lemma 2 o o N
The symmetries Slml]arly, 1fz #j,0< Ljsn— 1

(o) (olp) ) = a'p # alp since g’ # ¢/ we can cancel p
=017 Plizo Finally, ife' = o/p

= o'_j+i =p

=071 = p(1)

=>1+4+i—j(modn) ==

are 2n distinct symmetries

Presentation

We call =i =j= p = id, contradiction.
(p,o:p?=0"=id, po=oc1p)
a presentation of D, Remarks
1) This shows that |D,| = 2n

Symmetry Groups 2) This shows that D, is generated as a group by p and o. This means that every element of D,, can be
Forn=>1 ) expressed as a finite composition (product in group) of elements from {p, p~%,0,05 71}
Sp=1{0:{1,2,..,n} > {1,2,..,n}: 0 is 1-1 and onto} 3) The group structure can be completely understood via the relations p? = id; p™ = id; op = po~*
Notice S,, is a group under composition
We technically should write "o o t" but we'll write ot Question

Show that D,, is not abelian forn > 3
Note

Answer

Disjoint cycles permute po = o~ 1p.If D, were abelian, then we would have

po=cp=>0p=cp=>ct=0=30%=id
g% #idforn =3

D, is abelian
D, ={p,0: p?> = 0¢? =id,po = op)
We will see later that
D, = Z/ZZ X Z\ZZ
Notes on Symmetry Groups
* |Sn| =n!
e Two ways of representing permutations
Examplen =8
1 2 3 45 6 7 8

" DRSSy b b

Or could represent in disjoint cycle notation

(
6 \13 V&) ;f/-j
¢ Representations:
1)0_2(1234-5678
3 45 2 6 1 7 8
2) Disjoint cycle notation: (13 5 6)(2 4)(7)(8)
Or omit 1-cycles: (1356)(24)

¢ Disjoint Cycles Permute
Proof
i1, ewer bsy j1, 0 jt € {1, ...,n} are pairwise distinct
Leto = (iy, ..., ig) < this means thatif k & {iy, ...,is} = o(k) =k
Let 7 = (jy, ) je)
Define is4q = i1, jey1 =1
igr1  ifk=1ig
Lookatooz(k) =4jp4q ifk=j, =100(k)
k  otherwise

e The order of a cycle (iy, iy, ..., i5) is s
¢ The order of a set of disjoint cycles is the LCM of the orders of the individual cycles

Ifo =0y .. 0y 0y, ..., 0 disjoint cycles of length [, ..., [, respectively
Then o™ = (01 - o))" = 07" - 03 - ... O
Ifn=1Ilcm(dy, .., dy) 20 =0y = =op =id=> ' o =id

Show in assignment that o(ay - oy) divides lem(dy, ..., dy)
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Butif 1 <m = o(oy, ..., 0%) < lem(dy, ..., dy)

= 3 i such that d; does not divide m

Then g™ # 1 and since all the cycles are disjoint, suppose g; = (al, s adi)
then 3j,1 < j < d; such that o/ (a;) # a;

t(aj) = of" o™ of(a;) = o/(a;) # ajsoT # id
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. Note
Linear Groups (Z\{0},") is not a group because 271 ¢ Z\{0}
September-12-13 11:00 AM

Z,, = {[0], ..., [p — 1]} where p is a prime.

Field Questions

What is the order of GL,(Z,)?
{fo],[11} {[o],[1]}
(oln] (oLy) 6@l <16

@)=, 1) o6 DG oG DG D)
So |GL2(Zz)| =6

A field is a set # @ with two binary operations + and -
such that (F, +) is an abelian group with identity 0 (
and (F\{0},") is an abelian group with identity 1.
Furthermore, (a+b) -x=a-x+b-x

What is the size of GL,(Z,)
Ifn=1,Answerisp — 1

In general, the answer is

@™ - D" -p)@"-p*) - @"—p" ")

Proof

AnnxXnmatrix A= (¥, U, - Up)

is invertible & columns are linearly independent.

Choose columns one by one, maintaining linear independence.

There are p™ — 1 ways of choosing ¥, (all but 0)

For ¥, can pick anything that is not in span({7,})
span({?;}) consists of the p scalar multiples of v,
so there are p™ — p choices for v,

In general, can pick any ¥; that is not in span({?,, ..., ¥;_1})
Since ¥y, ..., U;_4 are all linearly independent,
|span({?y, ..., 1_7’1‘—1})_| =p'!

So there are p™ — p* choices for ;

Quaternion Group
Group Qg of order 8
Qg = {1, +i,+j, £k}
i2 =]'2 — kZ = -1
ij=kji=—k

Note: —1 commutes

What is jk?
ji=—k=j?i=—jk>—-i=jk>jk=i

ik = (jk)k = jk? = —j
ki=—j

Concrete representation
Q; € GL,(O)

1= 9)
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Homomorphism Homomorphisms

Why does ¢p(e;) = ey?

end(g) = d(g) = p(ecg) = d(eg)d(g)
ey = ¢(eg) (cancel)

September-17-13 10:01 AM

Homomorphism Also, (g™ = p(g) ™" ng G B
Let G, H be two groups. Why? ey = ¢(eg) = p(gg™") = ¢p(9)dp(g™")
A map ¢: G - H is called a homomorphism if = ¢(@ ey =@ =d(g™H)
¢(gh) = p(g@)Pp(h) Vg, h = ¢(es) = ey
Example 1
If ¢: G - H is a homomorphism and ¢ is 1-1 and onto Trivial homomorphism
then ¢ is called an isomorphism. Can be written G ~ H ¢:G->H
If ¢: G — G is an isomorphism, we can also call it an ¢(g) =eyVgeEG
automorphism of G. Example 2
¢:G -G
Circle Group $(g) =gVvg
Sl = {eiB 10 €0, 21r)} Example 3 .
elf . ol = i(6+y mod2m) G = {(0 711) INnE Z}
- ¢:G - (Z,+)
Proposition (1 ”) -
Let G, H be groups and let ¢p: G = H be a (1) % 1 m 1 n+m
homomorphism. (0 1) (0 1) = (0 1 )
1) IfG is abelian and ¢ is onto then H is abelian;
2) IfH isabelian and ¢ is 1-1 then G is abelian. Example

3) If ¢ is an isomorphism then G is abelian < H is

abelian If G&H are groups, we can make the direct product G X H into a group by declaring

ecxn = (€g,ex)
(91, 01) - (g2, h2) = (G192, hiha)
a) Then G isisomorphicto {(g,ey) : g € G}
b) GXH~HXG
(g.h) = (hg)

Example
Dy = S5 =~ GLy(Zy) # Zy X Zs

Example

Let (Rsg,) ={x €R: x>0}

This is a group under multiplication with identity 1

Let C* = {All nonzero complex numbers under multiplication}

Claim

€ % (Rso,) X S

Proof

If z € C then we can write z uniquely as ¢(z) = re' is 1-1 and onto
z=rel®,r>0,0 €[0,2n)

Example
(Rso) = (R,+),  x-y— log(xy) = log(x) + log(y)
x - log(x)

SoC*~ RxS?!

Remark
[somorphism is an equivalence relation
1) G=G
2) G=H=>H=G
3) GRH&H=K=G=K
¢:G—>H, Y:H->K=>9Yop:G->K

Proof of Proposition
3 follows from 1&2
1) Assuming G is abelian and ¢ is onto.
Let hy, h, € H.3g4, g, such that ¢(g;) = hy and p(g,) = h,

hihy = $(g1)P(92) = $(9192) = $(9291) = $(92)9(g1) = hoy
2) Assuming H is abelian and ¢ is 1-1.

Let g;, g, € G. Consider $(g192) = ¢(g1)P(g2) = ¢(g2)$(91) = $(g291)
v ¢is1-1, g9, = g 91 - G is abelian
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Group Actions Group Actions
Example 1

Trivial action
g-x=xVgeaG,xeX

September-17-13 10:52 AM

Example 2
S, actions on {1,2, ...,n}

e Gisagroup .
e Xisanonempty set (l:l.ﬂf: 5(?)11, o2 = (2,

D e ge (00 =00t =o(x®) =0 ()
such thatif g;,9, € G,x € X
D g1-(g2-0) =(9192) - x
2) 1-x=xVx€eX

Group Actions

Example 3
Spactson P({1,2,...,n}) = power set of {1,2, ...,n} = all subsets of {1,2, ..., n}
viatherule,o-@ =@

o -{iy,.., i} ={o(i1), ..., 0((})}

Symmetric Group acting on X
Given a set X, we let

Sy ={f:X > X : fis 1-1 and onto}
Then Sy is a group under o

Example 4
D, actson{1,2,...,n}
look at image of vertex i under symmetry

Theorem Example 5: Matrix multiplication
Let G be a group acting on a nonempty set X. X1
Then there is a homomorphism GL,(F)actson X = F"* = {[ : ] P X1, ., Xp € [F}
¢:G - Sy Xn
givenby ¢p(g)(x) =g-x forge G,x €X via left multiplication
Moreover, ¢pis1-1 <= {g:g-x =xVx € X} = {1} A7 =(AD)
and in this case we say that the action is faithful.
Example 6
GX=G

g - x = gx (multiplication in the group)

Example 7

X=G

g - x = gxg~! (conjugation)

Properties:

1-x=1x1"1=x

91+ (g2 %) = g1 (92%95") = 919297 91" = (9192)x(9192) ™" = (g192) - x

Note

If G isa group and g € G then conjugation by g is an automorphism of G
i.e.themap ®,:G - G, x = gxg~' is an automorphism

To see that @ is an automorphism note that

g (xy) = gxyg™ = gxg ' gyg " = @, (), ()

Notice that @ -1 0 @y (x) = ®,-1(gxg™") = g1 gxg~'g = x = id(x)

& ®yo P -1 =idso Py is an automorphism.

Proof of Theorem

Letg,h€G

We want to show that ¢p(gh) = ¢(g)¢(h)

Let x € X, then

PG =(gh) - x=g - (h-x) =g (p(WX)) = p(g(p(M (X)) = P(g) ° (W) (x)
So ¢p(gh) = ¢p(g) o p(h) - ¢ is a homomorphism

IfT={g:g-x=xVxeX}2{1}
3g # 1Butx = ¢p(g)(x) = p((x) vx € X
= ¢(g) =¢p(1) = ¢pisnot1-1

If ¢ isnot 1-1 = 3g,h € G such that p(g) = p(h)and g = h
So¢(gh™) = ¢(g) - p(W)~" =id

>gh™ - x=xVxeX=>gh '+ 1,ghteT

L]

Claim
GL,(Z,) = S5

61,2 acts on {[°],[2],[°]. [1]} < 22 but can exclude |

0] since it is always mapped to itself.

So we get a homomorphism ¢: GL,(Z,) - Sy ~ S5
Why is ¢ 1-1? If A € GL,(Z,) isst. Ax =xVx € X

a bh\[1 1 a b\[0 0 a b
= Dlol=lole G DLI=[1=2=C 2=
So¢is 1-1
Since |S3| = |GL,(Z,)| = 6, ¢ is onto
~ itis an isomorphism
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Orbits

September-19-13 10:01 AM

Orbit

Suppose that G is a group acting on a set X. Then given x € X, call
the set

{gx: g € G} € X the orbit of x and denote it O,

Proposition
Let G © X "G acts on X"
If x1,x, € X then either Oy, = Oy, or Oy, N Oy, = @

This says that X is partitioned into a disjoint union of orbits.

Subgroups
Let G be a group, we say that a subset H C G is a subgroup if it is
closed under taking products and inverses (operations from G)

ie. hyhy € H=hihy €H
hi€H=hi'€eH

Lagrange's Theorem

Let G be a finite group and let H be a subgroup of G."H < G"
Then |H| divides |G].

Corollary (Fermat's Little Theorem)
If p is prime and a # 0 (mod p)
=aP! =1 (modp)

Coset
In the case that H < G and H < G by left multiplication we
usually write Hx for O, and call it the right coset Hx.

Then G = Hx; U Hx, U -+ U Hx4 if |G| < o
In general, any group G is a disjoint union of cosets but the
number could be infinite if G is infinite.

A symmetric argument shows that G is a disjoint union of left
cosets, xH

We write [G: H] for the number of distinct left cosets = number

- . Gl .
of distinct right cosets = % if |G, |H| < o

[G:H] - "Index of H in G"

Cyclic Groups

A group G is cyclic if it can be generated by one element.
In terms of generators & relations:

G =(x|x"=1)forsomen>1

or
G=(x)=Z
Proposition

If G is cyclic then either G = Z,, forsomen >1orG = Z

Theorem
Let G be a cyclic group and let H < G. Then H is cyclic.
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Orbit Examples
Example 1
Spactingon {1,2, ...,n}
Then 0; = {1,2, ...,n}

Example 2

Look at S3 acting on itself by conjugation
g-x=gxg™"

What is 0(12)

S3 g-(12)

id id- (12) = (12)

(12) (12) - (12) = 12)(12)(12) ' = (1 2)

(23) (23) - (12) = (23)(12)(23) " = (13)

(13) (13) - (12) = (13)(12)(13) " = (1)(23)

(123) (123)-(12) = (123)(12)(123)"! = (1)(23)
(132) (132)-(12)=(132)(12)(132)*=(13)(2)

012y =1{(12),(13),(23)}

Proof of Proposition
Let x4, x, € X and suppose Oy, N Oy, # @
Thendy €eXsty=g1-x1 & y=9;-%2 G1,.92 €G

We will show that Oy, € Oy, and by symmetry Oy, € Oy, = Oy, =

Letz € Oy,
Thenz = h - x, forsomeh € G

Ox

z = (hgi'g2) - x1 = (hgi ) (g1x1) = (hgi )y = (hgi'92) - X2 € Oy,

S0 0y, € Oy,
| ]

Example Subgroups
Example 1

G=17+
H=2Z={2n:n €7}

Example 2
G=Dyp={(pt|p*=1"=1id,
H={1,p,p%..,p"}

pT =1p)

Example 3
G =V avector space
H = W, a subspace of V is a subgroup

Example: General Linear Group
G = GL,(R) = {all non-invertible real matrices}
H = SL,(R) = {A € GL, | det(4) = 1}

Proof of Lagrange's Theorem

Let H act on X = G via left-multiplication: h-x = hx € G, x € G
If x € G, whatis 0,7

O, ={h-x:h € H}.Whatis |0,]? |0y = |H|. Why?

H & 0, by h «» h - x is 1-1 and onto (since h has an inverse).

We know that G is a disjoint union of orbits. Let's say there are d disjoint orbits making up G.

Each orbit has size |H| so |G| = d|H|. m

Proof of Fermat's Little Theorem

LetG = Z;J = {[1]1 [2], ey [p - 1]1} = (Zp \ {[O]}' )
Ifa € Zand a # 0 (mod p) then [a] € Zj,

Let m = order([a]) inZ,

Then H = {[1],[a], ..., [a™ ']} is a subgroup of Zj,
Then |[H| = mand |G| = |Z;| =p-1

so (p —1) = md forsomed > 1

Then [aP71] = |a™¢]| = [(@™)¢] = |1¢] = [1] = aP~! = 1 (mod p)

Example
G=S5,

H = S3, H={o€S4u0(4) =4}

Find a set of left coset representations.
Sy =Hoy UHo, UHoz UHaoy

o =id, Hoy = H

0, =(14), Hoy=H21)
a3 =(24)

o, =34

Proof of Proposition

2



Let x be a generator for G.
We always have a homomorphism ¢:Z - G, ¢(n) =x", n€Z

p(n+m) = x™™M = p(m)p(m)

Case 1
x has infinite order. Then ¢ is onto * G is cyclic and if x has infinite order
w0 X711, x,x2, ... are all distinct = ¢ is 1-1

Case 2
x has ordern > 1
Now we make amap Y: Z, = G
YD =x' .
P[] + [1) = xH7 odm = xied = ([N ([])

Onto: x has order n
1-1: 1, x, ..., x™ 1 are distinct

Proof of Theorem
Let x generate G, G = {x)

If H = {1} then there is nothing to prove. So assume H # {1}
Then consider S ={n >1:x" € H}.ThenS # @~ ifx '€ H = (x‘i)_1 EH=>x'eH

Let m = smallest element of S.

Then x™ € H. Claim: H = (x™)

Proof of Claim

Suppose 3n such that x™ € H and n is not a multiple of m.
WLOG we may assume thatn >0~ x" e H ®x™ " e H

By division algorithm:n =qm+r, 0 <r <m
Thenx™ = x"" 1M =x"- (x™) 9 €eH=>reSs
But this contradicts minimality of m.

]
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Groups of Small Order

September-24-13 10:02 AM

Proposition
Let G be a finite group and let x € G.
Then o(x) divides |G|.

Theorem
Let G be a finite group with the property that every element of G has
order 1 or 2. Then 3n > 1 such that
G=T8 =Ty XLy X XLy
={(e1, . €n) ¢+ €1,....6n E{[O],[1]} = Zp}
Group under +
(0, ..., 0) is identity
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Proof of Proposition

LetH=(x)<G

Then H < G and |H| = o(x)

By Lagrange's Theorem, |H| divides |G| = o(x) | |G|
[ ]

Proof of Theorem

We've shown that G is abelian. We will let '+' denote the operation on G and let 0 denote

the identity.

We say that a subset {x4, ..., x4} of G is linearly independent if A(e;, ..., €5) € {0,1}%, not

all zero such that e;x1 + €%, + -+ €4x4 = 0.
Let {y4, ..., ¥} be a maximally linearly independent subset of G
Claim
1) X={ey1+ -+ €+ €1, ., €n € {0,1}} has size 2"
2) G=X
Proof

1) Supposethate;y; + -+ €0, = €1y1 + =+ + €nVn, €1, -, €n €1, -, € € {0,1}
n

= Z(fi —€)yi=0
=1

=€ =€ Vi {yy,.., ¥} islinearly independent.
= X has 2" distinct elements.
2) SupposethatX # G.ie. X &G

Pickz € G\ X
Show {y3, ..., ¥n, 2} is linearly independent.
Proof:

Ifery; + -+ eyn+€z=0, €,...,65,€ €{0,1} notall 0.

If e = 0, we get a contradiction * y4, ..., y, are linearly independent.

Ife=1,6y1++em+z=0=2€y;++eyn=2
Contradiction since z & X

So {y1, ..., ¥n, z} is linearly independentif z € G \ X
But {y, ..., ¥} is a maximal linearly independent set. Contradiction.
Conclusion: G = X

Now we construct an isomorphism
¢:G > 15
dleryr + -+ enyn) = (€1, ., €n)
This is a homomorphism and 1-1 and onto.
G =72

Groups of Small Order

Order Groups Up to Isomorphism
1 {13

2 Z,

3 Zs3

4 Ly, Ly X Ly

5 Zs

6 Zg,S3

7 Z,

Order 4

Case I: G has an element x of order 4
Then G = {1,x,x%,x3} = Z, is cyclic
Case IlI: All elements of G have order < 4
Then all elements have order 1 or 2
= G = ZT for some m
[Gl=4=>m=2=2G6=17,X1Z,

Order 6
Since |G| = 6 we know that 3x € G of order 2

(by homework assignment, |G| even = G has element of order 2)
LetH ={1,x}<G
Let X = set of left cosets of H.So |X| =3 = 16

|H|
X = {H,yH,zH} for some y,z € G
G acts on X by left multiplication:
g-yH = (gy)H € {H,yH, zH}
Recall that the action G < X gives a homomorphism
$:G - Sy = S;
Ifpisl-1=G = S3
If ¢ isnot1-1=3g # 1in G such that gH = H,gyH = yH,gzH = zH
What does gH = H mean?
=>gH=H
=>g-HEH
=>g€H={1x}
Sog=xvg=#*1
SogyH =yH = xyH = yH =y~ lxyH = H
sy lxyyeH={Lx}>y xy=x
(Otherwise y xy = 1 = x = y~'y = 1 Contradiction)
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Notice that G = (x,y) 2 (x). Define L = (x, y)

So|L| > 2 and |L| | 6 (Lagrange)

So |L| € {3,6}

Butx € Lhasorder2so2 ||[L| = |[L|=6=>L=G
Gut xy = yx so G is abelian.

Now we have G = S3 or G is abelian.
If G is abelian, we know 3x € G of order 2. All elements of G have order in
{1, 2,3, 6}. If all elements have order 1 or 2

= G = ZJ for some m

Contradiction since |G| = 6
Sody € Goforder3or6.1fo(y) =6= G =(y) = Z
Ifo(y) = 3,letz = xy. Then o(z) € {1, 2,3, 6}
Butz# 1+ x ' =xandy # xsoo(z) € {2,3,6}
22=(xy)?=x?y?’=y2+1=0(z) #2
2=yl =x3y3=x3=x#1=0(2) #3
202)=6>G6=(z)=1Z



Centralizers

September-24-13 10:53 AM

Centralizers

Given a subset A € G, G a group, we define the centralizer
of Ain G
Ce(A)={geG:ga=agVaceA}

Notation

If A = {a}, we write C; (a) for C;({a})

If A = G, we write
Z(G) for C; (A) and we call C; (G) the centre of G
S0Z(G)={g€G:ga=agVac€G}

Proposition 1
If A € G, then C; (A) is a subgroup of G.

Normalizers
ACG
We define the normalizer of A in G
N;(A) ={g€G:gag™' € A Va € A}
Then CG (A) c NG (A)

Proposition 2
N (4) is a group
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Example Centralizer
LetG = S,

Let 4 = {id, (123)}
What is C; (4)?

g 9(123) (123)g
id (123) (123)
(12) (1(23) 13)(@
(13) (12)(3) (1D(23)
(23) (13)(2) (12)(®)
(123) (132) (132)
(132) (M3 ®L@A)

Cq(4) ={id, (123),(132)}

Example

A= (4 9=
What is C;(4)? C;(4) = A

(b D6 p-Ce

u v au av

(g b)(w x):(bw bx)

Needvb =avVa,beER=>v =0
wa=bw Va,bER=>w=0

so (& 2) € Ce(A) = Co(A) = 4

Example
If G = GL,(R) what is Z(G)?

Z(6) = {(g g):l * 0} (Exercise)

Proof of Proposition 1
1) 1eC;(A)~1-a=a-1=aVa€eA
2) Ifx,yeC;(A)>xa=ax&ya=ayVa€A
= (xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy) Va € A
=>xy €A
3) Similarly,ifx € C;(4) @ xa=axVa€A=>a=xtax=>ax'=x"'aVaed
=x"1 € C;(4)
= C;(4) is a subgroup.

Proof of Proposition 2
1) 1€ Ng(4)
2) x,y € N;(A)anda € A4, (xy)a(xy)™' = x(yay~1)x~! = xbx~ forsome b € A
xbx™' € A= xy € N;(4)

3) xEN;(4), a€A
= xax ! =a'forsomea’ €A
=a=xtla'x
But notice {xax 1:a €A} =4
Why? xa;x™ ! = xa,x" ! = a; = a,

v Exercise: finish the proof

Sova' €A ={xax l:a€ A}, Ja€ As.t.xax 1 =a’
s>xla'x=a€A=>x"1eN;(A)

Example
Let G = {all 1-1 and onto maps from Z to itself}
G is a group under composition
Let.
n+1 if n=2i
fin)={n-1 ifn=2i+1
n if ne¢ {2i,2i+1}

Leth:Z > Zh(n) =n+2

hofioh™*(2i+2)=hof;(2)=hQi+1)=2i+3
hofioh ™ (2i+3)=ho f;(2i+1) = h(2i) = 2i+ 2

Ifn & {2i +2,2i + 3}
hefieh™'(m) =n
Sohofioh™ = fiq

Soif A ={fo,f1, ...}
Thenhofoh™t€AVfEA



ButhoAoh ™1 G A

Example

G = Qg = {£1,%i, £j, £k}
ij=k  ji=—k
i2 :jZ — k2 = -1
(-Di=i(-1)=—i
Dj=j-D=—j
(-Dk=k(-1) =-k

Let A = {£i}
[ ] Whatis N;(A)? Answer? G = Qg
g gAg~"
1 1{+i}171=4
-1 -1{x}(-D"' =4
i i{+i}iTt=A
—i —i{+i}(-)"t =4
J iyt =gkl ={Fi}=4
—J -3 (-1t =4
k k{tidk™ = —{+jk} = {Fi} = A
—k —k{xi}(—k)t =4
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Stabilizers & Conjugacy Classes

September-26-13 10:16 AM

Stabilizers
GoX gx-x'
Ifx € X,wedefineG, ={g € G : gx = x}

Remark 1
G, < G (Gy is a subgroup of G)

Orbit-Stabilizer Theorem
Let G be a group acting on a set X.
If x € X then |0,| = [G: G,]
0y ={g-x:g € G}
[G: Gy] = number of left/right G, cosets in G

Corollary

If G is a finite group actingon aset X and x € X
then |0, | divides |G|

Cauchy's Theorem
Let p be a prime number and let G be a finite group.
If p | |G| then G has an element of order p.

Conjugacy Classes
Let G be a group and let G < G by conjugation
g x=gxg™
Ifx € G,we call 0, = {gxg~': g € G} the conjugacy
class of x and denote it by C,

Remarks
1) Ifx € Gand |G| < 0= |Cy|| |G]
2) G is adisjoint union of conjugacy classes.

Proposition
Ifg€Gthen|Cy| =1 geZ(6)

Normal Group

Let G be a be a group.

We say that a subgroup N < G is normal if
gNg'=NvVgeaG

The following are equivalent
1) N <G isnormal
2) gN=Ng Vgea
3) Ny(N) =G (Ny is normalizer)

(1) = gNg*=NVgeG
S N;(N) =6 < (3)

(1) e gNg'=NVgeG
< gN=Ng Vgeai
< (2)

Theorem
Let G beagroupand let H < G with [G: H] = 2
Then H is normal in G. Denote H 2 G

Remark
1) IfxH and yH are two left cosets,

eitherxH = yHorxHNyH =0

Idea

Ifah € Hs.t. xh € yH,= x € yHh™' = yH
= xH € yHH = yH

Similarly,
xHNyH # ®=yH S XH = xH =yH

Normal Subgroup
N 2 G : Nisanormal subgroup of G
if any of the following hold

1) xNx'=NvVvxeg

2) xN=Nx Vx€G

3) Ng(N) =G
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Proof of Remark 1

Sincel-x=1=1€G,
Ifg,h€G,=(gh) x=ghx) =g-x=x=gh€G,

IfgeEG, > gx=x>g(gx)=g - x>1-x=g1-x=>gx=x

So Gy < G.Inparticular, if |G| < oo, |G| divides |G].

Example

Let G = S,. Let X = {1,2,3,4}
o-i=0(i)

What is G,? G, = {0 € S4:0(2) = 2}
How bigis |G,|? |G| = 6

What is 0,7 0, = {1,2,3,4}

[0,] =4

1G] = 24

1G] =6

10,] = 6l _24_,
2706, 6

Proof of Orbit-Stabilizer Theorem (Finite)
Letm = [G: G,] and let g, G, U g,G, U -+ U g, G, be a set of left coset representations

Claim

Oy ={g1%, 2%, ..., G}
This will then give |0, | = m = [G: G,]

Proof of Claim

Lety € Oy. Then y = gx forsome g € G
So3ist g € g;Gy, ie.g = gih, h € G,
Sogx =(gi-h) -x=gi(hx) = g; - x
Soy € {g1%, ., gmx}

To finish, we must show thatif i # j then g;x # gjx
We do this by contradiction. Suppose that g;x = g;x
297 gix=x
= g;7'9; € Gy = g; € g;Gyx. Contradiction.
~ giGx N ngx =0
S0 giX, ..., gmx are all distinct = |0, | =m

Proof of Corollary
|0x| = [G:Gx]
But |G| = |Gx| . [G:Gx] = IOx”GI

Proof of Cauchy's Theorem
LetX = {(91,92, - 9p) : 9192 - p = 1, g1, -, gp € G}
Then |X| = |G|P~!
-1
Why? (91,92, -, Gp-1,9p) € X © gp = (9192, -+ Gp-1) » g1, 9p €G
In particular, p | |X| since p | |G|

Let Z, act on X via cyclic permutation
ie [i] - (gl,gz, ...,gp) = (gl+i, 92+ir ...,g,,+i) where subscripts are taken (mod p)

Notice if (g1, ., 9p) € X = g2g3 -+ gpp1 = (91" 91)(92 9p)91 = 91" (9192 991 = 97" 91 = 1
> (92,9, 1) €X

So H =Zj, acts on X.

If x € X what can we say about |0, |?

[0x] | 1H] = [0l p = 104 € {1,p}

Recall that X is partitioned into orbits. Also |X| = |G|P~* = 0 (mod p)

So the number of orbits of size 1 must be a multiple of p since orbits have size 1 or p

When does x = (gl, ...,gp) € X have an orbit of size 1? When x = (g, g, ..., g) forsome g € G

Notice, we must have gP = 1 by definition of X.

Notice (1,1, ...,1) € X so there is at least 1 orbit of size 1

Since p = 2 and the number of orbits of size 1 is a multiple of p

g #1st.(9,9,..,.9)EX=>9gP=1&g+1 ]

Proof of Proposition
|6;| =1 {hgh™:he G} =g hgh ™' =g Vhe G < hg=ghVh € G < h e Z(G)

Example Conjugacy Class

Let G = S3. Find the conjugacy classes of G

Ss = {id, (12), (23), (13), (123), (132)}

Ciq = {id}

Ingeneral, G; ={1} G, ={g-1-g7*: g€G}={1}

612

(12) € €y,

(123)(12)(123)71 = (1)(23) € €y,
(132)(12)(132)" 1 = (13) € &y

So €1z = {(12),(13),(23)}



Ci23 = {(123),(132)}

Example 1

G =0Qs

N = {+1, +i} is normal
Why? No(N) = G

Example 2
G =S, N = {id, (123), (132)} is normal
=>0No =N Vo€ES;

Proof of Theorem

Letx € G

Casel:x€H

ThenxHx ' =Hx'=H

Case2x ¢ H

ThenG =HUxH =HUHx = xH=Hx=xHx*=H
Soin either case, xHx 1=H=>H <G

Normal Subgroups Facts
1) IfGisabelian& N<G=>N<=2G
Why?
xNx~' = Nxx~! = N so abelian
{xyx :ineN}={nxx " :neN}={n:neN}=N
2) fN<Gand[G:N]=2=>N=3G
Why? Ifx € N,G =NUxN =N U Nx = Nx = xN

Groups of Order 6 Revisited
Let|G| =6
By Cauchy's theorem, 3x,y € G. o(x) = 2,0(y) =3
Let N = {1,y,y?} Then [N| = 3,[G: N] = l'—fv—'l =%=2
SoN =2 G .Lookat xyx™! = xyx € N.So xyx € {y,y?}
Remark: G = {x,y) Why? o(y) =3 &o(x) =2=26|[{x, ) =2(x,y)=GC
2 Cases
Case l: xyx =y = xy = yx

= ( is abelian; check xy has order 6
Case 2: xyx =y~ 1

SoG={(x,ylx>?=y>=1xyx =y 1) =Dy =5,
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Kernel & Quotient Groups

October-01-13 10:18 AM

Kernel

Let G, H be groups and let ¢: G = H be a homomorphism. We defined the
kernel of ¢ to be

ker(¢) = {g € G |¢(g) = 14}

Theorem
Let ¢: G > H be a homomorphism. Then ¢ is 1-1 if and only if ker(¢) = {15}

Proposition
The kernel of a homomorphism is a normal subgroup.
i.e.if ¢: G » H is a homomorphism, ker(¢) < G

Quotient Groups
Let G beagroupandletN 2 G
N must be normal for this construction to work.

We can form a quotient group G, as follows

o If G is finite, we'll see |G/N| = %
G/vasaset={xN:x € G} = {Nx : x € G}

So |G| = [G:N]

How do we multiply?
(xN) - (yN) = x(Ny)N = x(yN)N = xyNN = xyN

Notice that Gy is a group.

The coset N =1 - N is the identity
and (aN)(a ') =aa 'N=Nso(aN)"' =a 'N
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Proof of Theorem

Suppose that ker(¢p) # {15} = ker(¢) 2 {14}
So 3x # 15 in G such that ¢p(x) = 1

= ¢(x) = d(1g) = ¢ isnot1-1

Suppose that ¢ isnot 1-1. = 3g,h € G, g # hs.t. (g) = ¢(h)
= ¢(gh™) = p(@p(h™) = p(p(h™") = Iy
= gh™! # 15 isinker(¢) soker(¢) 2 {15}

[ ]
Note
Recall thatif G © H
¢:G > Sy, g g XX, ¢g(x) = gx
ker(¢p) ={g €eG:gx=xVx e X} = ﬂ G, = Intersection of all stabilizers of G
xeX

Proof of Proposition

Letx € G and let n € ker(¢)

= plnx™!) = pPMP(x™) = () 1xp(x™) = plxx™) = p(15) = 1y
= xnx~! € ker(¢)

Soif N =ker(¢p) > xNx 'S N=>NCSx 'Nx=x"'Nx)"'cN=>N

c xNx~t

SoxNx™1=N Vx€G

>N=32G

Quotient Group Example 1

G=17+

N =nZ,+, n>1

G/N = Z/11.Z = In = {[O]v [1]v (i [Tl - 1]}v

In this case, our cosets are
i+N=i+nZ={.,i—nii+ni+2n,.}={€Zj=i(modn)}

We have n cosets {0 + N, ...,n — 1 + N}

[(]={e€eZj=i(modn)}

Quotient Group Example 2

G = GL,(R)
N =SL(R) = {4 € M(R): det(4) =1} =G
Why?

Let¢: G - R*, ¢(A) = det(4)
¢(AB) = det(AB) = detAdetB = ¢(A)p(B)
ker(¢) = {A: ¢(4) = 1} = SL(R)
What does G look like?
Claim: A coset of N is all matrices with a given nonzero determinant.
Why?
For A € GL,(R), B € SL,(R)
AN D AB = detAB = detAdetB = det4
Conversely, if detC = detA = C = A(A71C) € An

So there is a bijection.

Left cosets of SL, (R) in GL, (R) «<— elements of R*
A - SLy(R) «— detA

(A-SL,(R))(B - SL,(R)) = AB SL,(R)



First Isomorphism Theorem

October-01-13 10:55 AM

Image
Let ¢: G = H be a homomorphism.
Then im(¢) = {¢p(g):g €G} <H

First Isomorphism Theorem
Let ¢: G = H be a homomorphism.
Then G/ker(gb) ~ 1m(¢)

Proposition
LetH,K <G
Then HK := {hk:h € H,k € K} has size

IHKl_ﬂillKl
|HNnK]|
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Image Subgroup

Ifhy, hy € im(p) = 391,92 € G s.t. $(g1) = hy, (g2) = h,
= hihy = ¢(g1)9P(g2) = ¢(g1,92) € im(¢)

hi' € dlg)™ = d(gr") € im($); 1y = ¢(1¢) € im(p)

Proof of First Isomorphism
Let N = ker(¢).So G,y = {gN: g € N}
Define f: G/y — im(¢) by f(gN) = ¢(g)
We have to check

1) fis well-defined

2) fisahomomorphsim

3) fis1-1

4) fisonto

1) fis well-defined

Suppose that g;N = g,N & g;'g:N =N & g3 g; € N =ker(¢) & ¢(g;'91) = 1y ©

#(g:1)9(91) = 1 = ¢(g2) 7 d(g1) = 1y © d(g1) = (g2)
So g1N = g;N = ¢(g1) = ¢(g2) = f is well-defined

2) fisahomomorphism
f(g1Ng2N) = f(g192N) = $(9192) = $(g1)#(g2) = f(g1N)f (g2N)

3) fis1-1. What is the kernel of f?
ker(f) = {gN: ¢(g) = 1} But ¢(g) = 1 & g € ker(¢) = N
={gN : g € N} = {N} = identity in G/

4) fisonto
If x € im(¢)
=3y e Gstx=¢(g) > x = f(gn) = fis onto
G/ is a group
- elements are cosets gN
- multiplication g4Ng,N = g,g,N
- identity IN =N
- inverse (gN)"t = g7'N

Example
GL, (R) /s, (r)= R

Example

C* /Ry, = St ={e?:6 € [0,2m)}

Why?

Define ¢: C* > S by ¢(2) = é homomorphism

ker(¢) = {z 2o 1} =Rsg
|z

Example

$L-Ty 0o il

ker(¢) = nZ

SO0Z/pz= Ly

Example

¢:AXB - B, (a,b) » b

ker(m){(a,1,) : a € A} = A x {15}
So (A X B)/Ax{lg} =B

Example
G =53N={id, (123),(132)}
G/N =17,

Proof of Proposition

HK=UhK

heH
When is h1 K = k,K?
hK =hK © h;'hK =K < h;*hy €K © h;*hy EKNH ~ hy,h, €H
Noticethat KN H < H
Let hy(K N H), ..., hg(K N H) be the set of left K N H cosets in H. What is d?

d=[H:KﬂH] :lTn—I_Il

Claim:
HK = hyK U hK U ---U hgK
Once we have the claim, we see

HK| =d|K| = ———5
|HK| = dIK| HnKl
1) Ifi =+ jthen h;K # h;K since otherwise

K], so we will be done

hi'hj € KnH = h; € hi(K N H) = hy(K n H) = h;j(K n H). Contradiction

2) Now we'll show that HK = UL, hK
It is enough to show that HK < UL, hiK ~ h;K € HK Vi
Let hk € HK. Consider h(H N K) = h;(H N K) for some i



d
:h;lheHnK:hil(:hK:hkehK:hiKgUhiK

i=1
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2nd & 3rd Isomorphism Theorems  Proof of Proposition
Suppose HK is a subgroup.

October-03-13  10:21 AM ? ThenH,K € HK = KH € HK - HK isa group and K, H € HK
If G is finite then |KH| = :zli_lr:‘: = |HK| > KH = HK

Proposition What if G is infinite? Still OK.

Let G be a group and let H, K be subgroups of G Have a bijection HK - KH where x - x~1

Then HK is a subgroup of G & HK = KH
Suppose that HK = KH

Corollary 1) 1=1-1€HK,soHK # @
IfH,K <GandH S N;(K) ={g € G:gKg'l =K} 2) If hyk,&hyk, € HK then (hyk,)(hyk,) = hy(kihy)k,
= HK is a subgroup of G. ~ kih, € KH = HK = 3h3 € H, k3 € K s.t. hzk; = k1h,

= (hyhs)(ksky) € H1K —
2" |somorphism Theorem 3) Ifhk € HK = (hk)™ = k™ h™" € HK = HK

So HK i b .
Let G be a group and let 4, B < G and suppose that A € N;(B) © i asubgroup

Then B 2 ABand AN B 2 Aand ABg = A;anp) Proof of Corollary

Letkh € KH. kh = h(h~*kh) € HK since h"'kh € K = HK € HK
G If hk € HK. Then hk = hkh™h € KH = KH € HK = HK = KH = HK is a group
| In particular K 2 G = HK is a subgroup.
AB.

= Proof of 2" [somorphism Theorem

/ To see that B < AB, letab € AB
A 6 Then (ab)B(ab)™! = (ab)Bb™*a ' =aBa ' =B~ a € A S N;(B)
/ = ab € Nygp(B)Vab € AB = B < AB
a - -
et An E Since B 2 AB, we can form the quotient group AB/p
Let ¢: A > AB/g be defined by ¢(a) = aB
Claim: ¢ is a sujective homomorphism.
3" Isomorphism Theorem Homomorphism: ¢(a,a,) = a,a,B = a;Ba,B = ¢(a,)p(az)
Supposethat H € K € G, HK=2G Onto: If x € AB/p = x = abB forsomea € A,b € B

Then H 2 K and Ky 2 G,y and (G/H) = aB = ¢(a) so ¢ is onto.

Sk ) = G

The identity in AB,p is B
ker¢p ={a€A:¢p(a) =a}={a€A:aB=B}={a€A:a€eB}=ANB
So by the 1stisomorphism theorem, A/ yer ¢ = im ¢ = AB/p = A;(anp)

Correspondence Theorem

If G is a group, the collection of subgroups of G can be partially
ordered w.r.t. inclusion.

Proof of 3" Isomorphism Theorem

To see that H < K notice that N;(H) =G, ~H =G

SKCSN;H)=>K=Ne(H)=N;( H)NK=>H<=K

Now let's check that K/ 2 G/

Consider

(gH) (K/i)(gH) ™" = (gH)(K)1)g™H = {gkg~*H:k € K} = {kH:k € K} = g € N5(K)
= K/H

So (gH)(K/u)(gH) ™t = K/y VgH € Gy = Ky 2 Gy

Define ¢: G,y — Gk by p(gH) = gK
Check that this is a homomorphism
1) Well-defined
IfgiH =g,H < g;'g1 €H = g5'g1 €K~ HS K = g1K = g,K = ¢(g:1H) = ¢p(g2H)
2) Homomorphism
¢(g1Hg2H) = ¢(9192H) = 919K = 91K g2K = $(g1)$(g2)
Notice if gK € G/x = gK = ¢(gH) soim(¢) = Gk
What is ker(¢)? K is the identity in G/, so
ker(¢) = {gH: d(gH) =K} ={gH:gK =K} = {gH: g € K} = {kK: k € K} = K/
So by the 15¢ isomorphism theorem,
(G/1))xer(¢) = im(¢) = (G/H)/(K/H) =G

Example Correspondence Qg

B /QE\

T (13\ <\3> ;>
|

2 {11 ]

|

{1F

N={£1}20,
Qo = Iz X I
(£iN)? = (£jN)? = (£kN)>* = -N =N
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Conjugacy Class Equation Example

G =7y is simple

October-08-13  10:03 AM Why? If N 2 G then |N| | |G| (Lagrange)

= [Nl ={1,p}
e INN=1=>N={1}
Simple Groups e INl=p=>N=¢G

G is simple if its only normal subgroups are {1} and G )
Conjugacy classes

G acts on itself via conjugation

Theorem Y—c
Let G be a finite group and let x € G, then - _ -1
1G] g(’ ’; =gxg L
1Cxl = [G: Ce (O] = T——=7 glx) =gxg~
x ¢ ICs ()] GoX
XX, (x) = gx
What does this mean? ?:X N g g
Ié’G_lémel)t(z G tJS.t.}‘lZdéS]omt union of conjugacy classes, say (hg)(x) = ho g(x) = h(g(x))
=Cg, Yy, Im Gl Gl 0,={g-x|g€Gt={gxg™|g € G} = C, = conjugacy class of x
Gl =lc,. |+ 1C..|+-+]|c, | = orbit-stabilizer theorem
Caul + 165 [Can] 1Cs(g1)I 1C6 (gm)I Gl .. .. .
[Cxl =10k = [G: G, ] = G if G is finite
X
Theorem Gy={g€G:g-x=x}={g€CG:gxgt=x} ={g € G:gx = xg}
If G is a finite group and {g,, ..., gm} is a complete set of conjugacy class = Cs(x)
representatives, ie.e
6o U e Proof of Theorem 3
- U e By the class equation,
1<ism |G | |
G |G| = +o 4 +1Z(6)|
=l =y e Calool T 1G]
=%\ where each of —%— > 1 fori = 1,...k
When is |Cy| = 1? Fori =1 k|CG(gi)|
Cy={gxg~t:g € G} ort =12,
fleyl =1, ={x}eogxgl=xVgeG o gx=xgVg € G = x € Z(G) _lal 1G] = p™
[Cc(gd)l
Let g3, ..., gm be a complete set of conjugacy class representatives for G and let and since itis > 1 we have
Jk+1, - » 9m be the elements with |Cg.| =1 |G|
! ————=0(modp)fori=1,..,k, and |G| = 0 (mod p)
Then |G| = |Cg,| + -+ |Cq| + [Cgpy |+ +[Cg,| [Ce(po)l L P
So |Z(G)| = 0 (mod p). Since 1 € Z(G), |Z(G)| =1
This gives Soin fact |Z(G)| = p. This result follows by Lagrance's theorem.
Class Equation
G| G| Proof of Corollary
|G|: + +|Z(G)| We i h d that |Z(G 2
[Cs(g)I [Ce (gl e just showed that |Z(G)| € {p,p*}
where g4, ..., gx are a set of conjugacy class representatives for the conjugacy If|1Z(G)| = p? then G = Z(G) = G is abelian.
classes of size > 1 If1Z(G)| = p = 3x € G such that(x) = Z(G)
Picky € G\ Z(G)
Theorem 3 Claim, G = {(x, y)

Let H = (x,y), then H 2 Z(G)
SolH| > 1Z(@)|=p
But [H| |IG| by Lagrange's theorem
> |Hl=p?>H=G
Now xy = yx = x € Z(G) so (x,y) = G is abelian.

Let p be a prime and let G be a group of size p™ for some m > 1
(G is called a p-group)
Then G has a non-trivial centre; i.e. |Z(G)| = p! for somel € {1,2, ..., m}

Corollary
. N . .
Let p be prime and let G be a group of size p*. Then G is abelian. Proof of Theorem 4
Note, does not apply for higher powers. LetX = {x;H, .., po} = set of left cosets
1 a b LetG - Xviag-xH - gxH
{(O 1 c> :a,b,c€ Zp} So this gives a homomorphism ¢: G - Sy = S,
0 0 1 By Q1 of assignment 4,

is a non-abelian group of order p*
ker ¢p = ﬂ gHg*cH
Theorem 4 g€G

- . . o Soker¢ € H and also ker ¢ =2 G  itis a kernel
Let G be a finite group and suppose that p is the smallest prime dividing |G|. If So by 1st isomorphism theorem,

HSGhasindexp(i.e.%:p)thenHSG. G/kery =im¢ <,
So

Theorem 5 16/ kerg| IS0l =P =px (=D x - x1
Let p, g be primes with ¢ < p and suppose thatp # 1 (mod q). |G/ ker¢| | 1G], all prime factors of G are > p
Then if |G| = pq = G is cyclic. S0 |G/kerg| | P = |G xero| € (1,03

) But if |G/ ker¢| = 1then ker ¢ = G. Contradictionker¢p S H S G
Lattice of Subgroups S0 |G/ kerg| = P
IF G is a group, the set of subgroups of G has a partial order given by C. >kerg = H
So this gives us a picture of the subgroups of G, where we put bigger subgroups Why?
higher and we draw a line to two groups when one contains the other. p=I[G:H] <[G:kerpl =p ~kerp € H

This means we have equality so H = ker ¢
SoH 2 G + itisakernel

Proof of Theorem 5
By Cauchy's theorem, 3x € G of order p.
LetH = (x) < G.(so |H| =p)

Notice [G: H] = :—}Gl—ll = % = g, the smallest prime dividing |G|
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SoH=2G

By Cauchy's theorem,
Jy € G of order q
notice that G = (x, y)
Why? Let K = (x,y)
(x) <K=>p|lK|

Then
M=<K=qllKl
Since (x) 2 G, .

yxy~! = x'forsomei € {1,2,..,p — 1} )
= y2xy =2 = y(yxy Dyt = yxlyt = (yay ) = () = 2"
y3xy—3 — xAi3

Thus x = y9xy =9 = x'*
= {9 =1 (modp)
By FLT i?~! = 1(mod p)

}=>pq||K|=>|K|=pq=>K=G

Consider Zj, group under -
Look at [i] € Z,
[i17 = [i9] = [1] = [i] has order dividing q
[i]P~* = [i?"1] = 1 = [i] has order dividingp — 1
= o([il) | ged(q,p — 1)
[i(]=[1] ® i=1(modp)
yxy l=x=xy=yx

So G is abelian * G = (x,y) and xy = yx

Letz = xy
=>zPl=xPlyPi=1.1=1
w2 =xPyP=1-yP=yP#1~o(y)=q
29 =x9y9=x9-1=x'#1v0(x)=p
So0(z) =pq = G =(z) = Lp,
[

Groups of small order up to isomorphism
{1}

Z,

Z3

Zy X Ly, Zy
Zs

Zs,  S3

Zy

TDB

abelian TDB
Zyy, Ds

O© 0 N O U1 A W N

=
B W N R o
N N 9N
5 B2
- [w)

D,



Correspondence Theorem

October-10-13 10:20 AM

Correspondence Theorem
Let G beagroupandlet N 2 G.
Then there is a surjective homomorphism
G - Gy, n(g) = gN
which gives a bijective correspondence between the subgroup of G,y and
the subgroups of G that contain N.

1) Bijection
N<K=<G-n(K)<Gy
N<n'(L)<G«L<Gy
2) INSA<B<G=>mn(4)=<n(B)
andif 1 <K <L<Gyy=n""(K)<m (L)
3) fN<A<B<G> [B:A] = [n(B):n(4)]
4) IstASGthenASG@n(A)sG/N

Canonical Surjective
The map m: G > G,y, g = gN is called a canonical surjective.
n(gh) = ghN = gHhH = n(g)n(h)

Problem
Let G be a group and let N 2 G. Show that if Gy is abelian, then all
subgroups that contain N are normal in G.

Cayley's Theorem

Let G be a finite group. Then G is isomorphic to some subgroup of S,, for
some n > 1.In fact, we can take n = |G|
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Correspondence Theorem Example

Dg=({o,p|c®=p*=id, ap=pac?)

Subgroups:

Order 12 Dy

Order 6 (0,0%) = (o) = Zs, (0%p)={0,p) =1
Order 4 (p,03), (po,a3), (p?,0°)

Order 3 (a?)

Order 2 N = (a3p) (pa) (pa?) {pc3) (pc*} (pa®)
Order 1 {1}

Dg has order 12: 1,0, 6%, 63,06%,6°,p,0p,0%p, 6"

Proof of Correspondence Theorem

D)

2)

3)

IFN <K <G =n(K) <Gy
n(K) = im (TL’| ) < Gy subgroup

k
IfL <G/ythenm (L) < Gandn (L) 2 N

Sincemr~1({1}) = kerm = N

Noticea,b € n™1(L) & n(a),n(b) € L = n(ab) =n(a) +n(b) €L = ab e n~1(L)
andn(a) €L =>n(a)tel=>n(a)eL=>aten (L)
SoL<GandN c L

T :K—»G/N,
K

If N < K < G then whatis = 1(n(K))?
Ans:tY(n(K)) = K
We have n~1(n(K)) 2 K = n(K) € n(K)
We want to show that K 2 =1 (n(K))
Ifn’i(n(l()) 2 Kthenwehave N< K £ G
Pick x € L\K. ThenxH € KN = K
Som(x) = xN # kN = n(k) forany k € K
= (L) 2 n(K) but (L) = n(n™? (n(K)) =n(K)
Contradiction

Why? : S = T onto

Claim: (n‘l(n(U))) =n(U)

Ifx € n(U) = x = n(u) forsome u € U
Son Y (n(K)) =K

Exercise
IF{1}<K<Gy=>n(n ' (K)=K
So this shows that  and 7!
N and subgroups of G,y

induce bijections between subgroups of G that contain

IfN<A<B<G>n(4) <n(B)
If{1}<K<L<Gy=>n*K) <n (L)

IfN<A<B<Gand[B:Al =m > [n(B):n(4)] =m
Proof

If [B: A] = m=B = b;A U b,A U - U b, A, disjoint

= (B) = n(by)m(4) U n(by)m(A) U -+ U (b, )m(A)
So [(B):m(A)] <m

Claim

Ifi # j = n(b)n(A) # n(b;)n(4)

n(bn(4) = n(b)n(4) & n(b;) " n(b) = n(A) = n(b7'b;) € n(A) & bi'h;
€ AN & b; € bjA & bA=b;

G—>G/N

4

<

A- nZA)

|
N & m(N) = {N} € identity of Gy

N<ASG=>n(A)=An2Gy
Criterion for normality. Let H < GthenN 2 G & gHg ' CHVg € G
Proof: If H 9 G = every g € G is in normalizer of H

> gHg'=H=>gHg 'cH

Conversely, if gHg ' SHVg € G

(@ VH(g D 'cH=>g 'HgcH=>HCc gHg™!

S gHg '=HVgeEG>N;(H)=G=>H=2G

LetgN € Gy

Then (gH)(A)(gN) ! = n(g)n(An(g™™) = n(gAg™) = n(4)
SogH € NG/N(n(A)) vgeG=>m(A) 26

A similar argument shows that if K 2 Gy = ni(K)=2G6



Answer to Problem
G Gy

|
K w» m(K) 2 G\y ~ Gy abelian K 2 G

|
N

Proof of Cayley's Theorem

Let X = G and let G act on X by left multiplication

g-G=g-{g1, -, 9n} = {991,992, -, 99n}

This gives a homomorphism

O:G>S, =5,

What is ker ¢? ker¢p ={g € G : gg9; = g; fori = 1,..,n} = {1}

Sodis1-1

So @ gives an embedding of G and G = im(®) < S,

Important part @ is a faithful action.

ie.e {g: gx = xVx} = {x}

This action is also transitive - this means that there is exactly one orbit
Equivalently, Vx,y EX=>3g€ G g-x =y
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Symmetric Groups Revisited

October-15-13 10:08 AM

Theorem

Letn > 1andlet o € S. Then C, consists of all T € S, whose
disjoint cycle structructure is the same as ¢'s

i.e. if 0 has m; i-cycles for 1 < i < n (disjoint)

= thasm;i-cyclesfor1 <i<m

Theorem (Centre of S,)
Ifn > 2, then Z(S,) = {id}

Theorem
Ifn+26
Then Aut(S,,) = Inn(S,) = S,

Remark 1

If f: G = G is an automorphism

Then f(Cg) = {f(x):x € G} = {f(ygy™) : y € G} =
UOF@f 1y €6l ={xf(9x" 1 x € G} =Cpg

Remark 2:
If g has order d = f(g) has order d.
Why?
fl@=f(g9)=f) =1
Soo(f(9))lo(9)

Bu this holds for any automorphism
o(F1(f(9))) ] o(r () = o(g) 1 o(f (9))
=0(9) = o(f(®)

Corollary
Suppose f: S, = S, is an automorphism.
Then f(C(l 2)) = C(l 2)(3 4)-+(2j-12j) for somej >1

What is |C(1 2)(34)(2j-1 2j)|?
. n
j=1 [Cuzyl|= (2

n\ (- 2)

. 2
j=2 |Cazneal =f2

mm-—2\/n—4
. _GCY
j=3 lCanensel ="
n!
T -6)3123
n!
ICazen-@-12)] = G-

Remark 3
If f:S,, = Sy, is an automorphism and f(C(l 2)) =
C12)(23)-(2j-12j) for some j = 1 then
n! n!
|C(1 2)| = |C(1 2)34)-(2j-1 Zf)l = (n _ 2)! 2 = (Tl _ 2]')!]'! 2]

In particular

@12 l=m-2)(n—3)-m—2j+1)

Notice n = 2j so

m=2)(n=3)m—-2j+1)=(2j—2)!

(n-2)>(2-2)

So equation (¥) gives (2j —2)! < jl2/"1 =
@j-2@j-3)(+1) <2/

There are j — 2 terms on LHS

Ifj24=>2j-3)(+1) <2/ 1=242<2i152(G-2)<

j—1=j < 3 Contradiction.

So conclude that if

[Canl=Caney @129 = € {123}
j=2

n
n
IfCaz)=[Caneal= (2) ="
n—-2)(n-3)

=>2=

= 4 = (n—2)(n — 3). No solutions

j=3

n\m-—2\(n—=6
w_ (5030
If|Ca | =Caneasel = (2) = ——%
=224=n-2)n-3)(n—4)(n—-15)

has a solution only whenn = 6
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n=1, Sp={0:{1,..,n} > {1,..,n}| ois 1-1}, |1Sul =n!
Disjoint cycle notation

egn=7

1234567

5
KA
1234567

A3H@G6)(7) = @ (7)(56)(134) = (56)(134)

Conjugacy Classes

What is the conjugacy class of a permutation o € S,,?

Let's first consider the case of a single cycle (a;,aasz - a)

What is t(a;ay -+ a,)t !

Let o = t(aa, - a)T?!

What does o do to t(a;)?

t(ay - ak)T_l(T((h)) = 1(a,a; - ai)(ay) = t(az)

In general,

7(ay, ..., ai)t" L sends 7(a;) = t(a;4q) fori = 1, ..., k where we take ag,q = a4

Ifm ¢ {t(ay), ..., 7(ax)} whatis t(ay, ..., ax )t~ (m)?
Answer:itism
Sot(ay, ., a)t L = (T(al),‘r(az), v t(ag))

Proof of Theorem

Suppose ¢ has s disjoint cycles of lengths k4, k5, ..., ks; k1 + ky + -+ kg =n

Write 0 = (a1, - @y, ) (res1 = Qreyriey) * (Tegooties_y +1 °** Qg g ks

Lett €S,

Then, as we just showed,

1ot = [t(ay -+ @ )T [ 1(@hye1 -+ @ieyiey )T T (@i 41 7 Tyt e )T

= (T(al) T(az)) (T(ak1+1) T(ak1+k2)) (T(ak1+w+k5,1+1) T(ak1+-~+k5,1+ks))

Thus C, < {all permutations with same disjoint cycle structure}

To finish, suppose that u = (b1 bkl) (bk1+m+ks_1+1 bk1+...+ks) has the same cycle structure
aso.

Thus, 1 = to1~%, where T sends a; = b; for 1 < i < nso u € Cg. Thus the result follows. m

Example

Sa

Conjugacy class  size

id 1

12 2
(2)=¢

(132)&(123) (4)><2=8

1234 3
(1234) 6

Find all normal subgroups of S,
Remember,
N=2G=>n€eNthengng '€ N Vg€ G;ie.C, <N

Assignment Q: N is a union of conjugacy classes
Answer:

N e {{1}. {BBUCu2ea{llVCuyasyVCu z),54}
{id, (12)(34),(13)(24),(14)(23)} € Klein 4 subgroup of S,

Proof of Theorem (Centre of S,)
Letn > 2. Let g € Z(S,) and suppose that o # id.
Then o has at least one k-cycle for some k > 1. Then for any p with the same cycle structure 37
such that tot™! = .
But note that there is some p # ¢ with the same cycle structure
Why?
o=(arap)..)(..)
We know k > 1
Casel: k>3
i =(a1az = Ap—20xax-1) (.. ) - (.o.)
Case2:k=2,n>2
o= (a1ay) ...(a;) ...3a; # aq,a,
p=(a1a) ... (az)
Sotot ' =p#candsoto # ot = o & Z(S,) = Z(S,) = {id}

Automorphisms of S,
Recall that if G is a group we have a homomomorphism
®:6 - Aut(G), g- Dg:G -G, b (x) = gxg™?t
ker(®) ={g:®; =id} ={g:gxg ' =x Vx€EG}={g €G: gx =xgVx € G} = Z(G)
So by 1st isomorphism theorem,
G;z(6y = Im(®) =:Inn(G) The inner automorphism group of G



n \Z/\ J\ /
fleas| = lCanaasel= (3) = ——%

=>24=m-2)(n—-3)(n—4)(n—-15)
has a solution only whenn = 6

Combining all of this, we see thatif n # 6 and f: S, —» S, then
f(Caz)=Caz

Fact

3 an automorpthism of S,, that sends (1 2) to (1 2)(3 4)(5 6)
Next time, we'll show that if f: S, — Sy sends C(q 2y to C(1 2y
then f is given by conjugation. This will prove the result.
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ker(®) = {g: d; =id} ={g:gxg ' =x Vx€G}={g €G: gx =xgVx € G} = Z(G)
So by 1st isomorphism theorem,
G/z(6) = Im(®) =:Inn(G) The inner automorphism group of G



Symmetric Groups Cont.

October-22-13

10:03 AM

Last Time
We showed that if f: S,, = S,, and n # 6 then f(C(l 2)) = C(1 2), L.e. f takes transpositions to transpositions

Goal
To show thatif n # 6 = f is inner (i.e. 3 a permutation 7 € S, such that f(6) = tot~! Vo € S,,)

Remaining Steps

Step 1

Show that if G is a group and S € G generates G and f, g € Aut(G) suchthat f(s) = g(s)VseS=f=g
Step 2

Show S ={(ii+1):i=1,..,n— 1} generates S,

Step 3

Show that if f € Aut(S,,) takes transpositions to transpositions then 3t € S,, such that
flGi+D)=t@i+Drfori=12,..,n—1

Proof of Step 1
Let x € G. We want to show f(x) = g(x)
Since S generates G, we can write x = s;1s;2 -+ 5%, where sy, ..., 5x €S, €y, ..., € € {1}

Then f(x) = f(sy" - 5¢%) = f(571) -+ f(5¢5) = F(s) - f(s1)% = g5 g ()% = g7+ 55%) = g (x)

Proof of Step 2
Lemma
1) The set of all transpositions generates S,

Since each g € §,, is a product of disjoint cycles, it is enough to show we can write any cycle as a product
of transpositions.

Aside

Gjk)=0nNGkK)

Similarly

(i1 i "-in) = (il iz)(iz is) (in—l in)

So every cycle is a product of transpositions. This proves (1)
2) {ii+1):i=1,..,n— 1} generates S,

For (2), it suffices by (1) to show each transposition is a product of transpositions of the form (i i + 1)
(i+2)=0i+D0E+1i+2)@i+1)
Ei+3)=>0+2i+3)@i+2)(@+2i+3)
Ingeneral,ifi<j,j—i=22=2Gj)=0G-1HNGEj-DG-1))
So by induction on j — i we can write each trasposition as a product of elements from
{(kk+1),k=1,..,n-1}

Proof of Step 3

Proposition

Let f: S, = S,, be an automorphism that takes transpositions to transpositions.
Then 3t € S, suchthat f((i i+ 1)) =7( + Dr~fori=1,..,n—1

Before we begin, note that 7(i i + 1)t~ = (¢(i), 7(i + 1))

Proof of Proposition
Since f takes transpositions to transpositions,
f((l 2)) = (a, a,) for some a,,a, € {1, ...,n} and
f((23)) = (a3 b) for some as, b € {1, ..., n}
(12)(23) # (23)(12)s0o f((12)(23)) = £((23)(12)) since f is 1-1
= (A 2)f((23) = £(23)f((12) = (a; ay)(a, b) # (a3 b)(a, a,) so{ay, a,} N {as, b} # @
WLOG a, = bso f((12)) = (a, ap), f((23)) = (a; a3), ay,a,,a; pairwise distrinct = f is 1-1
Similarly, f((3 4)) = (a5 a,) for some a, with a;, a,, a, a, pairwise distinct.
Continuing in this manner we see that 3a., ..., a, pairwise distinct such that
flGi+1)=(a; a)fori=1,2,..,n-1

Lett:{1,..,n} = {1,..,n} be given by 7(i) = q; Vi
So tis a permutation of {1, ...,n}and t(i i + 1)7~1 = (T(i) (i + 1)) =(a;ai41) = f((i i+ 1))
[

Theorem
Ifn # 6and f: S, - S, is an automorphsim then 3t € S, such that f(¢) = 707~ Vo € S, i.e. f is inner

Proof of Theorem
We showed last time that f(C(l 2)) = C(1 2)- By step 3, 3t € S, such that
flGi+D)=t@i+Drfori=1..,n-1

By step 2,

S={({i+1):i=1,..n— 1} generates S,

Define g(0) = 7ot~ then f(s) = g(s) Vs € Sand soby step 1, f = g, ie. f(0) = g(0) =t0T"1 Vo E S,
So f isinner. m

Corollary
Ifn # 2,6 then Aut(S,,) = Inn(S,) = S,
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Proof of Corollary
If n # 6, we have shown Aut(S,,) = Inn(S,)
We showed that for a group G, Inn(G) = G/z(6) (we showed forn # 2, Z(Sy) = {id}

Soifn # 2,Inn(S,) = Snsiay = Sn
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Structure Theorem

October-22-13 10:58 AM
Finitely Generated

Saying that A is finitely generated means 3k > 1 and x4, ..., X, € 4 such that every
a € A canbe writtenas a = myx; + -+ myxg, my,.., M, €Z

Structure Theorem for Finitely Generated Abelian Groups

1) Let A be a finitely generated abelian group.
Then 3 a nonnegative integer r and a finite abelian group T such that
A=7"xT

2) Let|T|=n= pilp;'z ~~-p,i"", D1, -, Dk Prime
ThenT =T, X T; X --- X Ty, were Tj is an abelian group of size p;.l’

3) Ifpisprime and B is an abelian group of order p™ then
B =7y XLy X+ X Lyl forsomes > 1withl; <, < <[

andly +l + -+ 1lg=m

Moreover, sand l; < [, < -+ < [ are unique.

Corollary to STFFGAG
If G is a group of size p? then G = ZyzorG = Zy XLy

Lemma

Let (4, +) be an abelian group of order mn with gcd(m,n) = 1
Then A = B X C with B, C abelian and |B| = mand |C| = n.

Note
Recall that any cyclic group C has the property that either
C=Zor3an = 1suchthatC = Z,

Weak Structure Theorem for Finitely Generated Abelian Groups

Let A be an abelian group. Then A isi isomorphic to a finite product of cyclic groups.

More specifically, 3r,s = 0 and n4, ..., ng = 1 not necessarily distinct such that
A=TT X Ly X Ly X+ X Ly

Moreover, if A = 7" x Ly X Ly X+ X Ly
then r = r'. We call r the rank of A.

Strong Version of Structure Theorem

Let A be a finitely generated abelian group.

Then3r > 0,s > O,pfl, ...,pgs, prime powers, such that
A=T7" x Zmnl X e X Zp;u

Chinese Remainder Theorem

If my, ..., my, are pairwise relatively prime, i.e. i\en j = gcd(mi,mj) =1land
a,..,ax €Z

Then 3x € Z such that

x = a; (mod m;)

x = a, (mod my)

x = a, (mod my,)
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Example
What are the abelian groups of order 72?
72=23.32
If T is abelian of order 72 then by (2), T = Ty X Ty, |T;| = 23,|T,| = 32
by (3), Ty = Zg, 7y X L4, Zy X Ly X Ly
Ty = T, T3 X I3

SoT = one of Zg X Zg, Zg X Lz X L3, Ly X Ly X Lo, Ly X Ly X L3 X L3, Ly X
Loy X Ly X Lo, Ly X Ly X Ly X Lz X L3

How may (up to isomorphism) abelian group of order p° are there?
Answer: 7

Lys, Ly X Lys, Ly X Lp X Lyp3,
Ly X Ly X Ly XLy X Ly, Ly X Lz X L2,

Ly X Ly X Ly X Lp2,
sz X Zp3

Proof of Lemma

LetB={a€A:ma=0}andC ={a € A:na =0}

Claim:

BNC={0}.Why?IfaeBNC,a€B=>ma=0,a€C=>na=0
a€EBNC=>gcdimn)a=0=>a=0

Next wehave A =B + C

Why? Since gcd(m,n) = 1 3¢,d such thatcm +dn =1

Soifa € A=a=(dn+cn)a=dna+cma€B+C

SoA=B+C “BnNnC={0}=>A=BdC=B+C

Proof of Weak Structure Theorem
Let x4, ..., X, be a generating set for A. We prove this by induction on m.

Base Case:m =1
A = (x1) is cyclic. We showed before that cyclic groups are either Z or Z,,n > 1

Induction
Assume the results holds whenever m < k and suppose that A = (xl, x)
Let G = {{y1, - i} S 4. A = (v, 1)
Case 1l
X1, ..., X, are Z-linearly independent
thatis, ifnix; + -+ ngxx = 0,1y, ...,n EZthenn; =ny =+ =n, =0
In this case we claim that 4 = Z¥
Proof of Claim
Define ¢: Z¥ > Aby ¢((ny, .., nx)) = nyxq + -+ myexy € A
Notice that ¢ iis a homomorphism.
¢((n1, wo ) + (my, ---:mk)) = ¢y +my, ..,y +mMy)
= (g +my)xg + o+ (g + My
= (nyxq + -+ ngxg) + (myxg + -+ myxg)
=y, .., ) + d(my, ..., my)
Note: x4, ..., x; generates A. If a € A = 3ny, ..., ny, € Z such that
a= ¢y, .., Ng) = NyXq, o, NX
Notice that (ny, ..., ny) € ker¢p & ¢((n1, ...,nk)) =0 nx + - +mx,=0
Sng,...,ng =0
Soker¢ ={(0,..,0)} = ¢is1-1
So ¢ is a bijection hence isomorphism = A = Z¥

Case 2
X1, ..., X, are Z-linearly dependent. i.e. 3¢y, ..., ¢ € Z notall 0 such that
1%y + -+ cpxp =0
Define c(x, ..., xx) + 0 to be the smallest positive ¢; # 0 that appears in some
relation among xq, ..., Xx
c(x4, ..., x;) = smallest positive integer C such that 3¢y, ..., ¢, € Z and
c1%1 + -+ cpxx = 0 and ¢; = C for some i

Example
Suppose Z3, x; = (2,4,6),x, = (3,6,9),x3 = (5,10, 15)
X3— X2 — X% = 0= c(xq,x5,%3) = 1

LetN = min{c(yl, o Vi) {yl, y} € g}
Then 3(yy, ..., k) € G and ¢y, ..., ¢ € Zwith ¢; = N such that
Y1+ eyt -+ oy =0

Claim

Nlcy,..,Nlcg

Proof of Claim

By the division algorithm, we can write

cg=Nq+c¢, 0<c¢,<Nfori=1,..k

Socyy; + ey, o+ ey =0
> Ny; + (Nqz + )y, + -+ (Nqi + ¢ )y = 0
SNY1+ @Y+ -+ Geyi) Y2+ + oy =0
Letz; = (y1+ qay2 + - + Quyi)

Z2 =2
Z3 =3
Zk = Yk

= Nzy +c3zy + -+ ¢z, =0
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If one of ¢3, .., ¢, is nonzero then c¢(zy, .., ;) < N which contradictcts
minimality of N. We we have thatcj = - = ¢, =0= Nz; =0

Have A = (2,25, ..., zg) and Nz; = 0

We claim that

A =(zy) X {2y, ., Zg), (z1) = Zy

Once we have this we are done since by the induction hypothesis, (z,, ..., z),
which is generated by a set of size k — 1 < k is a product of cyclic groups and
(z1) is cyclic = A is isomorphic to a product of cyclic groups.

LetB=(z)<S A
Let C = (2, ..., Zx)
Then B + C =(zy,2, ..., 2) = A
Notice that B n C = (0). To see this,ifa € BN C,a # 0
Aa€EB=>a=rz, re{1,2,..,N-1}
va#0,r+0andr <N~ Nz =0
a € C=3dy,..,d, € Zsuchthatd,z, + -+ dyz, = a
=1z =dyzy + -+ dyzy 21z —dyzy; — - —dpzp, =0but0 <r < N
This contradicts minimality of N. So B n C = (0)

Now we have an isomorphism
Y:BxC—>4, ¥((b))=b+c
¢ Homomorphism
W((br, 1) + (bzc3)) = W((by + bz 1 +¢3)) = (by + by) + (c1 + )
= (by +c1) + (by + ¢z) = ¥((by, 1)) + ¥((bz, c2))
e OntoA=B+C~B+C=(z,..,2)=4A
o 1-11f¥((h,c)) =0 b+c=0=b=-cob-c€BNC=(0) =
b=c=0
Soker¥ = ((0,0)) = Wis 1-1
SoA =B XC =(z) X {2z, ..., 2y)
[ ]

to finish, we need to show that rank is an invariant. .e. if
A= I X Ly X+ X Ly = L7 X Ly X o X Ly,
Then (= rank(4))
Proof
Suppose WLOG r; > 1,
Let ¢: Z' X Ly, X X Ly, = L2 X Ly X+ X Ly,
be an isomorphism.
Lete; = (1,0,0,...,0) x (0, ...,0)

e; =(0,1,..,0) x (0,...,0)

e, =(0,0,..,0,1) x (0, ..., 0)
Notice that ey, ..., e, are Z-linearly independent.
d(er) = (U1, t1), vy € T2, ty €T =Ly X+ X Ly,
dle) = (B, ty,), U, €T72,  t, €T
7' C Q"
Thenr; > 13 50 ¥y, ..., U, are linearly dependent.
So 3cy, ..., ¢y, € Qnotall 0 such that
c1U1 + -+ ¢, Uy, = 0.Let D = common denominator for cy, ..., ¢y,
= (De)vy + -+ (Deyy )y, =0
Let0 # x = (Dcy)ey + -+ (Dcrl)er1
¢(x) = Deyp(xy) + -+ Dc,lqb(e,l) =Dcy(Dy,t) + -+ Dc,l(ﬁrl, trl) =
(Deyy + -+ Dy, Uy, Degty + -+ Dcrltrl) = (6, t) forsomet €T
Since T is a finite group, t has finite order so 3M > 1 such that Mt = 0.
So p(Mx) = Mp(x) = M(0,t) = (0,0)
But Mx = (MDcy)eq + -+ (MDcrl)ek # 0 and ¢ is 1-1, a contradiction.
Sory =1,

Proof of Strong Structure Theorem
We already have that

A= TT XLy X+ X Ly,

So it is enough to show that if n > 1 then Z, is the product of cyclic groups of
prime power order.

Writen = plt1 ~--psts

Claim Z,, = Zp‘:l X e X Zpsts

We make a map

¢y = Ly XX Lo, P(UxD) = ([x], 1, [ )

Notice that ¢ is well-defined.

If [x], = [ya] & x = y (mod n) Butn = p}* ... p;*
en|-y=p|xr-y)=x=y(modp) =[xl 4=

i

Next Class

Key tool: Chinese Remainder Theorem

Says if my, ..., m; are pairwise relatively prime andif a,, ...,a; EZ = 3Ix € Z
such that x = q;(mod m;) fori =1, ..., ¢t

Last time, we constructed a map ¢:Z,, — Zpil X e X Zpit

[ = (el (3]



where [x],, is the equivalence class of x in Z,, ; i.e. [x], = {i : i = x (mod m)}
Last time we showed this map is well-defined.

Notice that ¢ is a homomorphism

o(xln + [y1n) = d([x + y1) + ([x + ylpil, oo [+ ylpic)

= (Mpltl + Iyl o Il + Mptit) = (Mpil. Mp?) + (Mpil, MP?)
= ¢(Ix]) + ¢(yln)
Notice that given ([allpt1, ey [at]pit) € Zpil X e X Zpit

by CRT 3x € Z such that x = q; mod(pjl.j) forj=1,..,t

S0 p(Txla) = ([l o, 1) = (Tl o, [l )

So ¢ is onto. Since |Z,| = n = p;* ~-~pét = |Z t X X7 it|
Py |23

we see ¢ must be 1-1 also and have it is an isomorphism. m
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Rings Example Rings

R =Zisaring
A field F is a ring, where F* = F\{0} is an abelian group under x
H={a+bi+cj+dk:ab,cdeR}

October-29-13 10:15 AM

Ring (a+ bi+cj+ dk)(a—bi — cj — dk) = a® + b? + ¢% + d?
AringR is a set equipped with two binary operations +,X:R X R = R So (a+bi +cj +dk)™*
Denote X (ry,13) =rasr Xnr, =71 _ a _ b P - 4 .
Such that the following hold: TP+ 2+ d? @2+b+cE+dE a2+ bR+ cE+d?)
1. (R, +) is an abelian group under addition, we let 0 € R denote the o _
(additive) identity and —r denote the inverse in R a? +b?% +c2+d?
2. xisassociative; i.e. (rx)t = r(st) = rst vr,s,t €R R[t] all polynomials with real coefficients
This allows us to unambiguously write the productry,..,n, C(R) = {f:R > R: f is continuous}
(-9 = f(x)g(x)
We will assume that our rings have identity 15 F+9)) =) +g(x)
ie.dl=1x€Rs.t.lr=rl=r VreR R = M,(R) is a non-commutative ring
3. Distributivity But it is "close" to being commutative
r(a+b) =ra+rb, (a+b)r =ar+br Recall that R is commutative if xy — yx = 0Vx,y € R
Similarly, M, (R), while not commutative, satisfies the identity
Commutativity (Wagner's Identity) z(xy — yx)* — (xy — yx)?2=0Vx,y,2

Aring is commutative if ab = ba Va,b € R .
Proof of Proposition

Division Ring 1) 0-ra=(0+4+0)-a=0-a4+0-a=20=0-a
More generally, we call a ring D a division ring if D* = D\{0} is a group Similarly,a -0 =0
under multiplication. 2) 0=(a—-a)-b=ab+ (—a)bSo(—a)b = —ab

Similarly, for the other size

iti 3) (-a)(=b) =—1-a(-b) = (-1)(-ab) = (-1)(-1)ab = ab
Proposition Since0=(1-DED=1- D+ DED =-1+ (DD =>1=
Let R be a ring. Then we have =D(-1)
1) 0a=a0=0va€R 4) Suppose that x is another multiplicative identity. Then xa = aVa € R

2) (—a)b=a(-b) =—ab Va,beR
3) (—a)(=b) =ab
4) The multiplicative identity is unique

x=x-1=1=2x=1

Example Zero Divisor
R=1Z,,  [al+[bl=[a+b]l, [a]-[b]=[ab]

Zero divisor
Let R be aring. Zg: 121131 = [6]
We say that r is a zero divisor if 30 # s € R such that either So [2], [3] are 0-divisors

rs = 0 or sr = 0 (or both)
MZ(IR):r=(1 0),s=(0 0), rs=sr=0

Units 0 0 0 1

Let R be aring. We say that v € Risa unitif 3s € R such thatsr =rs = 1. r:(l 1), 5:(1 1), rs =0, sr=(3 3)¢0
e * . e 2 2 -1 -1 -3 -3

We denote the set of units in R by R*. Notice that R* is a group under So s only works on one side. s is still a 0-divisor

multiplication. y :

Let V = real vector space with basis ey, e, e, ... such that each element is a linear

Cartesian Product combination of finitely many basis vectors.

IfR,S are rings, we can make anew ringR X S Let 7(V) = all linearly transformations T:V — V
(r1,51) + (ry,52) = (ry + 15,51 + 53) Then T (V) is a ring
(r1,82) X (15, 53) = (11712, 5152) (T+8$@) =To+S3, TS@) =T(S@))
1gxs = (1g,1s) Let T:V — V be the forward shift Te; = e,,Te, = e3,Te; = ey, ...
Orxs = (Or,0s) S:V — V back shift: Se; = 0,Se, = eq,Se3 = ey, ...,
Uey = sq, Ue, =0,Ue3=0

Proposition UTe; = U(ej41) =0
(RXS)*=R"xS* STe; = S(ej4+1) = €; Vi = ST = Iy identity

T has aleft inverse but cannot have a right inverse. Why? Suppose TM = I,
Nilpotent U(TM) = Ul, = U but (UT)M = OM = 0 contradiction

An element 7 of a ring R is called nilpotent if 3n = 1 such that r = UT = 0and U # 0soT is a zero divisor but AM € T(V), M # 0 such that TM = 0
Why? IfTM =0= (ST)M =S0=0=>I,M=0= M = 0~

R* a group

Notice if ry, r, are units = 3s;, s, such that s;7y = 1151 = 1,5, = 51

So (11713)(5251) = 11(1282)s1 =115 = 1

And similarly, (s,51)(r113) = 1sor,r, ER* = 1,1, €ER*

(R*,x) is associative. R is associative under X.

Obviously1€R*1-1=1-1=1

Ifr € R* = 3s € Ruchthatrs =sr =1sos=r"landr =s 'sos € R*

Example Sets of Units
7t ={+1} =7,
Why? If n € Z and 3m € Z such that nm = mn = 1thenn,m = +1
Z[i]* = (a + bi)(a — bi) = a? + b?
N a
@b =y ~ e
Z[i ={1,-1,i,—-i} = Z,
Zs = {[0],[1],[2], [3], [4]}
Zs = {[11,12],[3], [41} = (2]} = Z4

i = (a,b) €{(0,1),(1,0),(0,-1),(-1,0)}

R = My(Z,) = R* = GLy(Zy) = Sy

Proof of Proposition

(r1,51) € (R X S)* © 3(1y,5,) € R X S such that
(r2,52) (11, 1) = (11, 51) (12, 52) = (1g, 1)
© (111, 5251) = (1172, 5152) = (1g, 1s)
S =nr =1z &S5 =515, = 1g
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©r ERY, s, ES”
So(r,s) E(RxS)* & reR* &seS* < (r,s) ER*xS§*

Example
(ZXL) =7 XL =7y XLy

Example Nilpotent Elements
R € Z4,7 = [2] is nilpotent since [2]? = [4] = [0]



Ring Properties & Defs.

October-31-13 10:00 AM

Idempotent
Let R be a ring. We say that e € R is idempotentife? = e

Theorem (Jacobson)
We won't prove this

Let R be a ring and suppose that for each r € R, 3n = n(r) = 2 such
that 7™ = r. Then R is commutative.

Integral Domain

A commutative ring R is called an integral domain if the only zero
divisorinR is 0.

Thatis,ifr,s ER,r #0,s #0=>rs # 0

Assignment
Prove that if R is a finite integral domain then R is a field.

Remark
If R is an integral domain = 0 and 1 are the only idempotents in R.

Characteristic
Let R bearing.
We say that R has characteristicn > 2 if
1+1+1+--+1=n-1=0
(n1's)
andif0<d<n, 1+1+-+1=d-n#0
(d1's)
In other words, 0(1) = n in the group (R, +)
IfAn>2st. 144+ 1=mn-1=0then we say R has characteristic 0.

Proposition 1
Let R be an integral domain. Then either R has characteric 0 or
characteristic p, p prime

Proposition 2
Let R be a finite integral domain (from assignment = field)
Then 3 prime p such that char(R) = p and |R| = p¢

Subrings

Let R bearingandletS € R

Then S is a subring of R if
1) (S,+) is asubgroup of (R, +)
2) Sisclosed under multiplicationi.e. if s;,5, €S = 515, €S
3) 1j € Sistheidentity of S

So S is a subset that is also a ring with +,X and 15 = 1

Centre of a Ring
Let R be aring.
We define the centre of R
Z(R)={z€R:zr=rzVr €R}
1) Notice Z(R) is a subring of R
2) Z(R) is a commutative ring.
3) IfDisadivisionring then Z(D) is a field

why?zr =rz o rzt=z"1r

Ideals
Let R be aring.
We say that I € R is a left ideal of R if
1) (I, +)is asubgroup of (R, +) under +
2) IfreRandA€lthenrdi el
Similarly if
1) Same
2) IfreRandA€lthenAr el
we say | is aright ideal.
Anideal (2-sided ideal) I is a subset that is both a left and a right ideal.
Writel S R

Simple Ring
AR is called simple if (0) and R are the only ideals of R.

Theorem 1
Let R be a simple commutative ring.
Then R is a field. Conversely, a field is simple and commutative.

Theorem 2

Let D be a division ring.
Then M,, (D) is simple.
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Example Idempotent Elements
02 =0and 12 = 150 0 and 1 are idempotent
Z, X Z,, (0,1) is idempotent
_ 1 0. .
R = M,(R), (0 0) is idempotent
Proof of Remark
Supposee? =e.Thene? —e=e(e—1)=0=>e=0o0re=1

Example

Zy, is an integral domain iff n is prime.

Why? If n is composite, n = ab, 1 < a,b < nthen [a][b] = [n] = [0]
[a], [b] # [0]

If nis prime p and [a], [b] € Zj, [a] # 0,[b] # 0 = ab # 0 (mod p) = [a][b] = [ab] # [0]

Example Characteristic

R = Z, has characteristic n

[1] + -+ [1] = n-[1] = [x] = [0]
Z,Q, R, C, H have characteristic 0

Proof of Proposition 1
Suppose char(R) =n = 2
If nisnotprime,n =ab,1<a,b<n
Then0=(1+--+1)=0+--+1DA+:+1)
n times atimes b times
Soif R is an integral domain, either 1 +---+1=0o0r1+4+--41=0
a times b times
But this contradicts the fact that char(R) = n

Proof of Proposition 2

Let|R| =m

then1,1+1,1+1+1,..,1+ -+ 1 cannotall be different
m times

Sodi<jsuchthatl+--+1=1+--+1=>1+--+1= 0= char(R)is finite

i times j times

So 3p prime such that char(R) = p
Now we can regard R as a Z,-vector space.
Ifr,seRanda,b € Zy then

ar+bs=r+-+r+s+--+s=ar+bs

atimes b times

pr=0,ps=0
We say a subset 1y, ..., 13, is linearly indepenent if

ey + ot o =0, L €Ly =y ==¢, =0

Jj —itimes

As with vector spaces, we can pick a maximal linearly independent set and it will be a basis

for R.
Let B = {ry, ..., 74} be abasis for R (d < o since |R| < )
ThenR = {C1T1 + -+ cgTg, €10 Cq € Zp}
SolRl=p-p--p=p*

d times

Example Subrings

R=R, S=Q
R=M,(C), S=M,(R)

R = M, (R), S = upper triangle real matrices
R=R[t], S=R

Example Ideals

Example 1
R=1Z
I =nZ

Then [ is an ideal of Z. Why?
Ifna,nb €l >na+nb=n(a+b) €l
Ifna € I,and m € Z = m(na) = n(ma) €1

Example 2
R = M,(R)

1={(g g):a,bem}

I is aright ideal but not a left ideal
@ DG =5 e

G D6 =G Ve

Proof of Theorem 1

Let R be a simple commutative ring and let x € R\{0}

Let! = {rx:r € R}

Notice that / is an ideal.
Why? ryx,r,x € I, rnx £ 1, = (r; £ r,)x € I'so (I, +) is a subgroup
Ifa€ Randrx €I > arx = (ar)x €1, rxa = (ar)x € |

Also,1-x€1,1-x# 0sol 2 (0)

Since R is simple, I = R



Theorem 2

Let D be a division ring.
Then M, (D) is simple.

Remark
1) IfRisaringand a € R then
Ra =1={ra:r € R}isaleftideal
aR =] ={ar : r € R} is arightideal
RaR = {all finite sums of the form ras, r,s € R} is a 2-sided

ideal.
Proposition
Let R bearingandlet a € R. Then
m
RaR = [z rjasj:m = 17y, ., S, Sm ER
j=1

is an ideal and is the smallest ideal that contains a.

Remark

If 1,] are left ideals of R
=>1+]={x+y:x€l,ye€j}isaleftideal of R

Similarly for right ideals and ideals.

Why? Check that I + ] isa groupand if x € I,y € J and r € R then
r(x+y)=rx+ryel+]j
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Why? ryx,mpx € I, rpx £ 15 = (1 £ 15)x € I 'so (I,+) is a subgroup
Ifa€ Randrx €1 = arx = (ar)x €1, rxa = (ar)x € I

Also,1-x€1,1-x# 0sol 2 (0)

Since R is simple, I = R

Solel=>3reRs.t.1=rx=xrsox '=r

So R is a field.

Conversely, if R is a field and if I is a nonzero ideal of R

Ir#0inl.Sor '-rel=>1€l=>r-1€lVr€R=>1=R > Rissimple.

Proof of Theorem 2
Let E;; = matrix with zeros everywhere except 1 at i-th row and j-th column.
Eyifj=k
EiiEpy = 8; Ey =4 il
R e {0 otherwise
Suppose that I < M,, (D) (is an ideal of) and that I # (0)

a1 Qan a1 Qan
SinceIi(O),EI( R >el, ( S );&0
An1  ** Qpn An1  ** Gnn
Ay v Qip
(70
Ap1 0 QApp 1<i,jsn
Since
Ay o Qip
A= Z aijEij:<: :)io, 3ig,jo 5.t az,j, # 0
1<i,jsn An1  ** Qpp

n n

n n
ExioAEjo1 = Egiy <Z Z aijEij) Eju = Z Z ijEriyEijEjo = Z igjErjEjot = QigjoErt

n
i=1j=1 i=1j=1 j=1
Since I is an ideal,
@igjoEr = ExiyAEjy
-1

%igjo

elvk,l

. @ipjoEre = Exy €1 Vk, 1
Digjo
= Eyq + Eyp + o+ Eny = identity € I So 1y, (py € I = I = My,(D)

Proof of Proposition
1) RaR is asubgroup under +:
m n

Z ras; , Zr{asl’ € RaR = sumnyas; + - + 1pas, +r{as; + -+ mas,

j=1 =1

n
lerjas]-EIandeR

j=1
n n
x(Z rjasj> = Z(xrj)asj € RaR
j=1 j=1
n n
<Z r]-as,->x = era(ij) € RaR
j=1 j=1

2) Proof that RaR is minimal: exercise

Ideals of Z

What are the ideals of Z? Answer: [ 2 Z < [ = nZ for somen € Z.

Proof

IfI=(0)=1=0Z

IfI # (0) 3n # 0in [ and since n, —n € I, we have a positive integer in /.

Let d be the smallest integer in /.

Claim: I = dZ.

Why?
I 2 dZandif3k € I\ dZthenwritek =dq+7r, 0 <r<d
Then r = k + d(—q) € I but this contradicts the minimality of d.
Sol =dZ.



Quotient Rings

November-05-13 10:04 AM

Let R bearingandlet I < R (ideal)
I 2 R means (I, +) is a subgroup of (R, +) andifx € & r € R >rx,xr € |
lisanideal ®ifx,y€El=>x+y€l&x€El,rER>xr,rx €I

Quotient Ring

LetI 2 R be a proper ideal of R

We can form a quotient ring, R/I as follows:

We say r;~1; & 1, — 1, € I. Then ~ is an equivalence relation.
Transitivity
n~r, 2~T3
n—neEln—-rnel>m-—-n+mh-n)=n—-mrnel=>n~n

Equivalence Classes

Givenr € R,welet[r]={s€R:r~s}=r+1I

This is the equivalence class of R.

Asaset,R/I ={|r|:r € R}

Addition and multiplication are defined as one would expect. Namely,
[r1] + [12] = [ +12]
[r1] - [r2] = [a7]
1pss = [11

Well-Defined

Suppose that r; ~ s; and r; ~ s,

Want to show [ry + 1] = [s1 + s3]

Notice (r; + 1) — (s1+s2) = (1 —s1) + (i, —s,) €1
=>n +T2~51+Sz
= [ + 1] = [s1+ 52]

Want to show [r11,] = [s153]

[rmy] = [s152] © iy — 515, €1 © 11y — 115, + 1152 — $152 € 1
o nr(p—s)+(n—s)s; €1

Last holds since 1, (1; — s3), (17 — 52),52 €1

Finally, [1] - [r] = [r] - [1] = []

So [1] is an identity. Associativity and distributive rules com from R.

[r1(Ls]- [eD = [rllst] = [(rs)t] = [rs][e] = ([r]lsDIe]
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Quotient Rings

Example

R=2Z, I=nZ, n=2

R/I =Z/nZ =T,
[al={b€Z:a=b(modn)}={b€Z:a—b € nZ}

Example
R = R[x] = all polynomials with real coefficients
I ={p(x)(x?® + 1):p(x) = R[x]} = R(x? + 1) is an ideal
What is R/I? We'll show that R/I "looks like" C
Why?
Remark 1
If p(x) € R[x] = 3a, b € R such that
[p(x)] = [ax + b]
Why?
p(x) = (x% + 1)q(x) + r(x), where deg(r) < 2
Polynomial division algorithm
=2p() —1r(x) =qx)x*+1) el
= [p()] = [r(x)] = [ax + b]

+ and x

la+bx]+[c+dx] =[(a+c)+ (b+ d)x]

[a + bx][c + dx] = [ac + (ad + bc)x + bdx?]

= [ac + (ad + bc)x + bd(x? + 1) — bd] = [(ac — bd) + (ad + bc)x]

"Looks like" C. (a + bi)(c + di) = (ac — bd) + (ad + bc)i
(a+b))+(c+di)=(a+c)+ b+ d)i
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Homomorphism

Let R, S be rings.

Se say thatamap f: R — S is a (ring) homomorphism if
fE+y)=f)+fO)vry€eR
fGy) =f@f () vx,y €R
fR) =15

Note:
The last condition does not follow automatically from the first two.
For example f(x) = 0Vx € R

Remark 1

f(0g) = 05

Remark 2
ker(f) = {r e R:f(r) = 0}
ker(f) is an ideal of R.
Why? If x,y € ker(f) = f(x +y) = f(x) + f(y) = 05+ 05 = 05 = x + y € ker(f)
Ifx e ker(f),r €R = f(rx) = f(r)f(x) = f(r)0s = rx € ker(f)
= f(xr) = f)f(r) = 05f(r) = 05 = xr € ker(f)

Remark 3

fis 1-1 & ker(f) = {0}

Why? Look at f has a group homomorphism of (R, +) to (S, +)
Then f is 1-1,= ker(f) = (0s)

Proposition
If f:R — S is a homomorphism, then im(f) = {f(r):r € R} € Sis asubringof S.

Isomorphism
f:R — Sis an isomorphism if it is a homomorphism that is 1-1 and onto.
If f:R — R is a homomorphism, we call it an endomorphism

If it is an isomorphism, we call it an automorphism.

Proposition
1) Iff:R — Sisanisomorphism, f~1:S - R is an isomorphism

2) Iff:R— Sand g:S — T are homomorphisms, g o f: R — T is a homomorphism.

Proof on Assignment

First Isomorphism Theorem

Let R, S berings and let f: R — S be a homomorphism.
Then R/ ker(f) =im(f) € S
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Proof of Proposition
1) (@im(f), +) is a subgroup of (S, +) because
f:(R,+) = (S,+) is a group homomorphism and im(f) is a
subgroup.
: x=f(r)
2) Ifx,y €im =
) eyemif) =, e,

3) 1s=f(1g)

b= v = F00£G) = £Gam) € im(p)

First Isomorphism Theorem

Before we prove this, consider

R = R[x], S=C

f:R[x] - C, f(p(x)) = p(i) homorphism
ker(f) = R[x](x? + 1)

Proof of First Isomorphism Theorem
Define F: R/ ker(f) — im(f)
F([rD = f()
Notice that if [r] = [s] thenr — s = x € ker(f)
>fr-9)=fx)=0, [fr-—s)=f@)—f()=[f@)=/[(s)
= F([r]) =F(sD
Now we'll check that F is a homomorphism
1) F(rl+[sD=F(r+sD=f0+s)=f@)+f(s)=F(r]) +F[s])
2) F([rl[s]) = F([rs]) = f(rs) == f(r)f(s) = F([rDF([s]
3) F([1gD =f1p) =15

Notice F is onto.

Ifx €im(f) = 3Ir eRs.t.s = f(r) = F([r]) so x € im(F)
To show F is 1-1

F(rD=0& f(r) =0 < r eker(f) & [r] =[0]

So ker(F) = {|0]} = F is 1-1. The result follows.

Examples

Example 1

LetR = R[x], I = R[x](x —7)

Whatis R/I?R/I = R

Why? Consider f: R[x] - R, f(p(x)) =p(7)
flp@) +q@) = (p+ D7) =p(7) +q(7) = f(p() + f(q(x))
fP@q() = p(Ng*7) = f(p())f (a())
f=1

f is onto, ker(f) =1

Soim(f) = R=R/I

Example 2
R = Qlx], I=R(x*-2)
Whatis R/I?

R/l =Q[V2] ={a+bV2:abe Q)
f:R - Q[V2] by f(p(0) = p(v2).
Then f is onto and ker(f) =1

Example 3
R = R[x], I=R(x*-—x)=Rx(x—1(x+1)
ThenR/I = RXRXR
Why? f:R[x] > RXRXR
f(p(x)) = (p(O),p(l),p(—l)), f is a homomorphism
p(x) € ker(f) & p(0) =p(1) =p(-1) =0 & x(x — ) (x + Dip(x)
epx) el
f is onto. Given (a,b,c) € R X R X R,
Letp(x) = —a(x®* - 1) + gx(x +1)+ %x(x -1)

F(p() = (p(0),p(1),p(-1)) = (a,b,c)

Example 4

Let R = C€([0,1]) = {f:[0,1] » R : f is continuous}
F+9)x) =fx)+gx)
Fgx) = f)g0)
1 = constant function 1

Let/ ={fer:f(3)=0}

WhatisR/I?R/I =R

Proof

Consider ¥: €([0,1]) » R, W(f) = f (%)

Y is onto because constantmap 1-1 - A
kerW =1
SoR/I =R

Example 5
For each a € [0,1]

Letl, = {f € ¢([0,1]) : f(a) = 0}
If1 2¢([0,1]) and I € €([0,1]) = 3a € [0,1] such that] € I,

Proof
Suppose I < €([0,1]) and Aa such that/ < I,
1) ThenVa € [0,1], 3f, € I such that f,(a) # 0
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2)
3

2

5)

For each @ 3 an €, > 0 such that f,(x) # 0 forx € (@ — €4, @ + €4)

(Fact) U (@ —eqa+e,)2[0,1]
a€f0,1]

So 3ay, ..., a, such that
n

U(ai — €q, @+ eui) 2[0,1]
i=1
n

Letg = Zfazi el,  g(®*0vBe[o1]
i=1

So h(x) = g—(lx—) is continusous on [0, 1]
Soh-g=1€l=1€c(0,1])
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Correspondence Theorem

Let R bearingand let I < R be a proper ideal.

Then there is a bijective correspondence between the ideals of R/I and the
ideals of R that conatin /, given as follows:

f:R->R/I, f)=rl=r+1

This is a homomorphism.

{ideals of R that contain I } & {ideals of R/I}
JSRJ21m f(J)2R/I
fUK),  fUK) 2T« K2R/l

Moreover,[ € J; € ,inR < f(J;) € f(,) inR/I

Remark
Let R and S be rings and let g: R — S be a homomorphism.
Then we have
1) IfK2S=g 3 (K)={x€R:g(x) €K}isanideal inR
2) Ifgisontoand/ S R=g()=2S

Maximal Ideals

Let R be aringand let I 2 R be a proper ideal of R. We say that [ is a
maximal ideal of R if whenever ] 2 R with] € ] € R, we have either ] =
orJ =R.

Proposition
Let R be a ring. Then an ideal I = R is maximal if and only if R/I is simple.

Corollary
Let R be a commutative ring. An ideal I 2 R is maximal <> R/I is a field.

Posets

A poset P is a set with a partial order < such that
a) a < a (reflexive)
b) a<b&b <a=a=>b (anti-symmetry)
¢) a<bandb<c=>a<c

A totally ordered set is a poset P in which Va,b € P eithera < borb < a

Chain

A chain in a poset P is a totally ordered subset of P. In other words, 3 a
totally ordered set ] and amap f:1 - P suchthatx < yinl = f(x) < f(y)
inP. {f(x) : x € I} is a chain.

We say that a chain in P has an upper bound in P
if 3x € P such that x > y Vy € the chain

Zorn's Lemma
(Equivalent to the axiom of choice)

Let P be a poset with the property that every chain has an uppoer bound in
P.

Then P has at least one maximal element.

ie.Ix E Pst.ify € Pandy = x theny = x.

Applications of Zorn's Lemma
Every vector space has a basis.

Theorem
Let R be a ring. Then R has a maximal ideal.
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Proof of Remarks
1) SoletK 2@ Sandletx,y € g71(K) © g(x),g) EK=>gx)+g(y) K>
gx+y)eK=>x+yegi(K)
IfreRandx € g71(K) & g(x) €K
= g0x) =gr)gx) ek =rx € g~(K)
Similarly, g(xr) = g(x)g(r) €K = xr € g71(K)

2) Supposethat gisontoand/ < R
We want to show that g(J) < S.
Supposex,g € g(J) @ Ju,v€Jst.x = gw),y = glv)
2x+y=gw)+gWw) =gu+v) €gQ)
Next, suppose that x € g(J) and s € S. We must show that sx and xs ar in g(J)
wgisontodr ERst.g(r) =sand~ x € g()Iu € J s.t.x = g(u)
Sosx = g(r)gw) = gtuw) € g(J)
xs =gwg() = gur) € g()

Proof of Correspondence Theorem
f:{ideals of R containing I} — {ideals of R/I}
fI-f0), fHK) <K

f:R - R/I, refrl=r+1

ker(f) =1={r:[rl=0}={rmr+1=1}

To show these maps are inverses we must check
1) IfjaR& 21> fF L f()) =1
2) IfK 2 R/I= f(f1(K)) =K

1) Notice f*(f(N) 2« f(f(D) = tx: f() € fFN} 2
Suppose that x € f~1(£(J)) . We must show that x € J
Sf)ef@)=>ye]st. f=fO=>fO-fO=0>fx-y)=0
>x—yeker(f)=I=>xey+ker(f)cj+I1=]]21I
Sox €]

2) Notice that f(f~1(K)) € K
Why?Ifx € f~1(K) = f(x) €K = f(f1(K)) € K
Letx € K.Since f isonto3y € Rs.t. f(y) = x
2y €ef1K) = ef(fF1E) = ke f(F1(K)

And we are done.

Proof of Proposition

Suppose that I is maximal.

Then the only ideals of R that contain I are [ and R.

Letf:R—> R/l =s

By the correspondence theorem, the only ideals of R/I are f(I) = {[0]} and f(R) =
R/I. So the only ideals of S are (0) and S so S = R/I is simple.

Next, if S = R/I is simple then S has only two ideals (0) and S.
So by the correspondence theorem, R has only 2 ideals containing I:
{0} =ker(f) =Iand f7X(S) =R

So I is maximal.

Proof of Corollary
We showed that R is a commutative simple ring < R is a field.

We showed that I is maximal < R/I is simple and since R is commutative, this holds
< R/l is afield.

Example

What are the maximal ideals of Z?

Answer: | 2 Z is maximal & [ = pZ

Ideals of Z:

2Z 3Z S5Z 7Z..

I\ NV

4Z 6Z 15Z ...

|

8Z

Notice Z/nZ is an integral domain <> n = p since a field is an integral domain and a
finite integral domain is a field. Z/nZ is a field < nZ = pZ, p prime.

Example

If R does not have a 1 (R is a rng). Then R need not have any maximal ideals.
G={xeCams.t. x*" = 1}={e£2%1 jEZM= 1}

G is an abelian group.

Show that G has no maximal proper subgroups.If H £ G 3K £ GwithH £ K
LetR = G asaset

x@y=xyinGxQy =0z

ISReI<G

Proof of Theorem (Maximal Ideal)

Let P = {all proper ideals of R} ordered by inclusion. | < & [ € ]

Let T be a totally ordered set and let {/, }4¢r be a chain in P.
ieas<finTol, Sl
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Let] = U Iy
a€ET
Claim
[ is a proper ideal of R.
Proof
(ideal) ifx,y €I = Ja, B s.t.x €I, &y E Ip.
Since this is a chain, either I, € Ig or Iz € I,. WLOG I, € If
sox,y€lg=>x+y€lpg <l
Similarly, x E,rER=>xE€Ely =2 rx,xr €l €1

Notice if I were not properthenl1 € I = 1 €I, forsomea €T = I, & P
contradiction.

So [ is proper.

So by Zorn's Lemma, P has a maximal element which by definition of P, is a maximal
ideal.
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Maximal Ideals
I 2 R is maximal if
IS Randiff SRwith/ € J=] =R

(Zorn's Lemma) = Maximal ideals exist

Claim
In fact, we can say more.
If ] 2 R is proper then 3 a maximal ideal / that contains J

M = R is maximal & R/M is simple
and if R is commutative < R/M is a field

Prime Ideals
Let R be aringand let P < R be a proper ideal of R.
We say that P is a prime ideal if whenever a, b € R are such that
axb E PYxXER=>a€PorbeP
In the case that R is commutative, the definition becomes simpler:
axb € PYx ER & ab € P
Takex =1=>ab€P =>abx EPVx ER
If R is commutative and P < R we say that P is a prime ideal
ifabeP=>a€Porb€P

Comments
For now, R is commutative.
? ¢ Any maximal ideal is a prime ideal.
Why? Let M 2 R be maximal and suppose M is not prime.
Then 3a,b € R\ M butab € M
SoRa+ M =R = 3Ix € Rand m; € M suchthatxa =m; =1
andRb+M =R=>3y€Randmy E Mst.yb+m, =1
Multiply (xa + my)(yb+my)=1-1=1
= xyab + xam, + ybm; + mym, =1
M M M M M
Contradiction.

Note

No symbol for normal subgroup but not equal to. Using <
Theorem

Let R be a commutative ring and let P < R be a proper ideal.
Then P is a prime ideal & R/P is an integral domain.

Remark
If P is prime and a,a; - a, € P = a; € P for some i.

Remark

R commutative
IfxeERandx" €eP>x€P
(Takea; =a; = =ay =x)

Notation

Ifay, ..., ar € R we'll write (ay, ..., ax) to denote the ideal generated by

ai, ..., Ag
RaiR + ---+ RayR (if R commutative = Ra; + - + Ray)
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Proof of Claim

Consider the ring S = R/J

We know 3 a maximal ideal M 2 §

By the correspondence theorem, if f:R > R/] =S, r> [r]=1r-]

We have I = f~1(M) is an ideal that contains J.
R=f1S)«Sas

I=f Y M)«M=S

By correspondence, I is a maximal ideal and it contains J

Example Ideals
M,(C), P = (0) is a prime ideal
IfA,B € My(C)and AXB =0 VX € Mp(C) > A=00rB =0

By = ) AuXiaBy = 0
kil
For Xy, = 6kk06110, E” = AikoBloj = Aikg =0 or Blof =0
Example
R=17

What are the prime ideals?
e pZ, p prime

Ifa,b € Zand ab € pZ < plab = plaorp|b = a € pZorb € pZ
IF n > 2 isnot prime, writen = ab,1 < a,b <n.Soab € nZbuta & nZ,b ¢

nZ = nZ is not prime.
e Zisnota prime ideal because it is not proper
e 0-Z={0}isprime.Ifab=0=>a=00rb=0

Example

(0) is not a prime ideal of Z X Z
a=(1,0¢(0), b=(01)¢(0)
but ab = (1,0)(0,1) = (0,0) = (0)

Proof of Theorem

Suppose that P is a prime ideal and suppose that [a], [b] € R/P
and[a] - [b] =0,a,b €ER

Then [ab] =[0]=>ab—0€P=>abeP=>a€PorbeP=>[a]=[0]or[b]=0=

R/P is an integral domain.

Conversely, suppose that P < R is not prime.
Then 3a,b € R suchthata & P,b ¢ Pbutab € P
[a] # [0]inR/P, [b] # [0]inR/P

[a][b] = [ab] = 0isR/P

So R/P is not ain integral domain.

Proof of Remark
Proof by induction on n.
Base case.n = 2: Holds.

Leta=(a;an-1), b=a,ifbg¢P=>a€P=>a,ay1 €P > a; €Pforsomei

by inductive hypothesis.

Example generating ideals
Ifm,n € Z\ {0} then (m,n) = (gcd(m, n)) = gcd(m,n) Z
(12,8) = 12Z+ 8Z = 4Z
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Polynomial Ring
Let R be aring.
We write R[x] = {rg + rix+ -+ 1,x™ :m >0, 1, ...,1, € R}
Multiplication
(rg + x4 -+ 1 x™)(sg + S1x + - + 5,x™)
=15S0 + (1551 + 1180)x + (19S5 + 1151 + 1550)X% + -+ + TypSp X
Addition
(rg + -+ 1 x™) + (5o + -+ + sx™)
= +5o) + -+ (rmax(n,m) + Smax(n,m))xmax(n'm)
Wherer; =0Vi>m, s; =0Vi>n
This is called the polynomial ring over R in one variable.

n+m

Sox € Z(R[x]) v rx = xr (1)(1x) = (1 - x)ry
In general, S = R|x], s|y] we write S|y] = R|x,y]

More generally, R[xy, ..., x,] = (((R[xl])[xz]) [Xn])

Proposition
Let R = F be a field.
Then every ideal of F|x] is generated by a single element.

Group Ring

Let R be aring.

The group ring of G over R is

RIGI={Yyecty - 9 | 75 € R, 7, = 0 for all all but finitely many g € G}
Multiplication

(3 50) (Sout) = 3 (S

geG hee keG \gec
(r-g)(s-h)=(rs)gh

Matrix Ring

Risaringn=>1

i1 Tn
Then M,,(R) = {( - >:ri}- € R}

Th1 " Than
(rj) + (si) = (ryj +54)

() - (sy) = (&), ty = z": Tike Skej

Some Rings
A few rings related to polynomial rings
1) Laurent Polynomials

n
R[x,x71] :{Z rixt:M,n=0,7; € R]

i=—M
2) R[[x]] formal power series

R[IxI] = {Z Tx™ i1y, 7, . € R]

n=0
(ro + 1px + 1x% 4+ - ) (5o + S1% + Spx2 + ++)
=190 + (1551 + 1150)x + (1y50 + 1y5¢ + 1955)x? + -

Example
R=17, Z[lx]], Z nlx™ € Z[[x]]
n=0
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Proof of Proposition
LetI 2 F[x].IfI = (0) the result holds.
IfI # (0),3p(x) € I of smallest possible degree.

Claim

I=(p(x) = p(x)Flx|

Proof
Suppose that 3g(x) € I\ (p(x)).
Then deg(q) = deg(p) by inimimality of p.
q(x) = p(x)a(x) + r(x) where r(x) = 0 or deg(r(x)) < deg(p(x))
Sor(x) €1~ r(x)=q(x)—plalx) el
Ifr(x) 0= deg(r(x)) < deg(p(x))
~ r(x) € I this contradicts minimality of deg(p)
Sor(x) =0=q(x) =px)alx) € (p(x)). Contradiction
Sol = (p(x))

Example Group Rings
G =17, ={x|x> =1)
ClGl={a-1+b-xla,b€C}=Clx]/(x*-1)
(a+ bx)(c + dx) = ac + adx + bcx + bdx? = (ac + bd) + (ad + bc)x

f:Clx] = C[G], XX

Question

If Risaring and G and H are groups,

[s it true that if R[G] = R[H] as rings = G = H as groups?
No

G=7, H=1,x1,

Claim: C[G] = C[H] = CXCXxCXxC

G=(xlx*=1)=12,
H=vlu=1,v2=1Luwww=vu)=7Z, X7Z,
Let's show that C|[H| = C X CXx Cx C
ClH] ={a+bu+cv+duvlab,cdeC}
Letmy: C[H] - C, m,:C[H] - C
a+bu+cv+buva+b+c+d,
my(a+bu+cv+duv)=a—b+c—d
ma+bu+cv+duv) =a—b—c+d
Letm:C[H] > CXCXxCXC

(%) = (g (%), 72 (), 3. (%), 14 (x))

(1) = (1,1,1,1)

m(u) =(1,1,-1,-1)

n(v) = (1,-1,1,-1)

m(uv) = (1,-1,-1,1)

1 1

a+bu+cv+duwwra+b—c—d

1 1
1 1 -1 -1
1 -1 1 —1|7°

1 -1 -1 1
so 1 is onto and since dim(C|H]) = dim C* = 4 and & is a linear transform
= mis 1-1 and onto
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Field of Fractions

Let R be a commutative integral domain. We will construct a field F
(= Frac(R)), called the field of fractions of R.

Let R = {(a,b):a €R,b € R \ {0}}. We put an equivalence relation ~
on R by declaring that (a, b)~(¢,d) & ad = bc

Claim
~ is an equivalence relation.

We define F = field of fractions of R to be R/~
[(a, )] ={(c,d) € R: (a,b)~(c,d)}

(@ b)) + [(ed)] = o4 £ = 22 00°
[(@,b)] (e, d)] = [(ac,ba)]
Notice [(0,1)] = 0p

[0,1)] + [(@,)] = [(a-1+b-0,b- 1)] = [(@b)]

[(L,DI=1p  [(1DI(a )] = [(ab)]

= [(ad + bc, bd)]

Notice F is a field.

If[(a,b)] #0r & a+0=[(b,a)]EF

So[(a, )] [(b,a)] =1[(1, 1] =1

So every nonzero element has in inverse.

Now that we've done this, we write% for [(a, b)] € F and we have
a ¢ ad+bc a c _ac

bta” hd © b'd bd

Chinese Remainder Theorem

Integer Version

If my, ..., my, are integers > 1 with gcd(mi,mj) =1fori # jand
ay,.,ay €Z

= dx € Zs.t. x = a,(mod m,), ..., x = ax(mod my)

General Ring Version
Let R be aringand let I, ..., I, be ideals of R and suppose that I, ..., I,
are pairwise comaximal (i.e. /; + [; = R when { # j)
k
Then R/(ﬂlk) = R/ X R/l X X R/l

i=1

General
R ring
e Ij,...I, <R
L] Ii+1]':RfOri?‘—'j
K
Then R/(ﬂli> =R/l; XX R/}
i=1
Remark

If I 9 R, we'll write [r]; for the equivalence class fo r in R/I.

If I 2 ] < R. Then we have a "forgetful” surjective homomorphism

m: R/l - R/], n([r]) = [T]]

This is well-defined
[ri=[sier-sel=>r—-sej~I1c]=>][r],=Is];

Son([r]) = n([s];)
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Proof of Claim

Reflexivity

(a,b)~(a,b) & ab = ba, which is true
Symmetry

(a,b)~(c,d) © ad = bc © ¢cb = da < (¢,d)~(a,b)
Transitivity

If (a, b)~(c, d) and (c,d)~(e, f)
ad = bc = adf = bcf = bde = (af —bc)d =0
~d # 0and R is an integral domain, af = bc = (a,b)~(e, f)

Example

R=1Z, Frac(R) = Q
p(t)

R = R[t], Frac(R) = R(t) = {m) :p(t),q(t) € R[t], q(t) # 0}
R =1Z[i] ={a + bi,a,b € 7}
Frac(R) = Q[i] ={c+di:c,d € Q}
a,b,e,f €Ze,f+#0
a+ib_(a+ib)(e—if)_ae+bf be — af
e+if e2+f2 T e2+f2 e24f2

i€Qli]

Example General CRT
n= pil p,ik, D1 Pk Qistinct primes.
= Z/nL = L/p L X L/p L X -+ X L/ p}FT.
OrZy = 7 iy X+ XL g

Py Py

L =phz,1, = p27, .., I, = p*z
LN NNl =nZ
SoZ, = ZP? X e X Zp;-ck

Example 2
Letp(x) = (x — A1) (x — A3) - (x — Ay) € R[x], A4, ..., Ax are distinct real numbers
Then R[x]/(p(x)) = RX R X -+ X R, k times
Why? Let I; = (x — ;) = (x — 2;)R[x]
R[x] = I, + ;. Why?
(x—li)+(x—lj) =}\j—}\i€1i+1j =1 Eli+1]‘ :Il+lj =]R[X]
Noticethat ;, NI, NN [, = (p(x)) =p(x)R[x]
Why? g(x) = I & (x —2)]q(x)
2q) =L nLN Nl < (=)0 =2) (x = N)]q(x) & p(0)|q(x) < q(x)
€ (p(®) =p(ORIx]
So CRT
Rlx]/(p(x)) = R[x]/(; NI 00 L) = R[x]/(x = Ag) X - X Rlx]/(x = &)

To finish, if 1 € R we have a surjective homomorphism ¢: R[x] » R, ¢(q(d)) = q(A)
ker¢ = {q(x):q(1) = 0} = (x — VR[x]
SoR[x]/(x—2) =R

R[x]/(p(x)) =RXRX-XR, k times

Proof of Chinese Remainder Theorem

k
LetL:ﬂIiﬂR
i=1

ThenL C I, 15, ..., I,
So 3 a surjective homomorphism m;: R/L - R/1;, [r], = [r]y,
We define a homomorphism

¢:R/L - R/I; X R/, X - X R/

by (1) = (Irlh,, [Py o [F]1,)
To show that ¢ is an isomorphism, must check that ¢ is 1-1 and onto.
To see that ¢ is 1-1, let's find ker ¢
So[r],isinker¢ & ¢([r],) = ([r],l, [r],k) =(0,..,0)

k

Slrli=0vied, Jorelvied. kore U’f =L o[, =0,
Soker¢ = {[0],} = pis 1-1 =
We now show that ¢ is onto.
Claim:

Auy, Uy, ..., U € R such that ¢p([y;],) = (0,0, ...,0,1,0,0,...,0) 1 in position i
Once we have the claim, we are done because if
(Iri11y, a1y s [cr,) € R/ X R/Iy X -+ X R/,
Then ¢([ryu; + ruy + -+ rwel,) = d([rugl) + d([ruzly) + - + pmawel,) =
([rl]llv e [rk]lk)

Notice that ¢([ru;],) = ¢([r1)p((wil) = ([, 1l -, 1) - (0,0,...,0,1,0, ..., 0) =
(0,0,...,0,[r];,,0, .., 0)

Proof of Claim

Let's see how to construct u;.

Noticethat; + L, =R =23x, €E,y, EL s.t.x, +y, =12y, =1—-x,
L+L=R=>3Ix3€E1,y3ELs.t.x3+y;=12>y;=1—12x3



L+, =R=>3x, €L, yy Elxs.t.xpy+y,=1=>y,=1—x;

Letu; = ¥5y3 .y = (1 —x2)(1 — x3) .. (1 —x,)
Then ¢([uq],) = ([uﬂh' [wlr,) [uﬂlk)
Notice u; = y,¥3, .. Yj Vi, J = 2

=>u; €;Vj =2~ ljisanideal and y; € [;

= [u,-],j =0forj=2,..k
Also, [u]y, = [(1 = x)(1 —x3) .. 1 = x)]y, = [A — 2]y, - [(A = x3)]y, -+ [(X = xp)]y,
Noticex; € I; fori = 2,..,k
sol=1-—x; (mod/;) Vi
= [1-xl, =1,
So p([ugl,) = ([1]11: [0]12»--- [0]1k)
By symmetry, we can construct us, .., Ug.
The result follows.
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PIDs and UFDs

November-19-13 10:02 AM

From Now On
R is a commutative integral domain

Principal Ideal Domain
Let R be a commutative integral domain. We say that R is a pricipal ideal
domain (PID) if for every ideal ] S R,3f € I s.t.1 = Rf = (f)

Irreducible & Prime

In general, if R is a communtative integral domain and f € R is nonzero and
not a unit, we say that f is irreducible if f cannot be written as a product of
a - b with neither a nor b a unit. We say that f is prime if (f) = Rf isa
prime ideal.

Example
If R = Z,nis irreducible & n is a prime number or - a prime number.
IfR = Z,nis prime & n = +p,p prime

Remark
If f is prime then f is irreducible.

Remark 2
In a PID, we have irreducible < prime.

Unique Factorization Domain
Let R be a communtative integral domain. We say that R is a unique
factorization domain
1) Ifevery nonzero, non-unitr € R can be written as a product of
irreducible elementsr = f; ... fi
2) Ifr=fi..fix = g1 ... gj are two factorizations into irreducibles then

k = j and after a sutiable permutation of g, ..., g, we have
fi =u;g;, y;isaunitfori =1,..,k

Wilson's Theorem
p prime,p > 2 = (p — 1)! = —1 (mod p)
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Example PIDs
e R=ZisaPID
e IfFisafield = F[x]isaPID

a

o (assignment) R = {z_”' a€Zb>= 0} isa PID

o Afield F is a PID - only has two ideals, (0), F = F - 1
e R=1Z[i]isaPID

Proof that Z[i] is a PID

Let I 2 Z[i].

If I = (0), there is nothing to show, I = 0Z[i]

So assume that I # (0)

Given a + ib € Z[i], define a? + b% = |a + ib|? to the the norm of a + ib
Pick a + ib nonzero in I with smallest possible norm.

We claim that I = (a + ib) = (a + ib)Z][i]

Why?

Letc+id € I.Thenletx + iy = Z:Z eC

Pick m + in € Z[i] that is closest to x + iy .

] . 1
Then [(x + iy) — (m + in)| SE

c+id m +in)| < 1
= — i
at+ib TIEE
la + ib| a? + b2
=|c+id —(m+in)(a+ib)| < — = |-
| (m+ in)(a+ )| < = .

Soife+ fi =c+id — (my)(a+ib) €landle + fi| =/c2 + f2 < /#
=normofe + fi = e? + f2 S%normofa+ ib

Since a + ib € I is a nonzero element with emallest norm and norm of e + fi is
smaller

2e+if=0=>c+id=(a+ib)(im+in) >c+id € (a+ib) =1 = (a+ib)

Proof of Remark

Suppose that f is prime. Let f = ab with neighter a nor b a unit. = ab € (f)
~ (f)isprime,ab € (f) > a € (f) orb € (f)

WLOGa € (f) > a=fu

f =ab = fub = f(1 —ub) =0 = bisaunit. Contradiction.

Example

IfR ={ay+ a,t? + azt3 + -+ a,t™:m = 2,a4,ay, ..., ay, € Q}
t2 and t3 are irreducible in R

But (t2) is nota prime ideal: t3 - t3 = t® € (t2), but t3 ¢ (t?)

Proof of Remark 2
Let] S Rwith] 2] SR
Since RisaPID,3a € Rs.t.] = (a)
Sol=(f)c(a)=] = f =abforsomeb € R
« f isirreducible either a or b is a unit
Case I: a is a unit
=>J=aR2a(a"'R) =R
Case II: b is a unit
=] =1Ibecausel = fR =a(bR) =aR =]
So I is maximal = J = (f) is a prime ideal = f is prime

Example Unique Factorization
inZUFD, 6 = 2-3 = (=3)(=2) = (=2)(-3)

Example
Let's look at Z[i]. Want to show p = 1 (mod 4) = p = a? + b?

p-1DI=1-2-3-(p-1)

- 0-0-0)e-0-2)6-0-9)-((5) (- ()
)
1),

= (—1)(=4)(=9) - (— (”—;1-)2) = (‘1)17_;1< ) )

= —1 (mod p)
Soifp =1 (mod 4)

= <(p_;_1) !>2 = —1 (mod p)
N <(p_;_1) !>2 +1=0(modp)

LetN = (”T‘l) . Then p|(N? + 1) = p|(N + i)(N — i) in Z[i]
This shows that p is not prime in Z[i]
If p were prime we would have either N + i or N — i € (p) = p\dz [i]
But this is impossible .
IfN+1-i=p(c+di) =pc+pdi
= pd = 1. Contradiction
Since Z[i] is a PID and p is not prime.
So p is not irreducible



PMATH 347 Page 45

=>p = (a+ib)(c+di)
Take modulus squared
=p? = (a? + b?)(c? +d?)

Since p is a prime in Z (not in Z[i]), a® + b? € {1,p, p%}

Casel:a? + b2 = 1= a+ ib € {1, £i}. All units, contradiction
Casell: a? + b2 = p2 = c%2 +d? = 1> ¢+ id € {#1, +i} Contradiction
Case 11l is only one allowed

Notice if p = 3 (mod 4)
p # a? + b? (0,1) mod 4 + (0,1) mod 4

So this characterizes the sum of squares



Noetherian Ring

November-21-13 10:03 AM

Ascending Chains

Let R be a commutative ring.

IfI}, 15,13, ...are ideals of Rwithl; S I, S I3 S I, € -

then we call I, I, ... an ascending chain of ideals. We say that n ascending
chainl; €1, S I3 € - terminate if3n > 1s.t. I, = I4q = [j4p = =

We say that a ring R satisfies the ascending chain condition (A.S.C.) on
ideals if every chain of ideals terminates.

Noetherian Ring
Aring R is noetherian if it satisfies A.S.C on ideals

Theorem
If R is a PID then R is noetherian.

Theorem

Aring R is noetherian &

whenever S is a nonempty collection of ideals of R 3 a maximal element of
Swrt 2

Note
We will use these ideas to prove that a PID is a UFT.
{field} € {PID} & {UFD} & {commutative integral domain}

Lemma
Let R be a PID and let r be nonzero and not a unitin R.

Then 3s > 1 and irreducible elements f1, ..., s E Rs.t.r = fifs .. fs

Theorem
APIDis a UFD
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Example
R = Z is noetherian.
Why?
Supposel; G I, G I3 G I, & -+
Nny,Z G n3Z G n47Z, n1,Ny,N3, ... 20
nZ S mZ < m|nsony >nz >ny > -
So we have an infinite sequence of decreasing positive integers. This is
impossible. Contradiction

Example

R = F, afield is noetherian
Why?
ISR=>I1=(0)orlI=R

Proof of Theorem
Let; € I, € I3 < I, be a chain of ideals of R.
&

Let] = U I, <R
n=1
Since RisaPID,3r e Rst. R = (r) = Rr

oo
reUlnﬁﬂmzls.t.relm:1m21:1= m+1 = Img2 =+
n=1

Proof of Theorem

Suppose that R is noetherian and let S be a nonempty set of ideals. Let I € S.
If I is maximal in §, we are done.

Ifnot, 3l €Sst, 2

If I, is maximal in §, we're done. Otherwise A3 € Ss.t. 3 2L, 2 ;
Continuing in this manner, we either produce a maximal element of S or we
product a non-terminating ascnedingchain: ), S I, S I3 S I, & -+

R is noetherian, the latter cannot occur.

Other direction: Suppose that every non-empty set of ideals has a maximal
elementandletl; €I, € I3 €I, € ---beachain. Let S = {I1,1,,13, ...}
By assumption, 31, € § s.t. I, ismaximal. So I, = Iy4q = Ipyp = ==+

Proof of Lemma
Suppose not.
Let S = {xR : x isnot a unit, x # 0 and x doesn't factor into irreducibles}
Then § # @. since a PID is noetherian, 3r € R s.t. ¥R € § is a maximal element.
So R doesn't factor into irreducibles, in particular, r is not irreducible
(otherwise s = 1, f; = risa factorization of r)
So3da,b € R a,b non-units such that r = ab ((r) c (a), (b))
Claim
() € (@) and (r) < (b)
We'll show that (r) & (a). Noticer = ab € (a) = r € (a)
In integral domain so can cancel r inr = rub
Soif(r)=(a)2>a€(@r) >a=ru=>r=ab=rub=>1=ub = bisaunit.
Contradiction.= (r) € (a)
Similarly, (r) € (b)
Now (r) = rR is a maximal element of § and since (a), (b) are bigger, we see they
cannot bein §. aR,bR # S by definition of §, a and b factor into irreducibles,
a=fi.fo  b=fo1.fe
=>r=ab=fifs..fsfs+1 - fs Contradiction. So § = @ and everything factors into
irreducibles.

Proof of Theorem
Let r € R be a nonzero, non-identity element athat does not factor uniquely.
Sayr = fi ... fm = g1 - gn [i irreducible, g; irreducible.
Among all elements r with non-unique factorizations as above, pick one with
min(m, n) minimal.
Notice that (f;) = fiR is a prime ideal * f; is irreducible and irred. < prime in a
PID.
Notice that r = f; ... fiy € (f1) 50 9192 - gn € (f1)
« (f;) is prime = i sit. g; € (f;)
By relabeling, we may assume that g; € (f;)
=01 €EfiR=>3a€Rst.g; = fia
g, isirreducible, a must be a unit so g; = fia
Sor =fifofm = (f1@)g2 - Gm = S = fo . fm = (ag2) . gn
By minimality of min(n, m), S factors uniquely som — 1 =n—1and f5, ..., i is
up to permuting and mulitiplication by units, (ag,), gs, -, n
i.e. after relabeling g; again we have f; = g;u;, i >3
f2 = (ag,)u, = g, (auy). au, is a unit. The result follows.



Euclidean Domains
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Euclidean domains (Norm)
A Euclidean domain (ED) is a commutative integral domain R with a
function N:R - {0,1, 2, ...} called the norm such that
1) N(0) =0;
2) N(ab) = N(a) whenb # 0
3) Ifa,b€R,b+ 0thendq,r e Rst.a=qgb+rand N(r) < N(b)
orr =0.

Proposition
Let R be a ED then the Euclidean algorithm holds in R.

Corollary
ED = PID
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Examples

Example

R=7,N(n) = |n|

R = F[x],Fis afield,N(p(x)) = deg(p(x))

Example
R=Fisafield, N(a) =0Va €F

Example
R =1Z[i]isaED
N(a + ib) = a? + b?
a+ib=(+id)(n+im)+ (r +is)
|c + id|
V2

So N(r +is) < X

|r+is| <

Proposition

Step 1

a,beR,a=qb+r,=>N() <NbB)orr,=0
Step 2

b=gqyr +1y, N(ry) <N(ry)orr,=0
T = Q3T + 713, N(r3) <N(@y)orrs =0

Tn-1 = qn+1Mn + T+, The1 =0
So 3 some largestis.t.r; # 0,71 = qj417; + 0
This 7; is called the gcd of a and b. Notice that r; € (a, b)
Why? Induction,r; = a — g, b € (a,b)
5 =b—qyry € (a,b)

Also, r;]a and r;|b. Why? Induction in the reverse direction.
So (r;) = (a,b)
Why?r; € (a,b) = (r;) € (a,b)

rla=a€ @), rilb=b € () = (a,b) € (1;)
So (r;) = (a,b)

Proof of Corollary

IfI<R, I +#(0), RisaED

Pick x # 0 in I with N(x) minimal.

Claim: I = (x)

Ifael=>a=qx+r

ax€El>rel soN(r)not <N(x) >r=0=a € (x)



Irreducibility in UFDs
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Associates

Let R be a UFD. We say that f, g € R \ {0} are associates if
Ju € R* = unitsof Rs.t. f = gu

UFD
Another way of stating the UFD property is:
If r € R is nonzero and not a unit then
1) r factors intoirreducibles fi, ..., fs
2) Ifr=fi-fs= g1 g¢ = s = tand after relabelling the g; we have f;
and g; are associates.

GCDs and LCMs

If r and s are nonzero elements of R 3 irreducible elements f,. ., f;, and
units u; and u; s.t.
r=ufi g

- J j
s=upfit e fig
Where iy, j, =0

We define a ged of r and s to be: flmm(il'j‘) --~f"rfin(i’"'j’")

and an lem of r and s to be: £#¥ (1) ... pmax(im,jm)
gcd is not unique, but if a and b are two gcds of rand s thena | band b | a

so a = ub, u unit.

Notes

In general, 7 prime = 7 irreducible.

We showed prime < irreducible in a PID. In fact, we have
Theorem

Let R bea UFD and let r € R. Then r is irreducible iffr is prime.

Lemma

Let R be a UFD and let © € R be irreducible (= prime) .

If p(x), q(x) € R[x] are such that 7 | p(x)q(x)

then either 7 | p(x) or 7 | q(x).

Note

Saying 7w € R divides a(x) = ag + a;x + -+ + appx™ in R[x]

means a(x) = wb(x) for some b(x) € R[x]

= a(x) = w(by + byx + -+ + byx™) = (why) + (b )x + --- + (Why)x™

Gaull's Lemma (Gauss's Lemma)
Let R be a UFD and let F be the field of fractions of R.
If p(x) € R[x] is reducible in F[x] then p(x) is reducible in R[x].

What does this mean?

p(x) reducible in F[x] & p(x) = a(x)b(x), a(x),b(x) € F[x] neither one is
a unit

p(x) reducible in R[x] & p(x) = c(x)d(x), c(x),d(x) € R[x] neither one a
unit.

Primitive
Let p(x) = pg + p1x + -+ + pyx™ € R[x] be a nonzero polynomial.

We say that p(x) is primite if whenever a # 0, a | py, ..., a | P, = a is a unit.

Goal
RisaUFD = R[x]|isa UFD

Corollary

RisaUFD = R[xq, ..., x,] isa UFD
Corollary

Z|x] is a UFD and it is not a PID

So ED ¢ PID ¢ UFD

Won't prove inequality part of ED & PID

Example: Z [HT‘/_TQ]

Criterion for Irreducibility

Proposition

Let R be a UFD and let p(x) € R[x] be a non-constant polynomial.

Then p(x) is irreducible in R[x] if and only if p(x) is primitive AND p(x) is
irreducible in F|x].

F is the field of fractions of R.

So we're now ready to prove the ultimate theorem.
Theorem
Let R b ea UFD. Then R[x] is a UFD.
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Goal

If R isa UFD = R[x] is a UFD = R[x][y] isa UFD = ... > R[xy, ..., x| is a UFD.
Proof of Theorem

Already know prime = irreducible.

It suffices to show that if f € R is irreducible then f is prime.

So suppose f is irreducible but (f) € fR is not a prime ideal.

Ja,b € R neitheranorbin (f),st.ab € (f)=>3s€Rst.ab=fs

Now we use that R is a UFD: factora = g, *** gx,b = hy---hjand s = t; -+ t ), all
irreducible. So we have two factorizations of ab

ab =gy gehy - hy=f -ty -ty

By uniqueness, 3i s.t. f is an associate of either g; or h;.

WLOG, f is an associate of g;. So g; = fv, v a unit.

a= g1 gi-19i9i+1" Ik = 9i91 " Gi-19i+1" Ik = fV91 " Gi-19i+1 " Gk € ()
This is a contradiction since a & (f)

So f is prime. m

Now we'll prove the last theorem of the course.

Theorem

Let R be an UFD. Then R[x] is a UFD.

Strategy

If R isa UFD = R is an integral domain = R has a field of fractions F.

i
F—{E|r,sER,s=/:O} )
Notice we have an injective ring homomorphism i: R > F, i(r) =1

Henceforth we identify R with its image in F and we write R € F.
Key idea: R[x] € F[x]

Remark
If S is a commutative integral domain then S[x]* = S*
Why?
So + 51+ -+ spx™ € S[x]*, s =0
=3ay +a;x + -+ apx™ € S[x],a, # 0s.t.
1=C(sg+s1x+ - +spx™(ag+ ayx+ -+ ax™)
Notice: If m + n > 0 the coefficient of x™*™ on the LHS = 0, on RHS = s,a, # 0.
Contradiction
Som+n=0=>m=n=0=>50ap=0apSg=1=>s7€S*
Conversely, if s € S* = 3t € S* s.t. st = ts = 1 = s is also a unitin S[x]

Proof of Lemma

Write p(x) = po + p1x + -+ Px™, q(x) = qo + q1x + - + gnx"

We assume that 7 | p(x)q(x).

Suppose that 7 + p(x) and 7 + q(x).

Then 3 some smallest iy = 0 s.t. w t p;, and 3 some smallest j, > 0s.t. 7w t g,

We have that w | p(x)q(x) = (pg + prx + -+ pmx™)(qo + g1 x + -+ + gux™),som
divides every coefficient of the product.

In particular, 7 divides the coefficient of x%*Jo, which is:

Poig+jo T P1big+jo-1 T+ Pig-19jo+1 T Piyqjy + Pig+1jo-1 T = + Pig+j,90

n divides py, ..., pi,—1 and 7 divides qq, ..., qj,—1 so 7 divides every term in the sum except
possibly p; q;,. 7 divides the whole sum, so 7 | p;,qj,.
7 is prime = 7 | p;, or | q;,. Contradiction.

The result follows.

Proof of GauR's Lemma
Suppose that p(x) is reducible in F[x].
Then p(x) = a(x)b(x), a(x), b(x) € F[x], neither one a unit.

Writea(x) =2 + Ly 4 ... 4 dmym a,s; €R, s;#0, m>0
So S1 Sm

Write b(x) = IZ—(‘: +Iz—jx + +?x”, bi,t; ER, t; #0, n>0

LetA =Sy s, B=ty - t,

Then Aa(x) € R[x] and Bb(x) € R|[x]

So ABp(x) = ABa(x)b(x) = (Aa(x))(Bb(x))

Let f(x) == Aa(x), g(x) == Bb(x)

Factor AB into irreducibles: AB = mq --- g, m; not necessarily distinct.

Notice thatm; | AB = 1y | ABp(x) = 71 | f(x)g(x)

By our Lemma, 4 | f(x) ormy | g(x) (dividesin R[x])

Suppose 1ty | f(x). Then f(x) = m1 f1(x), f1(x) € R[x], g1(x) = g(x)

So ABp(x) = f()g(x) = 11y - mp(x) = F()g() = 1y - mip(x) = £ () g1 ()
Continuing in this manner, we get a factorization for

p() = frgr(x),  fr. gk € Rlx]

Also, deg f, = deg f = m > 0 and deg g, = degg = n > 0 so neither are units.
]

Example of Primitive Elements
R=1Z

4 + 12x + 6x? is not primitive.

3 + 2x + 11x? is primitive.

Proof of Proposition
If p(x) is reducible in F[x] = p(x) is reducible in R[x] (GauR's Lemma)
In other words,
If p(x) is irreducible in R[x] = p(x) is irreducible in F[x].
Also, p(x) must be primitive, because if not 3a € R not a unit, that divides p(x) in R[x].
i.e. p(x) = aq(x). Contradiction.
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So we've shown:
p(x) irreducible in R[x] = primitive and irreducible in F[x].

Now we have to show the converse.

Suppose that p(x) is not irreducible.

Then p(x) = a(x)b(x) with neither a(x) nor b(x) in R[x]* = R*

If a(x) and b(x) both have degree > 1 then p(x) is reducible in F[x] because a(x), b(x) &
Flx]*=F*

So we may assume that deg(a) or deg(b) is zero, i.e. one is constant.

WLOG we may assume that a(x) = a € R

Sop(x) = a- b(x). Notice a = a(x) & R[x]* = R*

So a is nota unitin R*

p(x) = a(bg + byx + -+ + bpx™) = aby + abyx + ab,x™. So a divides every coefficient of
p(x) and a is not a unit so p(x) is not primitive.

So we get the converse.

Proof of Theorem

The proof has two parts:

Part 1: Show every nonzero element of R[x] factors into irreducibles

Part 2: Use the fact that F[x] is a UFD to show that the factorization in R[x] is unique up
to permuting associate factors.

Proof of Part 1
We'll do this by induction on degree. Let p(x) € R[x], p(x) # 0.p has degree d.
Base Case:d = 0
Thenp(x) =r #0inR
Since R isa UFD, r = umy -7, u € R* = R[x]*, my,..., M irreducible in R.
Notice 7y, ..., T are irreducible in R[x] and u € R[x]*
Induction
Now suppose all nonzero elements of degree < d factor into irreducibles and consider
the case when degp(x) = d
Case 1: p(x) € R[x] irreducible. Then we're done: p(x) = p(x)
Case 2:
Write p(x) = Cpy(x), po(x) primitive.
Then C € R, so it factors into irreducbles (base case)
If po(x) is irredcible, then done.
If po(x) is reducible then py(x) = a(x)b(x) and dega(x), b(x) > 0
Sodeg(x),b(x) < d
By induction hypothesis, they both factor into irreducibles .
Sop(x) = Ca(x)b(x) m (part1)

Proof of Part 2
Let 0 # p(x) = po + p1x + -+ pax? € R[x]
Let C = a gcd for pg, p1, -, Pa
Then p(x) = Cq(x), q(x) is primitive.
Now suppose that we have two factorizations into irreducibles.
p(x) = Cq(x) = my - 15 fr(x) -+ fo(5) = 1 -+ g1 (%) - g (x)
f1(x) -+ f5(x) primitive and deg > 1
91(x) -+ g, (x) primitive and deg > 1
So that means that € = my -+ g = (umy) -+ (mf)
So s = t and after permuting 7; is an associate of 7}
So it is enough to consider the factorization f; (x) -+ fs(s) = g1(x) - g (%)
Since each f; is irreducible in R[x], it is irreducible in F[x]
Since each g; is irreducible in R[x], it is irreducible in F[x]
So consider r(x) € R[x] € F[x]
70 = fi(0) o fo() = G100+ g ()
Since F[x] is a UFD, we have s = u and after permuting we have f;(x) and g;(x) are
associates in F[x]| fori =1, ..., s
SoJu; € Flx]* = F*s.t. fi(x) = u;g9;(x)
Sou; € F = field of fractions so 3 a;, b; € R, b; # 0s.t.u; = %5

i
So bifi(x) = a;g;(x)
Let h;(x) = b;f;(x) = a;g;(x)
Both b; and q; are gcds of coefficients of h;(x)
So3dv; ER*st.a; = biv; = y; =%=V[ €ER*
13
So fi(x) = g;(x)v; = f; and g; are associates in R[x]
So the factorization is unique. m

Note
If R has nonzero nilpotent elements, we do not have R[x]* = R*
eg. R=17,

Zylxl: ([11+ [21)([1] + [2]x) = [1] + [2]x + [2]x + [4]x = [1]
= Lylxl" 273



