
Master Theorem

Let be constants, and be
defined on nonnegative integers by the recurrence:

Then

Linear Median Algorithm (BFPRT)
Runtime:

For

For :

Induction hypothesis:

Need

General

Induction hypothesis:

With better median selection:

Knuth: Minimum comparison selection

Optimal Binary Search Tree
Use dynamic programming to compute

 additions

Divide & Conquer
May 6, 2014 10:30 AM

 CS 466 Page 1

A Faster Greedy Algorithm

Consider Case

Try

Case
If each time

Doubling (Galloping) Binary Search

So we discover if solution is in the first half or in the second half.
Look in the middle1)

Takes steps
WLOG assume solution is in the first half: start at 1 and keep doubling guess until overshoot2)

Finish with a binary search between the last 2 elements considered3)

Want the cost to be cheap if the split is near the ends, and if the split is near the middle.

May 15, 2014 10:27 AM

 CS 466 Page 2

Amortized Cost of MTF (Move to Front)

Start with empty list

if not there insert at end (has cost)
Scan to element requested

Apply heuristic (no cost)

Model

Theorem

Under "insert of first request" start-up model cost MTF on any sequence of requests.

Proof of Request

of searches: k b's, m c's,
Consider search for just 2 elements (b, c)

 = cost of

Cost of b's & c's in searches for b's & c's

 - Put in front of .

 with cost
What order of requests maximizes MTF cost:

Self-Adjusting Data Structures: Linear Linked List
May 20, 2014 10:23 AM

 CS 466 Page 3

Linear Search

but just by swapping adjacent values

MTF cost <

If offline algorithm is - on request for we are told the next time will be requested & cost of swapping 2 ajacent
segments of size r is r swaps. Then we can access all elements in time. ? under other model cost is
For any request sequence, start with elements ordered by 1st request. Amortized cost where is the

number of other elements requested until this one requested again.

 or averaging over all

Bu h s s " " usu y w ’ k w h u u s s s y h ?. h s wh h w
w s s s h .

Binary Search Trees
Use binary search trees.

Average search cost
We already know about optimal binary search tree.

Swap With Parent
If all elements have same independent probability of access then all binary search trees are equally likely. This is
bad - about half of BSTs have a root with one child.
Average cost is

Rotate To Root by Single Rotations
If probabilities are independent cost .

But, it is possible to construct arbitrarily long very bad sequences amortized cost.

SPLAY Trees

If root accessed, do nothing•
If child of root accessed, rotate to root•
If outside grandchild accessed then zig-zig•

A different move to root method

Working Set Bound

 = # of other different elements accessed since last time we accessed this

Insert in usual way and splay new value to root•
Delete - remove in "usual" way - then splay parent of the node removed•

Operations

Notation

Includes and all external nodes
 "size of node" = number of nodes in subtree rooted at

So
 k

Full splay to root = step
zig-zig, zig-zag, zig = substep

General approach
"banking analogy"

Keep "virtual account" at each node.
Account not really kept in data structure.
In doing a splay we pay a certain number of units (cyberdollars) to be determined later.

Splay Trees
May 27, 2014 9:59 AM

 CS 466 Page 4

In doing a splay we pay a certain number of units (cyberdollars) to be determined later.

payment = splay work•
 y w k s x ss s•
 y w k k w h w s•

3 cases:

Invariant: Each node has cyber$ (before and after each step)

To preserve invariant we must make payment = splay work +

Lemma
 -variation of by a single subsetp is
 for zig-zig or zig-zag

 for a zig

Proof
Fact:

We do zig-zig step otherwise similar
size of each node = 1+ sum of sizes of children.
Only rank changes in zig-zig are to

So (1):

So or
This + (1) gives

Theorem
 is a splay tree, root , total variation in splaying at depth to root

Proof
Splaying has

 substeps

 = rank of after substep
 = variation of caused by substep

Let initial rank of

From lemma

 CS 466 Page 5

Balance
wts. = 1/n
m accesses
amortized cost at most ss us x ? u h y →
 for n accesses

Static Optmial

Proof of Working Set
Give element weight (then

amortized access time is

 and net change in balance/potential at most

 CS 466 Page 6

Comparison based problems•
Lower bounds•

2 issues maybe 3

Probabilistic/randomized algorithms

Sorting Using Quicksort
Quicksort:

expected # of comparisons averaging over all input orders
choose "pivot" as middle value of subarray

expected sort cost for any input sequence
modify: choose pivot at random.

 comparisons is comparisons
Lower bound on sorting

 elements must be "disqualified" as max and each comparison disqualifies at most 1 element.
Obvious algorithm does this optimally.

Aside
Scan elements and compare with largest seen so far. comparisons

Perhaps only 1
Perhaps n

But now many "replacements" of max do we see?

Expected number of new maxes

How many if all input orders equally likely?

Finding max by comparisons need at least comparisons

Keep pair winners till we have the max at top of balanced tree comparisons.
Pair elements

2nd largest lost directly to max. So candidates - scan for max of those
So worst case comparisons

Finding 2nd largest - worst case

But, how many comparisons necessary in worst case?
Lower bound: comparisons. Necessary in worst case for any algorithm.

Finding kth largest / Median Finding
Give a lower bound ~ worst case
*
|
*
"Declare" this element is larger than any other still in system

1 up for 2 comparisons - can do

 times then must ? max of the rest

Stronger Lower Bound

.1)
These structures can be formed as the alg likes

June 3, 2014 10:44 AM

 CS 466 Page 7

.1)

1 up for 2 & next time we get

1 don for 2
 b u

.2)

1 up for 3
Next time get

1 down for 1
 u w - 4 comparisons
 b u

or

1 down for 2
next time
1 up for 2

These structures can be formed as the alg likes

.3)

1 up for 3, 1 down for 1
 u w

1 up 1 down for 4

2 up for 4 and next time

 CS 466 Page 8

2 down for 3
2 up, 2 down for 1

2 down for 3
then next time

2 up, 2 down for 7

Any of these situations could happen. All lead to lower bound of at least

 .

worst case median finding takes comparisons

How about expected case?
Method you know

 comparisons
 . comparisons

"one armed quicksort"

Floyd & Rivest

Take a sample size (

)

one above median (high)-

one below median(low)-

Sort it and find 2 elements

high - almost certainly > median of entire set
low - almost certainly < median of entire set
& expect # of elements in the entire set between high & low is not too large

So that

If < high, compare with low
Count # above high (below low) & keep values that are in between

Then scan through rest of values. compare with high

So if true median lies between high & low we have a selection problem on these. sort and find it.

Choosing numbers

Take sample size (say)

Take high/low ? sample of rank

we expect

 in between

unlikely more than

 between high & low

 or so comparisons

if so ? & repeat answer

Then we expect about

 comparisons & some number between

But how do we do better

 CS 466 Page 9

 or so comparisons

H h & w ’ b k i.
Too many in betweenii.

Either of 2 problems could occur

 CS 466 Page 10

Discrepancy Minimization
Given a set system

 a set,

,

Formally, let → (a colouring of the elements of)

 s x

 s

 s

The cell probe complexity of dynamic range counting
Applications:

 s

 1)

A complicated set system with discrepancy 02)

 = all subsets of

 , let
 be obtained by replacing s with 's.

 s

Examples

Goal
Prove s

Fact
There exists with such that s

Trivial upper bound : Color all elements in with the same color. b u

Idea
Colour randomly
 .

Analysis

 s. .

w

 is some small probability. Want

Aside: Random Walk on a Line

At each ,
 w h b b y

 w h b b y

Position after steps

Discrepancy Minimization
June 10, 2014 10:06 AM

 CS 466 Page 11

Attempt 1: Markov's Inequality

Attempt 2: Chebyshev's Inequality

What is ?

Can model as random walk with steps since is uniform random.

So

Attempt 3: Chernoff bound

Want

Beck-Fiala Theorem

Conjecture: s

 s , is the degree, the maximum number of sets an element is part of•

 s •

More general Chernoff bounds available•

Remarks

 CS 466 Page 12

Recursive Functions

Increment variable•
Set to 0•
Test if zero•
Branch on condition - or - make procedure calls •

Allowed operations:

NP-Completeness
June 12, 2014 10:12 AM

 CS 466 Page 13

Our case is a special case which we can solve quickly•
Similar notion - we may have a 2 parameter problem taking time exponential in one but
polynomial in the other
Parameterized complexity•
Randomization (& derandomization)•
"Standard" approach have a ply time algorithm guaranteed to find a solution "close" to
optimal.

•

2 SAT
Keep 2 copies of the expression & auxiliary data
For each variable and its negation , keep doubly linked list of clauses where occurs and
one where occurs.
Also, for each variable, keep "flag" (T, F, ?)

 on one copy
 on the other

Run "natural algorithm" with

each process grows at same "speed"

successful - makes its decisions permanent, set the other the same and recurse
unsuccessful - make permanent the decisions of the one still running

Continue until one:

MAX SAT
3 literals per clause
Try to satisfy as many clauses as you can
|Take a random guess assignment of all variables
How many clauses do we expect to be true?
Probability of any one clause being true is 7/8
Expected # true 7/8 * n

NP-hard problems
June 19, 2014 10:07 AM

 CS 466 Page 14

Show it is in NP•
Show solving arbitrary instance of known NP-complete problem can be done in poly
time if is in P

•

To prove is NP-complete

Usually

Reduction
Given arbitrary instance of , in poly time transform instance of to one of (which is in iff it
is in).

Non-deterministic Turing Machine - Poly Time

SAT

3-CNF-SAT

Clique Subset Sum

Clique
Does graph on nodes have a clique of size ?
Clique: complete subgraph
In NP: Guess nodes. Show there is an edge between each pair of them.
Reduce 3-CNF to Clique:

 u

Given

 is vertex

 in
edge

 iff

 and
 are compatible (i..e. NOT negations of each other)

Create a graph

Claim: Graph has a k-clique iff is satisfiable.

Subset Sum:

Clearly Subset Sum is in NP.i)
Guess a subset of and show its sum is
"Translate" an arbitrary* 3-CNF problem to a Subset Sum problemii)

Each which actually occurs as and in 

No clause with both and 

Consider a 3-SAT with variables
* Arbitrary with the following restrictions:

This will give and
Now we will create a Subset Sum Problem from .

 of , integers - one for , one for

 of - 2 integers to handle issue of more than one literal in a cluase being true
WLG variable digits come first

 digit in position : in if in , in
 if in

 - 1 digit in position

 variable :

 , has
 with 0 everywhere except position of is 1 in and 2 in

Elements in will be digit numbers. The elements of :

Given set of positive integer , is there a subset of whose sum is ?

P Reductions
June 26, 2014 10:11 AM

 CS 466 Page 15

 , has
 with 0 everywhere except position of is 1 in and 2 in

Without the numbers, a satisfying assiment correspondes to subset with sum

Looking carefully we see a subset sum of size iff formula is satisfiable. Do
arithmetic base 10

With number we can add by taking , 2 by taking
 , or 3 by taking both.

Knapsack Problem
Given objects each with size and weight choose a subset with

subs having

maximum value (weight).
Optimizing problem but NP-hard.
Proof: Let . Let = knapsack size.
The question can we achieve value is subset sum.

 CS 466 Page 16

Some Problems
Vertex Cover
Input: An undirected graph and integer
Question: Is there a subset such that and for each edge , at least one of
 is in ?

Independent Set
Input as above.
Question: Is there a subset , such that for all

Clique
Question: Is there a such that for all ,

Parameterized Problems
A parameterized (decision) problem is a language for finite alphabet . We call the
second component the parameter.

Fixed-Parameter Tractable (FPT)

 is computable
 is the length of the binary string encoding of and

A problem is fixed-parameter tractable if there exists an algorithm determining if

with worst-case running time where

Parameterized Reduction
For two parameterized problems , reduces to by a parameterized reduction if
functions and mapping to and function mapping to such that is computable
in time for some constant and iff

Reductions
 ↔ qu
Keep the same, invert the edges

Vertex Cover
?
→Independent Set

Transform → , but this depends on , not just so is not a valid parameterized
reduction.
Vertex Cover is fixed-parameter tractable (FPT = W[0])

Independent Set is W[1]

Parameterized Complexity
July 3, 2014 9:56 AM

 CS 466 Page 17

Search tree exploration1.
Data reduction (kernelization)2.
Treewidth3.
Colour-coding4.

Bounded Search Tree
Bounded height and fan-out: u w h s ss

fan-out: A function of only
weight: A function of only

cost of processing a node:

Vertex Cover
Example

At each node in the tree, pick an edge and branch on which vertex on that edge is in the cover.

In this case, fan-out=2, depth=k

Independent Set
Try: At a node, pick a vertex and branch on picking that vertex or any of its neighbours. But the
branching factor isn't bounded as a function of . If the degree was bounded this would work.
 h hs h s w ys v x w h s k k w h h
property.

Parameterized Algorithms
July 3, 2014 10:31 AM

 CS 466 Page 18

property.

Kernelization
Max Sat
Can at least out of clauses be satisfied?

If

 , answer yes.

We know

Vertex Cover
Rule 1: Remove isolated vertices, keep
Rule 2: Re degree-one vertex with neighbour , remove and all incident edges, reduce by 1
Rule 3: For every vertex of degree greater than , remove and all incident edges, reduce by 1

Claim: If the reduced graph is a yes-instance, it is small.
 b sw " ". s b u T.
There are at most vertices in a "yes" instance (v s v h w h k

 CS 466 Page 19

0/1 Knapsack
Given objects of the integer weights and values h s subs w h w h
maximizes the value.

This problem is in NP-Complete (decision version)•
let then it is subset sum•
similarly, optimization problem is NP-Hard•

or as a decision problem - w v u v ?

Fractional Knapsack
Can take any fraction of any "object".

Take values per unit weight, i.e.

Sort 's into decreasing order.

take as much of object as you can.
for i = 1 till done

This runs in

Better Algorithm

Can I take all of substances of relative value or higher?•

so recurse on valuable half○

If NO then will not take any that are less valuable then •

so recurse on less valuable half○

If YES then take all of the valuable

 subsets, can take more•

Find median

So with either case runtime

Solving 0/1 Knapsack Algorithm
Clearly can do this in time
We are given the objects in arbitrary order
 max value on first k items with weight exactly (if this does not exist, NaN)
So

 x h w s

We are going to consider the objects in order, so when we come to element we only need
 , best value with weight = w choosing only from elements
Assume max weight is .

for to do

then

if
for down to do

for to do

This method takes time and space.
Note: we can get the optimal choice. Each time we update keep track of what we added
and which we used.
This is NOT a poly time algorithm in the # of bits of input as encoding takes bits.
Such a solution is called pseudopolynomial.

Knapsack Problem
July 8, 2014 10:11 AM

 CS 466 Page 20

New coping method for optimization problems: do as well as you can and have some bounds
you can guarantee.
Approximation algorithm with guaranteed approximate.

 x

where cost of our solution, = cost of optimal solution to this instance. We don't know .

Ideal Solution
Approximation Scheme: taking into account a parameter and getting ratio

For fixed scheme runs in polytime (e.g.

) Fully polynomial time approximation scheme

has runtime polynomial in and also in

e.g

Poly time approximation scheme:

Optimization
July 8, 2014 11:02 AM

 CS 466 Page 21

