Features and Constraints

May 20, 2014 2:32 PM

Search Strategies
A*

Backtracking

Local Search

Features
Domain

eg.

dom(x,) = {a,b, c}
X, < a

Boolean Satisfiability (Example)
Variables

AB,..,G

Domains

dom(4) = {true, false}

Constraints
(mAV-aB)A(=BV-CVD)

Constraint Terminology and Notation
Intentional Constraint Description

Formula to be satisfied

Extensional Constraint Description

A list of valid tuples

Tuples

t = (1,4) with variables x;, x,
tlx,]=1

tlx,] =4

Vars
Cis a constraint
vars(C) is variables in constraint C
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Example: n-Queens
4-Queens as a constraint satisfaction problem (CSP)
Variables

Each grid location, x;;, i =1,...,4, j=1,..,4

jr
Domains

dom(x;;) = {0,1}

x;j < 1: There isa queen on (i, j)

Constraints
4

Vi inj= 1

j=1
4

i=1
And each diagonal ¥ x;; < 1

Alternate Formulation

Variables

x;, i =1,...4 (one for each column)
Domains

dom(x;) = {1, 2, 3,4} (row positions)

x; « j There is a queen in column i, row j
Constraints

Example: Crossword Puzzle
Variables

X1y s X3

Domains

dom(x;) = {'a’,’p’,'c’,...,"d"}
Constraints

Consecutive grid locations form words in dictionary. All words used exactly once.

Non Binary

Alternate Formulation

Variables

1Across, 1Down, 2Down, ...

Domains

dom(1Across) = {All 5 letter words}

Constraints (Binary)

1Across and 1Down agree on assignment of the first letter.
... Same for all pairs of intersecting rows/columns.

Alldifferent constraint - 4 Queens Example
Variables

X4, Xo, X3, %, (each column)

Constraints

alldifferent(xy, x5, X3, x4)



Constraint Propagation Example

Variables
May 22, 2014 2:33 PM
X, ¥,z

Domains
{1,2,3}
Constraints
c1: x <y
c: y<z

Check Arc Consistency and Remove Inconsistent Values
x and ¢4

dom(x) = {1,2,3} = {1,2}
y and ¢4

dom(y) = {1,2,3} = {2,3}
yand ¢,

dom(y) = {2,3} = {2}
z and ¢,

dom(z) = {1,2,3} = {3}
x and ¢4

dom(x) = {1,2} = {1}

/ nvariables
m values for each
k constraints per variable

k .
n? constraints total

Constraints always satisfied.
Number of constraint checks:

Naive backtracking
nk checks
MAC

n
7m+nkm

Comparison of naive backtracking vs MAC
n variables.
Each variable has domain size m

There is a single binary constraint for each pair of variables.

-1 .
nn-1) constraints total.

Each constraint is satisfied with probability p

What is the branching factor of naive backtracking?
Consider a node with [ free variables.
This node is satisfiable if there is any assignment of the [

variables that satisfy all C = 1(12;1) + I(k — 1) constraints.

An assignment is satisfactory with probability p©
None of the m! assignments are satisfactory with probablity
a-pom
So a node at height [ is satisfiable with probablity
1
q)=1-@0-po"

Given that a node is satisfiable with probability q (1), what is
the expected branching factor?
Probability that a node at height [ has branching fractor b is

b-1
P(B=b)=(1-q() xq
This is a geometric distribution with expected value
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1
E(B) = —=
Y q
What is the expected number of nodes in the search tree
starting at height [?
N, is the expected number of nodes. B, is the random

variable giving the branching factor of nodes at neight .
Recurrence:

m
Ni= ) P(B =) Nis
b=0
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Local Search

May 27,2014  2:33 PM

Example: 4-Queens

Alternative 1
All constraints into cost function
+1 for each constraint that isn't satisfied
Set of all states: CSP with no constraints.
Set of all solutions: set of all 4-tuples over the set {1, 2, 3,4}

Neighbourhood function:
Swabp pairs of values? Solution isn't necessarily reachable. e.g. from (1,1,1,1)

Alternative 2
Cost function: +1 for each of |xi — xj| # |i — j| that is not satisfied
Set of all states must satisfy x; # x; Vi, j
More specifically, alldifferent(xq, x5, x3, x4)
Set of all states: : all permutations of 1, 2, 3, 4.
Neighbourhood function: Swap pairs of values.

Local Search for TSP

Nodes: Permutations of Cities
Cost function: cost of tour
Neighbourhood function:
2-opt: delete two edges from tour to break tour into two pieces and then reconnect

Starting Tour
e Greedy Algorithm
o Pick lowest cost one next
e Alternative: randomly pick a starting node, run greedy algorithm
e Alternative: pick randomly from lowest few in greedy.

Satisfiability

Set of states: all possible assignments of true or false to Boolean variables.
Cost function: +1 for each unsatisfied constraint

Neighbourhood function: Change/flip k variables

Example: Partition

Set of all states:
x;: i =1,..,# of objects
dom(x;) = {0,1}
All possible assignments where
x; = 0O means x; isin U
x; = 1 means x; isinV
Cost function : difference in weights of U and V
eg.u=1{ab,cd}, v=_{e f,g,h}, |132—58| =26
Neighbourhood function
Poor:
Swap two: pick an object from U and one from V and swap them
Better:
Pick an object and move it to the other set.
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Set Covering

Cost function:
size/cost of cover setting
penalize for uncovered rows
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Genetic Algorithms

May 29, 2014 2:45 PM

Example Representations: 4-queens
What are the x;?
1. Permutation representation
eg. (2,1,4,3)
2. Extended pair representation
For each pair of queens, which one comes before the other
X12 X13 X14 X23 X24 X34

x;; = 1ifx; < x; and 0 otherwise
Solution: 101001

3. Possible row positions encoded in binary
X1 X X3 X4

0000’00’00
01 01 01 01
10 10 10 10
11 11 11 11

Fitness Function
# of constraints satisfied

Genetic Operations

Mutation (Unary)

Flip a bit(s) with some small probability
Crossover (Binary)

Given a = (a4, ..., a;p) and b = (b, ..., byy)
child = (¢q, ..., )
¢; = choose between a; or b; (not a good description)
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Logic & Inference

May 29, 2014 3:16 PM

Holmes Scenario

Variables

w — watson calls
g — gibbon calls
a — alarm

b — buglaring

Knowledge Base

w=a, g =a, a=>b

But these are not categorically true. Logic insufficeint
Query

b? Is there are burglary in progress)
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Probability

June 3, 2014 2:41 PM

Axioms of Probability

1. All probabilities are between 0 and 1
0<Pl@=1
2. Necessarily true propositions have probability 1
Necessarily false propositions have probability 0
P(true) =1, P(false) =0
3. The probability of a conjunction is given by,
P(AANB) =P(A) + P(B) — P(AVB)

Example - Slides: Holmes Example
P(B) =py+ps+ps+p;

P(W AB) =ps+p;

P(WV B) =p; +p3 +ps+ps +ps +07)
P(WV—|W) =1

P(BAW +
P(BIW) = ( ): Ps T p7
P(W)( P4+P5)+ Ps + P7
P(-BAWAA
P(=BIW AA) = — __Ps

PWAA)  pe+py

Examples of Probabilistic Reasoning
Example: (B)urglary and (A)larm
Suppose the alarm in 95% of cases is accurate. i.e. if there is a burglary, the alarm goes.
In 97% of cases when not burglary, the alarm does not go
We get
False positive
P(A|B) = 0.95, P(A|=B) = 0.03
P(=A|B) = 0.05, P(=A|-B) =0.97
Probability of burglary P(B) = 0.0001, P(—=B) = 0.9999

Suppose alarm goes. What is the probability of a burglary.

P(B|A) = PBAA) _ P(AIB)P(B) B 0.95 x 0.0001
~_P(A)  P(AIB)P(B) + P(A|=B)P(=B) ~ 0.95x 0.0001 + 0.03 x 0.9999

_ 0000095 _ "

7 0.030092
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Belief Network

June 5, 2014 3:05 PM

Edges represent dependencies between variables.
What do the numbers mean?
Frequentist approach / statistics
- objective
Bayesian / subjectivist approach
- degrees of belief

Exact algorithms for finding a particular joint probability given a belief network:
Variable elimination
Cache intermediate results
Factor as much as possible

Exact query answering: #P-Complete (worse than NP-Complete)

Approximate Algorithms

Example
P(B = false, G = true, W = true)

= Z P(B = false) P(G = true|A = a)P(W = true|A = a)P(A = a|B = false,E = e)P(E =e)P(R=7r|E =¢)
eedom(E) aEdom_(A) redom(R)

= P(B = false) ZZZP(G = true|4A = a)P(W = true|d = a)P(A = a|B = false,E = e)P(E = e)P(R =7l|E = e)]

= P(B = false) ZZP(G = true|ld = a)P(W = trueld = a)P(A = a|B = false,E = e)P(E = e) <z P(R=rl|E = e))

= P(B = false) ZP(G = true|A = a)P(W = true|d = a) [Z P(A = a|B = false,E = e)P(E = e)”
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Supervised Learning

June 12, 2014 2:32 PM

Naive Bayes
Querying a Naive Bayes Network

Let domain of class variable be {c;, ..., ¢}
Given values for the attributes
Attribute 1 = a4

Attribute k = a;,

To predict class
argmax P(class = cq|evidence) = argmax P(class = c;|Attribute 1 = ag, ..., Attribute k = a)
Ci Ci
P(class = c; A aq, ..., ax)

= argmax P(class = ¢jla, ..., ay) = argmax

Ci Ci P(all ey ak)
P(class = c;) H§'€=1 P(aj|class = aj)
= argmax
gcl. P(aq,...,a;)

k
= argmax P(class = ¢;) | | P(aj|class = a;)
Ci i—
j=1

Learning arcs and probabilities
Each attribute/features becomes a node in the network.
Steps
1. For each attribute and each possible set of parents, calculate a score
a;, a; = aj, .., = Aj, .., (a1,a3) - a;, ..., (ar_1,ax) = a;, ...
Many possible scores. Scores capture goodness of fit and penalty term for complexity.
Two popular scores: BIC & BDeu
BIC = Bayesian Information Criterion
Bdeu = Bayesian Dirichlet (likelihood equivalence) (uniform joint distribution)
2. For each attribute/class variable pair pick a parent set such that
a. there are no cycles, and
b. the sum of scores is minimized
Pruning rule: Two parent sets p, p’ for some attribute
p € p' and cost(p) < cost(p’) then prune (remove) p’

CS 486 Page 10



Neural Networks

June 26, 2014 3:28 PM

Example: XOR Function
Input  Output

X1X2 W1
00 0
01 1
10 1
11 0
Threshold value
hy
G +1
X, —>
+1
+1
e

+1
Step function f(x) = {(1) :?i i g
hy = f(x; + x5, —0.5)
hy = f(xq +x, — 1.5)
0y = f(hy —h; —0.5)
X1 Xo hq h, 04
0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 0

Backpropagation Learning Algorithm
x1—hy —o0g

X X
Xy —hy — o0,

X X
xXq —hp —o¢
Each hidden and output unit uses signal function f(x) = ———
Output is a value between 0 and 1

Handling Thresholds
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A
hj=f <ZW1if'x‘)_ﬁj' j=1.-.B
i=1

Rewrite as,
A
hj=f<ZW1ij'Xi), j:1,...,B
i=0
where xo = —1 and w1y; is the threshold for h;

Same for output layer:

B
Ok:f<zwzjk'hj)' k:1,...,C
j=0

where hg = —1
Error Term

c
1
error = EZ(yk —0p)?
k=1

Algorithm
1. Initialize weights & thresholds to small random values
w1;; = random(-0.5,0.5), i=1,..,4, j=1,..,B
w2ji = random(—0.5,0.5), j=1,..,B, k=1,..,C
xo = —1, hg = —1 These never change
2. Choose an input-output pair ffrom the training set. Call it X, ¥

where X = (x4, ...,x4), ¥ = V1, ., V)
Assign activation levels of x4, ..., x4 (input units)
3. Determine activation levels of hidden units.

A
hj:f<ZW1ij'xi>' j:1,...,B
i=0

4. Determine activation levels of output units

B
Ok:f<ZW2jk'hj>, k:1,...,C
j=0

5. Determine how to adjust weights between hidden and output layer for this example.
EZJ = !_(,.; O](l—O])(y]—O]), ] = 1,...,C
from sigmoid
: : 1
Sigmoid: f(x) = TIoTR%
6. Determine how to adjust weights between input and hidden layer for this example.
c

Elj=k-h;j-(1- hj)z E2;-w2;, j=1,..,B
7. Adjust weights between hidaeln and output layer.

w2;; = w2;; + LearningRate - E2; - h;, i=0,..,B,j=1,..,C
8. Adjust weights between input and hidden layer

wlij = Wlij = LearningRate - Elj - Xi, i=0..,4j=1,..,B
9. Repeat steps 2-8 until done.

Parameters

Learning rate:
range: 0.05 to 0.35

Sigmoid constant k
()= — k=0
flx) = 1+ e kx’ -

Number of hidden units
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Stopping Criteria
Maximum number of epochs. epoch = once through training set.
Error is acceptably small

¢ discrete/classification error

¢ total number of bit-errors

2
« continuous error ¥(y; — 0;)
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