Vector Properties

January-05-11 11:31 AM

Vector in the plane

An entity with direction and
magnitude. [t is viewed as an arrow
having a starting position and a
terminating position.

Equality
Two arrows are equal if they have
the same magnitude and direction

Positions vs. Vectors in R?
Every vector is identified with a
point P so that the arrow pointing
from O to P is equal to it.

Chapter 1

1.1 Introduction to Vector Spaces (Linear Spaces)

The Plane R?

Coordinates:

We draw a horizontal line and a vertical line intersecting a point O at right angles.

We then give the lines directions. (Arrow on the line indicates positive direction)
Further, we introduce scales. The two lines should use the same scale.

A position P on the plane (or a point) can be identified by two real quantities: its scale
numbers when we draw perpendicular lines from P to the horizontal and vertical lines
(coordinate axis). The numbers are represented as a tuple P = (x,y) with x,y € R

The plane is the set of all positions on the plane, and can be identified with the set of all pairs

of real numbers.
F1Q,

R? == { (x1,%;) | x1, %, € R}

On R? we define addition: P
Algebraically: (xq,x,) + (y1,¥2) = (x1 + y1) + (2 +y5)
Geometrically: Form a parallelogram between the two points

and the origin. The 4th point is the sum.

In the diagram: x =y

Vector addition using arrows:

To add the arrows x and y, start with the arrow x
from point A to point B. Then place y on the tip of

x so it goes from point B to C. Then x+y is the arrow
going from A to C

<\

Scalar multiplication for the plane R?
Let x = (xq,x,). Let 1 € R (a scalar)

Then Ax = (Axq, Ax,)

The product Ax is called the scalar multiplication of the vector x by the scalar 4
Vector addition and scalar multiplication on R? satisfy 10 properties.

Properties of Vector Addition and Multiplication

(-1) Vx,y€R?x+y € R?-Closed under addition

(0) V1€ R,x €R% Ax € R?

(€Y) X +y=y+xVxy€ R?-Commutativity of addition
2) (x+y)+z=x+ (y+2z)Vx,y € R? - Associativity of addition
3) 30 = (0,0) so that 0 + x = x Vx € R? - Additive identity
@) Vx € R?,3y € R? such that x + y = 0 - Additive inverse
(5) 1x =x Vx € R?

(6) Aw)x = A(ux) VA, u € R, x € R?

@) AMx+y)=2x+ly VAER,x,y € R?

(8 A+ wx =Ax +ux va,u € R, x € R?
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Vector Spaces Properties of a Vector Space

-1 Vx,y €V,x +y €V -Closed under addition

0) VAEF,x€V,Ax eV

€Y x+y=y+xVxy €V -Commutativity of addition

January-07-11 11:32 AM

Vector Space 2 (x+y)+z=x+ (y+2)Vx,y €V - Associativity of addition
The abstract definition of a vector space over a field. 3 30 € V'sothat 0 + x = x Vx € V - Additive identity
(€)) Vx € V,3y € V such that x + y = 0 - Additive inverse
Let V be a set (of objects) and F a field () Ix=xvx €V
Let there be two operations +, scalar multiplication, (6) Ax = Aux) VAL, p € F,x €V
satisfying the ten properties of vector addition and scalar @) Ax+y)=2x+Ay VAEF,x,y €V
multiplication. ® A+wx=2x+uxvAL,pu€F,x€V
Uniqueness of Zero Vector Once V (and F) are given two operations satisfying the ten properties, we call it a vector space
Let V be a vector space over F over F
Then 3 one and only one 0 € V such that x + 0 = x
Examples:

We call the unique 0 the zero vector of V.
Let S be any non-empty set. Let V = {f:S — F}

Uniqueness of Additive Inverses Define + and scalar multiplication on V by

forf,g€evV,
Let V be a vector space over F orf ‘? +g:S—>F
Then for every x € V, 3 one and only one y € V such that f + é)(s) =f(s)+g()VSES
x+y=0. o o forall fEV,1€F
This y is denoted -x, it is the additive inverse of x 2f:S > F

Af)(S) =Af(s)VsES

Cancellation Law Then V is a vector space over F

Ifx+y=x+ztheny=1z
Proof of Uniqueness of 0
One of the ten axioms calls for the existence of a special element 0 € V satisfyingx + 0 =xVx €V
Let 04,0, € V be two such elements.
By the properties of 01: 0, + 0; = 0,
By the properties of 0,:0; + 0, = 04
Since addition is commutative, 0, + 0, =0, +0; =0, =0, m

Proof of Uniqueness of Additive Inverse
Let y, and y, be twoy such thatx+y =0
X+y1=0=3x+y1+y:=y22y1=)2

Proof Ox =0
0x+0x=0+0)x=0x=>0x+0x—0x=0x—0x=>0x=0

Proof -x = (-1)x
x+(Dx=Dx+(-Dx=0-Dx=0x=0
x+(-Dx=0=>x+(-Dx —x=0 —-x=>(-Dx=—xm

Observations

For R?,let P = (xq,%3),Q = (y1,y,) € R?

The arrow (vector), X, starting from P, pointing and ending at Q, is equal to:
x=Q —P

Proof: By the parallelogram law,P +x=Q = x=Q — P

The midpoint between P and Q is % P+0Q)

The point along the line P, Q 1 unit away from P and 2 units away from Q is EP + § Q

Proof of cancellation law
x+y=x+z>—-x+x+y=—x+x+z=>0+y=0+z>y=z
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* Set Theory

January-10-11 3:32 PM

Union

Then their union A U B is definedby AUB :={x : x €
Aorx € B}

Let {A; : i € I} be a family of sets where the indexset I # @
Then the union

UAi ={x:3iel,xeA;}

i€l

Intersection
Similarly, we can define A N B and N;¢; 4;
ANB ={x:x € Aand x € B}

ﬂAizz{x:xEAiviEI}

i€l

Mapping
Let A and B be sets. A mapping f : A = B (Ais called the
domain & B is the co-domain of f) is a relation of A X B
satisfying:
i) If(a,b;) and (a, by) are in the relation, then b; = b,
ii) Va€A,3beBsothat(a, b)isin the relation.

The unique b for the given a is marked f(a)
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Let A and B be sets.
Union
Example: Let

1
(a)inen

n
Then

o)

neN

Need to show

Lg(%,oo) c (0,00) and (0,0) < LEJNGOO)

ne n
. . 1
As for the first inclusion, we see that for each n € N, (1—1, 00) c (0, ), therefore

their union, U ey (i oo) is contained in (0, o)

For the second inclusion: Let x € (0, ) be given.x > 0and x € R.ThenIn€N
so that% < x.In which case x € (%, ) S0 X € UneN(%, 0)

So

)=

neN

The Axiom of Choice

Let I be a non-empty (index) set.

Let {X; : i € I} be a family of non-empty sets.
Consider the set

U

i€l
The there exists a mapping

fil- UXi

i€l
satisfying f (i) € X;

Accepting the axiom of choice leads to :
Every vector space has a basis



Subspaces Example
p LetV = R? andlet W = {(x,0)|x € R}
January-12-11 11:30 AM

Then all 10 axioms are satisfied by W, so W is a subspace of R?

The subset
S={(xy)|x>0y>0}

Subspace . is not a vector space under the operations of R? because there is no 0 and no additive inverse for any
Let V be a vector space over F. A subset W C V is called element.

a subspace of V if when the operations (addition,

scalar multiplication) on V are restricted to W, W is Example

again a vector space (over F). Let the space be T((—Z, 3), R)
The set of all functions f: (—2,3) - R

Proposition Let W bet the subset of all the continuous functions.
A subset W € V is a subspace iff i 0:f(x)=0

i. 0of VisinW
il. waw,eW=w,+w, eW
iii. WeWvieF,weW
Note: i is sometimes replaced by W # @ Let S be the set of all functions of F((—2,3), R) which vanish at —1 and 1
ie.feF((-2,3),R)and f(-1)=0,f(1) =0

ii. Iffand gare continuous, then f+g is continuous.
iii. Iffis continuous, then Af is continuous for 1 € R

Theorem Then S is a subspace

Let V be a vector space. 0: f(x)=0,iff,g(-1) = f,g(1) =0then f + g(—1) = f + g(1) = 0 and
Let {W; : i € I} be a family of subspaces of V, when I # A1) =2f(1)=0

@. Then

ﬂ W, Proof of Theorem

el i. Vi€l because W; is asubspace, 0 € W;.So 0 € N;c; W;

is again a subspace (of V) ii. Supposew;,w, € N;¢; W; are given.

Considerw; + w,.Vi € [,w; € W; and w, € W; sow; +w, € W;
Sow; +w, € W; Vi,sow; +w, € Nic; W;
iii. Supposew € N;c;W;and A € F
Consider Aw.Vi € I,w € W; so Aw € W;
SoAw € W; Vi, sow € ﬂWi

i€l
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Linear Combinations

January-14-11 11:28 AM

Linear Combination
Let S < V. Suppose S # @.

A vector v € V is said to be a linear combination of S if
there exist finitely many vectors of S, say s4,5,,53 ...5, € S,
and scalars 44,42, ...,An € F so that:

V=245 + A5, + -+ 4,5,

Span
Span(S) ={v € V | vis alin.comb. of vectors of S}
Span(@) = {0} by convention

Notation: Matrices
M, «m (F) means an n by m matrix with elements in F

Proposition
Let V be avector space, SS Vand S# @
Let Span(S) = {v € V | vis a lin.comb. of vectors of S}

n
= {Z/lisi ISL' € S,Ai € F,n EN
i=1
Then Span(S) is the subspace of V generated by S
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If Vis a vector space and S € V, then there exists a unique smallest subspace
of V containing S, say

W=ﬂWL

iel
Where {W;|i € I} is the set of all subspaces of V containing S.
We call W the subspace generated by S.

(Unique smallest because intersection of all subspaces containing S)

Example
FOFMsz(R)andS={[(1) 8]’[(1) é]’[g (1)}

Then [; ﬂ € M,y (R) is not a linear combination of vectors in S because

wlo al+xll ol+alo U=l 2=k §

as that would require 4, = 2and 4, = 3

Whereas [ 110 170] is a linear combination of vectors of S

Proof of Proposition (outline)
1. Show that Span(S) is truly a subspace of V
e.g. to show that it is closed under addition:
Let vy, v, € Span(S) be given.
Consider vq + v,
vy =A181 A5, + o+ Aysy,
Vy = Ang1S1 + o+ Lnime1Sname1 + dnemSnam

For some sy, ...,Spam € Sand Ay, ..., Ayym € F
n+m

v+ v, = Z A;s; € Span(S)

i=1
2. Observe that Span(S)2 S
Proof: Let s € Sbe given. Then s = 1s
3. Let W, be any given subspace of V which contains S. We shall show
W, 2 Span(S)
Proof:
For that purpose, let v € Span(S) be given.
Then by definition, there exists vectors S; € S, 4; € F sothatv =
A48y + -+ A, 8,. Now because S € Wy, 54, ..., € W,
Since W, is closed under scalar multiplication and vector addition,
V=248 + -+ A8, EW,
Example
Let the space be P(C) - polynomials with complex coefficients, and let
S ={1,x%x*x°, ..., x?k, ..}
Then Span(S) = the space of all polynomials with even terms.
Span(1,x,x%,x3} = P3(C)

Remark
Let V be a vector space. If S is a subspace of V, then Span(S) =S



Linear Dependence/Span Example .
Is (1, 2, 3) € Span{(1,0, 0), (0,1, 1), (0,1, 2)}in R>? Yes
January-17-11 11:32 AM
(1,2,3) = x,(1,0,0) + x2(0,1,1) + x3(0,1,2)

Linear Dependence System of equations:

Let V be a vector space. x =1
Let v4, vy, ..., Uy, be a finite list of vectors of V X2 +x3=2
We say the list is linearly dependent if one of the X2 +_ 2x3 =3 . o
following two equivalent statements is satisfied: Solving the above, we first bring it to the reduced system
1. Thereis a v;, which is in the span {v;|i # io} %1~ 1 )
2. aivy + apvy + -+ + apv, = 0 for some list of zz -1_-’;3 -
scalars aq, ay, ..., a, notall 0 3~ . .
12 n From that we read the solutions in reverse order
. X3 = 1
Linear Dependence on Sul?sgts Xy=2-x3=2-1=1
A subset S of a vector space V is linearly x =1

dependent if for some distinct finite list of vectors

Rt So there is a solution, x; = x, = x3 =1
extracted from S, the list is linearly dependent.

Example
Corollary to Span({}) = {0} Is it true that Span{(1, 0, 0), (2, 1, 0), (3, 1, 0)} = Z3?
In a vector space, any subset S which has 0 initis Ans: Equivalently we are asking: Is every given (a, b, c) € R? in Span{(1,0,0),(2,1,0),(3,1,0)}?
linearly dependent. We solve:

(a,b,c) = x1(1,0,0) + x2(2,1,0) + x3(3, 1,0) for all possible x4, X2, x3 € Zs

X1+ 2x,+3x3=a

Xp + X3 = b

0=c

Clearly, when c # 0, there is no solution

Example

Consider the space of differentiable functions from R to R. Those satisfying the differentiable
equation f'' = 0 are given by f(x) = ax + b where a, b, are constants.

Using the language of span, the set of all solutions is Span{x, 1}

The solutions to f" = —f is span{sin x , cos x}
Proof of Equivalence of Linear Dependence definition

Suppose that 2 holds true.
Then there are scalars ay, ..., a,, notall zero so that

n
Z av; = 0
i=1
Say that a;; # 0 Now have
n n n
— _ -1 _ a;
aiovio + a;v; = 0= vio = aio - aiv; | = —a—' Vi
~ =1 =1 ‘o
i#i, i#i, i#i,

So vy, € span{v;|i # io}
Suppose statement 1 holds true. Show 2 as an exercise.

Example

The list of vectors [(1) 8] , [8 (1)] , [(1) (0)] , [8 (1)] E [é ﬂ in Moy, (R) is linearly dependent.

Bleca;se (usi{)g sotateme(r)lt 11with i00= g) 0 0
=1l of+2lp ol+3l) ol+4ly 3
or

o ol+2fy ol+3[] ol++lg f+enl3 d=[ o=0
Where as # 0b

Example
Let the space be P(R) and let S be the set of all even polynomials. (even means p(—x) = p(x))
Itis linearly dependent because v; = x2, v, = 2x2

Example

Let V be a vector space.

Let S = {0}

We see that 2 holds for v; = 0 (e.g. 1v; = 0)
So Siis linearly dependent.

121 =2vi =Zzt:z= 0
i#1 i€Q
by convention, so Span(®) = {0}
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Linear Independence Example
P InR3, S ={(1,0,0),(0,1,0), (0,0, 1)} is linearly independent
January-21-11 11:29 AM

Proof:
Linear Independence We need to show that the list v; = (1,0,0),v, = (0,1,0),v; = (0,0, 1) is not linearly dependent.
Suppose aq,a,,a; € Randlet a;v; + a,v, + azv; =0
a,(1,0,0) + a,(0,1,0) + a5(0,0,1) = (ay,a,,a3) =(0,0,0) =0iff a; =a, =a; =0.
So Sis linearly independent.

A subset S of a vector space V is linearly
independentif it is not linearly dependent.

Example

Iz isS ={v, =(1,2,3),v, = (2,3,4),v; = (3,4,0)} linearly dependent?
Ans: Let a,,a,,a; € Zs and that

a;(1,2,3) + a,(2,3,4) +a5(3,4,0) = (0,0,0)

a, + 2a, + 3a3; = 0 (mod 5)
2a, + 3a, + 4a; = 0 (mod 5)
3a, + 4a, = 0 (mod 5)

12 3 0
2 3 4 0| subtract multiples of 1st line from 2nd and 3rd lines
3400
1 2 30
0 4 3 O0fmultiply 2nd line by 4=* = 4 and 3rd line by 371 = 2
0 310
12 30
0 1 2 O0|subtract2nd line from 3rd line, and twice 2nd line from first
01 20
10 40
0120
00 00O
Solution:
a5 € Zs is arbitrary (a free parameter)
a, = —2a; = 3a,4
a, = —4a; = a;

So there is a solution with a; # 0, so yes, S is linearly dependent.

Example

Let v be a vector space over R

Suppose that {v;, v,} is linearly independent.

Show that the set {2v; + 3v,,4v; — 5v,} is linearly independent.

Proof:

Let a,,a, € R and that a, (2v; + 3v,) + a,(4v, — 5v,) =0
(2a, + 4a,)v; + 3a; —5a,)v, =0

Because v, v, are linearly independent,

2a,+4a, =0

3a; —5a, =0

2a, + 4a, = 0 (retained)
3
(24 - )ar=o0

So a, = 0,and therefore a; = 0.So {2v; + 3v,,4v, — 5v,}is linearly independent.
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Gaussian and Jordan Eliminations

January-24-11

11:31 AM
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Example: Gaussian Elimination
Solve
2aq +2a, +4az =2
a,—a,+7a3=5
a; +8a3 =0
2a, +3a; +4az =2

5

_Eaz + 5a3 =4
3

—§a2+6a3 =-1

2a1 +3a2 +4a3 =2

5
_E a; + 5a3 =4
g = 17
as = ——
End of Gaussian Elimination, write out the general solution:
17
tTB 17
_ 4—5a, _8—10(—13)_ 58
@=T5 ST 5 T 15
2 58 17
_2-3a,+4a,_2-3(-15) - 4(-13)
4= 2 - 2

Jordan Elimination Steps

Used to reduce the system further
1. Multiply the lines to set the 1st non-zero coefficients equal to 1
2. Eliminate the variables from the lines above each 1

Continuing from the system above:

3
a1+§a2+2a3 =1
8
a, —2az = ~3
17
as —1—5
17
a1+5a3 —?
8
a, —3az = —3
17
=1
136
“= 15
az—_s
17
=15

Why no work? :(

Augmented Matrix

aq1X1 + Aq12Xy + -+ AnXn = b1
alel + azz.xz + -+ aznxn = bz

Am1X1 + ApaXy + -+ QX = by,

Represented by
aiq aqy .. Ai1n bl
a21 a22 e azn b2
Am1 Amz2 -~ Amn!lby,



Set Theory Cont.*

January-24-11 3:34 PM

Let Xand Y be sets.

Injective

A function f: X — Y is injective (one-to-one) if
X1 # x5 = f(xq) # f(x,) or alternatively

fl) =fl) =% =x,

Smaller Cardinality
A set X is said to be of smaller cardinality than set Y if
there is an injective map f: X —» Y

Surjective
A function f: X — Y is surjective (or onto) if for all
y € Y there exists x € X sothat f(x) =y

Proposition
These statements are equivalent:
Fortwosets X, Y
1. There is an injective function f: X - Y
2. There is a surjective function g:Y - X

Equal Cardinality
Two set X, Y are of equal cardinality if there exists
f:X — Y which is injective and surjective (bijective)

Theorem (Bernstein)

Let X and Y be sets. If there exists an injective f: X —
Y and an injective g: X — Y there exists a bijective
h:X-Y

Rephrase: If |[X| < |Y],|Y] < [X], then | X]| = |Y]

MATH 146 Page 9

Immediate clear is that if X is finite with n distinctand Y has fewer elements than X then no
f:X — Y can be injective.

Example of cardinality differences:
[0, 4] has a smaller cardinality than [0, 1]

f:10,4] - [0,1],x —>Zx

Similarly, [0, 1] has smaller cardinality than [0, 4]

Proof of Proposition
Suppose we have a surjective g: Y — X

For each x € X, consider S, ={y e Y:g(y) =x}cY

As g is surjective, each S, is non-empty. Moreover, x; # x, implies S, and S,, are disjoint.
The family {S,:x € X} form a partition of Y

By the axiom of choice, there is a function (choice)

f:X- USx =Y so that f(x) € S,
XEX
Obviously, fis injective



Basis

January-26-11 11:33 AM

Basis
Let V be a vector space over F. A subset B C V is called
a basis for V if it satisfies:

1. Bislinearly independent
Intuitively, B is "small", that no element of B is a linear
combination of the others.

2. BspansV,ie.span(B) =V

Finite Dimensional
If V has a finite set B which forms a basis, then we say V
is finite dimensional.

Theorem

Suppose that V has a finite basis B with n elements.
Then all other bases must have n elements. We call n
the dimension of V.
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Example
Consider R3. Subsets satisfying the 1st properties are, e.g.
8,{(1,0,0},{(1,0,0),(1,1,0},{(1,0,0),(1,1,0),(0,0,2)}

Of these examples

span(@) = {(0,0,0)}

span{(1,0,0)} = (x,0,0) = the x — axis
span{(1,0,0),(1,1,0)} = (x + y,v,0) = the xy plane
span{(1,0,0),(1,1,0),(0,0,2)} = (x + y,v,2z) = R3
So the last is a basis.

Example

In P(R)

B ={1,x,x2x3,..,x", ..} = {x,:x € N,or n = 0} x° = 1by convention
is a basis.

Proof:
To check for linear independence:

Let a finite number of terms be extracted from B (all terms are distinct)
WLOT that the listis 1, x, x2, ... x™
Will show that the list is not linearly dependent. Let ay, a4, ..., a,, be scalars and that
apl+ ax +ax?+ - +ax®=0
By definition of equality between polynomials, ag = a; = - =a, =0

Hence, every finite list of distinct terms from B is linearly independent. So B is linearly independent.

Next check if span(B) 2 P(R)

Let p(x) = ag + a;x + ax? + -+ a,x" forsome q; € R,n € N
Therefore, clearly p(x) € Span{1, x,x?, ..., x"} 2 Span (B)
Hence P(R) € span(B). Equality follows. So B is a basis.

Example
V = {4 € M3y 4,(R): column sums of A are zero}
T
e.g.| 2 5 e 0
-3 -1 -m—e O
The dimensionality is the number of free scalars. In this case
dimV =8



Replacement

February-05-11 10:14 PM

Theorem 1.8

Let S be a linearly independent subset of a vector space V
and let x be an element of V thatis notin S. Then S U {x} is
linearly dependentiff x € span(S)

Theorem 1.9
If a vector space V is generated by a finite set S, then a
subset of S, is a basis for V. Hence V has a finite basis.

Replacement Theorem 1.10

Let V be a vector space having a basis 8 containing exactly
n elements. Let S = {y4, ..., i } be a linearly independent
subset of V containing exactly m elements, where m < n.
Then there exists a subset S; of § containing exactly n-m
elements such that S U S; generates V.

Corollary 1

Let V be a vector space having a basis 8 containing exactly
n elements. Then any linearly independent subset of V
containing exactly n elements is a basis for V.

Corollary 2

Let V be a vector space having a basis 8 containing exactly
n elements. Then any subset of V containing more than n
elements is linearly dependent. Consequently, any linearly
independent subset of V contains at most n elements.

Corollary 3

Let V be a vector space having a basis f containing exactly
n elements. Then every basis for V contains exactly n
elements.

Definition

A vector space V is called finite-dimensional if it has a basis
consisting of a finite number of elements; the unique
number of elements in each basis for V is called the
dimension of V and is denoted dim(V). If a vector space is

not finite dimensional, then it is called infinite -dimensional.

Corollary 4

Let V be a vector space having dimension n and let S be a
subset of V that generates V and contains at most n
elements. Then S is a basis for V and hence contains exactly
contains exactly n elements.

Corollary 5

Let 8 be a basis for a finite-dimensional vector space V and
let S be a linearly independent subset of V. There exists a
subset S; of 8 such that S U S; is a basis for V. Thus every
linearly independent subset of V can be extended to a basis
for V.
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Proof of Theorem 1.8
Suppose S U {x} is linearly dependent.
Then

n
0=agx+ Z a;x;
i=1

=
With notall a; = 0 and since S is linearly independent, ay # 0 so

i=1

So x € span(S)

Suppose x € span(S), then
n

X = Z a;x;
i=1

soSU {x}is linearly dependent. m

Proof of Theorem 1.9

IfSg =@ orSy, = {0} then V = @ and @ is a basis for V.

Otherwise pick x; € S;.{x;} is linearly independent.

Now with a linearly independent set of n — 1 vectors x; € S, if Sy € span({xy, ..., x,_1}) then
done since the set is linearly independent and generates V so it is a basis. Otherwise find x,, €
S0, %n & span({xy, ..., x,_1}) By theorem 1.8 {x, ..., x,,} is linearly independent. Continue until
terminating after finitely many x; since Sy, is finite.

Proof of Theorem 1.10
Proof by induction on m.

Ifm=0,thenS =@andn-m=nsotakeS, =5,SUS; =0 U B = Bisabasis forV
Now suppose the statement holds true for m — 1.

Let So = {¥1, -, Ym-1} IBo < B with |By| = n — (m — 1) such that
span(Sy U By) = V by induction supposition.

So
Ym = Z a;x; + Z bJZ]
Xi€So Zj€Po
But S is linearly independent so at least one b; # 0, say by
Then
Ym a; bj
Zq :b_1+ Z —EIXL- + Z —b—12j

x;€So Zj€Bo
j#1

So z; € span({yy, ..., ¥m, 22, - Zn-m+1})
Clearly ¥4, ., Ym-1,22, ) Zn-m+1 € SPa{Y1, v, Ym, 22, ) Zn-m+1})
S1= Bo\ {z1}
S0 Sy U By S span(SUS;)
span(Sy U By) =V sospan(SU S;) =V
So there is a subset of § such that span(S U S;) = V Vm, by the induction principle. m

Corollary 1

Let S be a linearly independent subset of V with exactly n elements.
Then 3S; such that span(SUS;) =V and [S;|=n—-n=0=5,=0
so span(S U S;) = span(S) = V so S is a basis for V.

Corollary 2

Let S be a subset of V with more than n elements. Suppose that S is linearly independent, then
there isan S, c S with n elements. By Corollary 1, S, is a basis so span(S,) = V.Letx € S,x €
So, then Sy U {x} is linearly dependent, contradicting the supposition that S is linearly
independent. Therefore, S is linearly dependent. m

Corollary 3
Let S be a basis for V. We know |S| < n since |8] = n. Suppose |S| < n, then by Corollary 2 8
would not be linearly independent, a contradiction, so |S| = n. m

Corollary 4
By Theorem 1.9, 3S; € S such that S; is a basis for V. [S;| = n,[S;| < [S|<nsolS|=nso Sy =S
and S is a basis for V. m

Corollary 5
|S| = m < n,|B| = nsoby Theorem 1.10, 3S; € B,|S;| = n — m such that S U S, generates V.
Since |S U S;| = n, by Corollary 4 S U S; generates V.



General Bases
January-31-11 11:31 AM

Proposition
Let V be a vector space. Let L € V be linearly independent.
Then the following two statements are equivalent.

1. veV,v & LandLU{v}islinearly independent.

2. v ¢ span(L)

Proposition

Let V be a vector space. Let L c V be linearly independent,
G C V be generating, L € G. Suppose that v is such that v ¢
L,L U {v} is still linearly independent.

Then there existsa u € G sothatu € L and L U {u} is (still)
independent.

Remark

If V is a finite vector space.

If F is infinite, like C, then V = {0}

If F is finite, then |V| = |F|™ for some n € N®
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Proof of Proposition 1
Suppose v satisfied 1. To argue for 2, assume to the contrary that v € Span(L). Then
n

v = Zlivi
i=1

for some distinctv;'sinL and 4; € F
Asv & L, vy, ..., v, v are all distinct, we have a set of distinct vectors such that one is a linear
combination of the rest, so the set L U {v} is linearly dependent, a contradiction.

Conversely, suppose that 2 holds, we need to show 1
As Span(L) o L, it is clear that v € L. To show that L U {v} is linearly independent, suppose
that

n

ﬂ.ﬂ]i =0

(i=0)
where v;, ..., v, are distinct elements from L U {v}

Case 1:
Suppose that none of the v; are v. Then by linear independence of L, all ; = 0
Case 2:
One of v4, ..., vy, is equal to v. WLOG say thatv,, = v
Suppose that 4, = 0 Then
-1

n
Z /11'171‘ =0
i=1

By the linear independence of L, we set 1y =4, =+ =4,_1 =0
Thus 44, ... 4, are 0

Suppose that A, # 0 Then from
n

z Aivi =0
i=1

Proof of Proposition 2

v & Span(L)

Itis a linear combination of thingsin G

So, (WLOG, n is the least number which satisfies the linear combination)

n k n
v = Zliui = Z)liui + Z liui
i=1 i=1 i=k+1
where uy, ..., u, are distinct vectors in G
WLOG, uy, ... ux € L, ug4q, ..., Up € L
Atleastone u; (k+ 1 < i < n)is presentwith A # 0. Take u = u4q
This means u # span(L) since the above is the smallest representation and if u € span(L)
then u could be written as part of Zi-;l Aju;

Suppose L U {u} were linearly dependent. Then
m

0=Au+ Zﬂivi forv; € L,Ainot all 0

i=1
L is linearly independentso A1 # 0 so
m
A
u= b —/1— 14
i=1

Sou € span(L), a contradiction. So L U {u} is linearly independent. m

Example
Basis of any size.

Let S be any set (# @). We now construct a vector space V over F having a basis B with |B| =
N

Consider the subspace F,, of F (S, F) consisting of functions f: S — F with f(s) = 0 for all but
finitely many s. For each fixed element s € S, let y5: S — F be y4(t) = {(1) ;z:i + i
x is the characteristic function.
Clearly ys € Fy
Let B = {ys;:s € S} Fy
Be is a basis for F, because
1. Let f € F, be given. Then 3 finitely many s4, Sy, ..., S, € Swith f(s) = 0if s & {sy, ..., S}
Let A; = f(s;) fori € {1, ...,n}
Then f = Al)(sl + AZXSZ + et A'n)(sn
Therefore f € Span(B)
2. Let Xs,, Xsyr 0 Xsy be a finite list of distinct vectors in B and that 44, 4,, ..., 4, are scalars

from F with

n
> dixs, =0
i=1

Since xs, are distinct, clearly s; are distinct. Fix any i, € {1, ..., n}



n
= Zli)(si(sio) =2;,1=0
i=1
So /11' =0Vi
So B is linearly independent.
xS—-B
x(s) = xs

is clearly bijective. So B is of the same cardinality as S. m
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* Maximal Principle
February-04-11 11:31 AM

Maximal Principle

Let X be a set. Let C be a collection of subsets of X. A sub-
collection of C, say T" € C is called a tower (or chain) if for any
two elements Ty, T, € T, either T; S T, or T, S Ty.

Suppose that C has the property that every tower T, there exists
C€eCsuchthatC 2T forall T € 7. (Cis called an upper bound
forT7)

Then C has a maximal element M € C i.e. no C € C contains M
strictly.

Application

Let V be any vector space over F. Let C be the set of all linearly
independent subsets of V.

If T is a tower in C it is not difficult to check that

r

TET

is also linearly independent. So itis in C and it is an upper bound
for 7. So by the maximal principle, there is a maximal M € C.

M will be a basis for V.
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Example

Let C be the set of all finite open intervals of R
T = {(0,n) : n € N}is a tower/chain

This tower has no upper bound in C

No member of C is maximal because for every C € C,c = (a, b) finite a, b the element
(a, b + 1) is strictly larger.

Example

Let X be any non-empty set.

LetCc={C:Cc X}

Then M = X\{x} for some x € X is a maximal element for C

Examples

X = R,M = R\{1} is M maximal, yes.

N = R\{2} is also maximal

C = R\{1, 2} is not maximal

Look at T = {|—n,n]:n € N} is a tower with no upper bound

So every tower having an upper bound = there is a maximal element
There being a maximal element # every tower has an upper bound



Linear Mappings

February-07-11 11:32 AM

Linear Mapping
Let U and V be vector spaces over F. A mapping
(function) L: U - V is linear if:
1. L preserves summation
L(uy +uy) = L(uy) + L(uy)
L preserves scalar multiplication
L(Auw) = AL(w) for A€ F

2.

Proposition

For any linear L: U - V
1. L(0)=0
2. L(—u) = —-L(w)

n n

L (Z /liul-> - Z AL ()
i=1 i=1

L preserves linear combinations

3.

Kernel (Nullspace)
Let L: U - V be linear
Ker(L) = Nullspace(L) = {u € U|L(uw) = 0}

Range (Image)
Let L: U = V be linear
Range(L) = Im(L) := {L(u)|u € U}

Proposition

Ker(L) is a subspace of U
Range(L) is a subspace of V
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Example
L:R3 - R3,L(x,y,2z) = (x,0,2) V(x,y,2) € R3.
Then L is linear.

Proof:
1. Let (xy,¥1,21), (x2,¥2,2,) € R®
Then L((x1;Y1'Z1) + (xzj}h'zz)) =L(xy + X2, 71 + 2,21 + 23) = (X1 + %5,0,2; + 2;)
L(x1,¥1,21) + L(x2,¥2,25) = (x1,0,21) + (x3,0,23) = (x1 + x2,0,2; +23)
2. LetA€R,(x,y,2) €R3
L(A(x,y,2)) = L(Ax, Ay, Az) = (Ax,0,22) = A(x,0,2) = AL(x,y,7)

Example
X y z
L:R3 - M;3y3(R),L(x,y,2) = [z y 2
0 x+y z

This is a linear mapping

Example
L: P,(R) > P3(R),L(p(x)) = xp(x) Lis linear

Example of a non-linear map

fRZ 5> RZ f(x,y)=(x+1,y)
Then fis not linear

[,y +fxg,y2) = O + Ly + (e + L,yy) = (g + x5+ 2,51 +32)
f(Gepyn) + (2 y2)) = fOr + 22,51 +y2) = (o + X+ Ly; +2)
So f does not preserve summation. Similarly, it does not preserve multiplication.

Proof of Proposition

1. Because L preserves addition, L(0 + 0) = L(0) + L(0) = L(0) = L(0) + L(0) so L(0)
OevV
L(-w) = L((-Du) = (-DLW) = ~LWw)

Follows directly from preservation of addition and scalar multiplication



Dimension Theorem

February-09-11  11:32 AM Example
L:R® > R*is givenby L(x,y,2) = (x + y,¥ + 2,0,0) has range
R(L) = {(a,b,0,0)| a,b € R} and rank(L) = 2

Nullity and Rank Ithas N(L) = {(x,y,2) € R® | (x + y,7 + 2,0,0) = (0,0,0,0)}
Let L: U - V belinear. Suppose that U is finite dimensional. _ 3,x+ty=0

The nullspace (kernel) of L, N(L) = {u € U | L(u) = 0},isa - {(x,y,z) ER y+z=0

subspace of U. Nullity (L) = dimN(L) = 1

Then N(L) is finite dimensional. Nullity (L) = dim N(L)
Proof of Rank and Nullity Theorem
The dimension of the range space, R(L) = {L(w)|u € U} is called Pick a basis for N(L), say {11, 1z, ..., ux}

the Rank of L, denoted rank (L) Now, nullity(L) = k

Extend the linearly independent set {u,, uy, ..., Uy} to a basis for U
Dimension Theorem (Rank and Nullity Theorem) say that {u,uy, ..., Uk, Ug+1, -, Un} is @ basis for U
For linear L: U = V, finite dimensional U, Sodim(U) =n

dim(U) = rank(L) + nullity (L)
Claim: B = {L(ug+1), L(ugs2), ..., L(uy)} is a basis for Range(L). Thus rank(L) =n — k

1. Show that B spans Range(L)
Let v € Range(L) be given. Then Ju € U s.t.L(uw) = v
Since {uy, ..., u, } spans U, there exist scalars A4, ..., A, so that
n

u= Z Aiui
i=1

Now,

n n
v=Lu) =L <Z Aiui> = Z 2AiL(u;), since L is linear
1

i= =1

i
But L(u;) =0Vi € {1, ...,k} so
n

v= ) Al(w)
i=k+1
Sov € span f8
So span B = Range(L)
2. Show that f is linearly independent.
Suppose Ag+1L(Uug+1) + -+ AnL(Un) = 0 > LAg41tlpr1 + -+ Apupn) = 0
SO Agy1Us1r + -+ Apuy € N(L)
Asuy, ..., uy spans N(L)
Ak+1Uk+1 + o+ AUy = Ayuy + -+ + A uy for some scalars 4;

So /11u1 + -+ Akuk - /1k+1uk+1 — = Anun =0
Soly == =41 ="=A, =0
So f3 is linearly independent.
Example
Let L: R3 = Mgy (R) be
x y z 0 0 0
00 0 O0 0O
00 0 O0O0O
Ly =15 9 9 0 0 o
00 0 O0O0TO
00 0 0 0 O

Rank(L) = 3,N(L) = 0
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Rank/Nullity

February-11-11 11:28 AM

Proposition

Every Linear L: U — V is completely
determined by the restriction, L|g, to a
basis B for U

Simple consequences of the dimension (rank/nullity) theorem.

Observations.

If L: U — V is linear, then L is injective iff Ker(L) = {0}
Proof: Suppose that L(u;) = L(u,) for givenuq,u; € U
Now L(u;) — L(uy) = 0. As Lis linear, L(u; — u,) = 0sou; —u, € Ker(L). Since Ker(L) = {0},
wesetu; —u, =0 u; =u,

For the converse: Suppose L is injective

Because L is linear, L(0) = 0, so 0 in Ker(L)

To get Ker(L) = {0}, we need to show that for any given u in Ker(L), we have u =0
Let u in Ker(L) be given. Then L(u) =0. Since L is linear, L(0) = 0. So L(u) = L(0)

As Lin injective, u = 0 follows.

Restate: Linear Lis injective iff dim Ker(L) = 0 iff nullity(L) =0

Linear L: U = V is surjective iff L(U) = V. If V is finite dimensional, then L is surjective iff dim L(U) = dim V,
iff rank(L) = dim V

By the dimensional theorem, we get the Corollary:
If L: U - Vis linear and both U and V are of the same dimension, then the following two statements are
equivalent:

1. Lisinjective

2. Lissurjective

Basic idea: dim U = rank(L) + nullity(L) = dim V
Injective <=> nullity(L) = 0 <=> rank(L) = dim V <=> surjective

In particular, if U is finite dimensional and L is a linear operator on U, then L is injective iff it is surjective.

Example of Proposition:

Suppose thatL: R? — P,(R) is linear, and that B = {(1, 0), (0, 1)}

If we know L(1, 0) and L(0, 1) (that is, we know L|g), we should be able to tell L(x, y) for general (x,y) €
RZ

Reason: (x,y) = x(1,0) + y(0,1),s0L(x,y) = L(x(1,0) + y(0,1) = xL(1,0) + yL(0,1)

Proof of Proposition:

Let B = {b;| i € I} be a basis for U.

Given any vector u € U, we can write u = Y,/'= ; 4;b; for finitely many b; € B
Now,

L@ = ) 2L(b)

i=1

Example

WE could define a linear map L: R? - R? by specifying L(1, 0) and L(0, 1), say L(1, 0) = (1, 1) and L(0, 1) =
(-1, -1), Implicitly, we know L fully

Explicitly : L(x,y) =x L(1,0) +y L(0,1) =x(1,1) +y(-1,-1) = (x—y,x —y)

Rank(L) = 1, Nullity(L) =1

Range(L) = span(L(1, 0), L(0, 1)) = span{(1, 1), (-1, -1)} = span{(1, 1)}, a basisis (1, 1)

N(L)is {(x,¥) € R? | x —y = 0}, a basisis (1, 1)

Example

D: Pg(R) = P1o(R).D(p(x)) = p'(x)

D(1) =0,D(x) =1,D(x?) = 2x, ...,D(x°) = 10x°
Note {1,x,x"2, ...,x1%} is a basis for Py

R(D) = Py(R)

N(D) = Py(R) = span{1}

Rank(D) = 10, nullity(D) = 1,dim P;o(R) = 11
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Coordinatization

February-14-11 11:33 AM

Coordinatizing a Space
Let U be a finite dimensional space.
Fix a basis f = {uq,uy, ..., u,} and order it as presented.

Every vector u € U can be uniquely written:
n

uZZaiui,ai EF

i=1

n n
(aq, ...,ay) # (by,...,by) = Z au; # Z bju;
i=1 i=1

Coordinates
We call (a4, ay, ..., a,) the coordinates of u with respect to (relative to)
B. Notation:

aq
[ulg = [azl ,or (aq, ..., ay)
an

Proposition

Let U be a space with ordered basis f3.

The correspondence

u€U - [ulgeF"

is a bijective linear map. Thus U is isomorphic to F™

Itis easy to check that [u; + ulg = [uglp + [uzlp
[Aulg = Alulg

Representation of Linear Maps
Alinear map L: U - V can by represented by a matrix.

Let U,V be finite dimensional. Let &, 8 be ordered bases for Uand V,
respectively.

a = {ull run}:ﬂ = {vlr L vm}

Now L: U - V, linear, is determined by knowing

L(uq),L(uy), ..., L(uy). Each L(u;) is determined by knowing [L(ul-)]l; -
(column formation)

The matrix
(LG)lg [Lup)lp [L(u)]g]

Size m X n is called the matrix representation of L with respect to «, §

Proposition

LetLy,L,: U — V belinear.x € F

Let a for U and g for V be fixed finite ordered bases.
Then Ll + Lzl U- V, (Ll + Lz)(u) = Ll(u) + Lz(u)
ALy:U >V, (AL (u) = A(Ll (u)) are linear (exercise)

[Ly+L08 = (108 + 11,15, [aL,0f = alL,08

is linear.

MATH 146 Page 18

Example

Let U = P,(R). Let B = {x?,x, 1} (ordered)
Letu = 4 + 2x + 5x2 = 5(x2) + 2(x) + 4(1)
So

5
u= [2] or (5,3,4)
4

P, is isomorphic to R3

Example

LetD:P, —» P, over R,D(f) = f'

Let & = {1, x, x?} for the domain and 8 = {x, 1, x?}
for the codomain

(D15 = [[D(W], DGO, D215 = [[015, [11p, [22] ] = [

0 0 2
010
0 00

|



* Cardinality

February-14-11 3:30 PM

Countable
A set X is countable iff [X| = |N]|
A set X is at most countable if |[X| < |N|

Facts

IXI = 1X1,1X] < X1, 1X] = |X|
If|IX]<|Y|and |Y] < |Z]| = |X] £ |Z]

1X|< |Y]iff|Y]= |X]|

IX|< Y| and |Y|<[X] = [X] = Y]

IN x N| = |N|

|Al = 1X1,1B] = Y| = |Ax B| = |X x Y|
AcBcCand|Al =|C| = |A] = |B| =IC|
10,1] = |(0,1) x (0, DI

For any infinite set X, removing a finite subset
will not change the cardinality

10. 10, DI = [0, 1]|

11. 1(0,1) x (0, DI = [10,1] x [0, 1]]

O PN W

12. |R| =0,1]
13. |Rx R| = |R|
14. |R"| = |R|
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Proof of Fact 5
Define the mapping ¢: N - N X N

(=011
e(2)=(1,2)
(3 =21
o4 =(1,3)
o(5)=(2,2)

This function is bijective, so [N| = [N x N]|

Proof of Fact 6

Jbijection f:A > X,g:B—>Y

Consider p:Ax B > X XY, (a,b) > (f(a), g(b))
Then ¢ is bijective

Example
IN x N x N| =|N]|

Proof of Fact 7

Consider the map

¢:(0,1) - 10,1] x [0, 1]\ {(0,0), (1, 1)}

@ =0.a1a5a;5 ...) = (0.a4a30a5 ...,0.a,a4a¢ ...)

In the event that x can be written in two ways, use the representation which is not terminated by
repeating 9's.

This is injective. And surjective

(0,1) x0.5c (0,1) x (0,1) c [0,1] x [0,1]\ {(0,0),(1,1)}
10,1] = 1(0,1) x 0.5] = |[0,1] x [0,1] \ {(0, 0), (1, 1)}

So |(0,1)| =1(0,1) x (0, )]



Matrices
February-16-11 11:32 AM

Matrix Representation

Let L: U = V be linear

Leta = {uq, ..., un}, B = {vq, ..., v} be
ordered bases for U and V, respectively

(L5 = [[L)lp (L], -, [L(un)]g
= (9] ey

Matrix - Tuple Multiplication

aq
LetA = [aﬁ], X = [ ]
Qan

With that, we have the formula:

[L(W)]p = [L15[ul,

Matrix Representation

Let L: U = V be linear.

Leta = {uy, ...,up}and f = {v4, ..., v, } be ordered bases for U and V respectively.
Each Vector u € U has the representation

I ‘Leu— au;;

and L(u) in the codomain V, has

by m
[Lw]g = l : ],i.e.z bjv;
bm j=1

(L5 = [[LCu)]p, [Lu]p

Hence

o [L(up)] ] [a]l]

L(w) = Z ajivi
=1

How should [L(w)]g, [u]4, and [L]g relate?

Lw) =1L (Zn: ai”i) = Zn: a;iL(w) = Zn: a; (i ajivj)

i=1 i=1 =1 \j=1
Note change of scope:

a; comes from the vector [u],

a;; comes from the matrix [L]ﬁ

L(u) = Zn:i aj;a;v; = Z (Z aﬂal> v = Z bjv;

i=1j=1 =1

b comes from the vector [L(u)]g

Get:

by a1

b a

2| =l | 7] = L@l = LTl
b an

Example

Let L: R® - R%. Let a = {(1,0,0),(0,1,0), (0,0, 1)} be the standard ordered basis for R3
and 8 = {(1,0), (0, 1)}, the standard ordered basis for R?
Let le be having

B_[1 2 3
4 5 6lys
Find L(x,y, z)
Step 1:
X
_Mn 2 3 _n 2 3 _[x+t2y+3z
[L(x,y,2)]p = 45 6][(X.y,Z)]a—[4 5 6 [321]_[4x+5y+6z]

~L(x,y,z) =(x+2y+32)(1,0) + (4x + 5y + 62)(0,1) = (x + 2y + 3z,4x + 5y + 62)

Example
If T:R? - R3 is given by T(x,y) = (x + 2y, 3x + 4y, 5x + 6y)
Using the standard bases «, 8
1 2
[T15 = [3 4]
5 6'3x2)

Example
Let L: P, » P, over R
Leta = B = {1,x,x%}
1 2 1
If [L15 = [1 1 1]
0 0 2
Find L(ay + a;x + a,x?%)
Solution:
1 2 1 ag + 2a4 + a,
[Lao + ar1x + azx?®)]p = [1 1 1] [%] =|ap+a;+a
00 2 2a,
o Lag + ax + azx?) = (ag + 2a4 + ay) + (ay + a; + az)x + 2a,x?
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Composition of Linear Maps
February-18-11 11:37 AM

Linearity of Composition

IfL1:U - Vand Ly:V — W are linear.
Then there are compositions
LyoLy:U — W islinear.

[La1§1L018 = [Ly o L],

Matrix Multiplication
Let A(ix jy, B(jxk) be matrices.

AB = Z ai]’bjk
(=1) (i)
Note

For A times B to make sense, the number of columns in
A must equal the number of rows in B.
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Proof of Linearity of Composition
(Ly o L)y + u) = Ly (L (g + ) = Ly (ALy (wy) + Ly (wy))
= /1L2(L1(u1)) + LZ(Ll(uZ)) =A(Lyo L) (ug) + (L o L) (uy)

Finite Bases
Let a, B, Y be ordered bases for U, V, W, respectively, assuming that U, V, W are finite
dimensional.

Then as [Ll]g determines L, [Lz]z determines L,. They also determine L, o L and
subsequently [L, o L, 1%,

This motivates the definition of matrix multiplication.

[Lz]]l;[lq]g = [Lz ° L1]3;

Example

Let L;:R? - R3, L, (x,v) = (x + 2y,3x,4y) and
LR35 R L,(x,v,2)=(x+y—zx+y+2)
Let a = {(1,0), (0,1)} for the domain of L;

B =1{(1,0,0),(0,1,0),(0,0,1)} for the domain of L,
y = {(0,1), (1, 0)} for the range of L,

1 2
11 1
[La5=|3 o,  [Ll= ]
0 4 1 1 -1

[L]V[L]Bz[l 1 1]§ (2J=1><1+1x3+1><0 1><2+1><0+1x4]
2Zptitle 711 1 —1 0 4 1x1+1x3—-1%x0 1x24+1x0-1x4

_ [4 6 ]
4 -2
LyoLy = Ly(Li(x,y)) = Ly(x + 2y, 3x,4y) = (4x — 2y,4x + 6y)

_ y_[4 6
[(4x — 2y,4x + 6Y)];, = [4 _2]
Which agree. Excellent.



Properties of Matrix Operations
March-02-11 1:38 AM

Under addition and scalar multiplication M, (F) is a vector space.

There is a third operation, "matrix multiplication."

The following additional properties hold:
Properties of Matrix Multiplication:
e Multiplicative Identity
The identity matrix served as the identity element

10 .0
Lori, =0 1 ;
0 .. 0 1

i.e.Al = A =1AVA € Mpyn(F)
e Associativity of Multiplication
(AB)C = A(BC) VA,B,C € Myy,(F)
Note: AB # BA in general
e Distributivity:
AB+C)=AB+ AC
(A+B)C =AC+BC
(A4)B = A(AB) = A(AB),
VA,B,C € Mpyn(F),AEF

Linear Algebra

A vector space (or a linear space) under a binary operation called
multiplication which satisfies the listed properties above is called a
linear algebra.
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My (F) is a linear algebra

Support for (AB)C = A(BC)
There is a bijective map from L(F™, F™), or all linear maps from F™ to F™ (a subspace of
F(F™ F™"))

It preserves the linear algebra operations:

(L1 + Lola = [Lala + [L2]a

[AL], = ALl,

[LiL2)a = [Ly o Lola = [L1lalLz]a
In short, the matrix representation [ from L(F™, F™) to M (5xn)(F) is a linear algebra
isomorphism.

Composition is an associative operation on L(F™, F™):
(LyoLy)oLy=Lyo(lyoLs) & ((LyoLy)oLy)() = (Lo (LyoLy))(v) ¥y € F™

& (Lo L)(Ls(0) = Li((Ly o L3)(v)) & Ly (Lz(L3(V))) =1L (Lz (L3 (U)))

The latter is obviously true so due to the isomorphism matrix multiplication must be associative.

Example
Let
_ [cos 6 —sin6
sinf@ cos@
Then

420 — [cos 200 —sin 200
sin200  cos 208

Example
Let D: P,(R) — P,(R) be the differentiation operator.
Let the domain and codomain be given the (ordered basis) a = {1, x, x?}

0 1
Then [D]a=[0 0 2]

0 0 0
because:
0 1 0
D(1) =0,[0], = [0], D(x) =1,[1], = [0], D(x?) = 2x,[2x], = H
0 0 0
Find [2I + 4D + 5D%],
Solution 1:
(2I + 4D + 5D%)(a + bx + cx?) = 2(a + bx + cx?) + 4(b + 2cx) + 5(0)
= (2a + 4b) + (2b + 8¢)x + 2cx?
2 4 0
[21+4D+5D5]:[0 2 8]
0 0 2
Solution 2:
[l is a linear algebra isomorphism
1 0 0 010 0 1
[21+4D+5D5]a:2[1]a+4[D]a+5[D]§=2[0 1 0]+4[0 0 2]+5[0 0
0 0 1 0 0O 00
2 00 0 4 0 0 0 0 2 4 0
=[O 2 0]+[0 0 8]+[0 0 0]=[0 2 8]
0 0 2 0 0 O 0 0 0 0 0 2
Example

Give an example of a 3 X 3 real matrix satisfying A3 = 0 but A% = 0
Is there a linear operator L: R® — R? sothat L3 = 0, L> # 0
L(x,v,2) = (y,2,0),L?(x,y,2) = (2,0,0) # 0,13 = (0,0,0) = 0
So

010

[0 0 1] satisfies the statement.

0 00



Sum of Vector Spaces *
March-02-11 2:05 AM

Sum of Vector Spaces
Let V be a vector space. Let W; and W, be two subspaces of V.
The sum of W; and W, is defined by:

Wy + W,y = {w; +wy |wy € Wy, w, € W}

Fact: Wy + W, is a subspace.

Direct Sum
The sum Wy + W, is direct if W3 N W, = {0}. In that case, we
write W1 @ W2

Theorem

Suppose that V =W; @ W,

If a is a basis for W and f is a basis for W5, then a U [ is a basis
for V.

Conversely, if W; & W, are subspaces of V and a U f (disjoint
union, XOR) is a basis for Wy + W5, then a U B is a basis for V
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Example
V =R3W, = x — yplane,W, = y — z plane
Then W; + W, = R®

Example

V=F((-11],R)

W; = Subspace of all even functions
W, = Subspace of all odd functions
W1 + Wz =V

Proof of Theorem
First, @ and B are disjoint. Will show that a U 8 spans V.

Let v € V be given. Then v = w; + w, for some wy; € Wy, w, € W,, because V = W; + W,

Now,

wy = Z Ajag,wy = Z ﬂjﬂj,
i€l cl jE€J1c)

a={alie,p={Blje]}
U:Z)Liai-l'zuiﬁj' ai,ﬁjeaup’

i€l JE€J1

11, J> finite

To show that @ U f3 is linearly independent, let y4, ..., ¥, be a finite list of distinct vectors from a U fand

thatmiys +m2y2 + -+ ayn =0

Each y; isin either & or 8 in exactly one way. Re-label those in a as @; and those in 8 as f3;;

We set

Zliai+2#jﬁj =0 ﬁzlmi = —Zﬂjﬁj

And since the left side is in W} and the right side is in W5, the only element common to both subspaces

is 0. And since Wy and W, are linearly independent, A;, u; = 0 son; = 0 Vi



Row Reducing
March-02-11 12:06 PM

Row Reduced Echelon Form
Let A be an X m matrix over F. It is in Row Reduced Echelon
Form if it has the following features:
1. If there are zero rows, these are at the bottom
2. For each non-zero row, the first (leading, scanned left to
right) non-zero entry is 1. We call such positions the
leading 1's positions.
3. Leading 1s with higher row numbers should have higher
column numbers.
4. All entries above and below the leading 1s are zero

Proposition
Every A can be changed to a Row Reduced Echelon Form using
three kinds of row operations in a finite number of steps:

1. Interchange two rows

2. Multiply a row by a non-zero scalar

3. Adding a multiple of a row to a different row

Interpretations of RREF
Could consider the matrix, A, short hand for a system of linear
equations. Hence the RREF of A records a system of equations
equivalent to that of A.

Could be interpreted as a linear equation of column vectors.

Statement
Every m X n matrix A has a unique RREF.

The Matrix A and its RREF, in general, do not represent the
same linear map.
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0 1 * =
1 * % %
00 0 O
Not in RREF, second 1 has higher row number but lower column number.
0 1 =* =
00 1 =
00 0 O
Satisfies 1,2,3
01 0 =
0 0 1 =
00 0 O
Is in Row-Reduced Echelon Form
Example
Use row operations to reduce
4 0 8
A= [—9 0 5]
0 0 4
to reduced row echelon form:
1 1 0 2
Step 1: 1 X Ry = Ry we get [—9 0 5]
0 0 4
1 0 2
Step 2:9 X Ry + R, = Ry, we get [0 0 23]
00
1 1 0 2
Step 3:== X R, = R, we get [0 0 1]
23 00 4
—2XR;+Ry >Ry
Step 4: _ we get [0 0 1]
4XRy+R; > R3 00 0
Example
The matrix
0 -5 =15 4 7
1 -2 -4 3 6
A=12 0 4 21
4

3 4 18 1
has reduced row echelon form

25
[1 o0 2 0 ——4—]
[ [

013 0 4
00 01 27

4
00 0 O 0

Maple Command:
[> linalg[rref] (B);

If this is interpreted as a linear system of equations, the general solution of
(Oxl + (=5)xy + (—15)x3 + 4x4 + 7x5 =0
4 1x; + (=2)x, + (—4)x5 + 3x, + 6x5 =0
I 2x1 + 0xy + 4x3 + 2x4 + 1x5 =0
L 3x1 + 4x; + 18x3 + 1xy + 4x5 =0
is:
Let x3 and x5 be free (non-pivot variables)
23

| %1 = —2x3 + —4—x5

Xy = —3x3 — 4x5

| 27
k X4=_sz

Alternate interpretation:

0 -5 —15 4 7 0
1 -2 —4 3 6] _10
X1 2 + x; 0 + x3 4 + X4 2 + x5 11~ o
3 4 18 1 4 0

It concerns the linear dependence or independence of the five column vectors of A in R*

We wee that the five columns form a dependent set (there are free variables in giving the scalars)
In REF, 3rd column = 2*first column + 3 * second column

That is, a particular solution (xy, X5, X3, X4, Xs5) is (2,3, —1,0,0) which are not all zero.

A basis for span

01 -5 7

1l |-2 6

21’fo [P

3 4 4
s
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01 =571 14
1l |-2] |3
21’ o |'f2
3 44411

Rationale for RREF Uniqueness
Different RREF will lead to different solutions to the system of equations AX = 0
Example
Clearly all possible RREF must be the same size.
1 0 411 0 4
[0 1 3] , [0 0 0]
00 0ot 0 O
In first case, dimension of solution space is 1, in second space dimension of solution space is 2
So the number of zero rows at the bottom must be the same in all solutions.

1 0 41 0 2911 0 0

[0 1 3],[0 1 5],[0 0 1]

00 o'to oottt 00

Xy = —3x3,X; = —5x3

So the solutions to the first two matrices are not the same.
x3 arbitrary in first case, 0 in last case. So different solutions.

The Matrix A and its RREF, in general, do not represent the same linear map.
Example

A= [(2) 8] represents L, = ([;C; ) =4 [;] = [2(;6]
its RREF is [(1) g] =F,Lg ([;D =R [;] = [’5]



Elementary Matrices

March-07-11 11:31 AM

Elementary Matrices

There are three types of elementary row operations. When
we apply a single elementary row operation to I, the
resulting matrix is called an elementary matrix.

Proposition

Let A be any m X n matrix.

When we apply an elementary row operation on A, the
outcome is equivalent to multiplying A on the left side by an
elementary matrix.

Corollary

Every m X n matrix A can be changed to its RREF by
repeatedly multiplying on the left by a finite sequence of
elementary matrices.
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Examples of Elementary Matrices

2(123 + alz]
az3

2 4] _omper [1 0 0

1 0 0 O
0 1] (1) (1) 8 0 1 0 0
10'00 10'—2010
0 0 0 1
Not elementary:
1 2]
3 4
Example
_ @11 G12 Q13
LetAl_[%n azz 023]
12:[0 1
and that the operationis 2R, + R; = R4
A—) 2a21+a11 2a22+a12 2a23+a12]
azi azz azs
I _)[1 2
71 1
1 2] [‘111 as, a13]=[2a21+a11 2a3; +ag;
0 1llaz1 azx azs azy Aazz
Example
[0 3 1 _
LetA—[1 5 %(1;—415) .
R1SR, 2R2-Rq
Then 4 = [0 3 17 [0 1 2

5 A0 9E aa)-1 0 Y

=lo I ola=[5" )4

01 2

]



Matrices & Maps

March-09-11 11:36 AM

Let L: U — V be a bijective linear map. If W is a subspace of U, then L(W) is a
subspace of V. If a is a basis for W, then L(a) is a basis for L(W)
In particular, if dim W =k, then dimL(W) = k

If Lis bijective and linear: U - V
then L™1:V - U isalso linear.
Lo L™ = identity map on U
L 1oL = identity map onV

If a, 8 are bases for U, V respectively, then
(LG = (Lol e =1y
[LGIL1S = (LYo Llg =1y,

Invertible Map / Matrix
A map which is called bijective is called invertible.

An n X n matrix is invertible if there exists n X n B so that AB = BA = I,,. If such

B exists, it is unique and is denoted by A™1
In particular, if A = [L], (bijective operator L), then A is invertible and A~ =

(L4

Proposition
The three elementary row operations are invertible linear maps.

Statement:
Composition of linear maps is invertible.

Rank of a Matrix
Let A € My« (F). The rank of A, rank(A), is the rank of L4: F™* —» F™

Proposition

Range of L, = span{L,(e1),Ls(e3), ..., Ly(en)} where {e, ..., e, } is the
standard basis for F*. range(L,) = span {cy,C3, ..., ¢, } where c; is the it"
column of A.

rank(A) = # of linearly independent columns that form a basis
= # of leading 1's in RREF of A

Nullity of a Matrix
Nullity of A = Nullity(L,) = dim N(Ly) = dim{X € F" : AX = 0}

Let B = RREF of A

dim{ X € F": AX = 0} = dim{X € F": BX = 0} = # of free variables
=n — # leading 1s =n —rank(A)
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Example

1 2 3
A_[100
1 0 0
= 3
RREF 015

rank(A) = 2,nullity(A) = 1



Matrix Multiplication

March-11-11 11:32 AM

Matrix Multiplication in Blocks

B|C AB|AC]
| B, AyBy+A;B; | AyBy+ AzB,
- + |- + —|= - + -
As | A4 | By A3By + AuB; | A3By +AuB,

Matrix Inversion

In general, for n X n A, to find A~ if it exists we row reduce
[A|L,] (Solving AB = I,,) to RREF on the A side only.

Case 1l

If RREF of Ais I, then we have [I,|A™1]

Case 2

If RREF of A is not I, then A is not invertible.
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Solving Equations
To solve the equation AX = B where

-l

we could find the RREF of [A|B]
and then determine the solutions,

Suppose we want to solve two parallel equations.
AX = By, AX = B, (separately, parallel means not related, different X)

It can be done by finding RREF of [A|B;] and of [A|B;]
The job can be done in one round: Find RREF of [A|B; |B,] and then read
the solutions.

Example
LletA = [1 2]. Find A~1if A has an inverse.
0 3

Solution:
We seek B (2 X 2) such that AB = |

Let B = [X;|X,]. The equation is A[X;]X,] =

= [}, = ]

i

Consider
1 2 | 10 . -
03 ] 0 1 and use row ops. to bring it to RREF (on A partition)
1 2 | 10 1

1] (r, 1)
[0 110 —] 327 N2

3
10 1 2

! 3

01 0 !
! 3

1
3 3
Example
1 21, _[3 5 7
Solve[0 3]X_[468 -
1 2| 357 10|11—
1 23 5 7 3 3
[03|468]_’01 LA I 4 8
|3 3101 | = 2 =
3 3
115
X=3 3
428
3 3
Example

2] as a product of elementary matrices.

Express [(1) 3

Solution:

1 0

] I R B
E,

a=sis=[3 95 7



Column Operations

March-14-11 11:32 AM

Proposition
IfTy:U = Vand T,:V - W are linear and T, is an isomorphism on finite
dimensional spaces U, V, and W.
Range(T,T,) = (T,T,)(U) by definition of range

= TZ(T1(U))

= T,(range(T,))
When T, is an isomorphism, the subspace range(T;) of V is mapped to a
subspace of W of the same dimension.

Therefore, rank(T, o T;) = Rank T,

Converting that statement to n X n matrices A and B, we get rank(AB) =
rank(AB) = rank(B) when A is invertible (i.e. equivalently rank(A) = n)
In parallel, we get rank(AB) = rank(A) if B is invertible.

Corollary

For any matrix A, an elementary row operation performed on A does not
change the rank.

rank(EA) = rank(A)

Since E is invertible.

In particular, rank(A4) = rank(RREF(A))

Theorem
Elementary column operations does not change the rank of a matrix.
rank(AE) = rank(A) since E is invertible.

Theorem

By using both elementary row and column operations, we can reduce a
matrix to the form

L. | 0
—_ + —_
0o | O
where ris the rank of the original matrix.

Corollary

Let A be any matrix (m X n). Then there exist invertible P & Q such that
I. 0

PAQ=|— + -—
0o | O
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Observations

Observe that rows of A are the same as the columns of At. Therefore, action on rows of A
becomes action on the columns of Af.

Every theorem on row operations has a corresponding theorem on column operations.

Example

Every matrix can be reduced to a unique RREF using elementary row operations.

In parallel, we have:
Every matrix can be reduced to a unique reduced column echelon form using elementary
column operations.

Notice that transpose has the property

(AB)t = BtAt

The statement : an elementary row operation performed on A has the effect of multiplying A on
the left by an elementary matrix translates into multiplying A on the right by an elementary matrix.

Demonstration

a1 Qi g3 Q12 411 043
] - 206)- [ ]
A1 Gz Q3 Qzp Q1 Q3

01 0
lau aiz alSJ 1 0 ol= la1z aiq ‘113]
QA1 Gz O3 0 0 1 Qzz dp1 Op3

Example
Let A be 2 X 3 and that under the use of row operations we bring it to

0 1 3
0 0 0] (RREF)
Using further column operations, we can bring it down to CREF

e CET AR N BT B O



* Dot product on R™
March-14-11 3:33PM

Dot Product on R™
Let¥ = (x1, ..., %0), 7 = (1, ---:Yn)f R"

%5 = Gaet) - O ) = )

i=1
It is seen within matrix multiplication, and also in
equations like a;xy + azx, + -+ ayx, =0
(ay, o, an) - (X, 00, xp) =0

Norm of a Vector in R"
InR™, ||x|| = /x? +x% + -+ x2

If X # 0, then [|X|| > 0
If ¥ = 0 then ||x|| = 0
1221l = [AllIX]| vx € R™

.
X 1

1%l = 5~
(|l

[l

%]l =1

| 1
(Il

Normal Vector
A vector whose norm is 1

Normalisation
We call the division of ¥ # 0 by ||X]| > 0 the
normalisation of ¥

Distance
Distance between %, y:
a@,y) =y -l = lIx -yl

Theorem
Projg: R™ - R™ is a linear map
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Geometric Interpretation in R?
(x1,%2) - (¥1,¥2) = 0 means the vectors X, y are perpendicular.

3
Same story for x 3

Y

Dot Product
Interpretation of non-zero dot product:

n
5 & x
Orthogonal projection of a vector ¥ € R™ on a normal vector % is
Projz () = (¥ - £)%

Range(Projg) = span{x}
Nullspace(Projz) ={y € R" : Projz;(3) =0} ={J ER": (¥-X) =0} ={JeR*: y L &}
R™ = Nullspace(Projz) @ Range(Projz)

let Projz =T, T>*=T

Projection

LetV =W, ® W,

Thenforv eV, v =w; + w,

Define Projy, (v) = w, and Projy, (v) = wy

Abstract Definition of Projection
A linear operator L such that L? = L



Determinant
March-16-11 11:31 AM

The Determinant Function
Let Abe a1 X 1 matrix. The determinant of A, det(4) is
equal to the entry of A.

ai a12]
.Then
az1 Qpz

det(a) = a11a3; — A12021 = a1q detlay,] — ay, detfay,]

LetAbea2 X2 matrix[

letA = [ai]-] be 3 X 3. We define

detA
dzz2 QAz3 az1 Azs
=a det[ ] —a det[ ]
1 dzz Aaz3 12 azi1  aszs
az1 Q422
+ a,3 det [ ]
13 azi1 0dzz

Recursively, we define for n X n matrix A
n

detA = Z(—l)j“alj det[4;]

j=1
Where Ay is the sub matrix of A obtained when we
remove row 1 and column j

Area Magnitude

Area is considered positive when the points are defined in
a widdershins fashion about the shape. When the points
are described clockwise, the area can be considered
negative.

Multiplying the area by -1 means a change in orientation.

Fact
A 2 X 2 matrix A is invertible iff det A # 0. In general, for
anyn X n A, Aisinvertible iff detA # 0

Theorem
Forany n X n A over F, Aisinvertible iff detA # 0.

Proposition

Let A be n X n. Holding all rows but the 1st row fixed,
det A is a linear map of the first row R;. Itis a function
from F™"to F
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Interpretation of Determinant
Interpretation for 2 X 2 matrix A and det A

egletd=[ O] Thendeta = @)(1) - (0)(0) = 2

; . 2 2 ; _[2 0% _ Zx] _
Consider Ly: R? - R?. The mapis L, (x,y) = [0 1 [y] = [y = (2x,y)
The figure:

(=,

,')

La

AN

The area under the region is doubled by the transform.

Let A = [(1) ﬂ ThendetA = 4. Ly(x,y) = (x +y,4y)

L\Jlﬂ Q]+]

Za,'] f I]

rblt'] (1,0

So the Area was multiplied by a factor of 4.

(6,01 ¢y,D)



Determinant Properties lllustration of Theorem 4.3

aiq a2 a3
March-18-11 11:32 AM A=|by+kc; by+kc, bs+kes
az asz azs
Properties of Determinants Claim:
In the textbook, properties of determinant are built up in this sequence: fu iz G G G2 @13
» prop P q : detA=deth1 b, b3]+kdet[c1 c2 Csl
Theorems
S . ] az1 dzz ass az1 Qazz asz
(4.3) det Ais linear as a function of each row when other rows are fixed. by + ke, by + ke by + key by + ke,
Corollary: If A has a zero row, then det A =0 LHS = ay det[ asy ass l —agpdetl... ]+ ag3 dEtI as; as; l
- L By induction
(4.4) det A = Z(—l)”] a;j det A;; for any fixed i LHS
=1 _ b, bs C; (3
(Co-Factor expansion along row i) =an det( as; a33] +k [a32 a33]) — aszdet]...]
Alead to (4.4) is the Lemma: If Bisn X n,n > 2 has row | equal to ([ by by ] €1 )
+ a3 det = RHS
ex(standard basis for F¥) then 13 az, asy [a31 a32]

detB = (—1)** det By,
lllustration of Lemma for Theorem 4.4

Corollary: If A has two identical rows, then detA = 0 a1 A2 413
B = [ 0 0 1 ]
az; dzz 0433

(4.5) IF B is obtained from A by interchanging two rows, then det B = —det A o 1 0 1 0 0
(4.6) If Bis obtained from A by AR; + R; — R; (i # j)action, then det B = detA detB = ay; det[ ] —ag; det[ ] + ay3 det[
Corollary: If rank (A), n X n 4, is below n, then det4 = 0 432 033 931 33 431 32
v: ’ ’ ’ - The new determinants are either 0 or same form but smaller so use induction.
Corollary

o . L Proof of Corollary
If a matrix is upper triangular A, A;; = 0 for i > j then
n

Use brute force to check it is true for 2 X 2 matrices.

For larger n, pick a row which is not part of the 2 identical rows. The determinant
calculated using that row will be 0 because there are 2 identical rows in every sub-matrix,
by induction.

detA = nAii = product of all diagonal entries
i=1

lllustration of Theorem 4.6
Let B be obtained from A using AR; + R; - R;

Ry Ry Ry Ry
Rj—1 Rj—1 Rj-1 Rj—1
detB = det|AR; + Rj[ = Adet| R; |+ det| R; |[=det| R;
Rjy1 Rjy1 Riy1 Rj+1
Ry Ry R, Rn

Since the first matrix has two identical rows and thus has determinant 0.

Example
1 2 3
Evaluate det|0 5 0

6 7 8
_ 5 0] 0 0 0 5]_ _ oo
_1det[7 8] 2det[6 8]+3det[6 7]_1><40 2% 0+3x—20=—-50
or
o 1y2+2 1 3]_ 10—
=(-1 ><5><det[6 8]_5x 10 = —50
Example
1 2 3
Finddet[4 5 1]overZ7
1 1 1
Lin comb of rows, then multiply a row by 2 = %
1 2 3 1 2 3 1 2 3
=det[0 4 3]=4Xdet[0 1 6]=4Xdet[0 1 6]
0 6 5 1026 5 0 0 4
— —1)3+3 — —
=4x(-1) x4xdet[0 1]_4><4><1_2
Example
1 1 1
Evaluate det|1 x le
1y ¥

It is some multinomial involving x and y of degree at most 3.
By inspection, factors should be
-Dy-Dx-y»

1 1 1
det|{1l x le = a(x — 1)(y — 1)(x — y) for some constant a
1y y

If over R, pickx =0,y =2
a(-D(1)(-2) = 2a = (1) det |

a=-1

1 1]=—1><2=—2

2 4

MATH 146 Page 32



More Det. Properties
March-23-11 11:34 AM

Theorem
det(AB) = detAdetB

Similar Matrices

Two n X n matrices A & B are similar if
there exists invertible P so that A =
P~1BP

Result
If A and B are similarthen det A = detB

Example

Let T:V — V belinear, dimV =n. Leta
be a basis, and led  be another. Then
[T]q and [T]g are similar.

Determinant of Operator

Let T:V — V be a linear operation on n-
dimensional V. Then det T := det([T],)
for any ordered basis «

Theorem
det(T1 o Tz) = det Tl det Tz

Determinant Properties Cont.
det(A) = det(4T)

Proof of Theorem
First see that it is true for elementary matrix A = E
Case 1:
Eisfrom I, AR; = R;
det(E) = Adet(l,) = 1
det(EB) = Adet(B) = det(E) det(B)
Case 2:
Suppose E is from I, by the action R; S R;
Then detE = —det(l,,) = —1
det(EB) = — det(B) = det(E) det(B)
Case 3:
Suppose E is from I, by the action AR; + R; — R;
Then det(E) = det(l,) = 1
det(EB) = det(B) = det(E) det(B)

Next, if Ais equal to E1E; ... Ey, then det(AB) = det(A4) + det(B)
det(AB) = det(E;) det(Es, ..., Ey) = --- = det(E;) det(E,) ... det(Ey) det(B)
= det(E,E; ... Ex) det(B) = det(A)det(B)

Finally, if A is not invertible then AB is not invertible. Since A is not invertible, the RREF has a 0 row at
the bottom so det A is 0, as for AB so det AB = 0 so det(4) = det(4) det(B) = 0 x det(B) = 0
[

Proof of Result
3P,A = P71BP,det(A) = det(P~1BP) = det(P~1) det(B) det(P) = det(P~1) det(P) det(B)
= det(P~1P) det(B) = det(l,,) det(B) = det(B)

Proof of Example

Recall the rule [L; o Lz]ﬁ = [Lﬂﬁ [LZ];Z
T

V-V
Ly

a—a

l )
T
V-V
s p
So:
T=10To1
[Tle = [10T o 1], = [113[T]4[11%
Testing: [114[115 = [1], = I,

Example

LetT:V -V

a ={vy,v,},B = {v,, v} be bases
a b

Let [T]q = [C d]

What is [T]g?

T(v1) = avy + cv,

T(Uz) = bv1 + dUZ

Hence T(v,) = bv; + dv, = dv, + by,

T(v1) = avy + cvy, = cvy + avy

So

[Tlg =

Ans: Given{

b al

Corollary
[‘; Z] and [z Z] are similar.

Proof of Theorem
det(T1 o Tz) = det[Tl o Tz]a = det[Tl]a det[Tz]“ ||

Proof of det(A) = det(AT)

ForAR; » R;andR; S R;,ET =E

For AR; + R; = R;

Each E, ET are upper or lower triangular so det(E) = det(ET) = 1

Since this is true for elementary matrices, it should be true for all invertible matrices.
detA” = det(E{E, ...Ep)T = det(EY ... ETET) = det(EY) ...det(E]) det(ET)

= det(Ey) ... det(E,) det(E;) = det(E;) det(E,) ...det(E,) = det(E,E, ... Ey) = det(AT)
And for non-invertible A, AT is non-invertible so det A = det AT = 0
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Suppose ATB = 1, then (ATB)T = 1T = BTA = 1 s0 AT not invertible < A not invertible
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Similar Maps
March-28-11  11:30 AM
Proposition

If A and B are similar, then p(A) is similar to p(B).
Where p is a polynomial expression
n

P:Z ix!

i=0

Similar Maps

Let L1 and L,:V — V be linear operators. we say that Lq is
similar to L if there exists an isomorphism P: V — V so that
Ly=Plol,oP

Proposition
If V is finite dimensional, then operators Ly, L,:V — V are
similariff [L1], and [L,], are similar.

Characteristic Polynomial
det[A — AI,] is the characteristic polynomial of (n X n) A

Characteristic roots (Eigenvalues)

The roots of the characteristic polynomial of A are called the
characteristic roots of A.

MATH 146 Page 35

Proof of Proposition
n

Let p(x) = Z aixt = ag + ayx + azx® + - + ax™
i=0

i) A% is similar to B2.
Let A= P~1BP.Then A?> = P~'BPP~'BP = P~'BIBP = P~1B?P
ii) Similarly, A¥ is similar to B¥ for each k > 3
iii) p(4) = P~1p(B)P
n

n
p(4) = Z a;Al = Z a;P~'B'P

i=o i=0

Example

Let L;: R? — R? by the rotation U by 20°. Let P: R? — R? be the reflection about the y-axis.
lie. P(x,y) = (—x,¥)]

Let L, = P~'L,P. Then L, and L, are similar.

L, is the rotation U by 20°

Try
Is rotation counter clockwise by 20° similar to rotation counter clockwise by 30°
May be on exam

Proof of Proposition

(=) Suppose that there is an isomorphism T:V — V so that
Ly =T L,T
Let a be any fixed basis. Then
[Ll]a = [T];l[Lz]a[T]a- Take P = [T]u

(<) Converse left as exercise

Example
Consider the two similar rotations mentioned earlier. Pick « = standard basis. We get

_ [cos20 —sin207.. .. .
[L1]q = [sin 230 cos 2200 is similar to o
_ [ cos sin _[
[Lole = [— sin20 cos20 under P [ 0 1]

Example of characteristic polynomials
12

a= [3 4

Then its characteristic polynomial is

det[A—,u]:det(l 2]_/1 0

3 4 0 2]):det[1gl 431]:(1_/1)(4_/1)_(2)(3):/12—53.—2



* Axiom of Choice
March-28-11 3:38 PM

If Xis a finite set with n elements then X can be
partitioned into two (disjoint) parts of same
cardinality iff n is even.

Proposition
If X is an infinite set, then it can be partitioned into
two parts of the same cardinality.

Function Extension
Say G:A; - B extends F:A; » B;
if Ay 2 A;and B, 2 B; and G(4,) = B;
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Proof of Proposition

Consider the class C of all bijective functions fromaset Ac XontoBc X,ANB =0
C is non-empty.

Definein C, f < g when g extends f.

C is partially ordered by <
We seek maximal f.
Let C be a chainin C

Let A = Udomf and B = Urangef
fec fec
f:A—> Bbyifa € Athen a € dom f; for some f; € C let f(a) = f;(a).
Ifa € dom f; for some f; € C then WLOG say that f; < f; so f;(a) = fj(a).
Hence f is well defined

dom f = A,range f = B.Itis easy to observe that A and B are disjoint and f is a bijection from A to B
Sofec

The maximal principle asserts that maximal f; exists.
The union of the domain A of f;, and its range B is either the whole X or is X\{x,}
Wearedoneif AUB =X
Else, AUB U{xy} =X
Select a sequence of distinct elements (a,)m=, from A.
Adjust f; to g:
g:AU{x,} > B
9(xo) = folay)
9(an) = folans1)
g(a) = fo(a), for a & {an} U {xo}

Hence A U {x,} and B is a partition of X, and the presence of bijective g means A U {x,} and B are of the
same cardinality.



Eigenvalues/vectors
March-30-11 11:34 AM

Eigenvalues and Eigenvectors

Let V be a vector space over F. Let L:V — V be alinear
operator. A scalar A1 is an eigenvalue of L if there exists v # 0 so
that L(v) = Av.

If v # 0and L(v) = Av for some A € F, then v is called an
eigenvector of L.

Proposition
Eigenvalues of L,: F™ — F™ (n X n A) are given by the
characteristic roots of A.

Hence, L4 has at most n distinct eigenvalues.
Remark
Let L: V — V be an operator on finite dimensional V. Then A1 is

an eigenvalue of L iff it is a characteristic root of [L], for any
fixed basis a for V.
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Example

Let L: R? —» R? be Projg

Then each non-zero vector on the line spanned by X is an
eigenvector of L, and A = 1 is an eigenvalue.

Each v # 0, perpendicular to X is also an eigenvector of L,and 1 = 0
is an eigenvalue of L.

Proof of Proposition

Let A be an eigenvalue of L4. Then, by definition, there exists X #
0 € F™" so that L4(X) = AX. Thatis, AX = AX
AX—2X=0=>UA-2)X=0

This is equivalent to that A — A,, is not invertible.

Therefore, det(4 — AI,) = 0

Therefore, A is a characteristic root.

The converse is also true and can be observed through the proof
done backwards.

Example

Let V be the space of all infinitely differentiable functions on the real
line into the real line. (A subspace of F(R,R) )

Let D:V = V be the differentiation.

Each function e?* is an eigenvector of D. Hence A is an eigenvalue of

D forevery A € R.



Computational comments

April-01-11

11:32 AM

Given a finite list of vectors vy, ... U}, in F™, how to extract a subset which is a basis for span {vy, ...

and extend that to a basis for the full F™

Method
Form the matrix
[v1|v5] ... |vk| €1] €3] .. |e] and find its RREF, then read an answer out.

Example
Suppose that k = 4,n = 6 and that RREF of A is
01 0 = = 00 = 00
0 01 = = 0 0 x 00
000 0O0OT1O0 == 00
000 0O0OO0OT1T = 00
0000 O0OO0OOOT1TPO
000 0O0OO0OOTUOTU OT1
The then answer is {v, 3} is a basis for span{v,,v,, V3, v,} . An extension to a basis for F® is

{vy,v3,e5, 65,65, €6}

If mission is to find a basis for span{vy, v,, ..., v} in F¥ then we could form
%1
V2

A=|—

Uk
and find its RREF. At the end we produce a basis. For instance
1 % % 0 %3 %4
0 0 0 1 x5 x4
0 0 0 0 O O

0 0 0 O
Then a basis for span {vy, v,, V3, v} is { (1,%4,%5,0,%3,%,),(0,0,0, 1,%5,%4)3, not {vy,v,}

k=4,n=6RREFof Ais
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Comments

_ The following are undefined:

April-04-11 11:33 AM
L:U — V alinear map, dim(L).
Vectors vq,V5, ..., Uy. dim{vy, ..., v, }
Matrix 4, dim A4

V41, V3, ... p. They form a basis for V. Avoid saying v, v,, ..., v, is a basis.
Correct: {v1, vy, ..., .} is a basis

dim M3, (F) is defined, though dim A is undefined for A € M3y, (F)

L:V - V alinear operator, V finite dimensional, det L is defined by det([L],)
When V is infinite dimensional, det L is undefined.
e.g. If D is the differentiation operator, then det D is defined when the
space it acts on is finite dimensional, like B, (R). It is undefined on P(R)

The characteristic polynomial of A is defined by det(4 — AL,).
[t cannot be computed using the RREF of A.

*Might be on exam

If A is similar to B, then det4 = detB
trace A = traceB

rank A = rank B,nullity A = nullity B
Characteristic polynomial of A = B?

A~B = A?~B?
A~B = p(A)~p(B)
A~B & C~D = AC~BD?

Ais an eigenvalue of A
(3 X # 0sothat AX = AX)
then A2 is an eigenvalue of A?
As A%X = A(AX) = A(AX) = 1A(x) = A(Ax) = 1%x
Similarly A is a root of det(4 — Al,) = A? is root of det(4? — Al,)
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